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In code generation, instruction selection chooses processor instructions to implement a program under compi-

lation where code quality crucially depends on the choice of instructions. Using methods from combinatorial

optimization, this paper proposes an expressive model that integrates global instruction selection with global

code motion. The model introduces (1) handling of memory computations and function calls, (2) a method for

inserting additional jump instructions where necessary, (3) a dependency-based technique to ensure correct

combinations of instructions, (4) value reuse to improve code quality, and (5) an objective function that reduces

compilation time and increases scalability by exploiting bounding techniques. The approach is demonstrated to

be complete and practical, competitive with LLVM, and potentially optimal (w.r.t. the model) for medium-sized

functions. The results show that combinatorial optimization for instruction selection is well-suited to exploit

the potential of modern processors in embedded systems.
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1 INTRODUCTION
Instruction selection is the task of implementing a program under compilation by selecting instruc-

tions from a given processor. It is a crucial part of code generation in a compiler and has been

actively researched for the past four decades (see [28] for a recent survey). The task is typically

decomposed into identifying the applicable instructions and selecting a combination that meets the

semantics of the program under compilation. Instruction selection is an optimization problem as

combinations differ in their efficiency – in certain cases, by up to two orders of magnitude [52].

Most state-of-the-art approaches apply graph-based methods to data-flow graphs only and, to

avoid NP-hard methods, are restricted to trees or DAGs. These restrictions are severe: ad-hoc

routines are needed for handling control flow; the scope of instruction selection is typically limited
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Fig. 1. Overview of the approach.

to single basic blocks, hence forsaking crucial optimization opportunities by design; and many

instructions of modern processors, such as DSPs (digital signal processors), are not supported [28].

Moreover, other code generation problems cannot readily be integrated with instruction selection.

Approach. In this paper, we use a new approach called universal instruction selection [29] that

addresses many of the limitations mentioned above. The approach (see Fig. 1 for an overview) is

based on constraint programming, where problems of combinatorial optimization are expressed

as constraint models. Our constraint model captures many aspects of instruction selection. It

accurately reflects the interaction between control and data flow of both programs and processor

instructions, enabling uniform treatment of data and control flow and selecting instructions globally

for an entire function. These features jointly enable support for complex instructions, such as SIMD

(single input, multiple data) and hardware-loop instructions, which often appear in embedded

systems. This is especially important for processors where instructions can be tailored for a specific

program and therefore can be arbitrarily complex. The model also integrates global code motion

which allows computations to be moved across block boundaries, thereby advancing use of complex

instructions. Moreover, as the model can potentially be solved to optimality, our approach provides

a complement to the greedy heuristics applied in state-of-the-art compilers, which are suitable

for day-to-day development (where short compilation times are imperative) but suboptimal for

deployment (where longer compilation times can be tolerated in favor of higher code quality).

The constraint model is based on universal function graphs, a graph-oriented representation that

also enables global code motion. The representation was recently introduced in [29], together with

a basic constraint model for universal instruction selection. The basic model has several limitations:

it fails to handle memory computations and function calls; it is unable to produce code in cases

where additional jump instructions must be inserted; it can potentially produce incorrect code in

certain cases where complex memory instructions are available; it may select more instructions

than necessary, which limits code quality; it lacks scalability; and it has been evaluated on a limited

set of small benchmark programs on a hypothetical processor architecture.

Contributions. We extend the approach in [29] to overcome the limitations above and make

several crucial improvements to the constraint model, thus making universal instruction selection

complete and practical. More precisely, we make the following contributions:

• We describe a complete instruction selector that supports memory computations and

function calls, and can insert additional jump instructions where necessary.

• We achieve correctness by detecting and prohibiting illegal instruction combinations that

could potentially result in cyclic data dependencies.

• We increase code quality by introducing alternative values to enable value reuse, thereby

avoiding redundant recomputation.

• We decrease compilation time and increase scalability by refining the objective function

and applying bounding techniques, where we exploit LLVM to provide a first solution.

• We evaluate the approach using medium-sized benchmark programs and real hardware

(Hexagon V5 [48]), which are typical for embedded systems.
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These contributions are significant as they turn a basic model for universal instruction selection

into a complete and practical model.

Plan of the paper. The required background is introduced in Sect. 2. The following sections discuss

memory computations and function calls (Sect. 3), jump insertion (Sect. 4), cyclic data dependencies
(Sect. 5), and value reuse (Sect. 6), which are crucial for the constraint model introduced in Sect. 7.

The approach is evaluated in Sect. 8. Related work is discussed in Sect. 9 and conclusions and future
work in Sect. 10.

2 BACKGROUND
Graph-based Instruction Selection. The prevailing approach to instruction selection is to apply

graph-based methods. As is common, the unit of compilation is a single function consisting of a

set of basic blocks (henceforth referred to simply as blocks), where exactly one block represents

the function’s entry block. From the function one or more data-flow graphs are constructed, which

are directed graphs where computation nodes represent computations in the function and edges

represent data dependencies between computations. Data-flow graphs confined to a single block are

called block graphs, and data-flow graphs that capture the data flow of entire functions are called

function graphs. A local instruction selector operates on block graphs whereas a global instruction
selector operates on function graphs.

Likewise, a data-flow graph called pattern graph (or simply pattern) is constructed for each

instruction of a given processor. The set of all patterns for a processor constitutes a pattern set. The
problem of identifying all applicable instructions for a given function is thus reduced to finding all

instances where a pattern in the pattern set is subgraph isomorphic to the block or function graph.

Such an instance is called a match.
A set of matches covers a block or function graph д if each computation node in д appears in

exactly one match. By assigning a cost to each match that corresponds to the cost of selecting the

instruction, the problem of finding the best combination of instructions is reduced to finding a

cover with least cost. It is well known that the subgraph-isomorphism and optimal graph-covering

problems are NP-complete in general, but for block graphs both problems can be solved optimally

in linear time if the block and pattern graphs are limited to trees [28].

Constraint Programming. Constraint programming [49] is a combinatorial optimization technique

for solving computationally hard problems. Instead of solving a problem directly using problem-

specific heuristics – which typically yield suboptimal solutions – in constraint programming one

first models the problem, and then solves the model.

A constraint model consists of a set of variables with finite domain (typically integers), a set

of constraints expressing relations among the variables, and an objective function. A solution is

a variable assignment that satisfies all constraints, and a solution is optimal if it maximizes (or

minimizes) the value of the objective function. Amodel instance is a constraint model that has been

instantiated with the parameters for a specific instance of the problem.

A constraint solver (or just solver) finds solutions to a given model instance by performing

propagation and search. Propagation removes values for variables which are in conflict with a

constraint and thus cannot appear in any solution. If any variable remains unassigned and no

further propagation is possible, search attempts several value choices on which propagation and

search is interleaved. Propagation is essential for reducing the search space.

Many problems have recurring structural patterns that constraint programming can exploit

through global constraints. A global constraint expresses problem-specific relations among several
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variables, offering two benefits: it eases modeling, and it enables strong propagation which drasti-

cally reduces the search space.

Static Single Assignment Form. An intermediate representation (IR) based on static single as-

signment (SSA) is a representation where each program variable is defined exactly once [17]. For

example, the program shown in Fig. 2a is not in SSA form as the variables n and f are redefined
within the loop. To disambiguate cases where the definition depends on control flow, SSA uses so-

called φ-functions which take a value and the block from where the value originates as arguments.

By splitting n and f into several variables and merging their values using φ-functions, we get the
program shown in Fig. 2b, which is in SSA form.

Given a function represented in SSA form, a data-flow graph called SSA graph can be con-

structed [26]. By including φ-nodes, the SSA graph can capture data flow of entire functions, which

is an enabler for global instruction selection. Matches derived from patterns that only cover φ-nodes
are called φ-matches.

Universal Function Graphs. We use universal function graphs (or UF graphs for short) to refer to

the program representation introduced in [29] (see Fig. 2c for an example). A UF graph is essentially

a combination of two graphs: a control-flow graph, consisting of block nodes and control-flow edges,

which is extended with control nodes to represent jumps; and an SSA graph, which is extended with

value nodes to represent values. An important invariant is that every control node and value node

has exactly one inbound control-flow edge and data-flow edge, respectively. Consequently, value

nodes not produced through computation – such as constants and function arguments – have a

data-flow edge from the node representing the function’s entry block.

As with SSA graphs, the UF graph does not dictate in which block a given computation should

be executed, which is crucial for enabling global code motion. Having no restraints at all, however,

may lead to code that violates the program semantics. Consequently, the UF graph contains

definition edges to indicate that a given value must be produced within a specific block. The

concerned values are exactly those connected to φ-nodes, which is sufficient to preserve the

program semantics.

Since the UF graph contains several kinds of nodes, a refined notion of coverage is given in

[29]: a set of matches covers a UF graph if each operation appears in exactly one match, where an

operation refers to either a computation node or a control node in the UF graph. We will also use

the term blocks to refer to block nodes in the UF graph.

Global Code Motion. Global code motion is the task of moving computations from one block

to another in order to increase code quality. We formalize the global code motion problem by

reiterating the definitions given in [29]. If a datum d refers to a value node in the UF graph, then

a matchm defines respectively uses d if there exists an inbound respectively outbound data-flow

edge from d in the pattern ofm. Hence a datum can be both defined and used by the same match.

Next, a block b dominates another block c if every control-flow path in the UF graph that goes from

the function’s entry block to c also goes through b. By definition, a block always dominates itself.

Hence a placement of selected matches into blocks is a solution to the global code motion problem

if each datum d is defined in some block b such that b dominates every block wherein d is used,

excluding uses made by φ-matches. The last clause is needed as blocks appearing as arguments to

φ-functions do not necessarily dominate the block wherein the φ-function is placed. For example,

in Fig. 2b the φ-function in the end block demands that value f3 is defined in the body block, which

clearly does not dominate end. This is the reason for applying definition edges to enforce that f1
and f3 are defined in the correct blocks. Likewise, a definition edge is also applied for f4 to enforce

correct placement of the φ-function.
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int fact(int n) {

int f = n;

for (; 1 < n; n--)

f = f * n;

return f;

}

(a) C code.

T

F

TF

f1 ← n1
c.br 1 < n1, body, end

n2 ← φ(n1:entry, n3:body)
f2 ← φ(f1:entry, f3:body)
f3 ← f2 * n2
n3 ← n2 - 1
c.br 1 < n3, body, end

f4 ← φ(f1:entry, f3:body)
ret f4

entry:

body:

end:

(b) Corresponding SSA IR and control-flow graph.
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(c) Corresponding UF graph. Thick-lined diamonds, boxes, and arrows represent control nodes, block nodes,
and control-flow edges, respectively. Thin-lined circles, boxes, and arrows represent computation nodes, value
nodes, and data-flow edges, respectively. Dotted lines represent definition edges. For readability, the value
node with value 1 has been duplicated and the data-flow edges from the entry block to the value nodes
representing constants and function arguments have been removed.

Fig. 2. The factorial function written in C, transformed into an SSA-based IR, and then into a UF graph.
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Fig. 3. A conditional assign-
ment instruction

Some complex instructions impact both instruction selection and

global code motion. Assume for example a matchm of the pattern

shown in Fig. 3, which models an instruction that assigns a register

one of two values depending on whether a given predicate is true or

false. Assume further that the entry, if, and end blocks in the pattern

are mapped to blocks in a UF graph labeled A, B, and C, respectively.
A match spans the blocks in the UF graph mapped to blocks in the

pattern. Hencem spans A, B, and C. Of these,m consumes B as the

instruction ofm assumes full control of the control flow to and from

B. Consequently, no other computations may be placed in blocks

consumed by some selected match.

As demonstrated in Sect. 8, solving global instruction selection and global code motion in unison

enables use of complex instructions that would otherwise not have been selectable.

3 MEMORY COMPUTATIONS AND FUNCTION CALLS
As with arithmetic computations, we represent memory computations and function calls as com-

putation nodes (see Fig. 4 for an example). Nodes representing memory loads and stores have a

fixed number of inbound and outbound data-flow edges, while nodes representing function calls

may have an arbitrary number of data-flow edges (depending on the function being called). This

also enables the calling convention of the target machine – that is, how to pass the arguments and

return value – to be implemented through patterns as these can apply location requirements on

the data being used or defined (see Eq. 11 in Sect. 7).

Memory computations and function calls may have side effects which are not observable from the

data and control flow. As the order in which these are executed may affect the program semantics,

the order given in the function must be preserved. We introduce state nodes to capture this order,

and refine the definition of data to also include state nodes. As shown in Fig. 4, each memory

computation and function call takes exactly one state node as input and produces another state

node as output, thus forming state dependencies which exactly capture the necessary order between

such operations. Each state flow is limited to a single block, where the first and last state node in

the chain has a data-flow edge and a definition edge, respectively, from the block node. This is to

forbid memory computations and function calls from being moved to another block as well as to

comply with the invariant that every datum has exactly one inbound data-flow edge.

4 JUMP INSERTION
For certain combinations of functions and target machines, the produced code may need to include

more jumps than originally specified in the function. In most architectures, a branch instruction

jumps to a given label if the condition holds, otherwise the execution continues to the next

instruction (known as fall-through). Hence the block representing the false label must follow the

branch instruction in the code. However, in Fig. 2b we see that the end block is the false label of two

conditional jumps, residing in blocks entry and body. Since end cannot follow both entry and body,
an unconditional jump to end must be inserted after one of the conditional jumps.

1
We address

this by extending the pattern set with new patterns, called dual-target branch patterns, that insert
additional jump instructions if selected.

1
In this particular case, the problem could also be solved by negating the condition and swapping the false and true labels

in one of the conditional jumps. However, there exist cases where this is not sufficient (for example, consider two loops that

share the same exit block).

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1. Publication date: July 2017.



Complete and Practical Universal Instruction Selection 1:7

block:
t1 ← ld p
t2 ← call foo, t1
st q ← t2

(a) IR.

ld

p t1

foo

t2

st

block

(b) UF graph. Gray boxes represent state nodes.

Fig. 4. An example illustrating how to capture memory computations and function calls in the UF graph.

p2 ← p1 + 4
st q1 ← p2
q2 ← q1 + 4
st p1 ← q2

(a) IR.

q1

+

q2

st

+

p1

p2

st

4 m2m1

(b) UF graph, covered using two matches derived
from an auto-increment store instruction.

m1 m2

(c) Dependency graph.

Fig. 5. A program at risk of cyclic data dependency. For brevity, state nodes are not included in the UF graph.

The idea works as follows. Given a pattern set S , find the pattern дbr ∈ S that corresponds to an

unconditional jump (it is reasonable to assume such a pattern exists). Then, for each pattern д ∈ S
that corresponds to a conditional jump with a fall-through condition to block b, add to S a new

pattern h that has the same graph structure as д and emits the instruction represented by д followed

by the instruction represented by дbr. Because h has no fall-through condition, h represents a

conditional jump targeting two blocks (hence its name). The new pattern set containing all dual-

target branch patterns is denoted Sext.
This idea of extending the pattern set can also be generalized to include branch patterns that flip

the predicate used in conditional jumps, which is applied in techniques like trace scheduling [22]

to alleviate block reordering and jump elimination.

5 CYCLIC DATA DEPENDENCIES
Modern processors often contain complex instructions that could potentially lead to cyclic data

dependencies. As pointed out by Ebner et al. [18], this can happen with memory instructions that

automatically increment the address register after a load or store. See for example Fig. 5. If both

matches are selected, then either value p2 or value q2 will be used before it is available (depending

on the instruction order), thus resulting in incorrect code. Consequently, such combinations must

be identified and forbidden.

We detect such combinations – which could involve more than two matches – by constructing a

dependency graph and finding all cycles (we use Johnson’s algorithm [30]). A node in the dependency

graph represents a matchm, which has a directed edge ifm produces data used by another match.

For example, in the dependency graph shown in Fig. 5,m1 has an edge tom2 due to value q2, and
m2 has an edge tom1 due to value p2. φ-matches are not included as they will always yield cycles

that are not due to true cyclic data dependencies, and neither are null matches (matches that emit

nothing if selected) as they will never be the cause of such dependencies.
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v

(a) UF graph.

v

cp cp

v1 v2

(b) After copy extension.

v

cp cp

v1 v2

(c) With alternative values.

Fig. 6. A UF graph covered by a match with two alternative values. Dotted edges indicate potential use of
such values.

6 VALUE REUSE
Code quality can be increased if instructions are allowed to reuse copies of values, which is a crucial

feature to be expected in the code emitted by any modern instruction selector. See for example

Fig. 6a, in which a value v is used by two computation nodes and one of them is covered by a

match. After copy extension – a transformation described in [29] used to handle architectures with

instructions that require data to reside in specific locations – the computations will instead use the

two newly introduced values v1 and v2, respectively, as shown in Fig. 6b. Assume now that v resides
in a location where it must first be copied elsewhere before used. It may for example reside on the

memory stack, which is a common calling convention in architectures with few registers. Without

value reuse, a copy would be performed for each such use. But because v1 and v2 are copies of the
same value, one copy might be sufficient (depending on the instructions using the values). We say

that v1 and v2 are copy-related and therefore interchangeable, meaning the match is free to use

either of values v1 and v2, as shown in Fig. 6c. Consequently, if a matchm uses but does not define a

value v1, and v1 is copy-related with values v2, . . . ,vk , then v1, . . . ,vk are alternative values tom.

We utilize alternative values by allowing a value node in a pattern to map to multiple (copy-

related) value nodes in the UF graph. We do this by first finding all matches and then expanding

each match with alternative value node mappings. Another approach is to first expand the UF graph

with additional data-flow edges and then merge matches that differ only in value node mappings,

but that complicates the matching algorithm and incurs an unnecessary computational overhead.

We then extend the constraint model by essentially adding an extra level of indirection wherever a

constraint refers to a particular datum, which is detailed below.

7 CONSTRAINT MODEL
Match Identification. For a given UF graph G and a pattern set Sext, the match set M contains

all instances where a pattern in Sext is subgraph isomorphic to G. Like in [29], we compute M
using VF2 [16] – a well-known subgraph isomorphism algorithm – and apply the same method for

removing illegal matches.

Operation Coverage. The two sets of variables sel[m] ∈ {0, 1} and omatch[o] ∈ Mo model whether

matchm ∈ M is selected respectively which selectedmatch covers operation o ∈ O , whereO denotes

the set of operations in G, andMo ⊆ M denotes the set of matches that can cover o. The condition
that each operation must be covered by exactly one selected match can then be modeled as

omatch[o] =m⇔ sel[m],
∀o ∈ O,∀m ∈ Mo ,

(1)

where sel[m] abbreviates sel[m] = 1 (likewise, for a variable x ∈ {0, 1}, ¬x abbreviates x = 0).
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Data Definitions. Similarly, each datum must be defined by exactly one selected match. The set

of variables dmatch[d] ∈ Md models which selected match defines datum d ∈ D, whereMd ⊆ M
denotes the set of matches that can define d , and D denotes the set of data in G. The condition can

then be modeled as

dmatch[d] =m⇔ sel[m],
∀d ∈ D,∀m ∈ Md .

(2)

Global Code Motion. The two sets of variables oplace[o] ∈ B and dplace[d] ∈ B model in which

block operation o respectively the definition of datum d is placed, where B denotes the set of blocks

inG . In order to decide in which block to place a selected matchm, all operations covered bym are

required to be placed in the same block. If covers(m) ⊆ O denotes the set of operations covered by

matchm, then the condition can be modeled as

sel[m] ⇒ oplace[o1] = oplace[o2],
∀m ∈ M,∀o1,o2 ∈ covers(m). (3)

Jump operations are forbidden to be placed in another block than originally indicated in the

UF graph as that would most likely break the program semantics. Let entry(m) ∈ B denote the entry

block of matchm if the pattern ofm has such a node, otherwise entry(m) = ∅. The condition can

then be modeled as

sel[m] ⇒ oplace[o] = b,
∀m ∈ M,∀o ∈ covers(m),∀b ∈ entry(m). (4)

Each datum d must be defined in some block b ∈ B such that b dominates every block wherein d
is used (with the exception of φ-matches). In addition, we want to make use of alternative values.

Assume therefore that, instead of defining and using data, a match defines and uses operands. Every
definition or usage in a match incurs a new operand, which will be mapped to a datum. Hence

the set of variables alt[p] ∈ Dp models to which datum operand p ∈ P is mapped, where Dp ⊆ D
denotes the alternative values available for p, and P denotes the set of operands applied in M .

Let defines(m) ⊆ P and uses(m) ⊆ P and denote the set of operands defined respectively used by

matchm. Let also dom(b) ⊆ B denote the set of blocks that dominate block b. The condition can

then be modeled as

dplace[alt[p]] ∈ dom(oplace[o]),
∀m ∈ Mφ ,∀p ∈ uses(m),∀o ∈ covers(m), (5)

whereMφ denotes the setM excluding φ-matches.

The conditions imposed by the definition edges are modeled as

dplace[d] = b,
∀⟨d,b⟩ ∈ E, (6)

where E denotes the set of definition edges in G.
The oplace and dplace variables are connected as follows: if a matchm spans any blocks then

every datum d defined bym may be defined in any of the spanned blocks, otherwise d must be

defined in the same block whereinm is placed. This is because there exist cases where the constraint

model would become over-constrained if only the latter clause was applied. Assume for example a

matchm of the pattern shown in Fig. 3. Due to Eq. 4 the operations covered bym must be placed in

the block b in G corresponding to the pattern’s entry block. Due to the definition edges, however,

the datum corresponding to value v1 in the pattern must be defined in a block different from b. If
spans(m) ⊆ B denotes the set of blocks spanned by matchm, then the conditions can jointly be

modeled as

sel[m] ⇒ dplace[alt[p]] ∈ {oplace[o]} ∪ spans(m),
∀m ∈ M,∀p ∈ defines(m),∀o ∈ covers(m). (7)
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Lastly, no operations must be placed inside blocks consumed by a selected match. Hence, if

consumes(m) ⊆ B denotes the set of blocks consumed by match m, then the condition can be

modeled as

sel[m] ⇒ oplace[o] , b,
∀o ∈ O,∀m ∈ M,∀b ∈ consumes(m). (8)

Inactive Data. Due to Eq. 5 there may be data that is not used by any match, but Eq. 2 requires that

every datum must still be defined. This is addressed by extending the pattern set with a kill pattern,
consisting of a single copy node which uses one datum and defines another datum. Matches derived

from kill patterns are called kill matches, which are also null matches. A datum is inactive if it is
defined by a kill match, and non-kill matches are forbidden to use inactive data.

With the set of variables inactive[d] ∈ {0, 1}, which models whether a datum d is active, the

condition can be modeled as

sel[m] ⇔ inactive[alt[p]],
∀m ∈ M×,∀p ∈ defines(m), (9)

sel[m] ⇒ ¬inactive[alt[p]],
∀m ∈ M×,∀p ∈ uses(m), (10)

whereM× andM× denote the set of kill matches respectively the setM excluding kill matches.

Data Copying. The set of variables loc[d] ⊆ L ∪ {lnull} models in which location a datum d
is available, where L denotes the set of possible locations, and lnull denotes the location of an

intermediate value produced by an instruction that can only be accessed by this very instruction.

For example, the address computed by a memory load instruction with a sophisticated addressing

mode cannot be reused by other instructions. Thus, if stores(m,p) ⊂ L denotes the set of permitted

locations for an operand p defined or used by matchm – where an empty set means no restrictions

are imposed – then the condition can be modeled as

sel[m] ⇒ loc[alt[p]] ∈ stores(m,p),
∀m ∈ M,∀p ∈ P s.t. stores(m,p) , ∅. (11)

The condition that forbids reuse of intermediate values can be modeled as

sel[m] ⇒ loc[alt[p]] = lnull,
∀m ∈ M,∀p ∈ intvalues(m), (12)

where intvalues(m) ⊆ P denotes the set of intermediate values produced by matchm. It is assumed

that copy extension (see [29]) has been performed on the UF graph.

Fall-through Branching. The set of variables succ[b] ⊆ B models the successor of block b, and
a valid block order corresponds to a cycle formed by the succ variables. Using the global circuit
constraint [37], the condition can be modeled as

circuit (∪b ∈B {succ[b]}). (13)

If a matchm is derived from an instruction that performs a fall-through to blockb, then the condition
can naively be modeled as sel[m] ⇒ succ[entry(m)] = b. However, this constraint is too limiting

as it is not uncommon that an empty block is placed between entry(m) and b. Hence we extend the

constraint to allow fall-through via an empty block. Let J denote a set of tuples, consisting of a

match and a block to which the match falls through, and let M⊥ denote the set of null matches.

The constraint can then be modeled as(
succ[succ[entry(m)]] = b ∧ empty(succ[entry(m)])

)
∨ succ[entry(m)] = b,

∀⟨m,b⟩ ∈ J ,
(14)

where empty(b) = oplace[o] , b ∨ omatch[o] ∈ M⊥,∀o ∈ O .
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Cyclic Data Dependencies. As explained in Sect. 5, combinations of matches that will result in

cyclic data dependencies must be forbidden. If F ⊂ 2
M

denotes the set of such combinations, then

the condition can be modeled as ∑
m∈f

sel[m] < | f |,∀f ∈ F. (15)

Objective Function. The objective function reflects the desired characteristics of the produced

code. For example, if the compiler should maximize performance then the execution time of each

block should be minimized. As is common, the execution time should also be weighted with the

relative execution frequency of each block, which is typically estimated through static analysis. A

straightforward objective function can be modeled as∑
m∈M

sel[m] × cost(m) × freq(place(m)), (16)

where cost(m) ∈ N denotes the cost of match m (typically the instruction latency), freq(b) ∈ N
denotes the execution frequency of block b, and place(m) ∈ B denotes the block wherein m is

placed.

However, the objective function in Eq. 16 is naive as it yields poor propagation, resulting in long

compilation times. A better approach is to reason about the cost incurred by each operation (which

must always be covered) instead of each match (which may or may not be selected).

The set of variables ocost[o] ∈ N thus models the cost incurred by operation o. The cost per
operation is computed as follows. For each match m, evenly divide the cost of m among the

operations covered bym. Let cost(m,o) ∈ N denote this cost. Then, for each operation o covered by

m and block b wherein o could be placed, multiply cost(m,o) by the execution frequency of b. Hence∑
o∈covers(m) freq(b) × cost(m,o) = freq(b) × cost(m). By representing this information as a matrix

C =

〈
o,m,b, freq(b) × cost(m,o)

〉 m ∈ M,
o ∈ covers(m),

b ∈ B

 (17)

one can connect the omatch, oplace, and ocost variables by requiring that, for each operation o,
the tuple ⟨o, omatch[o], oplace[o], ocost[o]⟩ must appear as a row in C. This can be enforced using

the global table constraint [39], thus allowing the condition to be modeled as

table (⟨o, omatch[o], oplace[o], ocost[o]⟩,C) ,
∀o ∈ O . (18)

Lastly, the objective function to minimize is modeled as

cost =
∑
o∈O

ocost[o], (19)

where cost ∈ N models the total cost of the solution.

Bounding the Cost Variable. To find the optimal solution – that is, the solution which minimizes or

maximizes the objective function – most solvers apply a method known as branch and bound [34].

The idea is to first find some initial solution with cost c and then enforce that all later found

solutions must have a cost strictly less than c , thereby avoiding the parts in the search space that

only contain inferior solutions. This is repeated until no more solutions are found, where the last

found solution is optimal.

The solving time can be decreased by bounding the cost variable, which reduces the search

space. This is particularly important for proving optimality. We obtain a lower bound by solving a
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relaxation of the problem which we model using variables omatch, opcosts, sel, succ, and totalcost
together with Eq. 1 and modified versions of Eq. 13, 14, and 17–19. The cost of an optimal solution

to the relaxed model is always less than or equal to the cost of any solution to the full model. We

obtain an upper bound by taking the cost of the solution found by LLVM, which only takes a tiny

fraction of the time it takes to solve the model itself. IfCrelaxed ∈ N andCLLVM ∈ N denote the costs

found using the relaxed model and LLVM, respectively, then the bounding conditions can jointly

be modeled as

Crelaxed ≤ cost < CLLVM. (20)

If no solution exists when using CLLVM as lower bound, then it means no code better than that

produced by LLVM can be produced by the constraint model.

Implied Constraints and Dominance Breaking. Simply modeling a problem as a constraint model is

in most cases not sufficient for solving the problem in practice, typically due to too weak propagation

and too large a search space. Consequently, a constraint model must often be extended with implied
(or redundant) constraints (to strengthen propagation) and dominance breaking constraints (to
remove solutions that are no better than other solutions). Our constraint model is no exception,

but due to space restrictions we only briefly discuss a few of them in this paper.

Several implied constraints are based on the fact that for every operation, a covering match must

be selected, and for every datum, a defining match must be selected. For example:

• Suppose that for a given non-ϕ-node operation o and data u and d , where all matches

covering o use u, define d and span no blocks. Then o must be placed in the block defining

d , which must be dominated by the block defining u.
• Suppose that for a given operation o and block b, b is the entry block of all matches that

cover o. Then o must be placed in b.
• Suppose that for a given non-state datum d , its defining matches do not include any kill

matches, and they all define d accessible by other instructions. Then the location of d
cannot be lnull.

Dominance breaking constraints include the following:

• The location of all state data is fixed to lnull.
• For any match that is not selected, its alt variables are fixed to their minimal values.

• Any kill match whose operation can be covered by a null match, or whose datum it defines

has no copy-related values, is redundant and thus fixed as not selected.

• Copy-related values cause value symmetries in the solution space. Let V = {v1, . . . ,vn} be
a set of copy-related values. Then any solution can be converted to an equivalent solution

simply by picking two members vi and vj from V and swapping all their occurrences.

We break such symmetries with value precedence constraints [38], which state that any

occurrence of vj in the solution must be preceded by an occurrence of vj−1, ∀1 < j ≤ n.

Limitations. In some cases, it is beneficial to recompute the same value instead of reusing it. In

terms of graph-based instruction selection, this means letting an operation be covered by more

than one match. However, Eq. 1 and 2 enforce that every operation and datum must be covered

respectively defined by exactly one selected match, and several other constraints depend on this

assumption. Consequently, a solution that is optimal with respect to the constraint model may still

be inferior to that produced by an instruction selector which supports recomputation.

Another limitation is that fall-through branching across more than one empty block will still

result in redundant jump instructions.
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Model Differences. Compared to the constraint model introduced in [29], only the loc and succ
variables remain unchanged. Variables alt, cost, dmatch, dplace, inactive, ocost, omatch, oplace
are new, where dplace and oplace respectively replace the def and place variables in [29].

Regarding the constraints, only Eq. 6 is identical to Eq. 5 in [29]. Equations 1, 4, 5, 7, 8, 11, and 13

are respective reformulations of Eq. 1, 3, 4, 6, 7, 8, and 9 in [29]. Equations 17, 18, and 19 are

jointly a reformulation of Eq. 11 in [29]. Equations 2, 3, 9, 10, 12, 14, 15, and 20 are new constraints.

Equations 2 and 10 in [29] become obsolete in this constraint model due to lack of null blocks.

8 EXPERIMENTAL EVALUATION
We implemented the constraint model in MiniZinc 2.1.3 [45] – a high-level constraint modeling

language – and solved the instances using Chuffed [14] – a lazy clause learning constraint solver

which is included in MiniZinc. The experiments were run using a single thread on a Linux machine

with an Intel Xeon E5-2680 v3 at 2.50GHz and 64GB main memory. Since we are solving optimal

graph covering – which is an NP-complete problem – we limit solving time with a timeout.

As input for the experiments we use functions extracted from the MediaBench suite [40] and

processor instructions from Hexagon V5 [48] – a DSP with a rich instruction set that appears in

many embedded systems. The functions (in LLVM IR) are generated with LLVM 3.8 [36] using the

-O3 optimization level. 284 candidate functions are filtered out of an initial pool of 6313 functions.

A function is a candidate if it is medium-sized (between 50 and 200 LLVM IR instructions, yielding

function graphs between 189 and 1524 nodes) and does not contain non-scalar or floating-point

LLVM instructions (which are not yet supported due to limitations in our tool chain but not in the

approach). Finally, 20 functions are selected by sampling out of the candidate pool. The purpose

of sampling is to make the experiments feasible (so that they can be reproduced in the order of

hours) while ensuring a certain diversity in the selected function graphs. The sampling procedure

splits the candidate functions into 20 clusters with a k-means clustering algorithm and randomly

selects a function out of each cluster [47]. Functions are clustered by size (in number of LLVM IR

instructions), number of memory instructions (one of the main sources of complexity for instruction

sets with rich addressing modes such as Hexagon’s), and original application (to improve the spread

across MediaBench).

Alternative Values. To evaluate the impact of using alternative values, we implemented two

versions of the constraint model: one using alternative values; and one without alternative values

to serve as baseline, thereby mimicking the capabilities of the basic model introduced in [29]. All

instances of the baseline model were solved to optimality using Crelaxed as lower cost bound and

no upper bound, with the exception of the build_ycc_rgb_t and gpk_open functions where the
solver timed out even after half an hour. To reduce experiment runtime, we used the costs of the

optimal solutions to the baseline model as upper bounds for the instances of the other model, which

were then solved with a timeout of 1800 s. Since the intention of alternative values is to increase

code quality, we expect to see an overall execution speedup over the baseline model.

Fig. 7 shows the estimated execution speedup of using alternative values. The geometric mean

speedup is 5.4%, and for every function the constraint model with alternative values produced code

that is better or equally good as that produced by the baseline model. Hence alternative values

yield significant and consistent code quality improvements over the baseline model.

Alternative values primarily yield speedup when the function is data-bound. For example, the

gl_init_lists function – which initializes a large data structure – consists mainly of instructions

that write constants to memory. Many of these constants are used more than once and are often

too large to fit as immediates to the instructions. This leads to many redundant copy instructions

emitted by the baseline model which are not needed when making use of alternative values. In
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Fig. 7. Estimated execution speedup with alternative values. Bars marked with dots indicate solver timeouts.
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Fig. 8. Cumulative number of optimality proofs found over time using four constraint models.

contrast, no speedup is gained for the alloc_name_is_s function – which consists of a long chain

of if-then-else checks – where most of its values are only used once throughout the entire function.

Compilation Time. To evaluate the impact of using the refined objective function and cost

bounding, we implemented four more versions of the constraint model: one using the naive

objective function given in Eq. 16; one using the refined objective function given in Eq. 17–19; one

combining the naive function with bounds; and one combining the refined function with bounds. All

models used alternative values and Crelaxed and CLLVM as the lower and upper bound, respectively.

We then produced code for the same functions and target as in the previous experiment, with a

timeout of 60 s for computing the lower bound and 600 s for solving the model, and measured the

solving time for proving optimality for each model. We expect the first model to be outperformed

by the second and third models, which in turn are expected to both be outperformed by the fourth

model. All solving times were averaged over 10 runs, for which the maximum coefficient of variation

was 9.6%. The time spent on pattern matching was negligible (less than 2% of the total runtime,

which was dominated by the solving time).

Fig. 8 shows the cumulative frequency distribution of optimality proofs found over time, which

includes lower bound computation time and solving time. We see clearly a significant increase

in scalability from using the refined objective function, which manages to prove optimality for

UF graphs with up to 1415 nodes, compared to the naive function as used in [29], which only scales

to 203 nodes (the increase is not due to more memory as no function required more than 4GB

during solving, and the hardware used in this experiment was only 19% faster [1]). We also observe

that bounding has an overall positive impact for both objective functions, with the exception of

one long-running case where cost bounding seems to have a negative impact on the solver.
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Comparison with LLVM. To evaluate how our approach compares to the state of the art, we

compared the quality of the code emitted by our combined model implementation against the code

emitted by the instruction selector in LLVM, which is a greedy heuristic that mimics maximum
munch (always pick largest match) [28]. We used the same functions and target as in the alternative

values and compilation time experiments, with a timeout of 600 s for the solver, using no upper

bound. All estimated execution cycle counts were averaged over 10 runs, for which there was no

variation. As LLVM is limited to tree-shaped patterns, is unable to move operations across blocks,

and relies on local-based, greedy heuristics – thereby limiting use of complex instructions – we

expect to see an overall improvement.

Fig. 9 shows the estimated execution speedup over LLVM. The geometric mean speedup is 2.5%,

hence our approach is competitive with LLVM. The cases showing a speedup are predominantly

due to global code motion and block ordering. In the alloc_save_spac, gp_enumerate_fi, and
gpk_open functions, for example, our approach is able to lift operations – constant loads in particular

– out of blocks with high execution frequency into blocks with lower frequency, thereby reducing the

cost. In the jpeg_read_header, gl_TexImage3DEX, and gl_EnableClient functions, our approach
rearranges the blocks to remove one to two jump instructions. Also, in alloc_save_spac our

approach is able to move an addition andmemory operation into the same block and implement both

using a single auto-increment memory instruction, whereas LLVMmust implement these operations

using two instructions. Improvements such as these become possible only when integrating global

instruction selection with global code motion.

In three cases (gl_swap4, gp_enumerate_fi, and zero), LLVM is able to recompute memory

addresses as part of the memory instruction and eliminate common subexpressions. Although none

of these features is directly supported in our approach, we could work around these limitations

by adding special patterns that exactly cover the operations involved in the recomputations or

common subexpression eliminations. Without these special patterns, our approach would produce

worse code than LLVM for the three cases above.

9 RELATEDWORK
Several local, linear-time, least-cost covering algorithms exist for tree-based block and pattern

graphs [2, 24, 46], which subsequently have been extended to DAG-based block graphs at the loss

of optimality [20, 21, 33]. Together with instruction scheduling and register allocation, instruc-

tion selection has also been approached using integer programming [8, 25, 54] and constraint

programming [7, 23, 44]. Far fewer methods exist for global instruction selection, which so far only

has been approached as a partitioned Boolean quadratic problem [11, 18, 19] or using constraint

programming [29]. Common among these techniques is that they are restricted to tree-based and

DAG-based patterns, whereas our approach can operate on full-fledged pattern graphs.
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Global code motion has been solved both in isolation [15, 22] as well as in integration with

register allocation [6, 31]. Moreover, attempts at exploiting fine-grained instruction level parallelism

using SIMD instructions [35, 42] suggest that the selection of such instructions should be done

together with global code motion. Although many methods exist for selecting SIMD instructions in

isolation, with a few that combine it with instruction selection [4, 41, 51], but to the best of our

knowledge only our approach performs these three tasks in unison.

Several attempts have been made to reduce the number of jump instructions through block

reordering [9, 22]. Common among these approaches is that they apply tailored algorithms for

finding, replacing, and removing conditional jump instructions, whereas our approach rely on

the selection of special patterns to perform these actions. Jump instructions can also be removed

through if conversions (in some architectures, instructions can be predicated with a Boolean register

that decide whether the instruction should be executed) [3, 27, 32, 53], which can be supported by

our approach if the pattern set is extended with the appropriate patterns.

An idea similar to alternative values is introduced in [13] to address a related problem that

appears in register allocation and instruction scheduling, where spilled values may be reused by

multiple instructions when they are loaded back from memory.

The problem of cyclic data dependencies has been considered in several instruction selection

techniques [18, 50]. In [18] such dependencies are found by identifying strongly connected com-

ponents in the function graph and then forbidding conflicting decisions via a cost matrix. In [50]

the approach instead relies on a dependency graph but, unlike our approach, applies iterative and

greedy methods for breaking cycles.

10 CONCLUSIONS AND FUTUREWORK
This paper introduces a complete and practical approach to universal instruction selection: it handles
memory computations and function calls; it inserts additional jump instructions where necessary;

it ensures correct combinations of instructions; it improves code quality; and it increases scalability.

The approach is demonstrated to be competitive with LLVM and potentially optimal (w.r.t. the

model) for medium-sized functions targeting hardware which is typical for embedded systems.

Future work includes addressing the model limitations and increasing robustness and scalability

by strengthening propagation with more implied and dominance breaking constraints and presolv-

ing techniques. We also intend to integrate existing models for register allocation and instruction

scheduling [12, 13].

In addition, many peephole optimizations can be readily modeled as patterns, and several tools

exist for automatic discovery and verification of such patterns [5, 10, 43]. We intend to exploit

these tools to automatically extend the pattern set with these patterns in order to further improve

code quality.
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