
Programming Deep Concurrent Constraint
Combinators

Christian Schulte

Programming Systems Lab, Universit¨at des Saarlandes
Postfach 15 11 50, 66041 Saarbr¨ucken, Germany

schulte@ps.uni-sb.de

Abstract. Constraint combination methods are essential for a flexible constraint
programming system. This paper presents deep concurrent constraint combina-
tors based on computation spaces as combination mechanism. It introduces prim-
itives and techniques needed to program constraint combinators from computa-
tion spaces. The paper applies computation spaces to a broad range of combina-
tors: negation, generalized reification, disjunction, and implication. Even though
computation spaces have been conceived in the context of Oz, they are mainly
programming language independent. This point is stressed by discussing them
here in the context of Standard ML with concurrency features.

1 Introduction

It is widely acknowledged that applications require a constraint programming system to
be flexible. Regardless of how many primitive constraints a system offers, combination
of primitive constraints into more complex application-specific constraints remains a
must. This makes mechanisms for constraint combination key components of a con-
straint programming system.

Desirable properties of a constraint combination mechanism include that it iscom-
positional andconservative. Compositional means that constraints obtained by combi-
nation can be combined again. Conservative means that the mechanism can be applied
to existing constraints without changing them.

This paper’s focus is ondeep concurrent constraint combinators as combination
mechanism. The paper introduces primitives from which constraint combinators can be
programmed. It presents techniques that are characteristic in programming combinators.
As underlying primitivescomputation spaces are proposed. Computation spaces offer
two important features: they encapsulate arbitrary, that isdeep, computations involving
constraints and allow for concurrent control of computations. Combinators based on
computation spaces are fully compositional: they can be nested arbitrarily. In particular,
the constraints that can be combined are not limited to built-in constraints.

Computation spaces and combinator programming techniques are applied to a broad
range of combinators, including negation, generalized reification, disjunction, and con-
ditional (implication). In the same way as combinators allow to program new con-
straints, computation spaces allow to program new combinators: they provide flexibility
on the constraint and on the combinator level. The paper introduces and refines the very
few operations on computation spaces as the presentation of the paper proceeds. This is
complemented by an overview over all operations at the end of the paper in Sect. 7.

Enrico Pontelli, V´ıtor Santos Costa (Eds.): PADL 2000, LNCS 1753, pp. 215–229, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Computation spaces are the basic concept that underlies deep-guard combinators
found in programming languages like AKL [3,4] and Oz [11]. Even though computa-
tion spaces were conceived in the context of Oz, they are a general mechanism indepen-
dent from the underlying programming language. To stress this point (and to make the
paper’s program fragments more accessible to a broader audience) this paper chooses
Standard ML extended by threads and logic variables as host language [12].

Our experience shows that applications of constraint combinators in finite domain
programming are not frequent. They turn out to be of great importance for other con-
straint domains, like feature or finite set constraints. In particular, they have turned out
to be essential in the area of computational linguistics [1], where constraints from dif-
ferent domains are combined naturally.

A second area of application is prototyping new constraints. Starting from already
implemented constraints new constraints can be developed by combining them at a
high level. After experiments have shown that they are indeed the right constraints,
a more efficient implementation can be attempted. This motivation is similar to the
motivation for constraint handling rules (CHR) [2]. The difference is that this paper is
concerned with primitives to combine constraints, a feature that an implementation of
CHRs already requires.

Combinators for constraint programming is not a new idea. Previous approaches
include Saraswat’s concurrent constraint programming framework [8,7], the cardinality
operator by Van Hentenryck and Deville [13], and cc(FD) [14]. The approaches have
in common that the combinators considered are not “deep”: the constraints that can be
combined must be either built-in, or allow a simple reduction to built-in constraints (car-
dinality combinator). Another difference to the approach taken in this paper is that these
approaches offer a fixed set of combinators. This paper’s focus is on the primitives and
techniques to program combinators. For all combinators but constructive disjunction
(as available in cc(FD)) it is shown how to encode them with computation spaces.

A different approach to combining constraints arereified constraints (also known
as metaconstraints). Reified constraints reflect the validity of a constraint into a 0/1-
variable. Constraints can then be combined by using the 0/1-variable in other con-
straints. Computation spaces are not intended as a replacement for reified constraints.
As is discussed in detail in Sect. 4, a reification combinator based on computation spaces
can offer better propagation in cases where reified constructions propagate poorly. And,
since the reification combinator is deep, it offers reification for all expressions, includ-
ing propagators for which the constraint programming system itself does not offer a
reified version.

Plan of the Paper. Section 2 outlines the computation model and introduces some termi-
nology. The following section introduces computation spaces by discussing a negation
combinator. Sections 4 to 6 discuss a generic reification combinator, a disjunction com-
binator, and a conditional combinator. Section 7 provides a complete overview of com-
putation and relates computation spaces presented in this paper to computation spaces
available in Oz. The paper is concluded by Sect. 8.

2

2 Prerequisites

This section introduces the model of computation and notions used in the remainder of
the paper.

Computation is performed in acomputation space. A computation space consists of
propagators and threads (to be explained later) connected to a constraint store:

propagator· · · propagator thread· · · thread

constraint store

The constraint store holds information about values of variables expressed by a
conjunction of basic constraints.Basic constraints are logic formulae interpreted in a
fixed first-order structure. For the purpose of this paper we restrict ourselves to finite
domain constraints. A basic finite domain constraint has the formx ∈ D whereD is
a finite subset of the positive integers. Other relevant basic constraints arex = y and
x = n, wheren is a positive integer.

More expressive constraints, e.g.,x + y = z, are not written to the constraint store.
Instead, they are imposed by propagators. Apropagator is a concurrent agent that tries
to amplify the store byconstraint propagation: The propagator amplifies the store by
telling new basic constraints to it. A propagator imposingP disappears as soon as it
detects thatP is entailed by the store’s constraints. A propagator imposingP becomes
failed if it detects thatP is inconsistent with the constraints hosted by the store.

In addition to propagators, the computation space contains threads. A thread is a
functional evaluator operating on the store. As programming language that defines the
set of expressions threads can evaluate, we use Standard ML extended by threads and
logic variables. This extension of SML is due to Smolka, for more information we refer
the reader to [12].

Threads are used to provide the concurrent execution needed by concurrent con-
straint combinators. Logic variables are used for synchronization. For example, the
evaluation of an applicationx () might block sincex can be a logic variable. The
application blocks untilx is bound to a value (in this particular case, a function).

3 Getting Started: A Concurrent Negation Combinator

This section familiarizes the reader with computation spaces by showing how to pro-
gram a concurrent negation combinator from them.

For a given constraintC the negation combinator provides an implementation for
the constraint¬C . The negation combinator¬C executes the propagator forC and:

– disappears, if the propagator forC becomes failed.
– fails, if the propagator forC becomes entailed.

Execution ofC by the negation combinator requiresencapsulation of the computa-
tion performed byC . Basic constraints that are told by propagation ofC must be hidden
from any other computation. On the other hand, basic constraints that are told by other
computations must be visible toC .

We are looking for a method to build acompositional negation combinator:

3

– It must be general enough to deal with statements that post propagators rather than
with a single propagator. This supports modularity. Typically, several constraints
are composed together by some expressionE .

– Execution for both expressions and propagators should remain unchanged.

Local Computation Spaces. Local computation spaces are used as primitives. The ex-
pressionE to be executed by the negation combinator is delegated to a local computa-
tion space. A local computation space is created by the primitive operation

space : (unit -> unit) -> space

To execute an expressionE in a computation space, the application

space(fn () => E)

is evaluated which returns the newly created space.
Variables, propagators, and threads are now situated in exactly one spaceS, which

we call the entity’shome. If an expressionE is being executed by a threadT whose
home isS, we refer toT as thecurrent thread and toS as thecurrent space.

Evaluation ofspace e in the spaceS1 returns a newly created spaceS2, which
is initialized as follows. The constraint store ofS2 contains all constraints ofS1’s con-
straint store. A new thread is spawned inS2 to evaluatee (). We refer to this thread
asS2’s root thread. S1 is called theparent (space) of S2.

This construction naturally leads to a tree of computation spaces. The root of the
tree we refer to astoplevel (space). Spaces that occur in the subtree rooted at spaceS
(not includingS) are called subordinated toS. A spaceS1 is superordinated to a space
S2, if S2 is subordinated toS1.

With the exception of telling a basic constraintφ, both threads and propagators
compute in the same way as in the toplevel space. Telling a basic constraintφ in a space
S means to tellφ to S’s store and to all stores in spaces subordinated toS.

Status of a Space. In addition to starting an encapsulated computation, the negation
combinator needs access to thestatus of the encapsulated computation.

A spaceS is calledblocked, if all threads and propagators withinS and within
spaces subordinated toS cannot reduce. A spaceS is stable, if it is blocked and remains
blocked regardless of any tell operations performed in a space superordinated toS.

A space becomesfailed by an attempt to tell a basic constraint to the store that
would make it inconsistent. Failing a spaceS discards all threads and propagators inS
and also fails all spaces subordinated toS. Note that a spaceS can be failed by a tell
issued by a thread whose home isS, as well as by a tell issued in a space superordinated
to S. Further note that a failed space is also stable.

A space issolved, if it is stable, not failed, and does not contain any propagators or
threads. Note that the constraint store of a solved spaceS is entailed by the constraint
store ofS’s parent. This justifies why we sometimes refer to a solved space asentailed.

A space that is stable, but neither failed nor solved, isstuck. If a spaceS becomes
stuck, it has arrived at a state where it contains propagators or threads that block on
variables that are local toS (otherwiseS would be blocked, but not yet stable). This

4

means that constraint propagation withinS has not been strong enough to completely
drive reduction of all threads and propagators. In other words, a stuck space is usually
the result of a programming error.

The operation

datatype status = Failed | Solved | Stuck
status : space -> status

takes as input a spaceS and if S is stable, returnsS’s status. IfS is not stable there
are two alternative designs: eitherstatus blocks untilS becomes stable, or behaves
asynchronously. We choose the asynchronous behavior: ifS is not stable,status
returns a logic variable that is bound toS’s status whenS becomes stable. Subsequent
examples clarify that the asynchronous design is preferable.

The Combinator. The concurrent negation combinator takes an expression (as a first-
class functione of typeunit -> unit) and creates a space runninge.

To make the combinator concurrent, a new thread is created that blocks until the
created space becomes stable and then takes the appropriate action. For thread creation
we use the function

spawn : (unit -> unit) -> unit

It spawns a new thread for execution of an expressionE , which is passed as function
fn () => E . Taking this together, we arrive at:

fun not c =
let val s = space c
in spawn(fn () => case status s of

Failed => ()
| Solved => fail()
| Stuck => raise Error) end

Herefail is a function that fails the current space (e.g., by attempting to tell the
constraint 1= 2 to the store).

4 A Generic Reification Combinator

As it has been argued in the introduction, reification of constraints is a powerful and
natural way to combine constraints. This section presents a generic reification com-
binator. The reification combinator is shown to sometimes provide stronger constraint
propagation than constructions that use reified propagators alone.

Reification. The reification of a constraintC with respect to a 0/1-variableb (a finite
domain variable with domain{0, 1}) is the constraintC ↔ b = 1. The idea behind
reification is to reflect whetherC holds into whether thecontrol variable b is 0 or 1.

Operationally, it is important that reification is bidirectional:

“ ⇒” If C holds,b = 1 must hold; and if¬C holds,b = 0 must hold.

5

“ ⇐” If b = 1 holds,C must hold; and ifb = 0 holds,¬C must hold.

Having 0/1-variablesb that reflect validity of constraints allows for powerful means
to combine constraints. Common examples for combination are boolean connectives
expressed by propagators (see Sect. 5 for an example).

Direction “⇒” can be programmed along the lines of the negation combinator of
Sect. 3. Suppose thats refers to the space running the expressionE to be reified andb
refers to the 0/1-variable. Then Direction “⇒” is as follows:

〈“⇒”〉 := case status s of
〈“⇒”〉 := Failed => tell(b, 0)
〈“⇒”〉 := | Solved => tell(b, 1)
〈“⇒”〉 := | Stuck => raise Error

Heretell(b, i) is used to tell the basic constraintb = i to the constraint store.
Let us consider the case of Direction “⇐” whereb is determined to 0. In this case,

if the spaces becomes solved, the current space must be failed. Otherwise, if the space
s becomes failed, nothing has to be done. This behavior is already realized by the above
encoding of Direction “⇒”.

Committing a Space. Let us consider the case of Direction “⇐” for b = 1. The re-
quired operational behavior includes two aspects. Firstly, a computation state must be
established as if execution ofE had not been encapsulated. Secondly, ifE has not yet
been completely evaluated, its further execution must perform without encapsulation.

These two aspects are dealt with by the operation

commit : space -> unit

It takes a computation spaceS2 and mergesS2 with the current spaceS1 (which is
S2’s parent) as follows. IfS2 is failed, alsoS1 becomes failed. Otherwise:

1. All constraints ofS2’s constraint store are told toS1’s constraint store. By this, the
effects of computations performed inS2 are made available inS1.

2. All propagators and threads situated inS2 now become situated inS1. From now
on, they execute as if they had been created inS1 in the first place.

Usingcommit, Direction “⇐” of the reification combinator is encoded as follows:

〈“⇐”〉 := if value b = 1 then commit s else ()

Here the functionvalue takes a finite domain variable, blocks until it becomes deter-
mined, and returns its integer value.

The Combinator. The reification combinator is obtained from the implementation of
both directions, which must execute concurrently. Concurrent execution is achieved by
spawning a thread for each direction.

Taking the two directions together we arrive at a functionreify that takes a func-
tion that specifies the expression to reify as input and returns a 0/1-variable:

fun reify e =
let val s = space e val b = fdvar(0, 1)
in spawn(fn () => 〈“⇒”〉) ;

spawn(fn () => 〈“⇐”〉) end

6

Comparison with Propagator-based Reification. It is instructional to compare space-
based reification with propagator-based reification. Suppose we are interested in reify-
ing the conjunction of the two constraintsx + 1 = y andy + 1 = x with respect to the
variableb, where bothx and y are finite domain variables. Similar reified constraints
occur in computing Hamiltonian paths.

Ideally, the reification mechanism should determineb to 0, since the conjunction is
unsatisfiable. Posting the constraints without reification exhibits failure.

Let us first study reification with propagators alone. In order to obtain a reified
conjunction, we have to reify each of the conjuncts by introducing two control variables
b1 andb2. Altogether we arrive at

b1 = (x + 1 = y) ∧ b2 = (y + 1 = x) ∧ b ∈ {0, 1} ∧ b1 × b2 = b

Neitherb1 norb2 can be determined, thusb cannot be determined.
Let us now study the behavior of the reification combinator developed in this sec-

tion. It is applied as

b = reify(fn () => (x + 1 = y ; y + 1 = x))

Both constraints are posted in the same local spaceS. Exactly like posting them in
the toplevel space, constraint propagation leads to failure ofS. Indeed, the reification
combinator determinesb to 0.

This shows that using spaces for reification can yield better constraint propagation
than using per propagator reification. Per propagator reification encapsulates the prop-
agation of each propagator. This in particulardisables constraint propagation in reified
conjunctions. This is a major disadvantage, since reified conjunctions occur frequently
as building block in other reified constructions as for example disjunction.

On the other hand the generic reification combinator offers weak propagation in
case the control variable is determined to be 0. Instead of propagation, constraints told
by other propagators are tested only. Whenever a reified propagator is available, it is
preferable to use it directly.

So the reification combinator can be best understood as offering additional tech-
niques but not as a replacement of reified propagators.

5 Disjunction

This section shows how to program disjunctive combinators that resolve their alterna-
tives by propagation rather than by search. Disjunctive combinators occur frequently in
a variety of application domains, a well-known example is scheduling. For examples
that use disjunctive combinators in the domain of computational linguistics see [1].

Let us consider a disjunction

E1 ∨ · · · ∨ En

that is composed ofn expressionsEi . We refer to theEi as the disjunction’salterna-
tives. A straightforward operational semantics is as follows:

7

1. Discard failed alternatives (⊥ ∨ C is logically equivalent toC).
2. If a single alternativeE remains, reduce the disjunction toE (a disjunction with a

single alternativeC is equivalent toC).
3. If all alternatives have failed, fail the current space (a disjunction with no alterna-

tives is equivalent to⊥).

This operational semantics can be directly encoded by the reification operator as
introduced in Sect. 4. The well-known encoding reifies each alternativeE i with respect
to a 0/1-variablebi . The disjunction itself is encoded by

b1 + · · · + bn ≥ 1

s1

s2

x1

x2

y1

y2

d1

d2
The suggested operational semantics is driven by failure only.

However, it can be beneficial to also take entailment of alterna-
tives into account. As an example consider the placement of two
squaress1 ands2 such that they do not overlap. A well known
modeling of this constraint is

x1 + d1 ≤ x2 ∨ x2 + d2 ≤ x1 ∨ y1 + d1 ≤ y2 ∨ y2 + d2 ≤ y1

where the meaning of the variablesx i , yi , anddi is sketched to the right. The squares
do not overlap, if the relative position ofs1 with respect tos2 is either left, right, above,
or below. As soon as one of the relationships is established, the squares are guaranteed
to not overlap.

Supposes1 is placed left tos2. Since the first and second alternatives are mutually
exclusive (so are the third and fourth), the first and second reified propagator disappears.
However, the third and fourth remain.

Assume a constraint storeC and a disjunctionC1 ∨ C2 whereC1 is entailed by
C (that is,C → C1 is valid). Under this condition,C1 ∨ C2 is logically equivalent
to � ∨ C2, which in turn is equivalent to�. This justifies extending the operational
semantics of the disjunctive combinator as follows:

4. If an alternative is entailed, reduce by discarding all alternatives.

Taking entailment into account has the following advantages: execution can be more
efficient since computations that cannot contribute are discarded early. The computa-
tion space in which the disjunctive combinator is executed can possibly become solved
sooner. In our compositional setup this might allow for earlier reduction of other com-
binators and by this provide better propagation.

Discarding a Space. For programming a disjunctive combinator with entailment we
need to discard a computation space. The primitive

discard : space -> unit

discards a computation spaceS by failing it. The operational semantics is exactly as if
creating a new thread inS that executesfail ().

The implementation of the disjunctive combinator can be simplified by the follow-
ing observation: it is sufficient to discard all failed alternatives but the last one. If a

8

single alternative remains, commit to it, regardless of whether the alternative is failed
or not. Committing a failed space fails the current space (see Sect. 4). In the following
the discussion is limited to a binary disjunctive combinator only. Generalization to the
n-ary case is straightforward.

A functionor that takes two alternativesa1 anda2 (again encoded as first-class
functions) decomposes naturally into three parts: space creation for encapsulated ex-
ecution of the alternatives, a concurrent controller, and last but not least the part that
implements the reduction rules as discussed before. This yields the following encoding:

fun or(a1, a2) =
let val (s1, s2) = (space a1, space a2)

fun reduce(s1, s2) = 〈Reduction〉
in 〈Controller〉 end

The concurrent controller blocks until eithers1 or s2 becomes stable. This inde-
terminate choice is encoded by:

first : ’a * ’b -> bool

The applicationfirst(x,y) takes logic variablesx andy as input and blocks until
at least one ofx andy becomes determined. If it returnstrue (false), x (y) is
determined. Now the concurrent controller can be programmed fromfirst which is
applied to the status of boths1 ands2 as follows:

〈Controller〉 := if first(status s1, status s2)
〈Controller〉 := then reduce(s1, s2) else reduce(s2, s1)

The concurrent controller guarantees the invariant that the first space to whichreduce
is applied, is stable.

Finally, reduction is programmed as follows:

〈Reduction〉 :=
if failed s1 then commit s2
else if solved s1 then (discard s1 ; discard s2)
else if failed s2 then commit s1

else if solved s2 then (discard s1 ; discard s2)
else raise Error

wherefailed (solved) returnstrue, if applied to a failed (solved) space. Both
failed andsolved can be obtained straightforwardly fromstatus. The part of
reduce that does not have a gray background executes immediately, since the concur-
rent controller ensures thats1 is stable. The gray part synchronizes on stability ofs2.

Without the nestedif-statements that test whethers1 or s2 are solved, the pro-
grammed disjunctive combinator implements the reduction rules 1 to 3. As it has been
argued, this simplified version of disjunction can be expressed by the reification com-
binator introduced in Sect. 4.

The other direction, that is programmingreify by usingor, is also possible with
the additional use ofnot as introduced in Sect. 3. The reification of expressionE with
respect tob can be programmed as follows:

9

or (fn () => (tell(b,1) ; E),
fn () => (tell(b,0) ; not(fn () => E)))

Programming reification from disjunction has the disadvantage that the expressionE is
executed twice. This points out a deficiency in the designs of AKL and early versions
of Oz, where neither spaces nor reification but disjunction was provided.

6 Conditional

This section shows how to program conditionals that use arbitrary expressions as con-
ditions (so-calleddeep guards). In particular it presents how to use continuations that
allow to share variables between the condition and the body of a conditional. We also
study how to apply the same ideas to parallel conditionals and disjunctions.

A conditional consists of three constituents, all of which are expressions: a guard
G, a bodyB, and an else-constituentE . A common suggestive syntax would be

cond G then B else E

The partG then B is called theclause of the conditional.
Programming a conditional from computation spaces is straightforward. The pro-

gram used for programmingnot (see Sect. 3) can be adapted as follows:

fun cond(g,b,e) =
let val s = space g
in case status s of

Failed => e()
| Solved => b()
| Stuck => raise Error end

whereg, b, ande are functions that specify the guard, body, and else-constituent of
the conditional. In contrast to the concurrent negation combinator, the conditional is
sequential. It does not spawn a new thread to synchronize on stability of the guard’s
space.

A common desire is to introduce variablesx locally in the guardG of the conditional
and use them in the body. Thus the conditional should synchronize on entailment of
∃xG. In our current setup, the bindings computed forx in G are not accessible. An
inefficient and thus unsatisfactory solution would be to execute the guard expression
again together with the body.

A more satisfactory solution is to let the guard pass the variables to the body. This
can be accommodated by extending computation spaces as follows. The root thread in
a space computes a result (of some type’a). Committing the space gives access to that
result. That is, space creation and committing of spaces is extended as follows:

space : (unit -> ’a) -> ’a space
commit : ’a space -> ’a

10

Note that this extension ofspace andcommit does not require a modification of the
programs presented so far in this paper (in these cases’a is justunit).

A space can be committed before the root thread has terminated and has computed
the result. Thereforecommit returns a logic variable that is bound to the root thread’s
result as soon as it terminates.

In the context of a programming language with first-class functions the sharing of
variables between guard and body is achieved straightforwardly by letting the guard
return as result a function for the body:

let x in (G ; fn () => B) end

HereB can refer to variables declared in thelet-expression. Without first-class func-
tions, the variables would be stored in an appropriate data structure.

Programming the conditional from the extended primitives is now straightforward.

fun cond(c, e) =
let val s = space c
in case status s of

Failed => e()
| Solved => let val b = commit s in b() end
| Stuck => raise Error end

Parallel Conditional. A common combinator is aparallel conditional that features
more than a single clause with a committed choice operational semantics: As soon as
the guard of a clause becomes entailed, commit the conditional to that clause (that is,
continue with reduction of the clause’s body). Additionally, discard all other guards. If
the parallel conditional also features an else-constituentE , reduce the conditional with
E if all guards have failed.

Encoding the parallel conditional from computation spaces follows closely the pro-
gram for the disjunction presented in Sect. 5. In fact, the setup of the computation spaces
for guard execution and the concurrent controller can remain unchanged. The function
that implements the reduction rules is as follows:

〈Reduction〉 :=
let val b = if solved s1 then

(discard s2 ; commit s1)
else if solved s2 then

(discard s1 ; commit s2)
else raise Error

in b() end

The encoding is simplified in that it does not consider the straightforward handling of
an else-constituent.

Clauses for Disjunction. The disjunctive combinator presented in Sect. 5 can be ex-
tended to employ clauses as alternatives. This extension is straightforward but two is-
sues require some consideration. Firstly, when to start execution of a clause’s body?
Secondly, for which clause employ reduction by entailment?

11

Execution of the parallel conditional evaluates a clause’s bodyB only after the
clause’s guardG has become entailed. This in particular ensures that the root thread
has terminated and has computedB as its result. A disjunctive combinator, in contrast,
can already commit to a clauseC if its guardG is not yet stable, provided the clause is
the last remaining.

Nevertheless, it is desirable that evaluation of theC ’s body B starts only afterG
has been completely evaluated. The semantics ofcommit ensures this: It returns a
logic variable that is bound to the root thread’s result as soon as it terminates. Since
function application synchronizes (see Sect. 2), evaluation of the body synchronizes on
termination of the root thread.

As discussed in Sect. 5 it is beneficial to consider both failure and entailment of
alternatives for the disjunctive combinator. Reduction by entailment is justified by the
fact that if an alternativeA is entailed it becomes logically equivalent to�. This justi-
fication does apply to a clause only if its body is known to be logically equivalent to�
as well. A possible solution is to tag clauses appropriately (as�-clause). Reduction by
entailment is then applied to�-clauses only.

7 Computation Spaces: Summary and Comparison

The signature of all space operations that are necessary to program concurrent con-
straint combinators is as follows:

type ’a space
datatype status = Failed | Solved | Stuck

val space : (unit -> ’a) -> ’a space
val status : ’a space -> status
val commit : ’a space -> ’a
val discard : ’a space -> unit

Search Engines. A different use of computation spaces is to use them for programming
search engines. Search requires two further concepts: cloning and choice points.

A search engine takes a specification of the search problem (as function) and runs
it in a computation space. The primitive

val choose : unit -> int

creates a choice point. A thread that executeschoose() blocks. If a stable space
contains a thread blocking onchoose(), thestatus-operation is extended to return
Choice. The search engine uses

val select : ’a space -> unit

to select whether1 or 2 is returned by the blockingchoose operation. The last addi-
tional primitive

val clone : ’a space -> ’a space

creates a copy of stable space. A search engine can useclone to implement backtrack-
ing. The programming of search engines from computation spaces is detailed in [9,10].

12

Spaces in Oz. As has already been argued in the introduction, the choice of SML as
host language for spaces is mostly to stress language independence. In the following we
relate the computation spaces as presented in this paper to computation spaces in Oz,
where they have been originally conceived.

Spaces as presented here are almost identical to spaces in Oz with the exception
of the additional concept of aroot variable. Each space in Oz is created initially with
a logic variable as root variable. The function supplied with space creation is applied
to that root variable. Thus the root variable in Oz roughly corresponds to the result
computed by the root thread in this paper. This paper does not introduce the root variable
since it is not needed for programming combinators.

Combinators in Oz. The latest Mozart implementation of Oz (version 1.1.0) switched
from a native C++-based implementation of combinators to a space-based implementa-
tion. Information on techniques for native implementation of combinators can be found
in [4,6,5]. The main motivation to switch was to simplify the implementation. The goal
is to decrease the necessary maintenance effort which has been considerable with the
native implementation.

First experiments suggest that the space-based implementation is competitive to
the native C++-implementation as it comes to runtime and memory requirements. Space
consumption of both approaches is approximately the same. Native combinators are
approximately twice as fast for programs where execution time is dominated by reduc-
tion of combinators (for example, appending two lists, where a deep guard conditional
is used to decide whether the first input list is empty or not). For examples where the
runtime is dominated by constraint propagation, both approaches offer approximately
the same execution speed.

8 Conclusion

In this paper, we have presented computation spaces as primitives for deep concurrent
constraint combinators. We have shown how to program negation, generalized reifica-
tion, disjunction, and conditional from computation spaces.

The paper displays the simplicity of the approach: all combinators are obtained
from a single concept with very few (four) primitive operations. By the choice of Stan-
dard ML with concurrency extensions as host language we have demonstrated that our
approach is mainly language independent.

Computation spaces are provided by the Mozart implementation of Oz, which is
available fromwww.mozart-oz.org.

Acknowledgements

Thanks to Denys Duchier, Tobias M¨uller, and Gert Smolka for fruitful discussions on
combinators and computation spaces. Leif Kornstaedt, Tobias M¨uller, Andreas Ross-
berg, Gert Smolka, and the anonymous referees provided helpful comments. Tobias
brought to my attention that the example in Sect. 4 occurs in computing Hamiltonian
paths.

13

References

1. Denys Duchier and Claire Gardent. A constraint-based treatment of descriptions. In H. C.
Bunt and E. G. C. Thijsse, editors,Third International Workshop on Computational Seman-
tics (IWCS-3), pages 71–85, Tilburg, NL, January 1999.

2. Thom Frühwirth. Constraint handling rules. In Andreas Podelski, editor,Constraint Pro-
gramming: Basics and Trends, volume 910 ofLecture Notes in Computer Science, pages
90–107. Springer-Verlag, 1995.

3. Seif Haridi, Sverker Janson, and Catuscia Palamidessi. Structural operational semantics for
AKL. Future Generation Computer Systems, 8:409–421, 1992.

4. Sverker Janson.AKL - A Multiparadigm Programming Language. PhD thesis, SICS Swedish
Institute of Computer Science, SICS Box 1263, S-164 28 Kista, Sweden, 1994. SICS Dis-
sertation Series 14.

5. Michael Mehl. The Oz Virtual Machine: Records, Transients, and Deep Guards. Doctoral
dissertation, Universit¨at des Saarlandes, Im Stadtwald, 66041 Saarbr¨ucken, Germany, 1999.

6. Michael Mehl, Ralf Scheidhauer, and Christian Schulte. An abstract machine for Oz. In
Manuel Hermenegildo and S. Doaitse Swierstra, editors,Programming Languages, Imple-
mentations, Logics and Programs, Seventh International Symposium, PLILP’95, volume 982
of Lecture Notes in Computer Science, pages 151–168, Utrecht, The Netherlands, September
1995. Springer-Verlag.

7. Vijay A. Saraswat. Concurrent Constraint Programming. ACM Doctoral Dissertation
Awards: Logic Programming. The MIT Press, Cambridge, MA, USA, 1993.

8. Vijay A. Saraswat and Martin Rinard. Concurrent constraint programming. InProceedings
of the 7th Annual ACM Symposium on Principles of Programming Languages, pages 232–
245, San Francisco, CA, USA, January 1990. ACM Press.

9. Christian Schulte. Oz Explorer: A visual constraint programming tool. In Lee Naish, editor,
Proceedings of the Fourteenth International Conference on Logic Programming, pages 286–
300, Leuven, Belgium, July 1997. The MIT Press.

10. Christian Schulte. Programming constraint inference engines. In Gert Smolka, editor,Pro-
ceedings of the Third International Conference on Principles and Practice of Constraint
Programming, volume 1330 ofLecture Notes in Computer Science, pages 519–533, Schloß
Hagenberg, Linz, Austria, October 1997. Springer-Verlag.

11. Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,Computer Science
Today, volume 1000 ofLecture Notes in Computer Science, pages 324–343. Springer-Verlag,
Berlin, 1995.

12. Gert Smolka. Concurrent constraint programming based on functional programming. In
Chris Hankin, editor,Programming Languages and Systems, volume 1381 ofLecture Notes
in Computer Science, pages 1–11, Lisbon, Portugal, 1998. Springer-Verlag.

13. Pascal Van Hentenryck and Yves Deville. The cardinality operator: A new logical connec-
tive for constraint logic programming. In Fr´edéric Benhamou and Alain Colmerauer, editors,
Constraint Logic Programming: Selected Research, pages 383–403. The MIT Press, Cam-
bridge, MA, USA, 1993.

14. Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implementation, and
evaluation of the constraint language cc(FD).The Journal of Logic Programming, 37(1–
3):139–164, October 1998.

14

	Programming Deep Concurrent Constraint Combinators

