Solver — An Oz Search Debugger

Christian Schulte

Abstract— This paper shows the Oz Solver, a tool designed
to support the development of constraint programs.

The Solver allows the user to interactively solve a con-
straint problem. As the problem’s search tree is explored
the Solver incrementally draws its graphical presentation.
The user has access to the computation state at any node
in the tree.

Although search is controlled interactively by the user,
implementing the Solver does not require any other primi-
tives than those provided by Oz.

It is planned to include the Oz Solver in the next release
of the DFKI Oz system.

Keywords— Constraint Programming, Programming Envi-
ronment, Debugging, Encapsulated Search, Graphical User
Interfaces.

1. INTRODUCTION

Oz [13], [4], [10], [14] is a concurrent constraint language
developed at DFKI supporting higher-order functional pro-
gramming, concurrent object-oriented programming, and
constraint programming.

This paper presents the Oz Solver, a tool designed to sup-
port the development of constraint programs. The develop-
ment of constraint programs is substantially different from
the development of, say, functional or concurrent object-
oriented programs. This has to be taken into account by
the tool.

The Solver chooses the metaphor of a search tree to fol-
low the execution of constraint programs. Nodes in the
search tree represent choices, failures, and solutions. The
Solver allows to explore parts of the search tree interac-
tively. The search tree is drawn incrementally as it is ex-
plored. Non-failed nodes in the explored parts of the tree
carry information of the corresponding computation state.
In addition to predefined functionality to display the in-
formation upon access, users can define their own display
procedures.

Using a problem solver in Oz is factorised into two
orthogonal components: specifying the problem and the
search strategy to solve the problem. Rather than provid-
ing a single built-in search strategy, in Oz different search
strategies can be obtained from a single primitive, called
solve combinator [10], [11], [3], [7]. The Oz Solver uses
this primitive to implement an interactive search strate-
gy. Instead of using a search strategy like depth-first or
branch-and-bound search, the Oz Solver can be used with-
out making any changes to the problem to be solved. The
Solver is written completely in Oz, which testifies the ex-
pressiveness of its search primitive.

Meier describes in [6] the Grace tool which is built on
top of the Prolog System ECLiPSe. The Grace tool is in-

Christian Schulte is with the Programming Systems Lab, Ger-
man Research Center for Artificial Intelligence (DFKI), Stuhlsatzen-
hausweg 3, D-66123 Saarbriicken, Germany.

E-mail: schulte@dfki.uni-sb.de

tended to support the development and debugging of finite
domain constraint programs. However, it does not use the
metaphor of a search tree. Instead it maintains and dis-
plays a backtracking history of the finite domain variables
involved. There is no possibility to interactively explore
the search space. In contrast to the Solver it allows also
to trace the constraint propagation process. The display
of information is very detailed, but fixed. The user has
no possibility to parametrise the tool with own graphical
display tools. To make use of the Grace tool the user has
to modify its programs.

The plan of the paper is as follows. Section 2 introduces
and explains some basic notions of constraint programming
in Oz. The development process of constraint programs is
sketched in Section 3. The next section shows an example
of a constraint program and introduces how the Solver is
used. Section 5 shows the features of the Solver and ex-
plains how they can be used. Section 6 gives the structure
of the implementation of the Solver. The core of the im-
plementation, the creation of the search tree, is presented
in Section 7. Section 8 gives a quick overview how a layout
for an search tree can be computed.

2. CONSTRAINTS, PROPAGATORS, AND SEARCH

Constraint programs make use of constraints, propaga-
tors, and search. To give a quick overview on constraint
programming, we show how to solve finite domain con-
straint problems. However, the presented ideas carry over
to solving other constraint problems.

Only primitive constraints can be written to the con-
straint store. A primitive finite domain constraint in Oz
has the form x € D where D is a finite subset of the pos-
itive integers. To these constraints we refer to as basic
constraints. Other basic constraints which make sense in
the context of integer valued variables are the constraints
z =y and & = n, where n is a positive integer.

More expressive constraints, e.g., z +y =z or 2 = y,
are not written to the constraint store. This restriction
guarantees that entailment and satisfiability of constraints
can be checked efficiently. These constraints are called non-
basic.

Nonbasic constraints are accommodated in Oz as con-
current tasks called propagators. This yields the following
picture:

Propagator --- Propagator
Constraint Store
A propagator tries to amplify the store. A propagator
P can amplify a constraint store S by writing a basic con-
straint ¢ to S, if S A P entails ¢, but S does not entail ¢.
The propagator remains in the computation space until it

Fig. 1. Search tree created by interleaving constraint propagation
and choice point creation.

is entailed by the constraint store. In this case, all informa-
tion represented by the propagator has been made explicit
by writing it to the constraint store. The process of making
information explicit by writing it to the constraint store is
called constraint propagation.

However, a constraint problem cannot be solved by con-
straint propagation only. If no further amplification of the
constraint store is possible, the computation space becomes
stable. If a computation space becomes stable, it might be
the case that there are variables with more than one pos-
sible integer value. Now search comes into play. In this
situation, an appropriate variable x is chosen to be enu-
merated, which means to try each of its values still possi-
ble separately. This is achieved by creating a choice point
for the variable z. The alternatives of the choice point
constrain z to its different possible values.

Following a particular alternative means to assign the
variable a value. Writing the assignment, i.e.; a basic con-
straint x = n, to the constraint store, amplifies it, which in
turn can enable some propagators to even further amplify
the store.

This search process of interleaved constraint propagation
and choice point creation is repeated until either a solution
is obtained or failure occurs. A solution means that all
propagators have disappeared, and have written their in-
formation completely to the store. In case failure occurs,
the next alternative of the previously created choice point
is tried.

Solving a constraint problem means to initially set up
some basic constraints and propagators and then follow the
interleaved process of constraint propagation and choice
point creation until a solution is found. This search pro-
cess can be displayed as shown in Figure 1 as a search
tree. Choice points in the tree are shown as circles, failed
nodes as rectangular boxes and solution nodes as diamonds.
One can think of the lines connecting the nodes as showing
where constraint propagation takes place.

3. DEVELOPING CONSTRAINT PROGRAMS

The development of constraint programs is quite dif-
ferent from the development of functional or concurrent
object-oriented programs. Although being different in na-

ture, the previous section makes clear that the execution of
constraint programs follow a certain, well-defined scheme.
Interleaving constraint propagation and search gives a nice
model of how the execution of constraint programs can be
traced and visualised. The natural metaphor for this seems
to be that of a search tree as exemplified by Figure 1.

The design of a constraint program can be divided into
three major steps:

1. Design of the data structures hosting the variables to

be constrained.

2. Describing properties of the solution by stating con-

straints on the variables.

3. Fixing an enumeration strategy, which chooses the

right variable for choice point creation.

Existing tools support some aspects of these tasks. For
instance, the Browser [8] can monitor the creation of the
data structures and variables. But even though the data
structures might have been created correctly, the problem
might not have a solution, or finding a solution might take
an intolerably long time.

This makes development and debugging of constraint
programs very different compared to the debugging of func-
tional and concurrent object-oriented programs. In the lat-
ter two cases it is possible to decide at any step of the ex-
ecution whether the execution state is correct or not. In
contrast to this, in order to decide if a particular execu-
tion state of a constraint program is correct, we have to
know whether this state eventually leads to a solution of
the problem. But the situation is even worse. Constraint
programs normally do not have a clear performance model,
in contrast to non-constraint programs. Even if a problem
has a solution, the program might be impractical, if its
performance is drastically poor.

Tools to support the development of constraint programs
have to take these issues into account. Tasks that the tool
must support include the following;:

o Finding a right solution, that is the constraints stated

initially might have been simply wrong.

¢ Finding redundant constraints such that more con-

straint propagation can take place, which reduces the
size of the search tree.

¢ Finding an appropriate enumeration strategy which

takes some problem specific properties into account.

The Solver supports these tasks by making it possible to
interactively explore the search tree and to visualise parts
of it as soon as they are explored. Each node in the ex-
plored part of the search tree carries information on the
computation state. That is, for solved nodes the solution
is provided as information, whereas for choice nodes, the
constraints and propagators from the computation space
just before choice point creation are provided.

4. EXAMPLE: ALIGNING FOR A PHoTO

Five people want to make a group photo. Each person
can give two preferences next to whom he or she wants to
be placed on the photo. Our task is to write an Oz program
that computes a placement of the people such that as many
preferences as possible are satisfied.

[alice bert chris deb evanl]
[alice#chris bert#evan chris#deb
chris#evan deb#alice deb#evan
evan#alice evan#bert]

Names =
Prefs =

proc {Photo Sol}

Pos = {FD.record pos Names
1#{Length Names}}
= {FD.distinct}
Ful = {Map Prefs
fun {$ A#B}
(Pos.A+1 =: Pos.B) +
(Pos.A-1 =: Pos.B) =: 1
end}
Sat = {FD.int O#{Length Prefs}}
= {FD.sum Ful "'=:"}
in
Sol = Pos#Ful#Sat
{FD.enum.naive Pos}
end

Fig. 2. An Oz program to solve the photo alignment problem.

An Oz program that solves the photo alignment problem
is shown in Figure 2'. The problem is stated as the unary
procedure Photo, where its argument Sol is constrained to
the solution of the problem. The names of the persons and
their preferences are given to us by the respective lists. The
record Pos maps the person’s name to a position, which is
a finite domain between 1 and 5. All fields of Pos are
enforced to be distinct by the propagator FD.distinct
The list of preferences is mapped to a list Ful of finite
domain variables between 0 and 1, such that each of its
elements is either 1 in case the preference can be fulfilled
or 0 otherwise. The overall satisfaction Sat is given by
adding all elements of Ful.

The mapping of a preference to a finite domain variable
makes use of so-called reified propagators. A reified prop-
agator employs a control variable. If the propagator is en-
tailed (disentailed), then the control variable is constrained
to 1 (0). If the control variable is 1 (0), then the constraint
of the reified propagator is enforced (the negation is en-
forced). The reified propagator Pos.A+1=:Pos.B expresses
that A is placed to the right of B, whereas Pos.A-1=:Pos.B
expresses that A is placed to the left of B. Thus, the control
variable of the reified propagator stating that the sum of
both is 1, yields 1 if A and B are placed next to each other,
and 0 otherwise.

Now we have to apply search to solve the Photo problem.
For this we give the Solver the problem and an order de-
scribing that we are looking for the solution with maximal
satisfaction:

{Solver query(Photo
proc {$ 0 N} 0.3 <: N.3 end)}

The Solver pops up a window, showing a single choice

!The program has been adopted from an Oz program written by
Gert Smolka who has been inspired from a CHARME program in [1].

Solver Options Move Search HNodes

loi

Ki T

BAB Searchtime: 66ms (0x¢) @ 49 1 M o

Depth: 5

Fig. 3. The Solver after invoking search for a next solution.

node (drawn as a circle). Asking for the next solution,
and the Solver draws a search tree and stops at the first
solution. Now the Solver looks as shown in Figure 3, where
a solved node is diamond-shaped.

Double-clicking the solution node shows the solution in
the Browser. The first solution looks as follows in the
Browser :

pos(alice:1 bert:2 chris:3 deb:4 evan:5) #
[00100100] #2

The output is fairly difficult to understand. Suppose we
have a procedure DrawPhoto, which presents information
attached to the nodes in an appealing graphical form. By
feeding the expression

{Solver add(information:DrawPhoto)}

the Solver is configured such that double-clicking a node
applies the DrawPhoto procedure to the node’s informa-
tion. Figure 4 shows from top to bottom the information

alice bert

©) ©)

alice bert

©)

chris

©) @

—> deb — evan

Fig. 4. Graphical output for the photo alignment problem.

attached to the root node, the middle node, and the solu-
tion node. Names appearing black show that the person
has been assigned a position. An arrow between names
represents a fulfilled preference, whereas the circled number
above a name yields the number of non-fulfilled preferences
of that person.

Fig. 5. Search tree for the photo problem.

An optimal solution of the problem is obtained by in-
voking all solution search in the Solver. The search tree
looks as shown in Figure 5. Even though we are dealing
with a rather simple example, it is already hard to even
find the solution nodes in the tree. For this purpose, the
Solver provides the possibility to hide all subtrees which
contain only failed leaves. Invoking this functionality, the
Solver displays a search tree as shown in Figure 6.

Fig. 6. Search tree with hidden failed subtrees for the photo problem.

By double-clicking the rightmost solution (the Solver as-
sists in finding certain nodes by providing functionality to
move a cursor to it) we get the optimal solution as shown
in Figure 7.

©) ©) ©)

alice — chris — deb — evan <«— bert

Fig. 7. An optimal solution for the photo problem.

The Solver reports in its status bar that the entire search
tree (as shown in Figure 5) has 59 choice nodes, 3 solution
nodes, and 57 failed nodes. Compared to the size of our
problem, this is a large number of nodes. Looking at the
graphics of the first and the optimal solution it is clear
that in order to keep the search tree small it is best to make
choices such that they influence the satisfaction most. Thus
we try a new heuristic from the finite domain library, by
replacing FD. enum.naive in the program shown in Figure 2

by:

Fig. 8. Search tree for the photo problem with symmetries removed.

{FD.enum.generic Pos det constraints id min}

This selects the variable for enumeration with the most
propagators depending on it. After applying the Solver to
the modified search problem and the same order as before
and invoking all solution search, the Solver gives in its sta-
tus bar that the tree has now 52 choice nodes, 4 solution
nodes, and 49 failed nodes. Thus the size of the tree has
decreased by only about 10%.

If we have a second look at the search tree, we can see
that it is much harder to prove the optimality of the last
solution found, than to find this solution. Looking at the
graphical representation of the optimal solution as shown in
Figure 7, we see that for each solution there is a symmetric
solution, which can be obtained by reversing the order of
the people.

We want to reduce the search space by removing this
symmetry. In our example it is fairly easy: We only re-
quire that two persons, say alice and bert, are placed in a
fixed order. Thus we add the following constraint to our
program:

Pos.alice >: Pos.bert

Applying the Solver to the new problem and searching
for all solutions draws a search tree as shown in Figure 8.
The tree now has only 25 choice nodes, 2 solution nodes,
and 24 failure nodes. Thus, removing the symmetry re-
duces the size of the search tree by 50%.

5. THE SOLVER

The Solver is invoked passing it the problem to be solved.
Its usage does not require any change of the problem’s def-
inition: Instead of applying one of the predefined search
strategies from the standard modules [3], the Solver can be
used.

Depending on whether the Solver is applied to a problem
or to both a problem and an order, it employs either normal
search or best solution search for solving the problem. In
both cases, the user can ask for the next or for all solutions.
Prompting for the next solution creates the part of the
search tree following a left-most depth-first strategy until
a solution node is reached. Prompting for all solutions
creates the entire search tree.

During the search process the user is kept informed by
a status bar on how many nodes have been created and
which depth has been reached so far. The search process
can be interrupted and resumed by the user. The Solver

can be configured to halt automatically if it reaches a limit
on the number of nodes in the search tree, or if it reaches
a certain depth.

Search can be used in a completely interactive fashion:
the user can create any part of the search tree in a step by
step manner. Thus, promising paths in the search tree can
be followed without being forced to create potentially huge
but useless parts of it as would be necessary with a fixed
strategy.

After the creation process of the search tree is halted,
the Solver computes a layout for the newly created part
of the search tree and updates the drawing of the tree.
The drawn tree can be scaled by direct manipulation of a
scale bar. Any subtree of the search tree can be hidden
by replacing it by a small triangle. As already mentioned
in the previous section, special support is provided to hide
subtrees which contain only failed leaves. By visualising
the search tree one can gain first insights into the search
process: whether a first solution is found without too many
failed nodes, whether it is hard to prove the optimality of
the last solution found, and so on. The possibility of hiding
failed parts of the search tree makes it easy to find the
relevant paths leading to a solution.

All operations on nodes and subtrees are controlled by
a cursor, which can be placed at any node in the already
created part of the tree. Invoking an operation like hid-
ing a subtree means to apply the operation to the subtree
below the node selected by the cursor. The cursor can be
positioned either by clicking the mouse to a node, or by
navigation operations such as moving to the tree’s root,
to the next or previous solution, or to the previous not
completely finished choice (so-called backtracking). Oper-
ations can be invoked by selecting a menu entry or pressing
a key. Common operations are supported by buttons in an
optional tool bar.

Each solved node carries as information its solution (a
unary procedure). A choice node carries information on
the constraints and propagators just before splitting of
the choice point. The information is computed during the
search process and is stored as a unary procedure contain-
ing the reflected computation space before choice splitting.
The next section will explain this in more detail. Each
node’s information can be displayed in the Browser or in
the Oz Programming Interface. It is also possible to com-
pare the information attached to any two nodes, which as-
sists in understanding what are the changes in the con-
straints between two nodes.

In the previous section it was shown that the Solver can
be configured such that it employs a user-defined proce-
dure to display the information. Of course, the same holds
true for the comparison of nodes. It is of great importance
that displaying and comparing information can be user de-
fined. The information is understood best by tools which
display the information in a form suited for the applica-
tion. For instance, during the development of a scheduling
program one wants to use Gantt-charts to display the in-
formation. Trying to understand what is going on in a
scheduling application from the Browser’s output alone is

nearly impossible.

Besides the statistical information the Solver provides in
its status bar, it is possible to display statistical informa-
tion for each subtree. In the same way as described above,
user defined procedures can be used to process and dis-
play the statistical information. For instance, a bar chart
showing how many failures occur between solutions helps
to understand how hard it is to prove optimality in best
solution search.

6. IMPLEMENTING THE SOLVER

The Solver is written entirely in Oz. Even the part which
deals with the creation of the search tree does not need
any additional primitives other than the solve combinator
(see Section 7). By having the primitives of the Oz Kernel
language at hand, one has the expressivity to write useful
programming abstractions. But even more, making use of
these primitives one can also construct tools which can be
used to debug the programming abstractions.

The Solver’s implementation is around 6500 lines of Oz
code. It can be divided into three parts:

1. Construction of the search tree. This part uses around

20% of the code.

2. Laying out and drawing the tree. This includes sup-
port for scaling the tree as well as support for hiding
and unhiding of subtrees. These routines are approxi-
mately 15% of the entire code.

3. The user interface. This part provides for menus, the
cursor management, management of dialogs, the sta-
tus bar, and the tool bar. With 65% this part is by
far the largest part of the Solver.

Taking the complexity of the code involved in the three
parts, the first part is by far the most complex one. In the
following two sections we will detail the implementation of
the first two parts. The last part is the least complex. But,
to make the tool work nicely and easy to use one needs to
take care of a lot of small details, which explain the high
percentage of code involved.

7. CREATION OF THE SEARCH TREE

In contrast to Prolog, Oz does not use a backtracking
strategy to implement search. Instead, Oz provides for
search by means of local computation spaces, in which spec-
ulative computation with constraints and propagators is
performed. This encapsulates search, making it possible to
have both speculative computations and computations in-
teracting with external programs, e.g. the window system,
at the same time.

All search functionality in Oz is obtained from a single
primitive, called SolveCombinator. This is in contrast to
languages like Prolog, where search is provided as a built-in
concept, preventing the construction of user-defined search
strategies. A detailed description of the SolveCombinator
can be found in [10], [12].

As we have seen already in Section 4, a search problem
in Oz is written as a unary procedure

proc {Problem Sol}
Specification of the problem

end

where Sol is the so-called solution variable. It is con-
strained during the search process and eventually gives ac-
cess to the solution computed.

The SolveCombinator takes the unary procedure
Problem as input. Upon its application to Problem it cre-
ates a local computation space in which Problem is applied
to a newly created solution variable. Reducing the appli-
cation creates constraints and propagators depending on
Problem. Now constraint propagation takes place. If dur-
ing constraint propagation failure occurs the solve com-
binator will report this by constraining its single output
variable to failed. After constraint propagation reaches a
stable state, the combinator reduces.

In case that no choices are left in the computation space,
the combinator yields

solved(P)

as output. P is a unary procedure containing the local
computation space in abstracted form. Applying P gives
access to the solution variable.

In case there are choices left, the choice is split up into
two alternatives. The solve combinator gives these alter-
natives back as first-class citizens:

distributed(P1 P2)

P1 and P2 are unary procedures obtained by copying the
local computation space and reflecting the copies into pro-
cedures.

The search tree constructed by the Solver is implement-
ed as a tree of objects. The objects are instances of classes.
For each type of node (i.e., choice, solved, and failed) there
is a different class. The classes are created by multiple in-
heritance from classes which provide the functionality used
for search tree construction, for computation of the layout,
and for drawing.

fun {CreateTree P}
case {SolveCombinator P}
of failed then
{New FailedClass init}
[1 solved(P) then
{New SolvedClass init}
[1 distributed(P1 P2) then
{New ChoiceClass
init(sons: [{CreateTree P1}
{CreateTree P2}1)}
end
end

Fig. 9. Construction of the search tree.

The construction of the tree is controlled by the output
of the solve combinator. That is, if the solve combina-
tor yields failed as output, an object for a failed node is
created. The same holds true for solved nodes and choice
nodes. Choice nodes are created if the solve combinator
yields distributed(P1 P2) as output. In this case, cre-
ation of the objects of search tree continues by creating

the search subtrees for P1 and P2. This is sketched by the
function CreateTree as shown in Figure 9 which takes a
procedure P as input and yields a tree of objects as output.
Note that the creation of the search tree can be stopped
and resumed at any place in the tree.

Besides of computing the search tree, also information
which is attached to its non-failed nodes is computed. For
solved nodes this is straightforward: A node’s object stores
the procedure containing the solution as computed by the
solve combinator. For choice nodes this is more difficult:
the information we want to have is the abstracted compu-
tation space when it has reached a stable state but before
the choice is split into its alternatives.

The idea how to compute the information for the choice
nodes is to introduce an additional choice point, where it
has to be made sure that this choice point will be split first.
When this choice point is split into two alternatives, both
of them contain an abstracted computation space equiva-
lent to the space just before attempting to split the original
choice. One of the two obtained alternatives can be used
to proceed with the creation of the search tree. The oth-
er alternative can be stored as information in the choice
node’s object.

The Solver demonstrates nicely how powerful search is in
Oz. It exploits that search in Oz does not use backtrack-
ing: the copying approach allows to create and keep the
full search tree augmented with information if desired. A
backtracking approach would allow to keep information on-
ly on a single path from the root of the tree to some node.
Moreover, it makes use of the fact that search is encapsulat-
ed: while constructing the search tree by doing speculative
computation, the Solver communicates with the window
system to control the graphical user interface. That the
search process can be pursued interactively, would be im-
possible if a single fixed search strategy would have been
built into Oz.

8. LAYING OUT AND DRAWING THE SEARCH TREE

After the search tree is created as described in the pre-
vious section, a layout for it is computed. Computing a
layout for the tree means to compute coordinates for each
of the nodes, such that drawing the nodes at these coordi-
nates gives a pleasing graphical rendering of the tree.

Producing nice drawings of trees, or more generally, of
graphs, is supported by various tools, e.g., VCG [9] and
daVinci [2]. However, using one of them for the Solver is
not appropriate for the following reasons:

¢ Most of the functionality to draw complicated, even
cyclic, graphs provided by the tools is useless for our
purpose.

o It is difficult to connect them to an application. Some
of them provide only slow or even no support for in-
cremental updates of the tree to be drawn.

o As suggested by the percentage figures shown in Sec-
tion 6, the main issue in implementing the Solver is to
tightly integrate the interactive search process with a
nice graphical user interface. The tools are designed
to be the “master” in an application, not just only a

component which can be incorporated and controlled
easily within your own program.

In the literature there are several algorithms for produc-
ing nice layouts of trees. The Solver adapts an algorithm
from [5] and extends it by making it incremental.

The idea of computing a layout is quite simple. The
first thing is that the vertical coordinates are given by the
depth of the node directly. Computing the horizontal co-
ordinates is done as follows. Starting from the leaves of the
tree one computes for each subtree its extent, that is the
minimal borderline that encloses all of its nodes. Having
computed the extents for the subtrees, one computes the
minimal distance between two adjacent nodes such that
there is some space left between their subtrees’ extents.
Then the subtrees’ extents are merged together with the
minimal distance computed before, yielding the extent for
the parent. From the extents one can compute easily the
horizontal position of a node relative to its parent node.

This algorithm can be made incremental by only using
relative coordinates in the entire tree. This means that the
position of a node is only given as offset to the parent’s
node position. This allows to adjust the layout of an entire
subtree by just changing the offset to the subtree’s parent.
This property is also to be reflected by the drawing of the
tree: it must be possible to move all nodes of a subtree by
some horizontal offset.

ACKNOWLEDGEMENTS

I would like to thank Gert Smolka, Peter Van Roy, and
Jorg Wiirtz for being the first users of the Oz Solver. They
provided useful tips and comments which helped to improve
the Solver.

Tobias Muller, Joachim Niehren, and Peter Van Roy pro-
vided helpful comments on this paper.

The research reported in this paper has been sup-
ported by the Bundesminister fur Bildung, Wissenschaft,
Forschung und Technologie (FTZ-ITW-9105), the Esprit
Project ACCLAIM (PE 7195), and the Esprit Working
Group CCL (EP 6028).

REFERENCES

[1] Alain Bracquemond, Andreé Guilland, Michel Leconte, and
Astrid Rios. CHARME user’s guide. Technical report, BULL
CEDIAG, 1995.

[2] Michael Frohlich and Mattias Werner. Demonstration of the
interactive graph visualization system daVinci. In R. Tamassia
and I. G. Tollis, editors, Graph Drawing, DIMACS International
Workshop GD’94, volume 894 of Lecture Notes in Computer
Science, Princeton, USA, 1995. Springer Verlag.

[3] Martin Henz, Martin Miiller, Christian Schulte, and Jorg Wiirtz.
The Oz standard modules. DFKI Oz documentation series,
German Research Center for Artificial Intelligence (DFKI),
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany, 1994.

[4] Martin Henz, Gert Smolka, and Jorg Wiirtz. Object-oriented
concurrent constraint programming in Oz. In V. Saraswat and
P. Van Hentenryck, editors, Principles and Practice of Con-
straint Programming, chapter 2, pages 29-48. The MIT Press,
Cambridge, MA, 1995.

[5] Andrew J. Kennedy. Functional pearls: Drawing trees. Journal
of Functional Programming, 1995. To appear.

[6] Micha Meier. Debugging constraint programs. In Ugo Montanari
and Francesca Rossi, editors, Proceedings of the First Interna-
tional Conference on Principles and Practice of Constraint Pro-

10]

(11]

(12]

(13]

(14]

gramming, volume 976 of Lecture Notes in Computer Science,
pages 204—221, Cassis, France, September 1995. Springer Verlag.
Tobias Miiller, Konstantin Popov, Christian Schulte, and Jérg
Wiirtz. Constraint programming in Oz. DFKI Oz documen-
tation series, German Research Center for Artificial Intelligence
(DFKI), Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany,
1994.

Konstantin Popov. An exercise in concurrent object-oriented
programming: The Oz Browser. In WOz’95, Interna-
tional Workshop on Oz Programming, Institut Dalle Molle
d’Intelligence Artificielle Perceptive, Martigny, Switzerland, 29
November—1 December 1995.

Georg Sander. Graph layout through the VCG tool. In
R. Tamassia and 1. G. Tollis, editors, Graph Drawing, DIMACS
International Workshop GD’94, volume 894 of Lecture Notes
in Computer Science, pages 194-205, Princeton, USA, 1995.
Springer Verlag.

Christian Schulte and Gert Smolka. Encapsulated search in
higher-order concurrent constraint programming. In Maurice
Bruynooghe, editor, Logic Programming: Proceedings of the
1994 International Symposium, pages 505-520, Ithaca, New
York, USA, 13-17 November 1994. The MIT Press.

Christian Schulte, Gert Smolka, and Jérg Wiirtz. Encapsulated
search and constraint programming in Oz. In Alan H. Borning,
editor, Second Workshop on Principles and Practice of Con-
straint Programming, volume 874 of Lecture Notes in Computer
Science, pages 134-150, Orcas Island, Washington, USA, 2-4
May 1994. Springer-Verlag.

Gert Smolka. The definition of Kernel Oz. In Andreas Podelski,
editor, Constraints: Basics and Trends, volume 910 of Lecture
Notes in Computer Science, pages 251-292. Springer-Verlag,
1995.

Gert Smolka. The Oz programming model. In Jan van Leeuwen,
editor, Computer Science Today, volume 1000 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1995. to appear.
Gert Smolka and Ralf Treinen, editors. DFKI Oz Documenta-
tion Series. German Research Center for Artificial Intelligence
(DFKI), Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany,
1995.

