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Abstract. While incremental propagation for global constraints is rec-
ognized to be important, little research has been devoted to how prop-
agator-centered constraint programming systems should support incre-
mental propagation. This paper introduces advisors as a simple and effi-
cient, yet widely applicable method for supporting incremental propaga-
tion in a propagator-centered setting. The paper presents how advisors
can be used for achieving different forms of incrementality and evaluates
cost and benefit for several global constraints.

1 Introduction

Global constraints are essential in constraint programming as they are useful for
modeling and crucial for efficient and powerful propagation. For many propaga-
tors implementing global constraints, incrementality is important for efficiency.

The key features to support incremental propagation are state for propa-
gators (to store datastructures for incremental propagation) and modification
information (which variables have been modified and how have their domains
changed). Without state, incrementality is impossible. Without modification in-
formation, the asymptotic complexity of a propagator is at least linear in the
number of variables: a propagator must scan all its variables for modification.

Propagation comes in two flavors: variable- or propagator-centered. Variable-
centered propagation is controlled by the set of modified variables with some
additional information (for example, variable and constraint in AC3 [17], variable
and value in AC4 [18]). Propagator-centered propagation is controlled by the set
of propagators still to be propagated, see for example [2].

Providing modification information to a propagator is straight-forward with
variable-centered propagation, and is used in systems such as Choco [15], ILOG
Solver [13], and Minion [10]. This is not true for propagator-centered propagation
which is for example used in CHIP [8], SICStus [7], and Gecode [9, 23]. While
propagator-centered propagation typically lacks support for modification infor-
mation, it is simple and has important advantages such as fixpoint reasoning,
priorities, and priority-based staging [23].

This paper presents advisors as a simple, efficient, yet widely applicable
method for supporting incremental propagation in a propagator-centered setting.
The idea for advisors is not new; similar concepts called demons are used in
CHIP [8] and SICStus [6]. This paper, however, is the first attempt to define a
model, to describe an implementation, and to analyze advisors.



Basic requirements and approach. For propagator-centered propagation, it is not
too difficult to record for a propagator its modified variables. However, informa-
tion about modified variables is often not what a propagator needs. For example,
when a variable x is modified, a propagator might need to know the position of
x in an array, or the node in a variable-value graph corresponding to x. That is,
a propagator requires propagator-specific information.

Providing information on domain change is difficult in a propagator-centered
setting: the information is specific to each propagator, in contrast to variable-
centered propagation where the information is the same for all constraints. More-
over, domain change information should be computed on demand: the overall
efficiency of a system should not be compromised.

Taking these issues into account, advisors are programmed for a particular
propagator to support propagator-specific modification information. Like prop-
agators, advisors are generic in that they can be used with arbitrary variable
domains. Advisors are second-class citizens compared to propagators: advisors
cannot propagate, they can only advise propagators to achieve incremental and
more efficient propagation. The second-class citizen status is deliberate: advi-
sors are designed to be the simplest possible extension to support incremental
propagation while introducing close to no overhead.

Contributions. The contributions of the paper are as follows:

– a simple, general, and implementation-independent model for propagation
with advisors in a propagator-centered setup;

– a description of essential properties to make advised propagation well-behaved;

– implementation aspects and design decisions for advisors;

– examples of how to use advisors for global constraints.

Plan of the paper. The next section reviews propagator-based propagation in
a setup that is extended to advised propagation in Sect. 3. Implementation as-
pects and an assessment of cost and potential benefit follow in Sect. 4. Section 5
demonstrates how advisors can be used in practice. The following section con-
cludes the paper.

2 Simple Propagation

This section introduces the basic notions for constraint propagation with prop-
agators. The setup is slightly uncommon: a propagator is a function that takes
a domain and a state as input and returns a log as a sequence of tell operations
and a new state, where the log describes the domain obtained by propagation.
State and log will be essential for propagation with advisors. This paper focuses
entirely on propagators. Information on how a propagator faithfully implements
a constraint can for example be found in [22].



Domains. A domain d is a complete mapping from a finite set of variables V
into the set of subsets of a finite subset of the integers. A domain d1 is stronger

than a domain d2, written d1 ≤ d2, if d1(x) ⊆ d2(x) for all x ∈ V. A domain d1 is
strictly stronger than a domain d2, written d1 < d2, if d1 ≤ d2 and d1 6= d2. The
disagreement set dis (d1, d2) of domains d1 and d2 is {x ∈ V | d1(x) 6= d2(x)}.
Domains d1 and d2 are equal with respect to a set of variables X ⊆ V, written
d1 =X d2, if d1(x) = d2(x) for all x ∈ X.

Tells and logs. A tell x ∼ n describes how to update a domain, where x ∈ V and
n ∈ Z and ∼ is one of the relation symbols ≤,≥, 6=. The domain update d[x ∼ n]
of a domain d by a tell x ∼ n is as follows: d[x ∼ n] (x) = {m ∈ d(x) | m ∼ n}
and d[x ∼ n] (y) = d(y) if x 6= y. Note that d[t] ≤ d for any tell t and domain
d. A tell t is pruning for a domain d, if d[t] < d. The relation symbols in a tell
capture domain updates typically found in systems.

Propagators describe the result of propagation by a tuple of tells, called log.
The domain update d[l] of a domain d by a log l successively applies the updates
from l to d. The update d[〈〉] by the empty log is d itself. For a non-empty log
〈t1, . . . , tn〉 with n > 0, the update d[〈t1, . . . , tn〉] is defined as (d[t1])[〈t2, . . . , tn〉].
Clearly, d[l] ≤ d for any log l and domain d.

A log 〈t1, . . . , tn〉 is pruning for a domain d, if n = 0, or t1 is pruning for d
and 〈t2, . . . , tn〉 is pruning for d[t1]. Note that the empty log is pruning and that
a pruning log can contain multiple tells for the same variable.

Propagators. A propagator can use state for incremental propagation where the
exact details are left opaque. A propagator is a function p that takes a domain
d and a state s as input and returns a pair 〈l, s′〉 of a log l and a new state s′.
The domain obtained by propagation is the update d[l] of d by l. It is required
that l is pruning for d (capturing that a propagator only returns pruning and
hence relevant tells but not necessarily a minimal log).

As a simplifying assumption, the result of propagation is independent of state:
for a propagator p and a domain d for any two states si with p(d, si) = 〈li, s

′
i
〉

(i = 1, 2) it holds that d[l1] = d[l2]. Hence, the result of propagation p[[d]] is
defined as d[l] where p(d, s) = 〈l, s′〉 for an arbitrary state s.

A propagator p is contracting : by construction of a log, p[[d]] ≤ d for all
domains d. A propagator p must also be monotonic: if d1 ≤ d2 then p[[d1]] ≤ p[[d2]]
for all domains d1 and d2. A domain d is a fixpoint of a propagator p, if p[[d]] = d
(that is, if p(d, s) = 〈l, s′〉 for states s, s′, the log l is empty).

Variable dependencies. A set of variables X ⊆ V is sufficient for a propagator
p, if it satisfies the following properties. First, no output on other variables is
computed, that is, d =V−X p[[d]] for all domains d. Second, no other variables
are considered as input: if d1 =X d2, then p[[d1]] =X p[[d2]] for all domains d1, d2.

For each propagator p a sufficient set of variables, its dependencies, var[p] ⊆ V
is defined. Dependencies are used in propagation as follows: if a domain d is a
fixpoint of a propagator p, then any domain d′ ≤ d with var[p] ∩ dis (d, d′) = ∅
is also a fixpoint of p. To better characterize how propagators and variables are



organized in an implementation, the set of propagators prop[x] depending on a
variable x is defined as: p ∈ prop[x] if and only if x ∈ var[p].

N ← P ;
while N 6= ∅ do

remove p from N ;
〈l, s〉 ← p(d, state[p]);
d′ ← d[l]; state[p]← s;
N ← N ∪

S

x∈dis(d,d′) prop[x];

d← d′;
return d;

Algorithm 1: Simple propagation

Propagation. Propagation is shown in Algorithm 1. It is assumed that all prop-
agators are contained in the set P and that state[p] stores a properly initialized
state for each propagator p ∈ P .

The set N contains propagators not known to be at fixpoint. The remove
operation is left unspecified, but a realistic implementation bases the decision
on priority or cost, see for example [23]. Computing the propagators to be added
to N does not depend on the size of the log l. While the log can have multiple
occurrences of a variable, each variable from dis (d, d′) is considered only once.

Algorithm 1 does not spell out some details. Failure is captured by computing
a failed domain (a domain d with d(x) = ∅ for some x ∈ V) by propagation. A
real system will also pay attention to entailment or idempotency of propagators.
Propagation events describing how domains change are discussed in Sect. 4.

The result computed by Algorithm 1 is well known: the weakest simultaneous
fixpoint for all propagators p ∈ P stronger than the initial domain d. For a proof
of this fact in a related setup, see for example [1, page 267].

3 Advised Propagation

Advised propagation adds advisors to the model to enable a broad and inter-
esting range of techniques for incremental propagation while keeping the model
simple. Simplicity entails in particular that capabilities of propagators are not
duplicated, that the overhead for advisors is low, and that the essence of Algo-
rithm 1 is kept. Ideally, a system with advisors should execute propagators not
using advisors without any performance penalty.

The design of advisors takes two aspects into account: how an advisor gives
advice to propagators (output) and what information is available to an advisor
(input). Advisors are functions, like propagators are functions. From the discus-
sion in the introduction it is clear that the input of an advisor must capture
which variable has been changed by propagation and how it has been changed.

Based on the input to an advisor function, the only way an advisor can give
advice is to modify propagator state and to decide whether a propagator must



be propagated (“scheduled”). Modifying the state of a propagator enables the
propagator to perform more efficient propagation. Deciding whether a propaga-
tor must be propagated enables the advisor to avoid useless propagation.

The model ties an advisor to a single propagator. This decision is natural:
the state of a propagator should only be exposed to advisors that belong to
that particular propagator. Additionally, maintaining a single propagator for an
advisor simplifies implementation.

Advisors. An advisor a is a function that takes a domain d, a tell t, and a state
s as input and returns a pair a(d, t, s) = 〈s′, Q〉 where s′ is a state and Q a
set of propagators. An advisor a gives advice to a single propagator p, written
as prop[a] = p where p is referred to as a’s propagator (not to be confused
with the propagators prop[x] depending on a variable x). The set of propagators
Q returned by a must be either empty or the singleton set {p}. The intuition
behind the set Q is that an advisor can suggest whether its propagator p requires
propagation (Q = {p}) or not (Q = ∅). To ease presentation, adv[p] refers to the
set of advisors a such that prop[a] = p.

As for propagators, the model does not detail how advisors handle state: if
a(d, t, si) = 〈s′

i
, Qi〉 (i = 1, 2) then Q1 = Q2. In contrast to propagators, advisors

have no own state but access to their propagators’ state (an implementation most
likely will decide otherwise).

Dependent advisors. Like propagators, advisors depend on variables. An advisor
a, however, depends on a single variable var[a] ∈ V. This restriction is essential:
whenever an advisor a is executed, it is known that var[a] has been modified.
Similar to propagators, the set of advisors adv[x] depending on a variable x is:
a ∈ adv[x] if and only if x = var[a] (not to be confused with the advisors adv[p]
for a propagator p).

Variables of a propagator p and variables of its advisors are closely related.
One goal with advised propagation is to make informed decisions by an advisor
when a propagator must be re-executed. The idea is to trade variables on which
the propagator depends for advisors that depend on these variables.

The set of advised variables avar[p] of a propagator is defined as {x ∈
V | exists a ∈ adv[p] with var[a] = x}. For a propagator p, the set of depen-
dent variables and advisors var[p] ∪ avar[p] must be sufficient for p: if a domain
d is not a fixpoint of p (that is, p[[d]] < d), then for all pruning tells x ∼ n for d′

such that d′[x ∼ n] = d holds, x ∈ var[p] or a(d, x ∼ n, s) = 〈s′, {p}〉 for some
advisor a ∈ adv[x] ∩ adv[p].

Propagation. Algorithm 2 performs advised propagation. The only difference to
simple propagation is that the update by the log computed by a propagator
executes advisors.

Advisors are executed for each tell t in the order of the log l. Each advisor
can schedule its propagator by returning it in the set Q and potentially modify
the state of its propagator. Note the difference between variables occurring in
the log l and variables from dis (d, d′): if a variable x occurs multiply in l, also



N ← P ;
while N 6= ∅ do

remove p from N ;
〈l, s〉 ← p(d, state[p]);
d′ ← d; state[p]← s;
foreach x ∼ n ∈ l do

d′ ← d′[x ∼ n];
foreach a ∈ adv[x] do

〈s, Q〉 ← a(d′, x ∼ n, state[prop[a]]);
state[prop[a]]← s; N ← N ∪Q;

N ← N ∪
S

x∈dis(d,d′) prop[x];

d← d′;
return d;

Algorithm 2: Advised propagation

all advisors in adv[x] are executed multiply. Variables in dis (d, d′) are processed
only once. The reason for processing the same variable multiply is to provide
each tell x ∼ n as information to advisors.

Again, the propagation loop computes the weakest simultaneous fixpoint for
all propagators in P . Consider the loop invariant: if p ∈ P − N , then d is a
fixpoint of p. Since the set of advised variables and dependencies of a propagator
is sufficient for a propagator and an advisor always provides sufficient advice,
the loop invariant holds. Hence, the result of advised propagation is as before.

The algorithm makes a rather arbitrary choice of how to provide tell infor-
mation to an advisor: it first updates the domain d′ by x ∼ n and then passes
the updated domain d′[x ∼ n] together with x ∼ n to the advisor. It would also
be possible to pass the not-yet updated domain d′ and x ∼ n. This decision is
discussed in more detail in Sect. 4.

An essential aspect of advised propagation is that it is domain independent :
the only dependencies on the domain of the variables are the tells. All remaining
aspects readily carry over to other variable domains.

The algorithm reveals the benefit of making advisors second-class citizens
without propagation rights. Assume that an advisor could also perform propa-
gation (by computing a log). Then, after propagation by an advisor, all advisors
would need to be reconsidered for execution. That would leave two options. One
option is to execute advisors immediately, resulting in a recursive propagation
process for advisors. The other is to organize advisors that require execution
into a separate datastructure. This would clearly violate our requirement of the
extension to be small and to not duplicate functionality. Moreover, both ap-
proaches would have in common that it would become very difficult to provide
accurate information about domain changes of modified variables.

Dynamic dependencies. One simplifying assumption in this paper is that propa-
gator dependencies and advised variables are static: both sets must be sufficient
for all possible variable domains. Some techniques require dynamically changing
dependencies, such as watched literals in constraint propagation [11]. The ex-



tension for dynamic dependencies is orthogonal to advisors, for a treatment of
dynamic dependency sets see [24].

4 Implementation

This section discusses how advisors can be efficiently implemented: it details the
model and assesses the basic cost and the potential benefit of advisors. Advisors
will be included in Gecode 2.0.0 [9].

Advisors. Advisors are implemented as objects. Apart from support for construc-
tion, deletion, and memory managment, an advisor object maintains a pointer
to its propagator object. The actual code for an advisor is implemented by a
runtime-polymorphic method advise of the advisor’s propagator. The call of
advise corresponds to the application of an advisor in the model. Both advisor
and modification information are passed as arguments to advise. As an advisor’s
propagator implements advise, the advisor does not require support for runtime
polymorphism and hence uses less memory.

Advisors are attached to variables in the same way as propagators are. Sys-
tems typically provide one entry per propagation event where dependent propa-
gators are stored (corresponding to prop[x] for a variable x). Typically, the prop-
agators are organized in a suspension list, whereas in Gecode they are stored in
an array. To accommodate for advisors, a variable x provides an additional entry
where dependent advisors adv[x] are stored. This design in particulars entails
that advisors do not honor events (to be discussed below).

Logs. The log in the model describes how propagation by a propagator should
modify the domain of its variables. Most systems do not implement a log but per-
form the update by tells immediately. This is also the approach taken in Gecode.
A notable exception is SICStus Prolog, which uses a datastructure similar to logs
for implementing global constraints [14].

Performing updates immediately also executes advisors immediately. This
differs from the model: the model separates propagator and advisor execution.
In an implementation with immediate updates, the advisors of a propagator will
be run while the propagator is running itself. When designing advisors and prop-
agators this needs to be taken into account, in particular to guarantee consistent
management of the propagator’s state.

Modification information. During propagation, the domain and the tell provide
information to an advisor which variable has changed and how it has changed.
This information, provided as a suitable data structure, is passed as an argument
to the advise function of an advisor object.

As discussed in Sect. 3, there are two options: either first modify the domain
and then call the advisor, or the other way round. We chose to first modify the
domain as in Algorithm 2: many advisors are only interested in the domain after
update and not in how the domain changed.



There is an obvious tradeoff between information accuracy and its cost. The
most accurate information is ∆(x) = d′(x) − d′[x ∼ n] (x) as the set of values
removed by x ∼ n from d′. Accuracy can be costly: whenever a variable x
is modified by a tell, ∆(x) must be computed regardless of whether advisors
actually use the information.

As a compromise between accuracy and cost, our implementation uses the
smallest interval I(x) = {min ∆(x), . . . ,max ∆(x)} as approximation. Hence, for
a domain d′ the interval for the pruning tell x ≤ n is {n + 1, . . . ,max d′(x)},
for x ≥ n is {min d′(x), . . . , n − 1}, and for x 6= n is {n}. For other domain
operations, such as the removal of arbitrary values, ∅ can be passed to signal
that anything might have changed.

Propagation events. Systems typically use propagation events to characterize
changes to domains by tells. For finite domain systems, common propagation
events are: the domain becomes a singleton, the minimum or maximum changes,
or the domain changes. Sets of dependent variables for propagators are then
replaced by event sets: only when an event from a propagator’s event set occurs,
the propagator is considered for re-execution.

The same approach can be taken for advisors: using sets of advised events
rather than sets of advised variables. In our implementation, advisors do not use
propagation events for the following reasons. Events are not essential for a system
where propagator execution has little overhead [23, 24]. Per event type additional
memory is required for each variable. Events for advisors would increase the
memory overhead even in cases no advisors are being used. The domain change
information available to an advisor subsumes events, albeit not with the same
level of efficiency.

Performance assessment. Advisors come at a cost. For memory, each variable x
requires an additional entry for adv[x] regardless of whether advisors are used or
not. If an advisor for a variable x and a propagator p is used rather than using
x as a dependency of p (that is, x ∈ var[p]), additional memory for an advisor
is required (this depends on the additional information an advisor stores, in
our implementation the minimal overhead is 8 bytes on a 32-bit machine). For
runtime, each time a variable x is modified by a tell, the tell information must
be constructed and the advise function of all advisors in adv[x] must be called.

Table 1. Performance assessment: runtime

Example base a-none a-run a-avoid

stress-exec-1 45.38 +0.2% +55.1% +63.5%

stress-exec-10 114.93 +0.9% +88.7% +98.7%

queens-n-400 519.14 ±0.0% +1316.7% +634.5%

queens-s-400 14.57 +0.7% +28.6% +12.2%



Table 1 shows the runtime for systems using advisors compared to a sys-
tem without advisors (base, runtime given in milliseconds). The system a-none

provides advisors without using them, a-run uses advisors that always schedule
their propagators (fully replacing propagator dependencies by advised variables),
whereas advisors for a-avoid decide whether the execution of a propagator can
be avoided. All runtime are relative to base.

All examples have been run on a Laptop with a 2 GHz Pentium M CPU
and 1024 MB main memory running Windows XP. Runtimes are the average of
25 runs, the coefficient of deviation is less than 5% for all benchmarks.

The example stress-exec-1 posts two propagators for x < y and y > x
with d(x) = d(y) = {0, . . . , 1000000}, whereas stress-exec-10 posts the same
propagators ten times. The advisor for avoiding propagation (system a-avoid)
checks by max d(x) < max d(y) and min d(x) > min d(y) whether its propagator
is already at fixpoint. queens-n-400 uses O(n2) binary disequality propagators,
whereas queens-s-400 uses 3 alldifferent propagators to solve the 400-Queens
problem.

Table 2. Performance assessment: memory

Example base a-none a-run a-avoid

queens-n-400 24 656.0 ±0.0% +67.6% +67.6%

queens-s-400 977.0 ±0.0% +5.6% +5.6%

These analytical examples clarify that the overhead of a system with ad-
visors without using them is negligible and does not exceed 1%. Advisors for
small and inexpensive propagators as in stress-exec-* and queens-n-400 are
too expensive, regardless of whether propagation can be avoided. Only for suffi-
ciently large propagators (such as in queens-s-400), the overhead suggests that
advisors can be beneficial. Exactly the same conclusions can be drawn from the
memory overhead shown in Table 2, where memory is given as peak allocated
memory in KB.

Table 3. Performance assessment: break-even

Example base a-none a-avoid

bool-10 0.01 +0.2% −16.6%

bool-100 0.09 +7.6% −22.3%

bool-1000 1.43 +33.0% −30.2%

bool-10000 238.23 +20.6% −94.7%



Table 3 gives a first impression that advisors can actually be useful. bool-n
has a single propagator propagating that the sum of 4n + 1 Boolean variables
is at least 2n where 2n variables are successively assigned to 0 and then propa-
gated. System a-avoid uses 2n + 1 advisors (constant runtime) where the other
systems use a single propagator (linear runtime) with 2n+1 dependencies (using
techniques similar to those from [10]). As the number of variables increases, the
benefit of advisors truly outweigh their overhead.

5 Using Advisors

This section demonstrates advisors for implementing incremental propagation.
Central issues are to avoid useless propagation, to improve propagation effi-
ciency, and to simplify propagator construction.

Extensional constraints. We consider two algorithms for implementing n-ary
extensional constraints, GAC-2001 [5] and GAC-Schema [4]. Implementing GAC-
Schema with advisors is straightforward. If a variable is modified, support for
the deleted values is removed from the support lists. If a value loses a support, a
new support is found. If no support can be found, the value is deleted. Advisors
remove supports, while the propagator deletes values. However, advisors as well
as the propagator can potentially find new supports.

Table 4. Runtime and propagation steps for extensional propagation

Example base cheap expensive

rand-10-20-10-0 4 010.33 16 103 −11.4% −24.3% +164.0% −57.9%

rand-10-20-10-1 64 103.00 290 163 −23.1% −37.1% +163.7% −63.0%

rand-10-20-10-2 68 971.00 257 792 −16.0% −18.3% +239.5% −56.6%

rand-10-20-10-3 7 436.80 34 046 −20.8% −36.5% +165.5% −63.2%

rand-10-20-10-4 4 362.33 16 988 −1.6% −29.7% +168.6% −65.4%

rand-10-20-10-5 28 009.20 84 805 −16.3% −7.4% +224.5% −53.8%

crowded-chess-5 1.44 586 −1.1% +0.7% +7.4% +0.5%

crowded-chess-6 468.29 2 720 −17.1% −2.7% +273.7% −3.1%

Table 4 compares runtime (left in a table cell) and number of propagator
executions (right in a table cell) for different extensional propagators. base is
the GAC-2001 propagator, cheap is a GAC-Schema propagator where the prop-
agator searches for new supports, and expensive is a GAC-Schema propagator
where advisors search for new supports.

Examples rand-10-20-10-n are random instances from the Second Interna-
tional CSP Solver Competition, and are originally from [16]. crowded-chess-n
is a structured problem where several different chess pieces are placed on an



n × n chess board. The placement of bishops and knights is modeled by two
n2-ary extensional constraints on 0/1 variables.

Table 4 clarifies that using an incremental approach to propagate extensional
constraints reduces the number of propagator executions. Using advisors to re-
move supports also reduces runtime. Finding new supports by advisors reduces
the number of propagations the most, but is also consistently slowest: many
more supports are entered into the support-lists as new supports are searched
for eagerly. In contrast, searching for a new support in the propagator is done
on demand. There is also a problem with priority inversion, where expensive
advisors are run before cheap propagators.

As for memory, GAC-Schema will naturally use more memory than GAC-
2001 since it uses an additional large datastructure. For the random problems,
the memory overhead is around 5 to 6 times.

Regular. The regular constraint, introduced by Pesant in [19], constrains the
values of a variable sequence to be a string of a regular language. The propa-
gator for the regular constraint is based on a DFA for a regular language. The
propagator’s state maintains all possible DFA transitions for the values of the
variables: values are pruned if they are no longer supported by a state reachable
via a chain of possible transitions. The algorithm used in our experiments devi-
ates slightly from both variants presented in [19]: it is less incremental in that it
rescans all support information for an entire variable, if one of the predecessor
or successor states for a variable is not any longer reachable.

Advisors for regular store the index of the variable in the variable sequence.
When an advisor is executed, it updates the supported values taking the informa-
tion on removed values into account. If a predecessor or a successor state changes
reachability after values have been updated, the advisor can avoid scheduling the
propagator. This can potentially reduce the number of propagator invocations.
Besides improving propagator execution, advisors lead to a considerably simpler
architecture of the propagator: advisors are concerned with how supported val-
ues are updated, while the propagator is concerned with analyzing reachability
of states and potentially telling which variables have lost support.

Table 5. Runtime and propagation steps for regular

Example base advise domain

nonogram 803.13 122 778 +11.6% +3.1% +11.9% +3.1%

placement-1 214.35 2 616 ±0.0% −44.8% −0.5% −44.8%

placement-2 7 487.81 91 495 −4.4% −50.4% −4.8% −50.4%

Table 5 compares runtime (left in a table cell) and number of propagator
executions (right in a table cell) not using advisors (base), using advisors but
ignoring domain change information (advise), and using advisors and domain



change information (domain). The memory requirements are the same for all
examples. nonogram uses regular over 0/1 variables to solve a 25× 25 nonogram
puzzle, placement-* uses regular to place irregularly shaped tiles into a rectangle
(8 × 8 with 10 tiles, 10 × 6 with 12 tiles).

The advisor-based propagators reduce the number of propagation steps by
half in case there is little propagation (propagation for nonogram is rather strong
due to its 0/1 nature). But the reduction in propagation steps does not translate
directly into a reduction in runtime: executing the regular propagator in vain is
cheap. With larger examples a bigger improvement in runtime can be expected,
suggested by the improvement for placement-2 compared to placement-1.

Alldifferent. The propagator used for domain-consistent alldifferent follows [21].
The key to making it incremental is how to compute a maximal matching in
the variable-value graph: only if a matching edge (corresponding to a value)
for a variable x is removed, a new matching edge must be computed for x. An
observation by Quimper and Walsh [20] can be used to avoid propagation: if a
variable domain changes, but the number of values left still exceeds the number
of variables of the propagator, no propagation is possible.

Table 6. Runtime and propagation steps for alldifferent

Example base avoid advise domain

golomb-10 1 301.80 3 359 720 +5.6% ±0.0% +12.9% −18.6% +11.2% −18.6%

graph-color 191.90 150 433 +1.7% −3.4% +3.1% −8.1% +4.9% −7.3%

queens-s-400 3 112.13 2 397 −0.1% −0.1% +27.4% −0.3% +23.3% −0.3%

Table 6 shows the number of propagator executions and runtimes for exam-
ples using the domain-consistent alldifferent constraint. base uses no advisors,
for avoid advisors use the above observation to check whether the propagator
can propagate, for advise advisors maintain the matching and use the obser-
vation, and for domain advisors maintain the matching by relying entirely on
domain change information. For domain, the observation is not used to simplify
matching maintenance by advisors. golomb-10 finds an optimal Golomb ruler
of size 10, graph-color colors a graph with 200 nodes based on its cliques, and
queens-s-400 is as above.

While the number of propagator invocations decreases, runtime never de-
creases. Using the observation alone is not beneficial as it does not outweigh the
overhead of advisors. The considerable reduction in propagator executions for
advise and domain is due to early detection of failure: advisors fail to find a
matching without executing their propagator. The increase in runtime is not sur-
prising: edges are matched eagerly on each advisor invocation. This is wasteful as
further propagation can remove the newly computed matching edge again before
the propagator runs. Hence, it is beneficial to wait until the propagator actually



runs before reconstructing a matching. Another problem with eager matching
is similar to the observations for extensional constraints: prioritizing matching
by advisors over cheaper propagators leads to priority inversion between cheap
propagators and expensive advisors.

Advisors again lead to an appealing separation of concerns, as matching
becomes an orthogonal issue. However, the examples clarify another essential
aspect of incremental propagation: even if a propagator does not use advisors,
it can perform incremental propagation (such as matching incrementally). And
for some propagators, it can be important to defer computation until perfect
information about all variables is available when the propagators is actually
run. Being too eager by using advisors can be wasteful.

Summary. The above experiments and the observations in Sect. 4 can be sum-
marized as follows. Advisors are essential to improve asymptotic complexity for
some propagators (in particular for propagators with sub-linear complexity, such
as Boolean or general linear equations [12]). Advisors help achieving a good fac-
torization of concerns for implementing propagators. However, the effort spent
by an advisor must comply with priorities and must not be too eager. Efficiency
improvements might only be possible for propagators with many variables.

6 Conclusions

This paper has added advisors to a propagator-centered setup for supporting
more efficient propagation. Advisors are simple and do not duplicate functional-
ity from propagators (no propagation and immediate execution). In particular,
advisors satisfy the key requirement to not slow down propagation when not
being used. That makes advisors a viable approach also for other propagator-
centered constraint programming systems.

Advisors are shown to be useful for: increasing efficiency, in particular im-
proving asymptotic complexity, and achieving a better factorization of concerns
in the implementation of propagators (relying on the fact that advisors are pro-
grammable). The paper has clarified two other issues. First, advisors must com-
ply with priorities in a propagator-centered approach with priorities. Second, for
some propagators it is more important that an incremental algorithm is used
rather than running the algorithm eagerly on variable change.

Advisors, like propagators, are generic. It can be expected that for variable
domains with expensive domain operations (such as sets), the domain change
information provided to an advisor can be more useful than for finite domain
propagators. Adapting advisors for a particular variable domain only needs to
define which domain change information is passed to an advisor by a tell.
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