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Abstract. In Europe, around half of all patients diagnosed with cancer
are treated with radiation therapy. To reduce waiting times, optimizing
the use of linear accelerators for treatment is crucial. This paper intro-
duces an Integer Programming (IP) and two Constraint Programming
(CP) models for the non-block radiotherapy patient scheduling prob-
lem. Patients are scheduled considering priority, pattern, duration, and
start day of their treatment. The models include expected future pa-
tient arrivals. Treatment time of the day is included in the models as
time windows which enable more realistic objectives and constraints.
The models are thoroughly evaluated for multiple different scenarios, al-
tering: planning day, machine availability, arrival rates, patient backlog,
and the number of time windows in a day. The results demonstrate that
the CP models find feasible solutions earlier, while the IP model reaches
optimality considerably faster.

1 Introduction

Radiation therapy (RT), chemotherapy, and surgery are the most commonly used
cancer therapies worldwide. In RT, machines called linear accelerators (LINACs)
deliver beams of radiation to the tumor in order to kill malignant tumor cells.

A long waiting time between when a patient is ready for RT and when
the treatment starts has a negative effect on its outcome due to for example
tumor growth, psychological distress of the patient, and progressed symptoms
[8,12,14,22,30]. Hence, many cancer institutes worldwide have adopted waiting
time targets that determine the maximum waiting time before treatment starts.

The intent of RT treatments is either curative or palliative, where the latter
mainly aims to provide pain relief. Furthermore, cancer patients are generally
divided into three urgency levels depending on the site of the cancer, treatment
intent, and the size and progress of the tumor. The waiting time targets depend
on the patient’s urgency level.

RT treatments are generally divided into a number of fractions that are deliv-
ered once a day and together sum up to the planned radiation dose. The duration
of the fractions vary between patients due to for example treatment technique
and tumor complexity [16]. There are also many uncertainties in the RT process,
including for example patient inflow and unexpected machine failures.
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The scheduling of RT patients on LINACs can be divided into block or non-
block systems [10]. Block scheduling systems divide days into slots of equal
duration, whereas non-block systems allow for different treatment durations.
Block systems are more widely used, but have severe drawbacks since there is
no way to control the variability of treatment time, which can generate costs
related to machine underutilization, staff overtime, and patient waiting time.

Scheduling patients is mostly done manually and is a considerable challenge
for RT clinics. Designing more efficient appointment schedules would be of great
significance and could potentially save lives. In order to improve the scheduling
of radiotherapy patients, this paper makes the following contributions:

– Two CP models and one IP model of the non-block RT patient scheduling
problem are introduced that take expected future patients into account. To
the best of our knowledge, these are the very first CP models as well as the
first IP model to include expected future patient arrivals.

– The treatment time of the day is included in the models which for the first
time supports objectives and constraints on treatment time of the day.

– The models capture real-world constraints such as non-consecutive treatment
days, different treatment durations, allowed start days, and patient priorities.

– The models are evaluated and compared using a patient arrival model and
several experiments based on data from a European cancer clinic.

Plan of the Paper. Section 2 discusses related work. Section 3 presents the setup
of the problem. Section 4 describes the models, followed by a description of the
search heuristics used for the CP models in Section 5. The models are evaluated
in Section 6. Section 7 presents conclusions and potential extensions.

2 Related Work

Related work on optimal scheduling in health care has mainly focused on nurse
scheduling (see [5]), outpatient assignment (see [7]), and surgery scheduling (see
[21]). The RT patient scheduling problem shares some characteristics with these
problems, but has particular attributes that make it difficult to apply the models
and methods proposed in the literature.

Scheduling of RT patients is a relatively young field with limited literature. In
2016, a review on the literature using operations research for resource planning
in RT was published [31]. The authors found 12 papers addressing the problem
of scheduling patients on LINACs, where the first ones are published in 2006.

In [18], the authors show that RT patient scheduling can be seen as a special
case of a dynamic job-shop problem. They review different exact and metaheuris-
tic methods suitable for solving the problem. A heuristic that schedules patients
forward from the first feasible start date (ASAP) is developed in [25]. A local
search heuristic that outperforms the ASAP approach is developed in [26].

The first use of IP for optimization of RT appointments is presented in [9]
and [10]. Another IP model for non-block scheduling is presented in [17]. A
limitation of these papers is that they do not consider all the constraints present
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in RT scheduling, such as for example treatments on non-consecutive days and
LINAC eligibility. In [6], the authors develop an IP model that includes more
realistic constraints, but still using a myopic scheduling policy, i.e., not taking
future patient arrivals into account.

Using a block scheduling strategy, [27] presents a method for advance RT
patient scheduling, where appointments are scheduled in advance of the service
date with future demand still unknown. A Markov decision process (MDP) and
approximate dynamic programming are used to solve the problem, and they
achieve very good results. In [13], the authors use the same problem setup but
also include patient cancellations using simulation-based solution methods. For
these approaches, time of the day for the treatments is impossible to include.

A hybrid combining stochastic and online optimization is presented in [19].
The authors use a block-scheduling strategy to schedule curative patients at
the same time every day and require that patients leave the center with their
appointment, which calls for short computation times. This is different from
earlier published methods that all schedule multiple patients in a batch.

CP has been used in RT treatment planning [2] and in chemotherapy patient
scheduling [15]. Scheduling is a field where CP has shown to be effective, see
for example [3]. A comprehensive review of operations research methods for
optimization in radiation oncology is presented in [11], where it is stated that
CP has not yet had a significant impact on medical physics.

3 Radiation Therapy Patient Scheduling

This section introduces the RT patient scheduling problem, the assumptions
made in this paper, and some fundamental modeling aspects.

Time. Radiation therapy clinics have different routines for scheduling patients on
LINACs. Some gather patients into a batch and schedule them once or several
times a day, while others immediately schedule a single patient. This paper
focuses on batch scheduling and assumes that the scheduling is done at the
end of each day taking patients from previous days into account. As previously
stated, RT clinics can be divided into two categories; those who use block and
non-block scheduling systems. In order to be able to control the variability of
treatment time, this paper uses a non-block scheduling strategy.

A day is divided into time windows. A time window is typically 1.5−4 hours
while a treatment takes 10−45 minutes. Patients are assigned to windows instead
of specific start times as this leads to simpler and more efficient models while
maintaining an adequate level of detail from a clinical perspective.

Patients. A physician assigns a priority to each patient based on urgency and
treatment intent (palliative or curative). It is assumed that there are three pri-
ority groups, and therefore three waiting time targets: 2 days for priority A (the
highest), 14 days for priority B, and 28 days for priority C patients.

A patient is assigned to a treatment protocol, which states the fractionation
scheme (that is, how many days the patient is to be treated and with which
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frequency) and the duration of each treatment. Different protocols have different
allowed start days, which enforces that fewer patients are scheduled on weekends.
Some protocols also specify that treatment must start on a certain time of the
day. In this paper, the protocols used are from a large cancer center in Europe.

The scheduled times are communicated to the patient at most one week
before the start date or immediately for priority A patients. All fractions are
communicated and cannot be re-planned, as this is the collaboration clinic’s
approach. The schedule can change until being communicated: booking decisions
are postponed to the next day if patients are scheduled more than a week away.

When creating a patient schedule in practice, the booking administrator
needs to make sure that there is room in the schedule for more urgent future pa-
tients. In most cases, this is done by leaving some empty time on each machine.
In the models, the expected future patient arrivals are included to predict the
expected utilization of resources. Only the expected future patients who have a
waiting time target shorter than the maximum waiting time target of current
patients are included. This is as patients with longer waiting time targets have
little or no effect on the current schedule.

An overall arrival rate can be extracted from historical data for each clinic,
as well as the proportion of arrivals for each priority group. This paper uses
the same proportions between the priorities as [19]: 31% are priority A, 19%
are priority B, and 50% are priority C. The proportions can easily be adjusted
to a particular clinic. In the models, a separate priority group D is created for
expected future patients of priority A, since the actual priority A patients should
have higher priority than expected future priority A patients. These patients are
also treated differently in the search heuristics for the CP models, see Section 5.
Each arriving patient is randomly assigned to a treatment protocol.

Machines. The radiation is delivered on LINACs. As a rule, larger centers have
multiple machine types used for different sorts of treatment and multiple identi-
cal machines to have a redundancy in case of machine failures. In small centers,
there may be a few identical machines that only serve some treatment types,
while more complex cases are sent to larger centers.

This paper assumes that there are multiple machines but only one machine
type. The machines are exchangeable in that a patient can be scheduled on any
machine each day. This scenario is a realistic way of decomposing the multiple
machine problem, since the clinics may consider separate scheduling tasks for
each machine type. Instead of M machines with W windows each, this is modeled
as having one machine with MW windows. Thus, if for example M = 3, W = 4,
then if a patient is scheduled in window 1 − 4, this corresponds to machine 1,
window 5−8 is machine 2, and window 9−12 is machine 3. An alternative would
be to model this as one machine with W windows and multiply each window
length by M , but this would be a relaxation of the actual problem.

Using multiple machines represents a real-world setting and also allows for
having a higher arrival rate. If there were only one machine available, the arrival
rate would be very low and dividing very few patients into three different priority
groups would not give good statistics for the expected future patient arrivals.
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Objective. In this paper, the main objective is to minimize a weighted sum of
the violations of the target dates, where the weights reflect that it is worse to
violate the target date for a patient with higher priority. The secondary ob-
jective is to schedule patients at approximately the same time each day. Some
patients may still work or study during treatment and hence prefer mornings
or late afternoons. More importantly, the biological effects of the radiation is
calculated on having 24 hours between each fraction, however, in most cases it
is allowed to deviate from this and it is thus an objective rather than a hard
constraint. The second objective is the reason why time windows are used in the
models; scheduling a patient in the same time window every day ensures that
the treatment is delivered at approximately the same time every day.

4 Models

Three models are developed to capture the RT patient scheduling problem; a
scheduling-based CP model, a packing-based CP model, and an IP model. These
are designed to capture the same real-world constraints and objectives. Using
the set B := {0, 1}, the inputs to these models are:

P = {1, . . . , P} set of all patients, P ∈ N
D = {1, . . . , D} set of days in the planning horizon, D ∈ N
W = {1, . . . ,W} set of time windows in a day, W ∈ N
wL = Ts/W the window length, where Ts ∈ N is the number of time

slots during a day with the chosen discretization
Tw = {t1, t2, . . . , tW } set of times when each window starts counting from the

beginning of day 1, where t1 = 1, . . . , ti = (i− 1)wL + 1
M = {1, . . . ,M} set of machines, M ∈ N
durp ∈ N duration of a fraction for patient p in time slots
Lp ∈ {13, . . . , 47} schedule length for patient p in days
F = {1, . . . ,max(Lp)} set of all treatment days
FSp ∈ BLp a vector holding the fractionation schedule for patient p,

where ones represent treatment and zeros pause days
S ∈ BD × BTs a matrix holding the partially occupied schedule, where

Sd,ts = 1 iff time slot ts on day d is occupied
Ap ∈ {1, . . . , 7} the set of allowed start days for patient p
cp ∈ N penalty for missing the waiting time target for each priority
dL,p ∈ N day limit, i.e., the waiting time target for patient p

4.1 Scheduling-based CP Model

Variables. The basic decision variables of the model are as follows:
startp,f ∈ Tw the start time for the window patient p ∈ P is scheduled in

during treatment day f ∈ F
windowp,f ∈ {0, . . . ,W} the window patient p ∈ P is scheduled in during treatment

day f ∈ F , where window 0 represents no treatment
fractionp,d ∈ {0, . . . , Lp} fraction that is delivered to patient p ∈ P on day d ∈ D,

where fraction 0 represents no treatment

There following variables are derived from the basic variables:
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dayp,f ∈ D day patient p ∈ P is treated with fraction f ∈ F
start dayp = dayp,1 start day for patient p ∈ P
Constraints. In the scheduling-based CP model, the cumulative constraint [1]
is used to ensure that no two treatments overlap:

cumulative([〈startp,f , wL, durp〉|p ∈ P, f ∈ F ], wL), (1)

where wL is the window length. The partially occupied input schedule is included
as patients with fixed window, start time, and duration to ensure that no new
patients are scheduled in a window that is already full. The constraint is used
“backwards”, setting the duration of each treatment equal to the window length
wL and the resource requirement as the duration of the treatment durp.

The variables dayp,f and fractionp,d are dual to each other:

fractionp,d = f, where d = dayp,f ∀p ∈ P, f ∈ F , d ∈ D, (2)

while fractionp,d = 0 if patient p is before the start or after the end of treatment:

(d < start dayp) ∨ (d ≥ start dayp + Lp)→ fractionp,d = 0 ∀p ∈ P, d ∈ D.
(3)

The day dayp,f for fraction f ∈ F for patient p ∈ P is given by the time
when the fraction starts, startp,f , divided by the number of time slots Ts. To
avoid division, this is expressed as: (dayp,f − 1)Ts + 1 ≤ startp,f ≤ dayp,fTs.

The days are connected to each other by the constraint:

dayp,f+1 = dayp,f + 1 ∀p ∈ P, f ∈ F ,

which means that if treatment day f is on day d, then f + 1 is on d + 1.
Next, connect windowp,f to startp,f . The vector FSp is the fractionation

schedule for patient p and is input to the problem given by a protocol. FSp,f = 1
corresponds to treatment day f being active for patient p, i.e., treatment is
delivered that day. Thus, if the input FSp,f is indeed one, this gives

startp,f = (dayp,f − 1)Ts + (windowp,f − 1)wL + 1, (4)

and for all other p ∈ P, f ∈ F , set windowp,f = 0. This constraint states that
the start time for the window patient p is scheduled during fraction f is equal
to the start time of that day, plus the start time of the window on that day.

Bounds are also given for when each fraction can start earliest and latest. For
example, the patient’s second fraction cannot be on the first day, and similarly,
the patient’s first fraction cannot be on the last day:

f ≤ dayp,f ≤ D − (Lp − f) ∀f ∈ F . (5)

Similar constraints limit the start day for each patient to be at latest Lp days
from the end of the planning horizon. Patients have to start treatment on an
allowed start day: start dayp ∈ Ap ∀p ∈ P.

To break some dominance, patients of the same priority and treatment proto-
col are sorted by their waiting time target. A constraint enforces that an earlier
target patient always starts their treatment before a later target patient.
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Objective Function. The first objective is to start each treatment within the
waiting time targets. The target violation is measured as the number of days
that the patient misses their treatment target date with

target violationp = max(0, start dayp − dL,p) ∀p ∈ P, (6)

where dL,p is the day limit for when treatment should start.
The second objective is to schedule patients in the same window each day.

Therefore, a penalty is added each time the window is switched. Since, for exam-
ple, 3 machines with 4 windows is modeled as 1 machine with 12 windows, there
is no penalty for moving from window 1 to 5 or 9, as they are the same but on dif-
ferent machines. An array m w maps model windows to real machine windows.
Only the active treatment days Fa, when windowp,f 6= 0, are considered:

window diffp =
∑
f∈Fa

(m w[windowp,f ] 6= m w[windowp,f+1]) ∀p ∈ P

where m w = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
(7)

The two parts of the objective function given by (6) and (7) are combined into
a weighted sum. Each entry of window diffp is multiplied by 2 to make it equal
to the IP formulation, see Section 4.3. The total objective function is then:∑

p∈P
(100cptarget violationp + 2window diffp), (8)

where cp are weights for each priority group used to capture that it is worse to
violate the target for higher prioritized patients. The weight 100 reflects that
waiting time targets are more important than minimizing window switches.

4.2 Packing-based CP Model

In the packing-based CP model, fractionp,d = 0 if patient p has not started or has
finished treatment on day d is expressed by the regular constraint [23], replac-
ing (3). For example, if the treatment length is 10 days, the regular expression
is r = 0∗ · 1 · 2 · . . . · 8 · 9 · 10 · 0∗ (where · is concatenation) in:

regular([fractionp,d|d ∈ D], r) ∀p ∈ P. (9)

The variables startp,d are removed as the constraints (1) and (4) are removed.
Instead, regular expressions on the time windows define the treatment patterns,
where window 0 corresponds to no treatment. The example regular expression
r = 0 · ([1 − 4]5 · 02)6 states that f = 0 gives windowp,0 = 0, then windowp,f ∈
{1, . . . , 4} for five days, followed by two pause days where windowp,f = 0, and
then repeating this pattern six times, leading to:

regular([windowp,f |f ∈ {0, . . . , Lp}], r) ∀p ∈ P. (10)
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The bin packing constraint [29] ensures that the patients fit in each window:

bin packing([∞, wL, wL, wL, wL], [windowp,f |p ∈ P], [durp|p ∈ P]) ∀d ∈ D,
(11)

where constraint (2) connects d to f . The capacity of window 0 is infinite and the
other windows have the window length wL as capacity. The partially occupied
input schedule is also included as patients with fixed windows.

4.3 IP Model

Variables. The basic variables of the IP model are (again using B = {0, 1}):
sp,d ∈ B sp,d = 1 iff patient p ∈ P starts treatment on day d ∈ D
qp,d,f ∈ B qp,d,f = 1 iff patient p ∈ P has their f -th treatment day on d ∈ D, f ∈ F
xp,d,w ∈ B xp,d,w = 1 iff patient p ∈ P is scheduled in window w ∈ W on day d ∈ D

There are also variables that are derived from the basic variables:
up,d ∈ B up,d = 1 iff patient p ∈ P has an active treatment day on d ∈ D
yp,d,w ∈ B help variable for the objective function where yp,d,w = 1 if patient p ∈ P

is scheduled in window w ∈ W on day d ∈ D, and if patient p is not
scheduled in window w on day d, yp,d,w ∈ B

Constraints. Patient p ∈ P will be treated for Lp days. Thus, the last day to
start treatment is daylimitp = D − Lp + 1. The treatment should start exactly
one time on an allowed start day given by Ap:

daylimitp∑
d⊆Ap

sp,d = 1, ∀p ∈ P.

For the CP models, constraint (5) states which fractions that can be delivered
on which days. In the IP model, this is enforced by setting qp,d,f = 0 for all
p ∈ P, d ∈ D, f /∈ Fp,d where Fp,d := {max(0, d − (D − Lp)), . . . ,min(d, Lp)}.
Using F̂p,d to denote Fp,d with the last element excluded, the constraint:

qp,d,f = qp,d+1,f+1 ∀p ∈ P, d ∈ {1, . . . , D − 1}, f ∈ F̂p,d

enforces that all treatment days are scheduled after each other.
The following constraints state that the f -th treatment day can only happen

once and that patient p is scheduled at most once every day d:∑
d∈D

qp,d,f ≤ 1 ∀p ∈ P, f ∈ Fp,d

∑
f∈Fp,d

qp,d,f ≤ 1 ∀p ∈ P, d ∈ D.

In the CP models, this is enforced by constraints (4) or (9).
The first treatment day f = 1 is given on the start day for each patient:

qp,d,1 = sp,d ∀p ∈ P, d ∈ D.
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In the fractionation schedule for patient p, an active treatment day f gives
FSp,f = 1. A variable up,d is introduced so that up,d = 1 iff patient p is during
treatment on day d (qp,d,f = 1) and has an active treatment day (FSp,f = 1)
and zero otherwise, thus, it controls if d is an active day or not for patient p:

up,d =
∑

f∈Fp,d

(qp,d,fFSp,f ) ∀p ∈ P, d ∈ D.

Each patient is scheduled in exactly one time window on active treatment
days, and not in any window on off-days:∑

w∈W
xp,d,w = up,d ∀p ∈ P, d ∈ D.

In the CP models, this constraint is expressed by constraints (4) or (10).
In order to make sure that all treatments fit within each time window, up,d

is used to keep track of if the patient has an active day or not, together with
xp,d,w, which is one iff patient p is scheduled in window w on day d:∑

p∈P
xp,d,wup,ddurp +

∑
ts⊆w

Sd,ts ≤ wL ∀d ∈ D, w ∈ W.

S is the input schedule, where an element is one iff time slot ts on day d is
occupied. Thus, the sum of the duration of all patients in window w plus the
previously occupied slots in that window must be less than or equal the window
length wL. In the CP models, this is enforced by constraints (1) or (11). A
major difference is that the number of constraints in the IP model grows with
the number of time windows, which is not the case in the CP models.

Objective Function. The objective is the same as in the CP model. A penalty is
added for the time by which the target is missed:

f1,p =

D∑
d=dL,p

sp,d(d− dL,p) ∀p ∈ P,

where dL,p corresponds to the waiting target in days for patient p and sp,d = 1
on the start day. This constraint corresponds to the CP objective function (6).

The other objective is to schedule the patient in the same time window each
day. To do this, a help variable yp,d,w ∈ B is introduced so that yp,d,w is one
when xp,d,w is one, and the sum of yp,d,w’s is one on all days:

yp,d,w ≥ xp,d,w ∀p ∈ P, d ∈ D, w ∈ W∑
w∈W

yp,d,w = 1 ∀p ∈ P, d ∈ D.

As for the CP models, the problem with 3 machines with 4 windows each is
modeled as having 1 machine with 12 windows, and hence there should be no
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penalty for switching from window 1 to 5 or 9. Introduce Wm = {1, . . . ,Wm}
where Wm is the number of windows on each machine. Each window switch is
penalized in the second objective function, where we here assume 3 machines:

f2,p =
∑
d∈D̂

∑
w∈Wm

∣∣∣ ∑
i={w,w+Wm,w+2Wm}

(yp,d,i − yp,d+1,i)
∣∣∣ ∀p ∈ P. (12)

Since f2,p sums both 0 − 1 and 1 − 0 for each switch, there is a penalty of 2
for every switch. To make the CP objective function equivalent, the factor 2
difference is adjusted for in (8).

New variables avoid absolute values, as they would render the model non-
linear: zp,d,w =

∑
i={w,w+Wm,w+2Wm}(yp,d,i − yp,d+1,i) for w ∈ Wm. zp,d,w is

divided into a positive and negative part; zp,d,w = z+p,d,w − z−p,d,w:

f2,p =
∑
d∈D̂

∑
w∈Wm

z+p,d,w + z−p,d,w ∀p ∈ P

z+p,d,w ≥ 0, z−p,d,w ≥ 0 ∀p ∈ P, d ∈ D, w ∈ Wm.

(13)

The two formulations (12) and (13) are equivalent in a minimization setting.
In total, the objective function is equivalent to the CP objective function (8):∑

p∈P
(100cpf1,p + f2,p).

5 CP Search

When solving the CP models, the search is conducted in the following order:

1. Assign priority A patients randomly to a start day as early as possible.
2. Assign priority C and D patients to a start day randomly by choosing the

start dayp variable with smallest domain size over weighted degree [4].
3. Assign priority B patients to their earliest possible start day.
4. Assign the number of window switches window diffp as small as possible for

all patients sorted by their duration, with longest duration assigned first.

For easy instances, with few patients to schedule, it is possible to construct
deterministic search heuristics for the CP models that perform much better
than the random search strategies described above. However, for more difficult
instances these heuristics fail to even find a solution within reasonable time. This
is the reason for including randomization.

When solving a minimization problem in CP, branch-and-bound tree search
is used, which follows the same branch until it has failed. However, using a
restart strategy causes search to restart from the top node whenever search
finds a solution or after a specific number of failures defined by the restart
strategy. In this case, using a restart strategy yields better results because the
problem is somewhat under-constrained; it is easy to find feasible solutions and
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relatively few failures occur. Therefore, the Luby restart strategy [20] multiplied
by a factor of 100 is used. The interval is a result of testing many different
intervals on different problem setups. Doing restarts this often can be compared
to approximating a Large Neighborhood Search (LNS) [28] (see also Section 7).

6 Experiments and Results

Multiple experiments are run to evaluate and compare the three models. The
experiments are run on a Windows 10 machine with an Intel R© CoreTM i9-7940X
X-series processor and 64 GB of RAM. The IP model is solved using the MIP
solver of CPLEX 12.8 in the Python API with default parameters. The CP
models use MiniZinc 2.2.2 and are solved with Gecode 6.1.0. Other solvers have
been tested, such as the lazy clause solver Chuffed, but Gecode gave the best
overall results on the tested problem instances.

A simulation engine is built with Python 3.6. In this engine, the first day
starts from an empty schedule and patients to be scheduled are assumed to
arrive according to a Poisson process. For each simulated day, a patient schedule
is created using the previously described models, and the patients are fixed to the
schedule if they have a start day within a week (since this is the limit assumed to
communicate the schedules to the patients). The schedule from the previous day
is used as input for the next day in the simulation, together with the backlog of
yet unscheduled patients. For these patients, the waiting time target is adjusted
by one day since it is counted from the day the patient is ready for treatment.

The simulation engine is used to generate problem benchmarks, that each
have a partially occupied schedule, a patient backlog, and the number of expected
patients arriving per day (as discussed in Section 3). Occupation in a schedule is
measured as the average occupation of the first two weeks in that schedule. This
is not a perfect measure; if the first week is completely booked and the second is
completely free, some urgent patients will not be able to meet their target dates,
although occupancy is 50% in total for these weeks.

Scheduling patients on three different machines, 16 different benchmarks that
are grouped into three categories are summarized in Table 1. The categories
capture the following aspects:

a) The average number of patients arriving each day.

w) Which weekday the schedule is created. Note that a benchmark w-7 with
Sunday as planning day is omitted as it is identical to benchmark l-1.

l) The load in the input, i.e., the amount of partial occupation in the input
schedule and the size of the backlog. These are closely related, since an
almost empty schedule does not come with a large backlog, and vice versa.
Benchmarks l-3 and l-4 examine scalability and do not represent realistic
scenarios, as patients would be transferred to other clinics.

The weights in the objective function are chosen as c1 = 10, c2 = 3, c3 = 1,
corresponding to priority group A to C, and are the same as in [24]. Priority D
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Table 1. Setup of the benchmarks, 3 machines

Benchmark
Occupation

(%)
(4/6 windows)

Expected number
of arriving
patients

Number of
patients

in backlog
(4/6 windows)

Number of
patients including
future arrivals
(4/6 windows)

Planning
day

1. a-1 18.5 / 10.2 4 5 / 8 49 / 52 Sunday
2. a-2 18.5 / 10.2 6 5 / 8 77 / 80 Sunday
3. a-3 18.5 / 10.2 8 5 / 8 93 / 96 Sunday
4. a-4 53.9 / 55.0 4 8 / 8 52 / 52 Tuesday
5. a-5 53.9 / 55.0 6 8 / 8 80 / 80 Tuesday
6. a-6 53.9 / 55.0 8 8 / 8 96 / 96 Tuesday

7. w-1 53.9 / 55.0 5 8 / 8 79 / 79 Monday
8. w-2 53.9 / 55.0 5 8 / 8 79 / 79 Tuesday
9. w-3 53.9 / 55.0 5 8 / 8 79 / 79 Wednesday

10. w-4 53.9 / 55.0 5 8 / 8 79 / 79 Thursday
11. w-5 53.9 / 55.0 5 8 / 8 79 / 79 Friday
12. w-6 53.9 / 55.0 5 8 / 8 79 / 79 Saturday

13. l-1 53.9 / 55.0 5 8 / 8 79 / 79 Sunday
14. l-2 60.9 / 61.8 5 16 / 14 87 / 85 Sunday
15. l-3 69.8 / 64.8 5 24 / 34 90 / 100 Friday
16. l-4 73.3 / 69.5 5 45 / 48 111 / 114 Thursday

is for expected future patients of priority A and has weight c4 = 5. The day is
divided into 4 or 6 time windows. The timeout is set to 6 hours.

The performance of the models is measured as the objective function value
as a function of runtime for the benchmarks, for both 4 and 6 windows.

Average Patient Arrival. The results for benchmarks a-1 to a-6 are shown in
Figure 1. They show that except for the 6 window case in benchmark a-4, the IP
model reaches optimality considerably faster, and the packing-based CP model
outperforms the scheduling-based CP model on all instances. When the arrival
rate is low, as in benchmarks a-1 and a-4, the IP and CP models have similar
performance. The CP models are however more sensitive to an increase in the
average number of patients arriving each day, while the time to reach optimality
in the 4 window IP model does not change significantly. Increasing the number
of time windows from 4 to 6 makes the IP model slower in all cases. When
the partial occupation is low (benchmarks a-1 to a-3), the packing-based CP
model is not slower with more windows, which is not the case when the partial
occupation is higher (benchmarks a-4 to a-6).

Weekday. The results when varying the weekday the schedule is created are
presented in Figure 2. Some treatment protocols state that treatment can be
initiated only on certain days, but this does not have a large effect on runtime.
An observation is that for the 6-window case, although the IP model reaches op-
timality faster, the packing-based CP model has a better objective value initially.
Benchmarks w-1 to w-6 show that if the time limit is short, the packing-based
CP model performs better than the IP model.

Patient Load. Altering the load, the results can be seen in Figure 3. Again, the
IP model outperforms the CP models in finding optimality. In benchmarks l-3
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Fig. 1. Results with varying arrival rate, 4 windows and 6 windows
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Fig. 2. Results with varying planning day, 4 windows and 6 windows
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Fig. 3. Results when varying the load, 4 windows and 6 windows

and l-4, in 6 hours of runtime the scheduling-based CP model does not find any
solutions, the packing-based CP model does not find a solution in the 6-window
case, and the IP model does not reach optimality in the 6-window case. However,
these cases represent too heavy a load to be realistic scenarios.
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Fig. 4. Time to find the first feasible solution for each of the benchmarks

Time to Feasible Solution. Figures 1 to 3 show that the IP model outperforms
the CP models in finding an optimal solution. However, the packing-based CP
model is in almost all cases faster to find a feasible solution, see Figure 4.

7 Conclusions and Future Work

Radiation therapy is one of the most commonly used cancer therapies worldwide.
The waiting times can be reduced optimizing the use of LINACs for treatment.
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This paper introduces three different models that capture the non-block ra-
diotherapy patient scheduling problem; one IP model, a scheduling-based CP
model, and a packing-based CP model. The patients have different priority lev-
els, treatment patterns, treatment durations, and start days for treatment. The
expected future patient arrivals are included in the models to predict future
resource utilization.

The models are evaluated for multiple different scenarios. The results show
that the packing-based CP model outperforms the scheduling-based CP model
on all problem instances. In general, the CP models find feasible solutions faster
than the IP model, however, the IP model reaches optimality considerably faster.
All models are sensitive to an increase in the number of time windows per day.

Future Work. To make the models more realistic, overtime on the machines
and cancellation of treatments should be included in the models. Cancellation
of treatments is common in RT, and allowing for overtime on the machines is
important since it is often used in practice to reduce waiting times. Both aspects
are bound to increase the complexity of the models, and overtime is likely to
make the IP model nonlinear. Another future direction is to extend the models
to include multiple machine types, which also increases the models’ complexity.

For the models to be able to handle these complexities, a potential future
extension is to take advantage of the strengths of each model in an IP/CP hybrid.
Another option would be to use some decomposition method on the IP model, for
example Benders decomposition. To better explore the search space, an option
is to use Large Neighborhood Search (LNS) when solving the CP models.

A potential improvement of the stochastic aspect of the models is to use
scenario-based probabilities instead of expected values when accounting for pa-
tients arriving in the future.

The models have so far been compared with each other. The next step would
be to see how the models perform over time, using the simulation engine and
comparing to both a myopic scheduling strategy (not taking future patient ar-
rivals into account) and to historical data from a clinic.

Acknowledgments. The authors thank Per Enqvist at KTH and Kjell Eriksson
at RaySearch Laboratories for a fruitful collaboration. The authors are grateful
for insightful discussions about the CP models with Mats Carlsson and Peter J.
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