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Abstract. Millions of containers are stowed every week with goods
worth billions of dollars, but container vessel stowage is an all but ne-
glected combinatorial optimization problem. In this paper, we introduce
a model for stowing containers in a vessel bay which is the result of prob-
ably the longest collaboration to date with a liner shipping company on
automated stowage planning. We then show how to solve this model ef-
ficiently in - to our knowledge - the first application of CP to stowage
planning using state-of-the-art techniques such as extensive use of global
constraints, viewpoints, static and dynamic symmetry breaking, decom-
posed branching strategies, and early failure detection. Our CP approach
outperforms an integer programming and column generation approach
in a preliminary study. Since a complete model of this problem includes
even more logical constraints, we believe that stowage planning is a new
application area for CP with a high impact potential.

1 Introduction

More than 60% of all international cargo is carried by liner shipping container
vessels. To satisfy growing demands, the size vessel has increased dramatically
over the last two decades. This in turn has made the traditional manual stowage
planning of the vessels very challenging. A container vessel stowage plan assigns
containers to slots on the vessel. It is hard to generate good stowage plans since
containers cannot be stacked freely due to global constraints like stability and
bending forces and many interfering local stacking rules over and under deck.

Despite of the importance of stowage planning, the amount of previous work
is surprisingly scarce. In the last two decades, less than 25 scientific publica-
tions have been made on the topic and there only exists two patents. The early
approaches were “flat” in the sense that they introduced a decision variable or
similar for each possible slot assignment of the containers (e.g.,[1],[2]). None of
these scale beyond small feeder vessels of a few hundred 20-foot containers. Ap-
proaches with some scalability are heuristic (e.g., [3],[4],[5]) in particularly by
decomposing the problem hierarchically (e.g., [6],[7],[8],[9]). None of these tech-
niques, though, have been commercialized. They are either too slow or neglect
important aspects of the problem due to little contact with industry experts.



We have since 2005 collaborated closely with a large liner shipping company
that has developed an efficient hierarchical stowage planning algorithm using
a more accurate domain model than any published work. An important sub-
problem of this algorithm and other hierarchical algorithms is to assign a set of
containers in a vessel bay. One of our objectives has been to compare different
optimization techniques for this sub-problem. To this end, we have first defined
the complete set of constraints and objectives used by our industrial partner
and then constructed a simplified problem with a representative subset of these
for an under deck bay. We have investigated incomplete methods based on local
search (e.g., [10]) and evaluated these using complete methods.

In this paper, we introduce an optimal CP approach which to our knowledge
is the first application of CP to container vessel stowage planning, to solve the
sub-problem mentioned above. We present our stowage model and show how to
solve it efficiently using Gecode [11]. State-of-the-art modeling techniques are
considered including: different viewpoints to achieve better propagation, exten-
sive use of global constraints to avoid modeling with boolean variables, and static
and dynamic symmetry breaking. In addition, we use a branching strategy that
takes advantage of the structure of the problem and a set of early failure detec-
tion algorithms that determines whether a partial assignment is inconsistent. The
CP approach presented in this paper has been successfully tested on industrial
data. Our experimental evaluation shows that the modeling decisions we made,
in particularly the ones related to early failure detection, improve computation
times substantially. The definition of the problem and model introduced in this
paper have been slightly modified in order to make them easy to understand. We
consider, though, that this simplification does not make less relevant the results
here presented. Interestingly, preliminary results on the original version of the
problem shows that a less elaborated CP model outperforms two optimal ap-
proaches based on Integer Programming (IP) [12] and Column Generation (CG).
We believe this to be due to the logical nature of local stacking rules and objec-
tives of stowage planning that mathematical programming is unable to handle
efficiently. Thus, we consider CP to be the most efficient general technique to
solve these problems optimally and, it gave us the main motivation to upgrade
the initial CP model to the one presented here.

The remainder of the paper is organized as follows. Section 2 describes
stowage planning problems. Section 3 defines our CP model. Section 4 describes
why we believe CP outperforms mathematical programming on this problem. Fi-
nally, Section 5 presents experimental results, and Section 6 draws conclusions
and discusses directions for future work.

2 The Container Stowage Problem for an Under Deck

Location

A container vessel is divided in sub-sections called bays, each bay of a container
vessel consists of over and under deck stacks of containers. A location is a set of
stacks that can be over or under deck. These stacks are not necessarily consec-
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utive, but all stacks in the set are either over or under deck. Left figure in Fig.1
depicts a bay. The stacks 3, 4 and 5 under deck form a location, stacks 1, 2, 6
and 7 under deck form another location. The same stacks form two extra loca-
tions in the over deck section. This paper focuses on the under deck locations.
The vertical alignments of cells in a location are called tiers. Left figure in Fig.1
shows how the tiers are enumerated for each section of the bay.
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Fig. 1: To the left a back view of a bay, to the right a side view of a partially loaded
stack. Each plug in the right figure represents a reefer slot, reefer containers are the
ones with electric cords.

Each stack has a weight and height limit that must be satisfied by the con-
tainers allocated there. A stack can be seen as a set of piled cells one on top
of the other. Each of these cells is divided in two slots, Fore and Aft. It is also
possible to refer to the Fore and Aft part of a stack, i.e. stackFore refers to the
Fore slots of all cells in a stack . Some slots have a plug to provide electricity to
the containers, in case their cargo needs to be refrigerated. Such slots are called
reefer slots. Right figure in Fig.1 shows the structure of a stack. As depicted
in left figure in Fig.1, it is common for stacks not to have all slots physically
available, they must fit into the layout of the vessel and some of the slots must
be taken away to do so. These slots can be located either in the bottom or in
the top of the stack and we refer to them as Blocked slots.

A container is a box where goods are stored. Each container has a weight,
height, length, port where it has to be unloaded (discharge port) and indicates
whether it11 needs to be provided with electric power (reefer). In an under deck
location, containers have 20 or 40-foot length and 8’6” or 9’6” height. The weight
is limited according to the length of the container and the discharge port depends
on the route of the vessel. Containers that are 9’6” high are called high-cube con-
tainers, and according to the definition of the problem all high-cube containers
are 40-foot long. Each cell in a stack can hold one 40-foot container or two 20-
foot containers.

In order to generate stowage plans for complete vessels an efficient hierar-
chical algorithm has been developed. This algorithm decomposes the process of
generating stowage plans into solving two derived problems: a master and a sub
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problem. The master problem focuses on constraints over the complete vessel
i.e. stability constraints, bending forces, etc. and distributes containers in the
different locations of the vessel but it does not assign them to a specific slot.
Here, all containers to be loaded in the actual port are considered, together with
forecasting information of further ports on the route of the vessel.

The sub-problem finds stowage plans for the locations of the vessel according
to the distribution of containers made by the master problem. The constraints
here are mostly stack wise and each container is assigned to an specific slot.
There are two main types of locations in a vessel, over and under deck. Besides
their position on the vessel, they differ in the constraints that the containers
allocated there must fulfilled. As mentioned before, this paper focuses on finding
stowage plans for the under deck locations.

The Container Stowage Problem for an Under Deck Location (CSPUDL is
defined by the following constraints and objectives. A feasible stowage plan for
an under deck location must satisfy the following constraints:

1. Assigned cells must form stacks (containers stand of top of each other in the
stacks. They can not hang in the air).

2. 20-foot containers can not be stacked on top of 40-foot containers.
3. A 20-foot reefer container must be placed in a reefer slot. A 40-foot reefer

container must be placed in a cell with at least one reefer slot, either Fore
or Aft.

4. The sum of the heights and weights of the containers allocated in a stack
are within the stack limits.

Every allocation plan that satisfies these constraints is valid, but since the prob-
lem we are solving here is to find the best allocation plan possible, a set of
objectives must be defined to evaluate the quality of the solutions:

1. Minimize overstows. A container is stored above another container if it
is stored in a cell with a higher tier number. A container A overstows a
container B in a stack, if A is stored above B and the discharge port of A
is after the one of B, such that A must be removed in order to unload B. A
cost is paid for each container overstowing any other containers below.

2. Keep stacks empty if possible. A cost is paid for every new stack used.
3. Avoid loading non reefer container into reefer cells. A cost is paid

for each non reefer container allocated in a reefer cell.

The first objective is directly related to the economical costs of a stowage
plan. The second and third are rules of thumb of the shipping industry with
respect to generating allocation plans for further ports in the route of a vessel.
Using as few stacks as possible increases the available space in a location and
reduce the possibility of overstowage in further ports. Minimizing the reefer
objective allows reefer containers to be loaded also in further ports.

A feasible solution to the CSPUDL satisfies the constraints above. An optimal
solution is a feasible solution that has minimum cost.

As a requirement from the industry, generating a stowage plan for a vessel
should not take more than 10 minutes. Since a big vessel can have an average
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of one hundred locations, solving the CSPUDL as fast as possible is mandatory
for this problem. An average of one second or less per location has been set as
goal for solving the CSPUDL.

3 The Model

We present here a constraint programming model to find the optimal allocation
plan for a set of containers Containers in a location l. In order to make the
description of the model clearer, some constants are defined: Slots and Stacks
are the set of slots and stacks of location l. stackForei and stackAfti are the
set of Fore and Aft slots in stack i. The weight and height limit of a stack i are
represented by stackw

i and stackh
i . Without loss of generality and in order to

simplify some of the constraints, stacki refers to the set of cells from stack i.
Every time a constraint is posted over a cell of stacki, the constraint is actually
posted over the Aft and Fore slots of the cell.

The set of decision variables of the problem is defined first. To improve prop-
agation, we implement two different viewpoints[13] and channel them together
such that both sets of variables contain the same information all the time.
The first viewpoint is the set of variables S, where each variable corresponds to
a sloti ∈ Slots from location l. The second one is the set of variables C, where
each variable represents a container from Containers.

S = {si|i ∈ Slots} ∧ si ∈ {Containers},∀i ∈ Slots

C = {ci|i ∈ Containers} ∧ ci ∈ {Slots},∀i ∈ Containers

In order to connect the two viewpoints, it is necessary to define a set of chan-
neling constraints. Since the number of containers is not guaranteed to be equal
to the number of slots in location l, we consider two possible alternatives to mod-
eling the channeling. The first one is to declare a new set of boolean variables
C×S = {c×sij |i ∈ Slots, j ∈ Containers}, where c×sij ↔ cj = i∧si = j, that
channels set S and C, and add to the domain of each variable in S the value 0 to
represent an empty slot. The second one is to extend the number of containers to
match the number of slots of l, and define a single global channeling constraint
in order to propagate information from one model to the other.
The main difference between these two approaches is how and when the infor-
mation is propagated among the two viewpoints. Since the first approach uses
boolean variables to channel the two models, the flow of information is limited
to reflect assignment of variables from one viewpoint to the other.
In the second approach, since there is a channeling constraint connecting the two
viewpoints, any update in the domains of the variables are propagated among
viewpoints as they occur, increasing the levels of propagation. An extra advan-
tage of using the second approach is that the alldifferent constraint is implied
here, all containers must be allocated in a different slot, and all slots must hold
different containers.
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Our model implements the second approach. Artificial containers are added to
the original set of containers to match the number of slots in l. Since a 40-foot
container occupies two slots, these containers are split into two smaller contain-
ers of the size of a slot each: Aft40 and Fore40. All 40-foot containers are removed
from the original set of containers and replaced by the new Aft40 and Fore40
containers. Empty containers are also added, they will be allocated in valid slots
where no container is placed. Finally, it is necessary to add some extra contain-
ers that will be allocated in the blocked slots. Once the number of containers
matches the slots of l, a global channeling constraint is used to connect the two
view points, i.e. channeling(S,N).

The first two constraints from the previous section describe how containers
can be stacked according to physical limitations of the problem. They define
the valid patterns the containers in stacks can form. We assign a code to each
type of container, i.e. 0 to blocked containers, 1 to 20-foot containers, 2 to 40-
foot containers and, 3 to empty containers, and define a regular expression that
recognizes all the well-formed stacks according to the first two constraints: R =
{r|r ∈ 0∗1∗2∗3∗0∗}. Then we define a constraint just allowing stacks accepted
by R. In order to do this, a new set of auxiliary variables must be defined.
These variables will represent the type of the container allocated in a slot, and
their domain is the set of possible types for the containers: T = {ti|i ∈ Slots},
ti ∈ {0, 1, 2, 3}. To bind this new set of variables with one of the viewpoints, it is
necessary to declare an array of integers types representing the type associated to
each container, and use element constraints such that: types[si] = ti,∀i ∈ Slots.

With the new set of auxiliary variables defined, we proceed to declare the
constraints that will just allow well-formed stacks. A regular constraint [14] is
declared for each Aft and Fore stack, together with the regular expression R
that defines the well-formed stacks. In this constraint stacki refers to the subset
of variables from T in stack i.

regular(stacki, R), ∀ i ∈ Stacks

For the reefer constraint two subsets of containers are defined: ¬RC and
¬20RC. ¬RC is the subset of non-reefer containers and ¬20RC is a subset
containing 40-foot, 40-foot reefer containers and 20-foot containers. The purpose
of these two subsets is to restrict the domain of some of the slots of location l
to allocate just the allowed containers. The first subset of slots is ¬RS, which
are the slots that are non-reefer and that are not part of reefer cells. The second
subset is RCS, which are slots that are non-reefer but that are part of a reefer
cell. Then we remove the reefer containers from slots where it is not possible
to allocate any reefer containers at all, and remove the 20-foot reefer containers
from slots where it is possible to allocate part of a reefer container.

si ∈ ¬RC,∀ i ∈ ¬RS ∧ si ∈ ¬20RC,∀ i ∈ RCS

Some extra sets of auxiliary variables are used in order to model the height
and weight limit constraints for each stack in l. H is a set of variables where each
hi represents the height of the container allocated in si, W represents the same as
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H but with respect to the weight of the container. Both sets of auxiliary variables
are bound to S with element constraints, as it was previously explained for T .
An extra set of variables is also declared here: HS = {hsi|i ∈ Stacks}, hsi ∈
{0, ..., stackh

i },∀i ∈ Stacks, representing the height of each stack in location l.
The constraints restricting the height and weight load of each stack in l are:

∑

j∈stackAfti

hj ≤ hsi, ∀i ∈ Stacks

∑

j∈stackForei

hj ≤ hsi, ∀i ∈ Stacks

∑

j∈stacki

wj ≤ stackw
i , ∀i ∈ Stacks

3.1 Objectives

The first objective is overstowage. It is based on a feature of the containers that
is not related to any previous constraint, the discharge port. A new set P of aux-
iliary variables is introduced here, where each pi represents the discharge port of
the container allocated in si. A new function is defined: bottom : Stack → Slots,
which associates each stack with its bottom slot. The finite domain variable Ov
captures the number of overstows in location l.

Ov =
∑

i∈Stacks

∑

j∈stacki−{bottom(i)}

(

j−1
∑

k=bottom(i)

(Pj > Pk) > 0
)

Since empty and blocked containers have discharge port 0, we use the pre-
viously declared set of auxiliary variables P to determine the number of stacks
used in a solution. When a stack i is empty, the sum of the values assigned to
the subset of P variables in i should be 0, otherwise the stack is been used. A
finite domain variable Us captures the number of used stacks in location l.

Us =
∑

i∈Stacks

(

(
∑

j∈stacki

Pj) > 0
)

A check over the reefer slots is performed, the reefer objective increases its value
if a non-reefer container is allocated in a reefer slot. A finite domain variable Ro
captures the number of non-reefer containers allocated in reefer slots.

Ro =
∑

i∈RS

(si ∈ ¬RC)

3.2 Branch and Bound

The relevance of the objectives defined for this problem is given by the relation
Ov > Us > Ro. A lexicographic order constraint is used for the branch and
bound search procedure to prune branches not leading to any better solution.
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Our model does not rely on an objective function to measure the quality of
the solutions but on an order over the objective variables, which provides us
with a stronger propagation. The branch and bound approach constraints the
objective value of the next solution to be better than the one found so far.
When this objective value is calculated by a mathematical function, the only
constraint branch and bound posts is a relational constraint over this objective
value, considerably reducing the amount of backwards propagation that can
be achieved. In cases where an order determines the quality of the solution,
lexicographic constraints can be used, which in most of the cases, propagate
directly over each objective variable if necessary, increasing the level of backwards
propagation achieved.

3.3 Branching strategies

In our branching strategy we take advantage of the structure of the problem
and the set of auxiliary variables defined in the model in order to find high-
quality solutions as early as possible. We decompose the branching in three sub-
branchings: the first one focuses on finding high-quality solutions, the second one
in feasibility with respect to a problematic constraint and the third one finds a
valid assignment for the decision variables.

Since two of the three objectives defined for this problem rely on the discharge
port of the containers allocated in the slots of l, we start by branching over the set
of variables P . Slots with discharge ports less or equal than the one assigned to
the slot right below are selected, which decreases the probability of overstowage.
The slots from stacks already used are considered first to reduce the used stack
objective. When it is necessary to select a slot from an empty stack, the highest
discharge port possible for the slot is selected.

After assigning all variables from P , we branch over a new set of auxiliary
variables involved in one of the most problematic constraints: H. The height
limits of the stacks are usually more strict than the weight limits and therefore,
finding allocation plans that respect these limits become a difficult task in itself.
No variable selection heuristic is involved for variables, we fill up stacks bottom-
up and select the maximal height possible for a container to be allocated there.

At last, we branch over the set of variables S in order to generate an allocation
plan. By this time, the discharge port and the height of the container to be
allocated in each slot has been decided, and it is most likely that the objective
value that any possible solution to be generated from this point is already known.
Here we try to allocate slots from bottom-up in each stack, selecting the maximal
possible container in the domain of the slot.

The decomposition of the branching plays along with the branch and bound
strategy. The domain size of variables in P are considerable smaller than the
ones from any of the viewpoints, making the process of finding valid assignments
for P easier. Once the first valid allocation plan is found, most of the time the
backtracking algorithm backtracks directly to the variables of the first branching
in order to find a solution with a better objective value. Therefore, most of the
search is concentrated in a considerable smaller sub-problem, branching over the
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two other sets of variables just when the possibilities of finding a better solution
are almost certain.

3.4 Improving the model

Some extra constraints Here some redundant constraints are declared in
order to improve propagation and reduce search time. The first constraint is an
alldifferent constraint over the set S of slots, reinforcing the fact that it is not
possible to allocate one container in more than one slot. This constraint is forced
in the model by the channeling constraint between S and C.
A second constraint deals with a sub-problem presented in the model. Since all
containers have a height, they must be allocated in the stacks from l and each
stack has a height limit, the problem of finding a stack for each container to
be allocated without violating the height capacity can be seen as a bin-packing
problem. A global constraint for this problem is introduced in [15], where the
load of each bin and the position of each item are given as variables. Here
a new set of auxiliary variables CS representing the stack where a container
is allocated is necessary. We use element constraints to bind this new set of
variables with the set C. A modified implementation of [15] is considered to
model this sub-problem, in order to tighten the height limits of each stack and
not allow unfeasible assignments of containers based on their height.

Symmetries on containers The weight of the containers make each of them
almost unique, limiting the possibility of applying symmetry breaking constrains.
It is possible, though, to use these constraints on the artificial containers that
were added to the model. First we focus on the set of empty containers, this set is
split into two equal subsets that become the empty containers to be allocated in
each part of the location. By doing this we avoid any set of equivalent solutions
where empty containers are swapped between Aft and Fore slots. Then, a non-
increasing order is applied over each of the subsets mentioned before in order to
avoid any symmetrical solution.

Splitting up all 40-foot containers into two smaller containers, Aft40 and
Fore40, also provoke symmetrical solutions. All Fore40 containers are removed
from Aft slots and all Aft40 from Fore slots in location l.

Symmetries on slots The first subset of slots that we consider for symmetry
breaking is the cells: swapping the containers allocated in Aft and Fore slots of a
cell generates equivalent solutions in several cases. Therefore, when the Aft and
Fore slot of a cell can allocate containers with the same features, a non-increasing
ordering constraint is used indicating that the id of the container allocated in
the Aft slot of the cell has to be greater than the one allocated in the Fore slot.
It is not possible to apply an order to the slots in a stack since the tier of the
slot where a container is allocated is related to the overstowage objective. There
are some cases, though, where ordering can be applied. The first case is when
all containers to load in location l have the same discharge port. In this case,
it is possible to use a non-decreasing ordering constraint over all the slots in a
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stack that can allocate containers with the same features. In cases where there
are different discharge ports it is not possible to sort the containers from the
beginning. Here we take advantage of the different branching steps described in
the previous section and select the subsets of slots in each stack where an ordering
constraint can be used after the branching over the set of auxiliary variables P
is finished. These subsets are defined by all the slots where containers with the
same discharge port and the same features are allocated. Then a non-decreasing
order constraint is used in each of this subsets.
At last, the possible symmetries between identical stacks are considered. In a pre-
processing stage, stacks with the same features are grouped together: same slots
capacity, reefer capacity, height limit and weight limit. When two stacks are in
the same group, a lexicographic order is applied between them. The lexicographic
order is also applied on the set of auxiliary variables P since this set of variables
is assigned first than the set S.

Discussion on symmetries There is one relevant issue about the symmetry
breaking constraints described in this section, more specifically on the lexico-
graphic order constraints posted over stacks grouped together. Since these con-
straints are ordering the discharge ports, the height and the id of the containers
in each stack, any assignment of values to these variables that does not follow
such order will be considered invalid. It is necessary to sort the containers at a
pre-processing stage to avoid any conflict among symmetry-breaking constraints
over the different set of variables. The set of containers Containers is sorted
such that containers with the highest discharge port have associated the highest
id. This sorting avoids the lexicographic constraints posted over the set S and
set P of variables in identical stacks to conflict with each other.

Estimators Three estimators have been defined to determine whether a com-
plete valid solution can be generated from a partial solution, leading to early
pruning of branches from the search tree with no future. Two of the estimators
are simple algorithms that compute lower bounds of objectives from relaxed ver-
sions of the problem, while the third estimator is an early termination detector
for the height constraint.

The first estimator finds the minimum number of stacks necessary to allocate
all containers in a location from a partial solution. It greedily solves a simplified
version of the allocation problem, where the only constraint considered is the
height limit of the stacks and all containers not yet allocated are considered as
normal height containers. The estimator starts by assigning containers to used
stacks, no new penalization is paid to do so. Once all used stacks have been
totally filled up, the remaining containers are allocated in the empty stacks,
which are sorted by capacity before the estimator fills them up. By sorting
the empty stacks we guarantee that the number of stacks used to allocate the
remaining containers will be the smallest possible.

Formally, let ≺ρ be a total pre-order defined over the set of stacks:
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k ≺ρ m ⇔ (k,m ∈ Stacksused) ∨

(k ∈ Stacksused ∧ m ∈ Stacksempty) ∨

(k,m ∈ Stacksempty ∧ cap(k) ≥ cap(m)),

where the capacity cap(k) is the remaining number of free slots in stack k. Let
CN denote the number of containers not assigned yet in a partial solution

CN = |{Ci | i ∈ Containers, |Ci| > 1, i /∈ Empty}|.

A recursive function calculating a lower bound of the number of used stacks is
then given by:

µρ(c,≺
ρ
j , σ) =







j : if c = 0
µρ(c − 1,≺ρ

j , σ − 1) : if c > 0 ∧ σ > 0

µρ(c,≺
ρ
j+1, cap(≺ρ

j+1)) : if c > 0 ∧ σ = 0

where c is the number of remaining containers to be placed, ≺ρ
j is the jth stack

in the ordering, and σ is the free capacity of this stack. The estimated number
of used stacks for any partial solution is then given by:

ESU = µρ(C
N ,≺ρ

1, cap(≺ρ
1))

For the reefer objective, let sR, cR, and cE denote the number of unassigned
reefer slots, unassigned reefer containers, and unassigned empty containers. A
lower bound of the number of non-reefer containers placed in reefer slots Ro is:

ESR =

{

0 : if sR ≤ cR + cE

sR − cR − cE : otherwise

To achieve improved propagation, we restrict the reefer and used stack objec-
tive to be greater or equal to the estimated lower bound: Ro ≥ ESR∧Us ≥ ESU .

The third estimator detects inconsistency of the height constraint. Since
stacks are filled bottom-up, a stack j for some partial solution p has some free
height h(j) at the top. Let MN

j and MHC
j denote the maximum number of nor-

mal and high-cube containers that can be placed in stack j, respectively. We
have:

MN
j = ⌊h(j)/h(N)⌋,

MHC

j = ⌊h(j)/h(HC )⌋

where h(N) and h(HC ) denote the height of normal and high-cube containers.
Let CN and CHC denote the number of unassigned normal and high-cube con-
tainers of p. For the height constraint to be consistent for p, we then must have:

∑

j∈Stacks

MN
j ≥ CN ∧

∑

j∈Stacks

MHC

j ≥ CHC .
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4 Why CP

Despite the fact that several of the capacity constraints of the CSPUDL are
linear, it is non-trivial to represent logical constraints and objectives like no 20-
foot over 40-foot and overstowage using mathematical programming. Moreover,
the under deck stowage problem considered in industry includes more rule-based
constraints and may even affect containers in adjacent stacks. Two of these
constraints are due to pallet-wide containers and IMO containers with hazardous
goods. The former takes up the limited space between stacks and therefore can
not be placed in adjacent stacks, while the latter may require packing patterns
where no IMO containers are placed next to each other in any direction.

We have made a preliminary investigation of two optimal mathematical pro-
gramming approaches for solving a slightly different version of the problem,
where one extra objective related to clustering containers with the same dis-
charge port and pre-placed containers in locations are considered, and the ob-
jective function is a linear inequality with different weights for each objective.

The first of these approaches is described in [12] and uses an IP model with
binary decision variables cjki indicating whether container i is placed in cell k
in stack j. The results are shown in table 1. Despite adding several specialized
cuts and exploiting the general optimization techniques of the CPLEX solver,
this approach only performs significantly better than CP in two instances, 4 and
5, and slightly better (a matter of few milliseconds) in instances 11 and 12.

The second approach uses column generation. The idea is to let each variable
of the master LP problem represent a particular packing of a stack. The dual
variables of the master problem are used by the slave problem to find a packing
with negative reduced price wrt. the current set of candidate packings. In our
preliminary experiments, IP was used to solve the pricing problem. The approach
was implemented in GAMS using CPLEX. As depicted in table 1 the results
are much worse than for IP and CP. Moreover, the LP variables of the master
problem become fractional, which actually means that lower bounds rather than
optimal feasible solutions are found.

The CP model from table 1 was our first attempt to use constraint program-
ming to tackle the CSPUDL. It heavily relies on boolean variables for modeling,
the use of global constraints is limited and not all estimation algorithms were
implemented. The results obtained with this model were promising enough to
continue our work with CP. Four out of seventeen instances were notoriously
performing over the time limit established as goal (one second), all instances
were solved to optimality and, in just four of the instances IP outperformed CP.

Method
(time)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CP(ms) 0.02 0.03 2 30.51 1.32 0.03 0.01 20 5.32 0.01 0.07 0.04 0.02 0.96 8.34 1.7 20.43
IP(ms) 0.06 0.15 - 1.75 0.160 0.12 0.19 0.15 - 0.01 0.01 0.01 0.1 1.17 21.89 4.94 40.05
CG(s) 14 22 1688 15588 - 17 22 22 352 7 12 28 14 27 18 11 37

Table 1: Preliminary results comparing three optimal approaches to a slightly different
version of the CSPUDL. All the results are in seconds.

Table 1 shows the results of solving to optimality seventeen instances of the
CSPUDL. The first row shows the problem number. For these experiments, we
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used the same industrial problems as described in next section. The next three
rows shows the computation time for the constraint programming (CP), integer
programming (IP), and column generation (CG) approach. The dash in table 1
represents a timeout, the given time for this was thirty minutes.

5 Experimental evaluation

A representative set of instances from different real-life vessels of different size,
with different configurations of containers and discharge ports, with capacity
location from 16 to 144 slots were gathered for the experiments here presented.

In table 2 the first eight columns of each row gives an overview of the features
of each instance: The first column shows the instance number, the second one
the total number of containers to be allocated, the third and fourth columns
represent the number of 40 and 20-foot containers. The fifth and sixth columns
are the number of reefer and high-cube containers, seventh column is the number
of slots available and, the level of occupancy of the location is in the eight
column. It is important to notice that a 40-foot container requires two slots to
be allocated. All the experiments were run in a Ubuntu Linux machine with a
Core 2 Duo 1.6 GHz and 1GB of RAM. The implementation of the constraint
model took place in the C++ constraint library Gecode [11], version 3.0.2. The
dash in table 2 represents the same as in table 1.

Table 2 shows the results of solving the set of locations using the CP model
presented in this paper. Our main goal here is to present the impact of the
estimator algorithms presented in section 3.4 and how they help to close the
gap between the execution time of the CP approach and the time limit for this
problem. The NS(s) and NS(nodes) columns show the response time in seconds
and explored nodes of solving the instances without estimation algorithms. The
E(s) and E(nodes) columns show the results of solving all instances to opti-
mality including estimation algorithms in the model, time and explored nodes
respectively. The branching strategy defined in section 3.3 was the one used.

From the results in table 2 it can be observed that estimation does have
an important effect on the response time of the solver. Time is reduced in all
instances but one, and in most of the cases the explored nodes also decrease.
In instances where the explored nodes are equal but the time response has de-
creased, estimation algorithms are making nodes fail faster, avoiding unnecessary
propagation. It is hard to determine the order of magnitude of the impact of the
estimators, since it seems to vary from instance to instance, e.g. instance 4, 11,
13 and 16. The instance where it was not possible to prove optimality before
has been solved in reasonable time, and instances 3 and 9 had a considerable
reduction in their response time. It is also important to notice from the results
in table 2, that our CP approach is getting closer to the goal described in the in-
troduction, since just three instances out of seventeen remain with an execution
time over one second.

With respect to the results presented in table 1, a small overhead can be
seen in instances where finding the optimal solution usually takes less than 0.2
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seconds, e.g. instances 1, 2, 6, etc. However, the substantial reductions in time
response in instances 3, 4, 9 and 15 compensates the overhead.

Inst Conts C
20

C
40

C
R

C
HC Slots Full(%) NS(s) NS(nodes) E(s) E(nodes)

1 23 0 23 0 2 62 74 0.15 117 0.17 105
2 38 0 38 0 38 86 88 0.24 159 0.19 139
3 75 10 65 0 9 144 97 366.78 120461 0.59 213
4 40 0 40 34 34 90 89 14.14 4405 4.06 2391
5 28 0 28 24 28 90 62 0.79 271 0.31 187
6 28 0 28 0 10 60 93 0.28 119 0.07 61
7 35 0 35 0 8 72 97 0.39 153 0.19 153
8 34 0 34 0 7 70 97 0.34 147 0.17 147
9 53 0 53 0 5 108 98 37.19 9015 0.36 199
10 4 0 4 0 0 16 50 0.06 21 0.03 21
11 7 0 7 0 7 40 35 0.14 53 0.07 51
12 42 0 42 0 42 88 95 1.12 279 0.52 259
13 24 0 24 0 0 90 53 0.47 157 0.20 141
14 23 0 23 0 23 108 42 2.23 553 0.26 151
15 34 0 34 0 8 90 75 2.34 639 1.15 639
16 19 0 19 0 19 90 42 0.84 289 0.40 275
17 37 0 37 1 34 116 63 - - 22.16 10153

Table 2: Problem instances and CP experimental results. Each row represents an in-
stance. The first eight columns are general information of the instance, the extra four
are the response time and explore nodes of the experiments described in this section.

6 Conclusion

In this paper we have introduced a model for stowing containers in an under
deck storage area of a container vessel bay. We have shown how to solve this
model efficiently using CP and compared our approach favorably with an integer
programming and a column generation approach. CP is not widely used to solve
problems to optimality. The estimation algorithms introduced in this paper,
however, improves the performance of the branch and bound dramatically, good
lower bounds are generated from partial solutions and unpromising branches are
pruned in early stages without discarding any optimal solution.

We consider that the main reason of CP outperforming IP in most of the
cases presented in this paper is the non-linear nature of some of the constraints
and objectives of this problem, i.e. no 20-foot on top of 40-foot container, over-
stowage. The logical nature of these constraints makes their linearization with
0-1 variables a non trivial task, and since further constraints to be included in
this problem have the same logical nature as the ones mentioned before, i.e.
IMO and pallet-wide containers, the CP approach will be most likely to keep
outperforming an IP implementation.

An important objective of our future work is to make instances of stowage
planning problems available to the CP community. We also plan to develop CP-

14



based LNS stowage algorithms and investigate whether CP can be used to solve
the pricing problem of column generation methods for this problem.
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