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Abstract. This paper introduces propagator groups as an abstraction
for controlling the execution of propagators as implementations of con-
straints. Propagator groups enable users of a constraint programming
system to program how propagators within a group are executed.

The paper exemplifies propagator groups for controlling both propagation

order and propagator interaction. Controlling propagation order is ap-
plied to debugging constraint propagation and optimal constraint prop-
agation for Berge-acyclic propagator graphs. Controlling propagator in-
teraction by encapsulating failure and entailment is applied to general
reification and constructive disjunction. The paper describes an imple-
mentation of propagator groups (based on Gecode) that is applicable to
any propagator-centered constraint programming system. Experiments
show that groups incur little to no overhead and that the applications of
groups are practically usable and efficient.

1 Introduction

Over the last two decades, an array of techniques to control the execution of
groups of propagators have been developed:

– S-boxes [10] support the debugging of constraint propagation by grouping
several propagators into a conceptually bigger propagator that typically cap-
tures some problem structure. Then, the drastically fewer executions of the
bigger propagator can be understood by a modeler during debugging. While
it is generally acknowledged that the lack of support for debugging is one
of the key obstacles to learning constraint programming, none of today’s
mainstream systems support it.

– The optimal propagation of Berge-acyclic propagator graphs requires to or-
der the execution of a group of propagators and is generally acknowledged
to be significant for efficient propagation [16, 3]. However, no mainstream
constraint programming system implements it.

– General reification (reifying arbitrary constraints and groups of constraints)
and constructive disjunction are well known concepts that can improve prop-
agation considerably [13]. Both require to control the execution and inter-
action of groups of propagators. However, both concepts are only supported
to some extent by Propia [15] and general reification by Mozart [18, 19].



In summary, these powerful and even essential techniques are known but ei-
ther not widely available or not even implemented. All these techniques have in
common that they are based on controlling the execution of groups of propa-
gators. This paper introduces propagator groups as a new abstraction that sup-
ports the user-level implementation of the above mentioned techniques. A group
collects a set of propagators and defers their scheduling and execution to a user-
supplied routine. This makes scheduling and execution programmable, while the
implementation of propagator groups requires only very small and local changes
to the underlying constraint programming system.

Similar to groups, spaces in Mozart [19] also encapsulate failure and entail-
ment. However, the lack of control over propagation order and access to local
variables makes them unable to implement propagator ordering and construc-
tive disjunction. The Propia system [15] supports constructive disjunction and to
some extent generalized reification through a nested search procedure. However,
it can not express propagator ordering.

Contributions. This paper contributes propagator groups as a new abstraction
for constraint programming systems that allows many interesting techniques to
be implemented by a user without modifying the underlying system. The paper
contributes a simple yet expressive architecture for groups and techniques for
their efficient implementation. Moreover, the paper shows how propagator groups
can be applied to debugging, optimal propagator ordering, general reification,
and constructive disjunction. These applications are shown to be efficient with
propagator groups. In particular, the paper contributes the first implementation
of optimal propagation for Berge-acyclic propagator graphs.

Plan of the paper. In the following section the necessary background on con-
straint programming is given. In Sect. 3 a model and implementation of propa-
gator groups is presented. Sections 4 and 5 apply groups to debugging, optimal
propagation ordering, general reification, and constructive disjunction. The final
section concludes.

2 Constraint Programming

Constraint programming is based on two important concepts, variables (together
with their associated domains) and constraints.

Variables and domains. There is a finite set of variables Var and a finite set of
values Val . A domain d ∈ Dom is a set of values a variable can take, Dom =
P(Val). A store s ∈ Store is a complete mapping from variables to domains,
Store = Var → Dom. An assignment is a store where the range of the function
is restricted to singleton sets ({{v} | v ∈ Val}).

Set relations ∼ are lifted to a pair of stores S1 and S2 in the natural, point-
wise way (S1 ∼ S2 = ∀x ∈ Var . S1(x) ∼ S2(x)). A store S1 is stronger than a
store S2, written S1 ≤ S2, if S1 ⊆ S2. A store S1 is strictly stronger than a store



S2, written S1 < S2, if S1 ≤ S2 and S1 6= S2. The disagreement set dis (S1, S2)
of stores S1 and S2 is defined as {x ∈ Var | S1(x) 6= S2(x)}.

A tuple of values over variables x1, . . . , xn can be turned into a store in the
following way: for a variable x ∈ Var , store (〈v1, . . . , vn〉) (x) is defined as {vl} if
x = xl for some l ∈ {1, . . . , n} and as Val otherwise.

Constraints. A constraint c ∈ Con over the set of variables var (c) = {x1, . . . , xn}
is defined by the set of assignments that are solutions to the constraint, Con =
P({〈v1, . . . , vn〉 | vi ∈ Val}). A store can be turned into a constraint over vari-
ables x = {x1, . . . , xn} using cons (S, x) = {〈v1, . . . , vn〉 | ∀i.vi ∈ S(xi)}.

A constraint satisfaction problem (CSP) is a pair of a set of constraints C

and a store S, 〈C,S〉 ∈ P(Con)×Store. A tuple 〈v1, . . . , vn〉 in a constraint over
variables x1, . . . , xn is valid under the store S iff ∀i.vi ∈ S(xi). An assignment a

is a solution to the CSP 〈C,S〉, both over variables {x1, . . . , xn}, iff the assign-
ment is a solution for each constraint, ∀c ∈ C. 〈a(x1), . . . , a(xn)〉 ∈ c, and the
assignment is valid for the store, a ⊆ S. The solutions to a CSP, sol (C,S), is
the set of all assignments that are solutions.

A constraint c is entailed by the store S iff cons (S, var (c)) ⊆ c. Entailed
constraints can safely be removed from the CSP since they no longer restrict the
set of solutions.

Propagators. To solve a CSP, a constraint programming system uses propagators
as implementations of constraints.

A propagator is a function p that takes a store S as input and returns a
tuple 〈stat, S′〉, where stat is a status message and S′ is a new store. The status
message will be ignored when only the resulting store is interesting. A propagator
p must be contracting (p(S) ≤ S for all stores S) and monotonic (if S1 ≤ S2 then
p(S1) ≤ p(S2) for all stores S1, S2). A store S is a fix-point of a propagator p iff
p(S) = S. The status-message indicates if the propagator is entailed (entailed)
or if it has detected failure (⊥). A propagator is entailed for a store S iff for
all stores S′ ≤ S it holds that p(S′) = S′. Entailed propagators can safely be
removed from the pool of propagators, since they will do no more pruning. A
propagator that reports failure indicates that there are no solutions left, and
propagation can be aborted.

A propagator p references variables var (p) = {x1, . . . , xn} and is said to
implement its induced constraint cp. The induced constraint is defined as the
set of assignments that the propagator identifies as solutions:

cp =
{

〈v1, . . . , vn〉 | p(store (〈v1, . . . , vn〉)) = store (〈v1, . . . , vn〉)
}

For a given constraint c, any propagator p such that cp = c can be used. Note
that many different propagators exist for the very same constraint, typically
differing in propagation strength and efficiency.

Constraint programs. Analogously to constraint satisfaction problems, a store
and a set of propagators can be combined to form a constraint program (CP)
〈P, S〉. The set of solutions sol (P, S) to a CP is defined as sol ({cp | p ∈ P}, S).



Propagate(S)
begin

Q ← P ;
while Q 6= ∅ do

choose and remove p from Q;
〈stat, S′〉 ← p(S);
if stat = ⊥ then

return failure;
if stat = entailed then

remove p from P ;
foreach p ∈

S

x∈dis(S,S′) prop (x) ∩ P do

Schedule(p);
S ← S′;

return S;

end

Schedule(p)
begin

Q ← Q ∪ {p};
end

Algorithm 1: Propagator-centered propagation

Variable dependencies. To manage propagation efficiently, a constraint program-
ming system needs to know which propagators may affect which variables, and
for which variables a domain change might make a propagator not be at a fix-
point. For the purposes of this paper, the set of referenced variables for the
propagator can be used as the dependencies.

Dependencies are used in propagation as follows: if a store S is a fix-point of
a propagator p, then any store S′ ≤ S with var (p) ∩ dis (S, S′) = ∅ is also a fix-
point of p. To better characterize how propagators and variables are organized
in an implementation, the set of propagators prop (x) depending on a variable
x is defined as p ∈ prop (x) if and only if x ∈ var (p).

Propagation. Constraint propagation refers to the process of finding the largest
mutual fix-point (equivalently, the weakest mutual fix-point with respect to the
strength of stores) of the set of propagators from an initial store S that propaga-
tion starts from. Since propagators are defined to be monotonic and contracting
functions, it is guaranteed that there exists a unique largest mutual fix-point.
The cornerstone of a propagation algorithm is to maintain some representation
of which propagators might not be at fix-point. Propagator-centered propaga-
tion is controlled by the set of propagators still to be propagated (as opposed to
variable-centered that maintains a set of modified variables).

Propagator-centered propagation is shown in Algorithm 1. It is assumed that
all propagators are contained in the global propagator set P . The global queue Q

contains propagators not known to be at fix-point. The choose operation to get
the next propagator from Q is left unspecified, but a realistic implementation
bases the decision on priority or cost, see for example [21].



Algorithm 1 does not spell out some details. A real system will most probably
use events for variable modifications instead of a simple list of dependencies.
Furthermore, whether a propagator is at a fix-point or not after it has been
propagated should be taken into account to avoid needless re-execution. For a
complete discussion of constraint propagation algorithms, see [2], and see [20]
for the implementation of these algorithms in constraint programming systems.

3 Groups

A group is an execution manager for a set of propagators. It controls the order of
propagation as well as the handling of failure and entailment. The only change
to the system is that propagators that belong to a group must be scheduled in
their group rather than globally. Running a group is done through a propagator.

Section 3.1 presents a model of groups. Section 3.2 details the implementation
of the model. Section 3.3 evaluates the overhead of groups.

3.1 Model

A group is an abstraction that supports the operations schedule and propagate.
The first is used for scheduling a propagator that belongs to the group. The
second operation is used to run the propagators scheduled in the group.

A relation group (p) is defined for all propagators p. This relation maps a
propagator to the group it should be scheduled in. If the propagator is not
a member of any group, the relation is empty. To keep the number of con-
cepts small, only propagators can be scheduled and executed by the main prop-
agation loop. Each group g has an associated propagator that is called its
controller propagator. The controller propagator is given by controller (g). The
set of propagators in P that should be scheduled in a group g is given by
prop (g) = {p ∈ P | group (p) = g} (the inverse of the group (·) relation).

A group together with its controller propagator needs to maintain the re-
quirements of a propagator: it should be contracting and monotonic. This must
be ensured by all group implementations.

Propagate(S)
⊲ As in Algorithm 1

Schedule(p)
begin

if group (p) 6= ∅ then
group (p).schedule(p);
Q ← Q ∪ controller (group (p));

else
Q ← Q ∪ {p};

end

Algorithm 2: Propagator-centered propagation with groups



Algorithm 2 presents the propagation algorithm that supports groups. The
only difference from Algorithm 1 is that when scheduling a propagator p, a check
is made to see if the propagator belongs to a group. If so, p is scheduled in that
group g = group (p) and controller (g) is added to the global queue.

Basic group g

begin
q : Queue;

schedule(p) begin
q.push(p);

end

propagate(S) : 〈Status, Store〉 begin

while ¬q.empty do
p ← q.pop;
〈stat, S′〉 ← p(S);
foreach p ∈

S

x∈dis(S,S′) prop (x) ∩ P do

Schedule(p);
if stat = ⊥ then

return 〈⊥, S′〉;
if stat = entailed then

remove p from P ;
if prop (g) = ∅ then

return 〈entailed, S′〉;

S ← S′;

return 〈∅, S〉;

end

end

Algorithm 3: Basic group g with a single flat queue of propagators

Algorithm 3 shows a basic group that maintains a queue of propagators
to be executed. This group implements no special behavior except grouping
a set of propagators together. Failure of any of the propagators is reported
directly. The group is only entailed if all its propagators are entailed (checked
by prop (g) = ∅). The basic controller propagator runs the group g by executing
g.propagate(·) and reports entailment and failure accordingly. As will be seen
in Sect. 5, this basic group can be used as a building block for more advanced
controller propagators.

3.2 Implementation

A group is a simple interface that specifies one function for scheduling a prop-
agator that belongs to that group, schedule, and one function for running the
propagators scheduled in the group, propagate. How scheduling is done is left
to the group implementation, as is the method for running the propagators.

To implement the group (·) relation each propagator has a pointer to a group.
This means that each propagator needs one extra word of memory. The standard



group is the null group, meaning that the scheduling is done in the normal system
queue. If there is a group different from the null group, then the scheduling
for that propagator is delegated to the group. This incurs an overhead of one
test against null per propagator scheduling. Additionally, one function call per
propagator scheduled in a group instead of the global queue needs to be done
(the call to g.schedule(·)).

Execution of a group is managed by the controller propagator. This means
that the system does not need to be aware of groups except when scheduling a
propagator. A difference from the model is that the way in which the controller
propagator for a group is added to the set of propagators to run is programmable;
it is done by the schedule function of the group. The benefit is that sometimes
the controller propagator is guaranteed to be scheduled anyway, and in those
cases a back-link to the propagator (represented in the model by controller (g)
for a group g) does not need to be maintained. If such a link is desired, the user
can add it to the group that needs it with a pointer

The basic group from Algorithm 3 uses the computed set prop (·) to check
if there are any propagators left to be scheduled in the group. In a real imple-
mentation, computing the set on the fly is not feasible. Instead the cardinality
of the set is maintained as a member of a group, and is updated by propagators
as they are created and removed.

Optimized implementation of group (·). Implementing the group (·) connection
with a pointer in each propagator wastes memory for propagators not belonging
to a group. By adding group-scheduled versions of all propagators, only those
propagators that belong to a group contains the pointer. Checking if a propagator
has a group pointer can be done cheaply using a tag-bit in pointers to it.

The main overhead in this design is the work in adding an extra optional
group-scheduled version of each propagator. Additionally, it would preclude mov-
ing a propagator dynamically from the general pool into a group.

The implementation of the model has been done in the Gecode system [22]
version 3.0.2. The general description of the implementation here is applicable
to any propagator-centered system and is by no means specific to Gecode.

3.3 Evaluation

The implementation of groups touches few parts of the core system, and should
therefore incur a small overhead. To evaluate this, the queens problem is tried
in two variants. Problems queens-n-* use the naive model with a quadratic
number of binary not-equals constraints. Problems queens-s-* use three large
alldifferent constraints instead (albeit with naive propagation only to guarantee
that both variants have the same search space). The two different versions test
the behavior of the system using many small and few but large propagators.

The experiments have been run on an Athlon 64 3500+ with 2GB of RAM
running Ubuntu Linux with gcc version 4.2.4. Times are computed as the av-
erage of at least 20 runs with a coefficient of deviation of less than 2%. The
queens-*-200 instances were limited to searching 100 000 nodes.



Table 1. Basic overhead of Groups. Systems compared are without groups (plain),
with groups added but not used (groups), and with groups added and used for schedul-
ing (scheduling). Time is given in milliseconds and memory in kilobytes allocated.

plain groups scheduling

Problem time memory time memory time memory

queens-n-10 0.16 63 0.16 63 0.17 63
queens-n-100 30.38 7 245 28.10 7 885 30.55 7 885
queens-n-200 1 876.30 45 779 1 913.25 50 323 2 061.33 50 323
queens-s-10 0.05 19 0.05 19 0.05 19
queens-s-100 1.21 355 1.22 356 1.14 356
queens-s-200 726.10 1 958 715.05 1 958 708.35 1 958

The results are presented in Table 1. The difference in time between plain

(the base system) and groups (groups added but not used) is not significant;
it is less than 2% in the worst case. The inevitable overhead associated with
scheduling through groups instead of in the normal queue is reasonably low at
around 7% in the worst case. The slightly larger memory-overhead for programs
with many propagators is due to the fact that each propagator has an additional
field for the group it belongs to. If the memory overhead is prohibitive, the
memory-optimized design where each propagator pointer is tagged can be used.

4 Controlling Propagation Order

In a modern constraint programming system, the execution order is defined by
the system and works on the granularity of single propagators. Propagator groups
can be used for debugging by giving a high-level view of the propagation process
(Sect. 4.1). For some sets of propagators, the optimal ordering of propagators is
known statically. By following this order instead of the generic order chosen by
the system, the optimal number of propagation steps can be achieved (Sect. 4.2).

4.1 Debugging

In many constraint models, the high-level constraints that the model is expressed
in can each correspond to many smaller concrete propagators in the system
used. As demonstrated in [10], grouping these smaller concrete constraints into
larger entities that represent the high-level conceptual constraints is beneficial for
understanding the propagation-process. If a high-level view of the propagation
process is presented, then stepping through propagation is meaningful.

Implementation. Using the basic group presented in Algorithm 3, it is easy to
group propagators into hierarchical groups. As long as the propagators in a group
are of roughly the same complexity level, the single-queue group works well. If
larger groups of different types of propagators is used, an implementation using
multiple queues such as presented in [21] could be used.



Evaluation. In the basic constraint programming model for a n × n Sudoku,
there are 3n alldifferent constraints. These constraints are composed of three
sets that work on rows, columns, and boxes respectively. This division has the
interesting property that no two constraints from the same set share a variable.

Table 2. Grouped propagator execution. Model compared are without groups (plain)
and with groups (groups). Time is given in milliseconds and steps are average propa-
gation steps per node.

plain groups

Problem time steps time steps

sudoku-val-5 5.45 7.55 5.41 4.15
sudoku-dom-5 3.27 22.86 3.68 9.75
sudoku-val-66 89.38 10.27 99.37 4.68
sudoku-dom-66 0.61 314.00 0.96 47.00
sudoku-val-87 1 433.37 8.53 1 484.20 4.20
sudoku-dom-87 5.00 59.35 6.93 16.57

To illustrate the constraint propagation for a Sudoku problem, it is natural to
divide the propagators into the three groups for rows, columns, and boxes. To test
this, three instances were run using naive propagation and domain propagation.
The numbers refer to the instance-number in the Gecode example. As seen in
Table 2, the efficiency of solving a Sudoku is roughly the same, but the number of
propagation steps per node is reduced. Thanks to the reduced number of steps,
going through the changes between each step becomes feasible.

Using the ability to group the propagators into larger groups, a visualization-
system such as the one developed in [14] can be used without getting an over-
whelming detail of information during debugging.

4.2 Optimal Propagation Ordering

Decompositions of global constraints that do not sacrifice propagation is an
interesting research topic [16, 3, 4, 5]. In some cases (such as the decomposition
of the regular constraint into extensional constraints [16]) the decomposition
uses a Berge-acyclic propagator graph, which ensures that the local propagation
achieves global domain consistency [1]. One benefit of such a decomposition is
that the optimal ordering of the propagation is known, with one forward and
one backward pass being sufficient to reach a fix-point.

Unfortunately, no constraint programming system supports the specification
of propagation order on such a fine-grained level. This means that while the
complexity of propagating the decomposition in the optimal order can be calcu-
lated, the actual complexity of the decomposition depends on the propagation
order that a particular system implements.



Implementation. An ordered propagation group g contains a list with the prop-
agators in prop (g). This list is sorted according to the order in which the prop-
agation should be done. For a Berge-acyclic propagator graph any topological
sorting of the propagators works. The controller propagator is the same as for
the basic group: it simply runs the group.

On activation, the group does one forward and one backward pass through
the list of propagators. When inspected, each propagator is executed until it
reaches a fix-point if it has been scheduled. After the two passes, the group is at
a fix-point if the propagators form a Berge-acyclic propagator graph.

The implementation does not try to find the set of propagators that should be
executed without inspecting all of the propagators since that would complicate
the scheduling operation. If the overhead of running through all the propagators
is too high for some applications, advisors [12] could be used to record the first
and last position that needs to be inspected, delimiting the range of propaga-
tors that need to be executed. This is a good compromise, since the scheduling
operation can be kept at constant time complexity.

Evaluation. Consider a simple ordering problem on n variables xi with domain
{1, . . . , n}. Each pair of consecutive variables is ordered using xi < xi+1. For a
system that uses queues for scheduling, as most system do, O(n2) runs through
the propagators are needed to ensure that the variables are assigned their respec-
tive values through propagation. The bad behavior is because the scheduling will
ensure that only forward-passes are made through the list of propagators. Using
a group to schedule the propagators in the optimal order, two passes through
the propagators are sufficient to ensure that the variables are assigned.

In Table 3, the simple example is tried for varying number of variables. At
small sizes (n = 10) there is no measurable overhead to using groups even though
the relative benefits in number of steps is smaller. As the sizes grow larger, the
complexity difference becomes apparent, with orders of magnitude difference in
the time. This example is conservative in that the individual propagators are
among the cheapest propagators that exist. The costlier the individual propaga-
tors are, the more important it is to use a good propagation ordering.

Table 3. Ordered propagator execution. Model compared are without groups (plain)
and with groups (groups). Time is given in milliseconds and steps are propagation
steps. For group, the steps are the number of steps inside the controlling group.

plain groups

Problem time steps time steps

order-10 0.04 36 0.03 18
order-100 2.95 4 851 0.39 198
order-1000 304.90 498 501 7.31 1 998
order-5000 7 743.35 12 492 501 103.35 9 998



5 Controlling Propagator Interaction

Since a group is responsible for executing a propagator, it is possible to control
how failure of the propagator is handled. Furthermore, a group also encapsu-
lates entailment, which is dual to failure (it represents failure of the negated
constraint). Using these facilities, it is possible to implement general reification
(Sect. 5.1) and constructive disjunction (Sect. 5.2) using groups.

5.1 General Reification

A reified constraint c ↔ (b = 1) reflects if the constraint c holds into a Boolean
variable b. Reification is commonly available in constraint programming systems
for simple constraints using specialized propagators. For larger and more complex
constraints such as alldifferent, the effort of implementation often outweighs the
benefit of having a reified version of the constraint.

The basic pattern of propagation for a reified constraint looks as follows.

c ↔ (b = 1) :=
c holds ⇒ propagate b = 1

¬c holds ⇒ propagate b = 0
b = 1 holds ⇒ propagate c

b = 0 holds ⇒ propagate ¬c

Implementation. Given a constraint c and a Boolean variable b a simple imple-
mentation of the reified constraint c ↔ (b = 1) can be done by posting the con-
straint in a basic group g. Instead of using the global store-variables x = var (c)
copies of the variables, x′, are made and used for the constraint, giving a mod-
ified store S′. The equality relation for the stores S and S′ is extended in the
obvious way. The controlling propagator proceeds through the following steps:

– Add new domain reductions from x to copied variables x′ and run the group.
– If g is failed, set b = 0 and report entailment.
– If g is entailed, set b = 1. If S = S′, report entailment.
– If b is set to one, add local domain reductions to the global store.

Unfortunately, the above implementation of generic reification lacks the pos-
sibility to propagate ¬c, instead it has to wait for failure or entailment of c. This is
not a problem with the approach, but a consequence of the problem of propagat-
ing negated constraints and is something that is handled in the same way in gen-
eral reification in Mozart [18, 19]. To implement reification in Propia [15], both
the constraint and the negated constraint must be expressed as CLP clauses.

Evaluation. As a base evaluation of using groups for reification, the standard
no-overlaps constraints for perfect square packing are tried. For each pair of
squares i and j with coordinates x and y and size s, they do not overlap iff
(xi + si ≤ xj)∨ (xj + sj ≤ xi)∨ (yi + si ≤ yj)∨ (yj + sj ≤ yi). Three versions are
tested: using normal reification; using normal reification on copied variables; and



using groups to implement reification. The numbers refer to the instance numbers
in the Gecode example. As seen in Table 4 the overhead from using groups for
reification is not unreasonable, especially compared with using standard reified
propagators on copied variables which is always worse than groups.

Table 4. Reified no-overlap constraint for the perfect square problem. Models com-
pared use normal reification (reified), reification on copied variables (copied), and
an implementation using groups (group). Columns v and c indicate the number of vari-
ables and the number of reified constraints for no-overlap. Time is given in milliseconds
and memory in kilobytes allocated.

reified copied group

Problem c v time memory time memory time memory
perfsq-0 840 3360 280.83 4 998 618.35 8 646 493.80 7 366
perfsq-1 924 3696 1 530.05 5 254 3 848.30 8 902 3 164.80 7 750
perfsq-2 924 3696 388.57 8 326 650.08 12 166 565.12 10 886
perfsq-3 1012 4048 461.20 5 510 1 034.44 9 541 865.02 8 134
perfsq-4 1012 4048 2 281.11 15 175 3 314.45 19 783 2 960.56 18 436

The Equidistant Frequency Permutation Array (EFPA) problem [9] is a com-
binatorial design problem. One of the proposed improvements in [9] to the model
includes a reified version of alldifferent. Unfortunately, this is not available in
most constraint programming systems. Two versions are tested: using a decom-
position representing a reified alldifferent; and using a group to implement it.

Table 5. Reified alldifferent for the EFPA problem. Models compared use a decom-
position (decomposed) and an implementation using groups (group) for the reified
alldifferent constraint. Time is given in milliseconds.

decomposed group

〈d, λ, q, v〉 time nodes time nodes

〈4, 3, 4, 6〉 0.03 2 192 0.06 1 045
〈4, 4, 4, 8〉 3.23 20 564 2.32 10 104

As shown in Table 5, the additional pruning from the true reified alldifferent
propagator using groups pays of in the number of nodes that need to be explored.
The time is slightly improved, although not as much. Using groups, it is possible
to try a reified version of alldifferent in a reasonably efficient manner.

5.2 Constructive Disjunction

Given a constraint c ∨ c′ where c and c′ share common variables x, the use of
the reified decomposition c ↔ (b = 1) ∧ c′ ↔ (b′ = 1) ∧ b + b′ ≥ 1 sacrifices



propagation. Consider a disjunctive resource constraint between two tasks 1 and
2 with start-times s1 ∈ {1..10} and s2 ∈ {1..10} and durations d1 = 6 and
d2 = 7. The reified construction s1 + d1 ≤ s2 ↔ (b1 = 1)∧ s2 + d2 ≤ s1 ↔ (b2 =
1)∧b1+b2 ≥ 1 does not propagate any new information. It is not hard to see that
the domains could be reduced, giving s1 ∈ {1..4, 8..10} and s2 ∈ {1..3, 7..10}.

While it is possible to write a specialized propagator to handle disjunctive
resources, it may not be cost-efficient to do so. Furthermore, it does not handle
the general case of propagating disjunctive constraints. The technique of con-
structive disjunction [11, 13, 7, 6, 23] can be used to get full propagation. The
basic scheme is to add renamed copies of the variables, as in the previous sec-
tion, and to run the disjunctive constraints on each of the copies. For any given
variable x that is shared among the disjuncts, the union of the domains of the
variable-copies for the disjuncts is the new domain.

Implementation. For each disjunct ci, a new copy of the constraint variables
var (ci) in the store S is made, giving a new store Si. The propagators for each
disjunct ci are put in a basic group gi. By putting the disjuncts in separate
groups, the status of each disjunct (failure, entailment) can be checked. The
controlling propagator proceeds through the following steps:

– For each variable x, add the new domain-reductions to each copied store Si.
– Run each group gi that is not yet failed.
– If all groups are failed, report failure.
– If there exists an entailed group gi where Si = S, report entailment.
– For each variable x shared among all non-failed groups G, set x = ∪gj∈Gxj .

Implementing a constructive disjunction propagator is mostly straightfor-
ward. One interesting aspect is that the largest part of the code and logic is
related to handling failed and entailed groups so that the (relatively) expensive
propagator is not run needlessly and so that no propagation is missed.

Implementing constructive disjunction using groups is similar to the hard-
coded implementation from the cc(FD) system [11]. The difference is that with
groups the system is kept unaware of constructive disjunction. Programming
constructive disjunction in Propia [15] is similar to groups in that the system is
not hard-coded for constructive disjunction, while it is different in that it uses
nested search to evaluate each disjunct. This is an approach that saves memory
and trades it for computation time.

Evaluation. The value of constructive disjunction as a general technique has been
investigated previously [23]. To give a basic evaluation of the implementation,
the disjunctive resource example from above is tried with normal reification and
with constructive disjunction. The branching used is to try the median value.
The example is scaled with a factor k representing time granularity on both
variables and durations. While this is a small artificial example, it is based on
the common serialization constraint. The results in Table 6 show that the use of
constructive disjunction gives an important speed-up. For the case where the use
of constructive disjunction is desired, groups enable the use without incurring
overhead for the system implementer.



Table 6. Simple use of constructive disjunction. Time is given in milliseconds.

reified constructive

k time nodes time nodes

100 0.00 402 0.00 18
1 000 0.02 4 002 0.01 182

10 000 0.20 40 002 0.04 1 802
100 000 1.97 400 002 0.18 18 002

6 Conclusions

The addition of groups to a propagator-oriented constraint programming sys-
tem is a small, simple, and minimal extension that allows several interesting and
useful techniques to be implemented at the user-level without any additional
support from the system. In particular, groups enable the first implementation
of optimal propagation ordering for Berge-acyclic constraint graphs. The imple-
mentation is simple, and the overhead of the system is kept low.

The advantage of being able to experiment with defining the order of prop-
agation and to control the execution of propagators opens up for many new in-
teresting topics. For example, combining the analysis of constraint graphs from
[8] with groups for optimal propagator ordering would allow optimal propagator
ordering for large subsets of the constraints without requiring the user to specify
these patterns.

The results show that groups can implement reification for complex con-
straints without reification-support and constructive disjunction with a moder-
ate overhead.
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