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Abstract. The most popular architecture for parallel search is work
stealing: threads that have run out of work (nodes to be searched) steal
from threads that still have work. Work stealing not only allows for
dynamic load balancing, but also determines which parts of the search
tree are searched next. Thus the place from where work is stolen has a
dramatic effect on the efficiency of a parallel search algorithm.
This paper examines quantitatively how optimal work stealing can be
performed given an estimate of the relative solution densities of the sub-
trees at each search tree node and relates it to the branching heuristic
strength. An adaptive work stealing algorithm is presented that auto-
matically performs different work stealing strategies based on the confi-
dence of the branching heuristic at each node. Many parallel depth-first
search patterns arise naturally from this algorithm. The algorithm pro-
duces near perfect or super linear algorithmic efficiencies on all problems
tested. Real speedups using 8 threads range from 7 times to super linear.

1 Introduction

Architectures for parallel search in constraint programming typically use work
stealing for distributing work (nodes to be searched) from running to idle threads,
see for example [1–4]. Work stealing has often focused on keeping processors
occupied. Its analysis often assumes that the amount of work to be done is fixed
and independent of the work stealing scheme, for example [5].

While this is true for certain kinds of problems (finding all solutions, proving
unsatisfiability), it is not true for others (finding a first solution, or finding an
optimal solution). Such analyses fail to account for the fact that the place in the
search tree from which work is stolen determines the search strategy and hence
is bound to have a dramatic effect on efficiency.

Many approaches choose to steal from as close to the root of the search tree
as possible, e.g. [3], as this tends to give the greatest granularity of work and
minimizes the overhead of work stealing. However, this is not always the best
strategy in terms of efficiency.



Effect of work stealing. Let us consider a relatively simple framework for par-
allel search. One thread begins with ownership of the entire search tree. When
a thread finishes searching the subtree it was responsible for, it will steal an
unexplored part of the search tree (a job) from its current owner. This continues
until a solution is found or the entire search tree has been searched.

Example 1. The first problem we will consider is a simple model for small in-
stances of the Traveling Salesman Problem, similar to [6]. In our experiments,
with 8 threads, stealing left and low (as deep in the tree as possible) requires
visiting a number of nodes equal to the sequential algorithm, while stealing high
(near the root) requires visiting ∼ 30% more nodes on average (see Table 1).

The explanation is simple. In one example instance, the sequential algorithm
finds the optimal solution after 47 seconds of CPU time, after which it spends
another ∼ 300 seconds proving that no better solution exists. When the parallel
algorithm is stealing left and low, all threads work towards finding that leftmost
optimal solution, and the optimal solution is found in 47 seconds of CPU time
as before (wall clock time 47/8 ≈ 6 seconds). After this, the search takes another
300 seconds of CPU time to conclude. Thus we have perfect linear speedup both
in finding the optimal solution, and in proving that no better solution exist.

However, when the parallel algorithm is stealing high, only one thread actu-
ally explores the leftmost part of the search tree and works towards that leftmost
optimal solution. The other seven threads explore other parts of the search tree,
unfruitfully in this case. This time, the optimal solution is found in 47 seconds
of wall clock time (376 seconds of CPU time!). The algorithm then spends an-
other 200 seconds of CPU time proving optimality. That is, there is no speedup
whatsoever for finding the optimal solution, but linear speedup for proving op-
timality. Since the optimal solution has been found so much later (376 seconds
CPU time instead of 47 seconds), the threads search without the pruning ben-
efits of the optimal solution. Hence, the number of nodes searched drastically
increases, leading to a great loss of efficiency. Clearly, this effect gets worse as
the number of threads increases. �

It may appear from this example that stealing left and low would be efficient
for all problems. However, such a strategy can produce at best linear speedup.

Example 2. Consider the n-Queens problem. The search tree is very deep and a
top level mistake in the branching will not be recovered from for hours.

Stealing low solves an instance within the time limit iff sequential depth first
search solves it within the time limit. This is the case when a solution is in the
very leftmost part of the search tree (only 4 instances out of 100, see Table 2).

Stealing high, in contrast, allows many areas of the search tree to be explored,
so a poor choice at the root of the search tree is not as important. Stealing high
results in solving 100 out of 100 instances tested. This is clearly far more robust
than stealing low, producing greatly super-linear speedup. �

Veron et al [7] claim that linear and super linear speedups can be expected
for branch and bound problems, but they fail to note that finding the optimal



solution does not parallelize trivially as shown by Example 1. Rao and Kumar [8]
(and others) show that super linear speedup ought to be consistently attainable
for finding the first or the optimal solution for certain types of problems. Their
analysis is valid if the search tree is random (i.e. the solutions are randomly
distributed), but is not valid in systems where a branching heuristic orders the
branches based on their likelihood of yielding a solution. The presence of such a
branching heuristic makes linear speedup in finding solutions non-trivial. Gen-
dron and Crainic [9] describe the issue and provide a description how the issue is
handled in several systems. In general, the solutions utilise some kind of best-first
criterion to guide how the problem is split up (see e.g. [10, 11]).

Contributions. The paper contributes a quantitative analysis of how different
work stealing strategies affect the total amount of work performed and explains
the relationship between branching heuristic strength and optimal search strat-
egy. It introduces confidence-based work stealing as an adaptive algorithm that,
when provided with a user-defined confidence, will steal work in a near opti-
mal manner. The confidence is the estimated ratio of solution densities between
the subtrees at each node. The paper shows that confidence-based work stealing
leads to very good algorithmic efficiencies, that is, not many more, and sometimes
much less, nodes are explored than for sequential DFS (Depth First Search).

Although the analysis is done in the context of parallel search for constraint
programming, the analysis is actually about the relationship between branch-
ing heuristic strength and the optimal search order created by that branching
heuristic. Thus the analysis actually applies to all complete tree search algo-
rithms whether sequential or parallel. The paper shows that when the assump-
tions about branching heuristic strength that lie behind standard sequential al-
gorithms such as DFS, Interleaved Depth First Search (IDFS) [12], Limited Dis-
crepancy Search (LDS) [13] or Depth-bounded Discrepancy Search (DDS) [14]
are given to the algorithm as confidence estimates, the algorithm produces the
exact same search patterns used in those algorithms. Thus the analysis and algo-
rithm provides a framework which explains/unifies/produces all those standard
search strategies. In contrast to the standard sequential algorithms which are
based on rather simplistic assumptions about how branching heuristic strength
varies in different parts of the search tree, our algorithm can adapt to branching
heuristic strength on a node by node basis, potentially producing search patterns
that are vastly superior to the standard ones. The algorithm is also fully parallel
and thus the paper also presents parallel DFS, IDFS, LDS and DDS as well.

Confidence-based search shares the idea to explore more promising parts of
the search tree first with other approaches such as impact-based search [15] and
using solution counting [16] and constraint-level advice [17] for guiding search.
However, there are two key differences. First, confidence-based search uses stan-
dard branchings (labelings) that define the shape of the search tree augmented
by confidence. This makes the addition of confidence-based search to an existing
constraint programming solver straightforward and allows us to reuse existing
constraint models with user-defined branchings. Second, confidence-based search
is designed to work in parallel.



2 Analysis of Work Allocation

In this section we show quantitatively that the strength of the branching heuristic
determines the optimal place to steal work from. We will concentrate on the case
of solving a satisfaction problem. The case for optimization is related since it is
basically a series of satisfaction problems.

Preliminary definitions. A constraint state (C,D) consists of a system of con-
straints C over variables V with initial domain D assigning possible values D(v)
to each variable v ∈ V . The propagation solver, solv, repeatedly removes values
from the domains of variables that cannot take part in the solution of some
constraint c ∈ C, until no more values can be removed. It obtains a new domain
solv(C,D) = D′. If D′ assigns a variable the empty set the resulting state is a
failure state. If D′ assigns each variable a single value (|D(v)| = 1, v ∈ V ) the
resulting state is a solution state. Failure and solution states are final states.

Finite domain propagation interleaves propagation solving with search. Given
a current (non-final) state (C,D) where D = solv(C,D) the search process
chooses a search disjunction ∨ni=1ci of decision constraints ci (1 ≤ i ≤ n) which
is a consequence of the current state C ∧ D. The child states of (C,D) are
calculated as (C ∧ ci, solv(C ∧ ci, D)), 1 ≤ i ≤ n. Given a root state (C,D), this
defines a search tree of states, where each non-final state is an internal node with
children defined by the search disjunction and final states are leaves.

The solution density of a search tree T with k nodes and l solution state
nodes is l/k.

Optimal split for binary nodes. For simplicity, assume that visiting each node in
the search tree has roughly equal cost. Assuming an oracle that provides accurate
information on solution density, work stealing from nodes whose subtrees have
the highest solution densities will be optimal.

In practice however, the solution density estimates will not be perfect:

1. Any estimate of the solution density of a subtree will have a very high error,
with a substantial chance that the solution density is actually zero.

2. The real solution densities, and hence the errors in the estimate, are highly
correlated between nearby subtrees, as they share decision constraints from
higher up in the tree.

3. The solution density estimate of a subtree should decrease as nodes in that
subtree are examined without finding a solution. This is caused by:
(a) As the most fruitful parts of the subtree are searched, the average solu-

tion density of the remaining nodes decrease.
(b) The correlation between solution densities between nearby subtrees mean

that the more nodes have failed in that subtree, the more likely the
remaining nodes are to fail as well.

We have to take these issues into account when utilizing solutions densities
to determine where to steal work. Given the actual solution density probability



distribution for the two branches, we can calculate the expected number of nodes
searched to find a solution. We derive the expression for a simple case. Suppose
the solution density probability distribution is uniform, that is, it has equal
probability of being any value between 0 and S where S is the solution density
estimate. Let A and B be the solution density estimates for the left and right
branch respectively, and assume a proportion p and (1 − p) of the processing
power is sent down the left and right branch respectively. Then the expected
number of nodes to be searched is given by the hybrid function:

f(A,B, p) =

{
1
pA (2 + ln( pA

(1−p)B )) for pA > (1− p)B
1

(1−p)B (2 + ln( (1−p)B
pA )) otherwise

(1)

The shape of this function does not depend on the absolute values of A and
B (which only serve to scale the function), but on their ratio, thus the shape is
fixed for any fixed value of r = A/(A+B).

The value of p which minimizes the function for given value of r is well
approximated by the straight line p = r. In fact, the value of the f function at
p = r is no more than 2% higher than the true minimum for any r over the range
of 0.1 ≤ r < 0.9. For simplicity, we will make this approximation from now on.
This means that it is near optimal to divide the amount of processing power
according to the ratio of the solution density estimate for the two branches. For
example, if r = 0.9, which means that A is 9 times as high as B, then it is near
optimal to send 0.9 of our processing power down the left branch and 0.1 of our
processing power down the right.

Branching confidence. Define the confidence of a branching heuristic at each
node as the ratio r = A/(A + B). The branching heuristic can be considered
strong when r → 1, that is the solution density estimate of the left branch
is far greater than for the right branch. In other words, the heuristic is really
good at shaping the search tree so that solutions are near the left. In this case,
our analysis shows that since r is close to 1, we should allocate almost all our
processing power to the left branch every time. This is equivalent to stealing
work for search as left and as low as possible. The branching heuristic is weak
when r ≈ 0.5, that is, the solution density estimate of the left branch and right
branch are similar because the branching heuristic has no insight into where the
solutions are. In this case, our analysis shows that since r = 0.5, the processing
power should be distributed evenly between left and right branches at each node.
This is equivalent to stealing work for search as high as possible.

3 Adaptive Work Stealing

Our analysis shows that the optimal work stealing strategy depends on the
strength of the branching heuristic. Since we have a quantitative understanding
of how optimal work stealing is related to branching heuristic strength, we can
design a search algorithm that can automatically adapt and produce “optimal”



search patterns when given some indication of the strength of the branching
heuristic by the problem model. In this section, we flesh out the theory and
discuss the implementation details of the algorithm.

3.1 Dynamically Updating Solution Density Estimates

Now we examine how solution density estimates should be updated during search
as more information becomes available.

First we need to relate the solution density estimate of a subtree with root
(C,D) with the solution density estimate of its child subtrees (the subtrees
rooted at its child states (C∧ci, solv(C∧ci, D))). Consider an n-ary node. Let the
subtree have solution density estimate S. Let the child subtree at the i-th branch
have solution density estimate Ai and have size (number of nodes) ki. If S and Ai
are estimates of average solution density, then clearly: S =

∑n
i=1Aiki/

∑n
i=1 ki,

i.e. the average solution density of the subtree is the weighted average of the
solution densities of its child subtrees.

Uncorrelated subtrees. Assuming no correlation between the solution densities of
subtrees, we have that if the first j child subtrees have been searched unsuccess-
fully, then the updated solution density estimate is S =

∑n
i=j+1Aiki/

∑n
i=j+1 ki.

Assuming that ki are all approximately equal, then the expression simplifies to:

S =
n∑

i=j+1

Ai/(n− j)

For example, suppose A1 = 0.3, A2 = 0.2, A3 = 0.1, then initially, S = (0.3 +
0.2 + 0.1)/3 = 0.2. After branch 1 is searched, we have S = (0.2 + 0.1)/2 = 0.15,
and after branch 2 is searched, we have S = (0.1)/1 = 0.1. This has the effect
of reducing S as the branches with the highest values of Ai are searched, as the
average of the remaining branches will decrease.

Correlated subtrees. Now we consider the case where there are correlations be-
tween the solution density estimates of the child subtrees. The correlation is likely
since all of the nodes in a subtree share the constraint C of the parent state.
Since the correlation is difficult to model we pick a simple generic model. Sup-
pose the solution density estimates for each child subtree is given by Ai = ρA′i,
where ρ represents the effect on the solution density due to the constraint added
at the parent node, and A′i represents the effect on the solution density due to
constraints added within branch i. Then ρ is a common factor in the solution
density estimates for each branch and represents the correlation between them.
We have that:

S =
∑n
i=1Aiki∑n
i=1 ki

= ρ

∑n
i=1A

′
iki∑n

i=1 ki
.

Suppose that when j out of n of the branches have been searched without finding
a solution, the value of ρ is updated to ρn−jn . This models the idea that the



more branches have failed, the more likely it is that the constraint C added at
the parent node has already made solutions unlikely or impossible. Then, after
j branches have been searched, we have: S = ρn−jn

∑n
i=j+1A

′
iki/

∑n
i=j+1 ki.

Assuming that all ki are approximately equal again, the expression simplifies to:
S = ρn−jn

∑n
i=j+1A

′
i/(n − j) = ρ

n

∑n
i=j+1A

′
i =

∑n
i=j+1Ai/n. Equivalently, we

can write it as:

S =
1
n

n∑
i=1

Ai and Ai = 0 for 1 ≤ i ≤ j (2)

where we update Ai to 0 when branch i fails. The formula can be recursively
applied to update the solution density estimates of any node in the tree given a
change in solution density estimate in one of its subtrees.

Using confidence. In all of our results, the actual values of the solution densi-
ties are not required. We can formulate everything using confidence, the ratio
between the solution densities of the different branches at each node. In terms
of confidence, when a subtree is searched and fails the confidence values should
be updated as follows:

Let ri be the confidence value of the node i levels above the root of the failed
subtree and r′i be the updated confidence value. Let r̄i = ri, r̄

′
i = r′i if the failed

subtree is in the left branch of the node i levels above the root of the failed
subtree and r̄i = 1− ri, r̄′i = 1− r′i otherwise. Then:

r̄′i = (r̄i −
i∏

k=1

r̄i)/(1−
i∏

k=1

r̄i) (3)

3.2 Confidence Model

Given a confidence at each node, we now know how to steal work “optimally”
and how to update confidence values as search proceeds. But how do we get
an initial confidence at each node. Ideally, the problem modeler, with expert
knowledge about the problem and the branching heuristic can develop a solution
density heuristic that gives a confidence value at each node. However, this may
not always happen, perhaps due to a lack of time or expertise. We can simplify
things by using general confidence models. For example, we could assume that
the confidence takes on an equal value conf for all nodes. This is sufficient to
model general ideas like: the heuristic is strong or the heuristic is weak. Or we
could have a confidence model that assigns r = 0.5 to the top d levels and
r = 0.99 for the rest. This can model ideas like the heuristic is weak for the first
d levels, but very strong after that, much like the assumptions used in DDS [14].

3.3 Algorithm

Given that we have a confidence value at each node, our confidence-based search
algorithm will work as follows. The number of threads down each branch of a
node is updated as the search progresses. When search for a subtree is finished,



the confidence values of all nodes above the finished subtree are updated as
described by Equation (3) above.

When work stealing is required, we start at the root of the tree. At each
node we use the number of threads down each branch, the confidence value, to
determine which branch to take. Given the number of threads down each branch
is currently a and b respectively then if |(a+1)/(a+b+1)−r| ≤ |a/(a+b+1)−r|
we go left, otherwise right (i.e., which move would split the work closer to the
confidence value). We continue this process until we find an unexplored node, at
which point we steal the subtree with that unexplored node as root.

There is an exception to this. Although we may sometimes want to steal as
low as possible, we cannot steal too low, as then the granularity would become
too small and communication costs will dominate the runtime. Thus we dynam-
ically determine a granularity bound under which threads are not allowed to
steal, e.g. 15 levels above the average fail depth. If the work stealing algorithm
guides the work stealing to the level of the granularity bound, then the last
unexplored node above the granularity bound is stolen instead. The granularity
bound is dynamically adjusted to maintain a minimum average subtree size so
that work stealing does not occur more often than a certain threshold.

Since the confidence values are constantly updated, the optimal places to
search next changes as search progresses. In order for our algorithm to adapt
quickly, we do not require a thread to finish the entire subtree it stole before
stealing again. Instead, after a given restart time has passed, the thread returns
the unexplored parts of its subtree to a master coordinating work stealing and
steals work again from the top. The work frontier is stored at the master and the
work is resumed when work stealing guides a thread to the area again (similar
to the idea used in interleaving DFS [12]).

Example with reasonably high confidence. Suppose we know that the branching
heuristic is reasonably strong, but not perfect. We may use conf = 0.8.

Suppose we have 8 threads. Initially, all confidence values are 0.8. When the
8 threads attempt to steal work at the root, thread 1 will go down the left hand
side. Thread 2 will go down the left hand side as well. Thread 3 will go down the
right hand side. Thread 4 will go down the left hand side, etc, until 6 threads
are down left and 2 threads are down right. At node b, we will have 5 threads
down the left and 1 thread down the right, and so on. The work stealing has
strongly favored sending threads towards the left side of each node because of
the reasonably high confidence values of 0.8. The result is shown in Figure 1(a).

Suppose as search progresses the subtree starting at node d finishes without
producing a solution. Then we need to update the confidence values. Using
Equation (3), the confidence value at node b becomes 0, and at node a 0.44.
Now when the threads steal work from the root, the situation has changed. Since
one of the most fruitful parts of the left branch has been completely searched
without producing a solution, it has become much less likely that there is a
solution down the left branch. The updated confidence value reflects this. Now
the threads will be distributed such that 4 threads are down the left branch and
4 threads are down the right branch, as shown in Figure 1(b).
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Fig. 1. Example with reasonably high confidence

Next, perhaps the subtree starting at node j finishes. The confidence value
at node e then becomes 0, the confidence value at node b remains 0 and the
confidence value at node a becomes 0.14. The vast majority of the fruitful places
in the left branch has been exhausted without finding a solution, and the con-
fidence value at the root has been updated to strongly favor the right branch.
The threads will now be distributed such that 7 threads go down the right and
1 thread goes down the left, as shown in Figure 1(c).

Next, suppose the subtree starting at node f finishes. The confidence value
at node c becomes 0 and the confidence value at node a becomes 0.44. Since the
most fruitful part of the right branch has also failed, the confidence value now
swings back to favor the left branch more, as shown in Figure 1(d). This kind of
confidence updating and redistribution of threads will continue, distributing the
threads according to the current best solution density estimates. In our explana-
tion here, for simplicity we only updated the confidence values very infrequently.
In the actual implementation, confidence values are updated after every job is
finished and thus occur much more frequently and in much smaller sized chunks.

Example with low confidence. For the second example, suppose we knew that the
heuristic was very bad and was basically random. We may use conf = 0.5, i.e.
the initial solution density estimates down the left and right branch are equal.
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Fig. 2. Example with low confidence

Suppose we have 4 threads. Initially, all the confidence values are 0.5. The
threads will distribute as shown in Figure 2(a). This distributes the threads as
far away from each other as possible which is exactly what we want. However, if
the search tree is deep, and the first few decisions that the each threads makes
are wrong, all threads may still get stuck and never find a solution.

This is where the restart limit kicks in. After a certain time threshold is
reached, the threads abandon their current search and begin work stealing from
the root again. Since the confidence values are updated when they abandon their
current job, they take a different path when they next steal work. For example,
if the thread down node e abandons after having finished a subtree with root
node at depth 10, then the confidence at node e becomes 0.498, the confidence
at node b becomes 0.499, and the confidence at node a becomes 0.4995. Then
when a thread steals work from the root, it will again go left, then right. When
it gets to node e however, the confidence value is 0.498 and there are no threads
down either branch, thus it will go right at this node instead of left like last
time. The result is shown in Figure 2(b). The updated confidence value has
guided the thread to an unexplored part of the search tree that is as different
from those already searched as possible. This always happens because solution
density estimates are decremented whenever a part of a subtree is found to have
failed, so the confidence will always be updated to favour the unexplored parts
of the search tree.

Emulating standard search patterns. As some other examples, we briefly mention
what confidence models lead to some standard search patterns. DFS: conf = 1,
restart = ∞. IDFS: conf = 1, restart = 1000. LDS: conf = 1-ε, restart = 1
node. DDS: conf = 0.5 if depth < d, 1-ε if depth ≥ d, restart = 1 node.

4 Experimental Evaluation

Confidence-based work stealing is implemented using Gecode 3.0.2 [18] with
an additional patch to avoid memory management contention during parallel



execution. The benchmarks are run on an Mac with 2× 2.8 GHz Xeon Quad Core
E5462 processors with 4Gb of memory. However, due to memory limitations, we
could not run the large instances of n-Queens or Knights on this machine. We
run those two benchmarks on a Dell PowerEdge 6850 with 4× 3.0 GHz Xeon
Dual Core Pro 7120 CPUs with 32Gb of memory. 8 threads are used for the
parallel search algorithm. We use a time limit of 20 min CPU time (2.5 min wall
clock time for 8 threads), a restart time of 5 seconds, and a dynamic granularity
bound that adjusts itself to try to steal no more than once every 0.5 seconds. We
collected the following data: wall clock runtime, CPU utilization, communication
overhead, number of steals, total number of nodes searched and number of nodes
explored to find the optimal solution.

Optimization problems. In our first set of experiments we examine the efficiency
of our algorithm for three optimization problems from Gecode’s example prob-
lems. The problems are: Traveling Salesman Problem (TSP), Golomb-Ruler and
Queens-Armies. A description of these problems can be found at [18]. We use
the given search heuristic (in the Gecode example file) for each, except for TSP
where we try both a strong heuristic based on maximising cost reduction and a
weak heuristic that just picks variables and values in order. For TSP, we ran-
domly generated many instances of an appropriate size for benchmarking. Only
the size 12 and size 13 instances of Golomb Ruler, and only the size 9 and size
10 instances of Queen-Armies, are of an appropriate size for benchmarking. We
use the simple confidence model with conf = 1, 0.66 and 0.5. The results are
given in Table 1.

It is clear that in all of our problems, runtime is essentially proportional to
the number of nodes searched, and it is highly correlated to the amount of time
taken to find the optimal solution. The quicker the optimal solution is found, the
fewer the nodes searched and the lower the total runtime. The communication
cost, which includes all work stealing and synchronisation overheads, is less than
1% for all problems.

The strong heuristic in TSP is quite strong. Using conf = 1 achieves near
perfect algorithmic efficiency, where algorithm efficiency is defined as the total
number of nodes searched in the parallel algorithm vs the sequential algorithm.
Other values of conf clearly cause an algorithmic slowdown. The optimal solution
is found on average 3.2 and 3.3 times slower for conf = 0.66 and 0.5 respectively,
resulting in an algorithmic efficiency of 0.81 and 0.80 respectively. The opposite
is true when the weak heuristic is used. Using conf = 1 or 0.66 allows us to
find the leftmost optimal solution in approximately the same number of nodes
as the sequential algorithm, but using conf = 0.5 to reflect that the heuristic is
weak allows the algorithm to find the optimal solution even faster, producing an
algorithmic efficiency of 1.14.

The branching heuristic in Golomb Ruler is a greedy heuristic that selects
the minimum possible value for the variable at each stage. This is a reasonable
heuristic but by no means perfect. It turns out that for Golomb Ruler 12 and 13,
the optimal solution does not lie directly in the left-most branch, and a certain
degree of non-greediness leads to super-linear solution finding efficiencies.



Table 1. Experimental results for optimization problems with simple confidence model.
The results show: wall clock runtime in seconds (Runtime), speedup relative to the
sequential version (Speedup), and runtime efficiency (RunE) which is Speedup/8, CPU
utilization (CPU%), communication overhead (Comm%), number of steals (Steals),
total number of nodes explored (Nodes), the algorithmic efficiency (AlgE) the total
number of nodes explored in the parallel version versus the sequential version, the
number of nodes explored to find the optimal solution (Onodes), and the solution
finding efficiency (SFE) the total number of nodes explored in the parallel version to
find the optimal versus the sequential version. Values for Runtime, CPU%, Comm%,
Steals, Nodes, and Onodes are the geometric mean of the instances solved by all 4
versions.

TSP with strong heuristic, 100 instances (Mac)
conf Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE

Seq 313.3 — — 100.0% 0.0% — 5422k — 1572k —
1 38.2 7.25 0.91 96.5% 0.4% 708 5357k 1.01 1589k 0.99
0.66 47.2 5.88 0.74 93.7% 0.1% 319 6657k 0.81 5130k 0.31
0.5 48.0 5.77 0.72 92.9% 0.1% 467 6747k 0.80 5275k 0.30

TSP with weak heuristic, 100 instances (Mac)
conf Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE

Seq 347.8 — — 99.0% 0.0% — 7.22M — 1.15M —
1 46.7 7.45 0.93 99.4% 0.6% 1044 6.96M 1.04 1.09M 1.06
0.66 45.8 7.60 0.95 96.9% 0.1% 379 7.02M 1.03 1.10M 1.05
0.5 41.6 8.36 1.05 97.5% 0.1% 304 6.36M 1.14 0.96M 1.20

Golomb Ruler, 2 instances (n = 12, 13) (Mac)
conf Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE

Seq 562 — — 100.0% 0.0% — 9.71M — 1.07M —
1 69.0 8.15 1.02 99.3% 0.2% 572 8.96M 1.08 0.81M 1.33
0.66 59.0 9.54 1.19 99.3% 0.1% 346 7.58M 1.28 0.49M 2.21
0.5 65.2 8.63 1.08 99.3% 0.1% 259 8.42M 1.15 0.66M 1.63

Queen Armies, 2 instances (n = 9, 10) (Mac)
conf Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE Onodes SFE

Seq 602 — — 100.0% 0.0% — 13.6M — 845k —
1 87.1 6.91 0.86 99.3% 0.7% 1521 14.5M 0.94 1878k 0.45
0.66 86.3 6.98 0.87 98.8% 0.2% 1143 14.5M 0.96 2687k 0.31
0.5 86.0 7.00 0.87 99.5% 0.2% 983 14.5M 0.95 2816k 0.30

The results for Queens-Armies show little difference depending on confidence.
Clearly the heuristic is better than random at finding an optimal solution, and
solution finding efficiency degrades slightly as we ignore the heuristic. But the
overall nodes searched are almost identical for all confidence values, as the work
required for the proof of optimality make up the bulk of the run time, and the
proof of optimality parallelises trivially regardless of confidence.

Satisfaction problems. In our second set of experiments we examine the efficiency
of our algorithm for three satisfaction problems from Gecode’s examples [18]. The
problems are: n-Queens, Knights, and Perfect-Square.



Table 2. Experimental results for satisfaction problems with simple confidence model

n-Queens, 100 instances (n = 1500, 1520, ..., 3480)
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE

Seq 4 2.9 — — 99.9% 0.0% — 1859 —
1 4 10.4 — — 99.0% 86.6% 2 1845 —
0.66 29 18.0 — — 81.6% 0.3% 9 15108 —
0.5 100 2.9 — — 65.5% 1.6% 8 14484 —

Knights, 40 instances (n = 20, 22, ..., 98)
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE

Seq 7 0.22 — — 99.9% 0.0% — 1212 —-
1 7 0.26 — — 68.1% 59.7% 2 1150 —
0.66 13 0.50 — — 48.0% 4.7% 8 8734 —
0.5 21 0.66 — — 35.2% 6.0% 8 8549 —

Perfect-Square, 100 instances
conf Solved Runtime Speedup RunE CPU% Comm% Steals Nodes AlgE

Seq 15 483.1 — — 99.9% 0.0% — 213k —
1 13 72.3 6.68 0.83 98.0% 19.1% 419 216k 0.99
0.66 14 71.2 6.78 0.85 86.4% 2.9% 397 218k 0.98
0.5 82 8.9 54.02 6.75 89.0% 4.8% 21 32k 6.64

The sequential version solved very few instances of n-Queens and Knights.
Furthermore, all those solves are extremely fast (< 3 sec) and are caused by
the search engine finding a solution at the very leftmost part of the search tree.
Most of the time spent in those runs is from moving down to the leaf of the
search tree rather than actual search and is not parallelisable, thus comparison
of the statistics for the parallel vs sequential algorithms on those instances is not
meaningful as there is very little work to parallelize. The number of instances
solved is the more interesting statistic and is a better means of comparison. The
parallel algorithm beats the sequential algorithm by an extremely large margin
in terms of the number of instances solved.

n-Queens and Knights both have very deep subtrees and thus once the se-
quential algorithm fails to find a solution in the leftmost subtree, it will often
end up stuck effectively forever. Modeling the fact that the branching heuristic is
very weak at the top by using conf = 0.5 clearly produce a super linear speedup.
The parallel algorithm solves 100 out of 100 instances of n-Queens compared to
4 out of 100 instances for the sequential algorithm or the parallel algorithm with
conf = 1. The speedup cannot be measured as the sequential algorithm does not
terminate for days when it fails to find a solution quickly. Similarly the parallel
algorithm with conf = 0.5 solved 21 instances of Knights compared to 7 for the
sequential and the parallel version with conf = 1.

Perfect Square’s heuristic is better than random, but is still terribly weak.
Using conf = 0.5 to model this once again produces super linear speedup, solving
82 instances out of 100 compared to 15 out of 100 for the sequential algorithm.
We can compare run times for this problem as the sequential version solved a



Table 3. Experimental results showing Nodes and algorithmic efficiency (AlgE) using
accurate confidence values, where we follow the confidence value to degree α.

Seq α = 1 α = 0.5 α = 0 α = −0.5 α = −1

Golomb-Ruler 12 5.31M — 2.24M 2.37 3.48M 1.53 4.27M 1.24 10.8M 0.49 10.6M 0.50
Golomb-Ruler 13 71.0M — 53.2M 1.34 57.6M 1.23 61.9M 1.15 74.8M 0.95 111M 0.64

fair number of instances and those solves actually require some work (483 sec
on average). The speedup in this case is 54 using 8 threads.

Using accurate confidence values. So far, we have tested the efficiency of our al-
gorithm using simple confidence models where the confidence value is the same
for all nodes. This does not really illustrate the algorithm’s full power. We ex-
pect that it should perform even better when node-specific confidence values
are provided, so that we can actually encode and utilise information like, the
heuristic is confident at this node but not confident at that node, etc. In our
third set of experiments, we examine the efficiency of our algorithm when node
specific confidence values are provided.

Due to our lack of domain knowledge, we will not attempt to write a highly
accurate confidence heuristic. Rather, we will simulate one by first performing an
initial full search of the search tree to find all solutions, then produce confidence
estimates for the top few levels of the search tree using several strategies like,
follow the measured solution density exactly, follow it approximately, ignore it,
go against it, etc, to see what effect this has on runtime. Let α quantify how
closely we follow the measured confidence value and let conf be the measured
confidence value. Then we use the following formula for our confidence estimate:
conf′ = α×conf+(1−α)×0.5. If α = 1, then we follow it exactly. If α = −1, we go
against it completely, etc. We use the Golomb-Ruler problem for our experiment
as the full search tree is small enough to enumerate completely. The results are
shown in Table 3.

The results show that using confidence values that are even a little biased
towards the real value is sufficient to produce super linear speedup. And not
surprisingly, going against the real value will result in substantial slowdowns.

5 Conclusion

By analysing work stealing schemes using a model based on solution density, we
were able to quantitatively relate the strength of the branching heuristic with
the optimal place to steal work from. This leads to an adaptive work stealing
algorithm that can utilise confidence estimates to automatically produce “op-
timal” work stealing patterns. The algorithm produced near perfect or better
than perfect algorithmic efficiency on all the problems we tested. In particular,
by adapting to a steal high, interleaving search pattern, it is capable of produc-
ing super linear speedup on several problem classes. The real efficiency is lower
than the algorithmic efficiency due to hardware effects, but is still quite good at
a speedup of at least 7 at 8 threads. Communication costs are negligible on all
problems even at 8 threads.
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