
Handbook of Constraint Programming 495
Francesca Rossi, Peter van Beek, Toby Walsh
c© 2006 Elsevier All rights reserved

Chapter 14

Finite Domain Constraint Programming
Systems

Christian Schulte and Mats Carlsson

One of the main reasons why constraint programming quickly found its way into applica-
tions has been the early availability of usable constraint programming systems. Given the
wide range of applications using constraint programming itis obvious that one of the key
properties of constraint programming systems is their provision of widely reusable services
for constructing constraint-based applications.

A constraint programming system can be thought of as providing a set of reusable
services. Common services include constraint propagation, search, and services for inter-
facing to the system. This chapter looks in more detail at which services are provided by
a constraint programming system and in particular what are the key principles and tech-
niques in constructing and coordinating these services.

To give the chapter a clear focus and a reasonably uniform presentation, we mostly
restrict our attention to propagation-based finite domain constraint programming systems.
That is, systems that solve problems using constraint propagation involving variables rang-
ing over some finite set of integers. The focus on finite domainconstraint programming
systems coincides with both practical relevance and known principles and techniques: sys-
tems at least offer services for finite domains; much of the known principles and techniques
have been conceived and documented for finite domains.

Essential for a system in providing the services mentioned above are some important
abstractions (or objects) to be implemented by a system: variables, implementations for
constraints, and so on. Important abstractions for propagation, search, and interfacing are
as follows.

Constraint propagation. To perform constraint propagation a system needs to imple-
mentvariablesranging over finite domains. Constraints expressing a relation among vari-
ables are implemented bypropagators: software abstractions which by execution perform
constraint propagation. Finally, apropagation enginecoordinates the execution of propa-
gators in order to deliver constraint propagation for a collection of constraints.

In Handbook of Constraint Programming, Francesca Rossi, Peter van Beek, Toby Walsh, editors.c© 2006
Elsevier, all rights reserved. This copy is for educationaland scientific use only.

496 14. Finite Domain Constraint Programming Systems

Search. Search in a finite domain constraint programming system has two principal di-
mensions. The first dimension is concerned with how to describe the search tree, typically
achieved by abranchingor labeling. The second dimension is concerned with how to ex-
plore a search tree, this is typically achieved by anexploration strategyor search strategy.
Any system implementing search must provide astate restorationservice which maintains
computation states for the nodes of the search tree.

Interfacing. A system must provide access to the services mentioned aboveso that ap-
plications can use them. Depending on the underlying constraint programming system,
the services can be tightly integrated into some host language (such as Prolog) or being
provided by some library (pioneered by ILOG Solver as a C++-based library).

Different levels of interfaces can be observed with different systems. Clearly, all sys-
tems offer at least interfaces which allow to use the system-provided services in applica-
tions. Even though the constraints, search engines, and so on provided by a system are
sufficient for many applications, some applications might require more. For these applica-
tions, a system must be extensible by new propagators for possibly new constraints, new
branching strategies, and new exploration strategies.

Chapter structure. The structure of this chapter is as follows. The next sectiongives a
simple architecture for finite domain constraint programming systems. It describeswhat
a system computes andhow computation is organized in principle. The following two
Sections 14.2 and 14.3 describe how systems implement this architecture. Section 14.2 de-
scribes how propagation is implemented while the followingsection describes how search
is implemented. An overview over existing finite domain constraint programming systems
is provided by Section 14.4. The last section of this chaptersummarizes the key aspects of
a finite domain constraint programming system and presents current and future challenges.

14.1 Architecture for Constraint Programming Systems

This section defines a simple architecture of a finite domain constraint programming sys-
tem. The section describeswhatresults a system computes andhowit computes them. The
focus is on the basic entities and principles that are used insystems; the actual implemen-
tation techniques used in systems are discussed in the following sections.

Much of the content follows the presentation in [58]. Essential parts of the architecture
described here have been first identified and discussed by Benhamou in [13].

14.1.1 Propagation-based Constraint Solving

This section defines terminology andwhata system actually computes.

Domains. A domainD is a complete mapping from a fixed (countable) set of variables
V to finite sets of integers. A domainD is failed, if D(x) = ∅ for somex ∈ V. A variable
x ∈ V is fixedby a domainD, if |D(x)| = 1. The intersectionof domainsD1 andD2,
denotedD1 ⊓D2, is defined by the domainD(x) = D1(x) ∩D2(x) for all x ∈ V.

A domainD1 is strongerthan a domainD2, writtenD1 ⊑ D2, if D1(x) ⊆ D2(x) for
all x ∈ V.

Christian Schulte and Mats Carlsson 497

We use range notation[l, u] for the set of integers{n ∈ Z | l ≤ n ≤ u}.

Assignments and constraints. An integer assignmenta is a mapping of variables to
integer values, written{x1 7→ n1, . . . , xk 7→ nk}. We extend the assignmenta to map
expressions and constraints involving the variables in thenatural way.

Let vars be the function that returns the set of variables appearing in an assignment. In
an abuse of notation, we define an assignmenta to be an element of a domainD, written
a ∈ D, if a(xi) ∈ D(xi) for all xi ∈ vars(a).

Theminimumandmaximumof an expressione with respect to a domainD are defined
asminD e = min{a(e) | a ∈ D} andmaxD e = max{a(e) | a ∈ D}.

A constraintc over variablesx1, . . . , xn is a set of assignmentsa such thatvars(a) =
{x1, . . . , xn}. We also definevars(c) = {x1, . . . , xn}.

Propagators. A constraint is defined extensionally by a collection of assignments for its
variables. Typical systems do not compute with these extensional representations directly
for two reasons:

1. Representing all possible assignments of a constraint might take too much space
to be feasible (exponential space in the number of variables). In particular, space
becomes an issue ifvars(c) contains more than two variables.

2. Common constraints have a certainstructure(such as representing a linear equation
constraint or an alldifferent constraint). Representing aconstraint extensionally will
make it difficult or even impossible to take advantage of thisunderlying structure.

Constraint propagation systemsimplementa constraintc by a collection ofpropaga-
tors. Propagators are also known as filters (implemented by somefiltering algorithm) and
narrowing operators[13]. A propagatorp is a function that maps domains to domains.
In order to make constraint propagation well-behaved (to bediscussed in Section 14.1.2),
propagators aredecreasingandmonotonic.

• A propagatorp must be adecreasingfunction: p(D) ⊑ D for all domainsD. This
property is obvious and guarantees that constraint propagation only removes values.

• A propagatorp must be amonotonicfunction:p(D1) ⊑ p(D2) wheneverD1 ⊑ D2.
That is, application ofp to stronger domains also yields stronger domains.

Propagators must faithfully implement constraints. A propagatorp is correct for a
constraintc iff it does not remove any assignment forc. That is, for all domainsD

{a ∈ D} ∩ c = {a ∈ p(D)} ∩ c

This is a very weak restriction, for example the identity propagatori with i(D) = D for
all domainsD is correct for all constraintsc.

A propagator must also provide sufficient propagation to distinguish solutions from
non-solutions. Hence, a set of propagatorsP is checkingfor a constraintc, if for domains
D where all variablesvars(c) are fixed the following holds:p(D) = D for all p ∈ P ,
iff the unique assignmenta ∈ D wherevars(a) = vars(c) is a solution ofc (a ∈ c). In

498 14. Finite Domain Constraint Programming Systems

other words, all domainsD corresponding to a solution of a constraintc on its variables
are required to be a fixpoint of the propagatorp.

A set of propagatorsP implementsa constraintc, if all p ∈ P are correct forc andP
is checking forc. We denote this fact byP = prop(c).

Systems consider sets of propagators rather than a single propagator as implementa-
tions of constraints to have more freedom in implementing a constraint. For example, a
common way to implement simple constraints is by indexicals(to be discussed in Sec-
tion 14.2.5): a collection of indexical propagators is usedto implement a single constraint.
On the other hand, systems provide global constraints with the idea that a single propagator
implements a constraint involving many variables.

Note that only very little propagation is required for a set of propagators to be checking
(as the term suggests, checking is sufficient; no actual propagation is required). The level
of consistency provided by a propagator set is irrelevant tothis model. Consistency levels
only provide a convenient way to refer to the strength of propagators. As far as achieving
good propagation is concerned, it does not matter whether a propagator set corresponds
to a predefined consistency level. What matters is that the propagator set offers a good
compromise between strength and cost of propagation.

To simplify our presentation we assume that propagators aredefined for all variablesV.
In a system, a propagatorp will be only interested in some variables: the variablesvars(c)
of the constraintc that is implemented byp. Two sets of variables which are important are
the input andoutputvariables.

The outputvariablesoutput(p) ⊆ V of a propagatorp are the variables changed by
the propagator:x ∈ output(p) if there exists a domainD such thatp(D)(x) 6= D(x).

The input variablesinput(p) ⊆ V of a propagatorp is the smallest subsetV ⊆ V such
that for all domainsD1 andD2: D1(x) = D2(x) for all x ∈ V implies thatD′

1(x) =
D′

2(x) for all x ∈ output(p) whereD′

1 = D2 ⊓ p(D1) andD′

2 = D1 ⊓ p(D2). Only the
input variables are useful in computing the application of the propagator to the domain.
We say that a propagatorp dependson a variablex, if x ∈ input(p).

Example 1 (Propagators). For the constraintc ≡ x1 ≤ x2 + 1 the functionp1 defined
by p1(D)(x1) = {n ∈ D(x1) | n ≤ maxD x2 + 1} andp1(D)(x) = D(x), x 6= x1 is a
correct propagator forc. Its output variables are{x1} and its input variables are{x2}. Let
D1(x1) = {1, 5, 8} andD1(x2) = {1, 5}, thenp1(D1) = D2 whereD2(x1) = D2(x2) =
{1, 5}.

The propagatorp2 defined asp2(D)(x2) = {n ∈ D(x2) | n ≥ minD x1 − 1} is
another correct propagator forc. Here and in the following we assume that a propagator
is defined as identity for variables not mentioned in the definition. Its output variables are
{x2} and input variables{x1}.

The set{p1, p2} is checking forc. For example, the domainD(x1) = D(x2) = {2}
corresponding to a solution ofc is a fixpoint of both propagators. The non-solution domain
D(x1) = {2}, D(x2) = {0} is not a fixpoint (of either propagator).

Now we are in the position to describe what a constraint programming system com-
putes. Apropagation solverfor a set of propagatorsP and some initial domainD,
solv(P,D), finds the greatest mutual fixpoint of all the propagatorsp ∈ P . In other words,
solv(P,D) returns a new domain defined by

solv(P,D) = gfp(λd. iter(P, d))(D) iter(P,D) = ⊓
p∈P

p(D)

Christian Schulte and Mats Carlsson 499

propagate(Pf ,Pn,D)
1: N ← Pn

2: P ← Pf ∪ Pn

3: while N 6= ∅ do
4: p← select(N)
5: N ← N − {p}
6: D′ ← p(D)
7: M ← {x ∈ V | D(x) 6= D′(x)}
8: N ← N ∪ {p′ ∈ P | input(p′) ∩M 6= ∅}

11: D ← D′

12: return D

Figure 14.1: Basic propagation enginepropagate.

wheregfp denotes the greatest fixpoint w.r.t⊑ lifted to functions.

14.1.2 Performing Propagation

A constraint programming system is concerned with performing propagation and search.
In this section, we consider the propagation engine and postpone the discussion of search
to Section 14.1.5.

Thepropagation enginepropagate shown in Figure 14.1 computessolv(P,D) for a
given set of propagatorsP and a domainD. Note that lines 9 and 10 are left out for an
extension to be discussed later. The enginepropagate takes two sets of propagators as
input wherePf contains propagators already known to be at fixpoint forD. This is an im-
portant feature to obtain incremental propagation during search. If no fixpoint knowledge
on propagators is available, it is safe to executepropagate(∅, P,D).

The algorithm uses a setN of propagators to apply (N stands fornot known to be
at fixpoint). Initially, N contains all propagators fromPn. Each time the while loop is
executed, a propagatorp is deleted fromN , p is applied, and the set ofmodified variables
M is computed. All propagators that share input variables with M are added to the set
of propagators not known to be at fixpoint. Adding a propagator p to the setN is called
schedulingp.

An invariant of the engine is that at the while statementp(D) = D for all p ∈ P −N .
The loop terminates, since in each iteration either a propagator is removed fromN or
a strictly smaller domainD′ is computed (as a propagator is a decreasing function and
there are only finitely many domains). After termination, the invariant yields thatD′ =
propagate(Pf , Pn,D) is a fixpoint for allp ∈ Pf ∪ Pn, that ispropagate(Pf , Pn,D) =
solv(Pf ∪ Pn,D).

As mentioned, the fact that a propagator is a decreasing function is essential for ter-
mination. The fact that a propagator is monotonic guarantees thatpropagate(Pf , Pn,D)
actually computessolv(Pf ∪ Pn,D) and that the order in which propagators are executed
does not change the result ofpropagate(Pf , Pn,D). The propagation engine (assuming
Pf = ∅) is more or less equivalent to the propagation algorithm of Apt [7, Section 7.1.3].

500 14. Finite Domain Constraint Programming Systems

The engine is geared at simplicity, one particular simplification being that it does not
pay particular attention to failed domains. That is, even though the domainD becomes
failed, propagation continues until a domain is computed that is both failed and a fixpoint
for all propagators inP . A concrete system might optimize this, as is discussed in Sec-
tion 14.1.6.

Note thatpropagate leaves undefined how a propagatorp is selected fromN . Strate-
gies for selecting propagators are discussed in Section 14.2.1.

Example 2(Propagation). Consider the propagatorp1 for the constraintx1 ≤ x2 defined
by

p1(D)(x1) = {n ∈ D(x1) | n ≤ maxD x2}
p1(D)(x2) = {n ∈ D(x2) | n ≥ minD x1}

Also consider the propagatorp2 for the constraintx1 ≥ x2 defined analogously.
Let us start propagation for the domainD0 with D(x1) = {0, 2, 6} andD(x2) =

{−1, 2, 4} by executingpropagate(∅, {p1, p2},D0). This initializes bothP and N to
{p1, p2}.

Let us assume thatp1 is selected for propagation. Then,p1 is removed fromN and
yieldsD′(x1) = {0, 2} andD′(x2) = {2, 4}. The set of modified variablesM is {x1, x2}
and hence after this iterationN is {p1, p2}.

In the second iteration, let us assume thatp2 is selected for propagation. This yields
D′(x1) = D′(x2) = {2}. Again, the set of modified variablesM is {x1, x2} and hence
N is {p1, p2}.

Assume that in the next iterationp1 is selected. NowD is already a fixpoint ofp1 and
the set of modified variablesM is empty. This in turn means thatN is just{p2} after this
iteration.

The last iteration selectsp2 for execution, does not modify the domain, andN becomes
empty. Hence,propagate(∅, {p1, p2},D0) returns a domainD with D(x1) = D(x2) =
{2}.

14.1.3 Improving Propagation

The propagation engine shown in Figure 14.1 is naive in that it does not exploit additional
information about propagators. Improved engines being thebase for existing systems try
to avoid propagator execution based on the knowledge whether a domain is a fixpoint for
a propagator.

In the following we discuss common properties of propagators, which help to avoid
useless execution. How a system implements these properties (or detects these properties)
is discussed in Section 14.2.

Idempotent propagators. Assume that a propagatorp has actually made the domain
stronger, that is,D′ 6= D. This means that there exists a variablex ∈ V for which
D′(x) ⊂ D(x). Assume further thatx ∈ input(p). Hencep will be included inN .

Quite often, however, propagators happen to be idempotent:a propagatorp is idempo-
tent, if the result of propagation is a fixpoint ofp. That is,p(p(D)) = p(D) for all domains
D.

Hence, to avoid inclusion of an idempotent propagatorp, the following lines can be
added to the propagation engine after line 8:

Christian Schulte and Mats Carlsson 501

9: if (p idempotent) then
10: N ← N − {p}

Example 3(Idempotent propagators). The propagatorsp1 andp2 from Example 2 are both
idempotent as can be seen easily.

Taking this into account, propagation takes only three iterations. If the same selection
of propagators is done as above, thenN is {p2} after the first iteration and{p1} after the
second iteration.

Note that in particular all domain consistent propagators are idempotent.

Entailment. An idempotent propagator can be exempted from being included in N di-
rectly afterp has been applied. A much stronger property for a propagatorp is entailment.
A propagatorp is entailedby a domainD, if all domainsD′ with D′ ⊑ D are fixpoints of
p, that isp(D′) = D′. This means that as soon as a propagatorp becomes entailed, it can
be safely deleted from the set of propagatorsP .

Example 4 (Entailed propagator). Consider the propagatorp1 for the constraintx1 ≤ x2

from Example 2. Any domainD with maxD x1 ≤ minD x2 entailsp1.

Propagator rewriting. During propagation the domainD might fix some variables in
input(p) ∪ output(p) of a propagatorp. Many propagators can be replaced by simpler
propagators after some variables have become fixed.

Example 5 (Propagator rewriting for fixed variables). Consider the propagatorp with
p ∈ prop(c) wherec ≡ x1 + x2 + x3 ≤ 4:

p(D)(x1) = {n ∈ D(x1) | n ≤ maxD(4− x2 − x3)}

Assume that propagation has computed a domainD which fixes x2 to 3 (that is,
D(x2) = {3}). Thenp can be replaced by the simpler (and most likely more efficient)
propagatorp′ defined by:

p′(D)(x1) = {n ∈ D(x1) | n ≤ maxD(1− x3)}

A propagatorp can always be rewritten to a propagatorp′ for a domainD, if p(D′) =
p′(D′) for all domainsD′ with D′ ⊑ D. This means that propagator rewriting is not only
applicable to domains that fix variables.

This is for example exploited for the “type reduction” of [52] where propagators are
rewritten as more knowledge on domains (there called types)becomes available. For ex-
ample, the implementation ofx0 = x1×x2 will be replaced by a more efficient one, when
all elements inD(x1) andD(x2) are non-negative.

14.1.4 Propagation Events

For many propagators it is simple to decide whether they are still at a fixpoint for a changed
domain based onhow the domain has changed. How a domain changes is described by
propagation events(or justevents).

502 14. Finite Domain Constraint Programming Systems

Example 6(Disequality propagators). Consider the propagatorp with {p} = prop(c) for
the constraintc ≡ x1 6= x2:

p(D)(x1) = D(x1)− single(D(x2))
p(D)(x2) = D(x2)− single(D(x1))

wheresingle(N) for a setN is defined asN if |N | = 1 and∅ otherwise.
Clearly, any domainD with |D(x1)| > 1 and|D(x2)| > 1 is a fixpoint ofD. That is,

p only needs to be applied ifx1 or x2 are fixed.
Similarly, the propagatorp1 from Example 1 only needs to be applied to a domainD

if maxD x2 changes andp2 from the same example needs to be applied to a domainD if
minD x1 changes.

Assume that the domainD changes to the domainD′ ⊑ D. The usual events defined
in a constraint propagation system are:

• fix(x): the variablex becomes fixed.

• minc(x): the minimum of variablex changes.

• maxc(x): the maximum of variablex changes.

• any(x): the domain of variablex changes.

Clearly the events overlap. Whenever afix(x) event occurs then aminc(x) event, a
maxc(x) event, or both events must also occur. If any of the first threeevents occur then
anany(x) event occurs. This is captured by the following definition ofevents(D,D′) for
domainsD′ ⊑ D:

events(D,D′) = {any(x) | D′(x) ⊂ D(X)}
∪ {minc(x) | minD′ x > minD x}
∪ {maxc(x) | maxD′ x < maxD x}
∪ {fix(x) | |D′(x)| = 1 and|D(x)| > 1}

Events satisfy an important monotonicity condition: suppose domainsD′′ ⊑ D′ ⊑ D,
then

events(D,D′′) = events(D,D′) ∪ events(D′,D′′).

So an event occurs on a change fromD to D′′ iff it occurs in the change fromD to D′ or
from D′ to D′′.

Example 7 (Events). Let D(x1) = {1, 2, 3}, D(x2) = {3, 4, 5, 6}, D(x3) = {0, 1},
andD(x4) = {7, 8, 10} while D′(x1) = {1, 2}, D′(x2) = {3, 5, 6} D′(x3) = {1} and
D′(x4) = {7, 8, 10}. Thenevents(D,D′) is

{maxc(x1), any(x1), any(x2),fix(x3),minc(x3), any(x3)}

For a propagatorp, the setes(p) ⊆ {fix(x),minc(x),maxc(x), any(x) | x ∈ V} of
events is anevent setfor p if the following two properties hold:

1. For all domainsD′ andD with D′ ⊑ D andD(x) = D′(x) for all x ∈ V−input(p):
if p(D) = D andp(D′) 6= D′, thenes(p) ∩ events(D,D′) 6= ∅.

Christian Schulte and Mats Carlsson 503

2. For all domainsD with p(D) 6= p(p(D)): es(p) ∩ events(D, p(D)) 6= ∅.

The first clause of the definition captures the following. If the domainD is a fixpoint
and the stronger domainD′ (stronger only on the input variables) is not a fixpoint for a
propagatorp, then an event occurring from changing the domainD to D′ must be included
in the event setes(p). The second clause refers to the case when a propagatorp does not
compute a fixpoint (that is,p(d) 6= p(p(D))). In this case, an event must occur when
the domain changes fromD to p(D). Note that the second clause never applies to an
idempotent propagator.

An event set plays an analogous role to the set of input variables: if an event from the
event set occurs when going from a domainD to a domainD′, the propagator is no longer
guaranteed to be at a fixpoint and must be re-applied.

Note that the definition of an event set is rather liberal as the definition does not require
the event set to be the smallest set: any set that guarantees re-application is allowed. In
particular, for any propagatorp the set{any(x) | x ∈ input(p)} is an event set: this
event set makes propagation behave as if no events at all are considered. However, an
implementation will try to use event sets that are as small aspossible.

Example 8 (Event sets). The propagatorp1 from Example 2 depends on the event set
{minc(x1),maxc(x2)}. The propagatorp from Example 6 depends on the event set
{fix(x1),fix(x2)}.

Now it is obvious how the propagation engine from Figure 14.1can take advantage
of events: instead of considering the set of modified variables and the input variables of a
propagator for deciding which propagators are to be included into N , consider the events
and an event set for a propagator. In other words, replace line 8 by:

8: N ← N ∪ {p′ ∈ P | es(p′) ∩ events(D,D′) 6= ∅}

14.1.5 Performing Search

A constraint programming system evaluatessolv(P,D) during search. We assume an ex-
ecution model for solving a constraint problem with a set of constraintsC and an initial
domainD0 as follows. We execute the proceduresearch(∅, P,D0) for an initial set of
propagatorsP =

⋃

c∈C prop(c). This procedure (shown in Figure 14.2) serves as an
architecture of a constraint programming system.

The procedure requires thatD be a fixpoint for all propagators inPf (f for fixpoint).
The propagators included inPn do not have this requirement (n for not at fixpoint). This
partitioning of propagators is used for incremental propagation with respect to recursive
calls tosearch (as discussed below).

The somewhat unusual definition of search is quite general. The defaultbranching
strategy (also known aslabelingstrategy) for many problems is to choose a variablex such
that |D(x)| > 1 and explorex = minD x or x ≥ minD x + 1. This is commonly thought
of as changing the domainD for x to either{minD x} or {n ∈ D(x) | n > minD x}.
Branching based on propagator sets for constraints allows for more general strategies, for
examplex1 ≤ x2 or x1 > x2.

504 14. Finite Domain Constraint Programming Systems

search(Pf , Pn,D)
1: D ← propagate(Pf , Pn,D)
2: if D is failed domainthen
3: return false
4: if ∃x ∈ V.|D(x)| > 1 then
5: choose{c1, . . . , cm} whereC ∧D |= c1 ∨ · · · ∨ cm

6: for all i ∈ [1,m] do
7: if search(Pf ∪ Po,prop(ci),D) then
8: return true
9: return false

10: return true

Figure 14.2: Architecture of constraint programming system.

Note that search has two dimensions: one describes how the search tree looks and the
other describes how the search tree is explored. In the abovearchitecture the selection of
the ci together with the selection of propagatorsprop(ci) for the ci describes the shape
of the search tree. The setsprop(ci) we refer to asalternativesand the collection of
all alternatives is calledchoice point. Completely orthogonal is how the search tree is
explored. Here, the architecture fixes exploration to be depth-first. Exploration is discussed
in more detail in 14.3.

Note thatsearch performs incremental propagation in the following sense: when call-
ing propagate only the propagatorsprop(ci) for the alternatives are not known to be at a
fixpoint.

14.1.6 Implementing the Architecture

This section discusses general approaches to implementingthe architecture for a constraint
programming system introduced above. The focus is on what needs to be implemented and
how the architecture (as an abstraction of a system) relatesto a real system.

Detecting failure and entailment. In our architecture, failure is only detected inside
search after returning frompropagate by testing whether the domain obtained by prop-
agation is failed. It is clear that a system should optimize detecting failure such that no
propagation is wasted if a domain becomes failed and that no inspection of a domain is
required to detect failure.

A typical way to make the detection of failure or entailment of a propagator more
efficient is to let the propagator not only return a domain butalso some status information
describing whether propagation has resulted in a failed domain or whether the propagator
has become entailed.

Implementing domains. The architecture describes that a propagator takes a domainas
input and returns a new domain. This is too memory consuming for a real system. Instead,
a system maintains a single data structure implementing onedomain and propagators up-
date this single domain when being applied.

Christian Schulte and Mats Carlsson 505

Inspectingpropagate in Figure 14.1 it becomes clear that maintaining a single domain
is straightforward to achieve. The only reason for having a domainD andD′ is in order to
be able to identify the modified variablesM .

State restoration. For propagation, systems maintain a single domain as has been argued
above. However, a single domain becomes an issues for search: when callingsearch re-
cursively as in Figure 14.2 and a domain is not transferred asa copy, backtracking (that is,
returning from the recursive call) needs to restore the domain.

State restoration is not limited to domains but also includes private states of propagators
and also whether propagators have become entailed. State restoration is a key service
required in a constraint programming system and is discussed in Section 14.3.2 in detail.

Finding dependent propagators. After applying a propagator,propagate must com-
pute the events (similar to the set of modified variables) in order to find all propagators that
depend on these events. Clearly, this requires that a systembe able to compute the events
and find the dependent propagators efficiently.

Variables for propagators. In addition to the fact that propagators update a single do-
mains rather than returning domains, implementations needto be careful in how many
variables are referenced by a propagator. In our architecture, propagators are defined
for all variables inV. However, from the above discussion it is clear that a propagator
p is only concerned with variablesinput(p) ∪ output(p). Quite often, the variables in
input(p) ∪ output(p) are called theparametersof p.

A system will implement a propagatorp such that it maintains itsinput(p)∪output(p)
in some datastructure, typically as an array or list of variables. While most of the properties
discussed for our architecture readily carry over to this extended setup, the case of multiple
occurrences of the same variable in the datastructure maintained by a propagator needs
special attention.

Multiple variable occurrences and unification. Depending on the actual system, mul-
tiple occurrences may both be common and appear dynamically. Here, dynamic means that
variable occurrences for a propagatorp might become the same during some computation
not performed byp itself. This is typically the case when the constraint programming sys-
tem is embedded in a constraint logic programming host language featuringunificationfor
logical variables. Unification makes two variablesx andy equal without the requirement
to assign the variables a particular value. In this case the variablesx andy are also said to
bealiased.

The main issues with multiple occurrences of the same variable are that they make (a)
detection of idempotence and (b) achieving good propagation more difficult, as is discussed
in Section 14.2.3.

Private state. In our architecture, propagators are functions. In systems, propagators
often need to maintain someprivate state. Private state is for example used to achieve
incrementality, more information is given in Section 14.2.3.

506 14. Finite Domain Constraint Programming Systems

14.2 Implementing Constraint Propagation

In this section, we detail the software architecture introduced on an abstract level in Sec-
tion 14.1. This architecture can be roughly divided intodomain variables, data structures
implementing the problem variables;propagators, coroutines implementing the problem
constraints by executing operations on the variables that it constrains; andpropagation
services, callable by the propagators in order to achieve the overallfixpoint computation.

Domain variables and propagators form a bipartite graph: every propagator is linked to
the domain variables that it constrains, and every domain variable is linked to the propaga-
tors that constrain it.

In the following, we will not discuss issues related to the state restoration policy used,
this is discussed in Section 14.3.2.

14.2.1 Propagation Services

From an operational point of view, a constraint programmingsystem can be described in
terms of coroutines (propagators) and events (domain changes). Propagators raise events,
which leads to other propagators being resumed, until a fixpoint is reached. The manage-
ment of events and selection (scheduling) of propagators are the main tasks of the propa-
gation services.

Events. Most integer propagation solvers use the events defined in Section 14.1.4, al-
though some systems collapseminc(x) andmaxc(x) into a single event (for example,
ILOG Solver [32]). Choco [36] maintains an event queue and interleaves propagator exe-
cution with events causing more propagators to be added to the queue.

Other events than those discussed in Section 14.1.4 are alsopossible. For example,
neq(x, n): the variablex can no longer take the valuen, that is,n ∈ D(x) andn 6∈ D′(x)
for domainsD andD′. These events have been used in e.g. B-Prolog [75].

Selecting the next propagator. It is clear that the number of iterations performed by the
propagation engine shown in Figure 14.1 depends also on which propagator is selected to
be applied next. The selection policy is system-specific, but the following guiding princi-
ples can be observed:

• Events providing much information, for examplefix events, yield quicker reaction
than events providing less information. This captures selecting propagators accord-
ing to expectedimpact.

• Propagators with low complexity, e.g. small arithmetic propagators, are given higher
priority than higher complexity propagators. This captures selecting propagators
according tocost.

• Starvation is avoided: no event or propagator should be leftunprocessed for an un-
bounded amount of time (unless there is a propagator of higher priority or higher
impact to run). This is typically achieved by selecting propagators for execution in
a last-in last-out fashion (that is, maintaining the setN in Figure 14.2 as a queue).

Christian Schulte and Mats Carlsson 507

Most systems have some form of static priorities, typicallyusing two priority levels (for
example, SICStus Prolog [35], Mozart [43]). The two levels are often not entirely based
on cost: in SICStus Prolog all indexicals (see Section 14.2.5) have high priority and global
constraints lower priority. While ECLiPSe [14, 28] supports 12 priority levels, its finite
domain solver also uses only two priority levels where another level is used to support
constraint debugging. A similar, but more powerful approach is used by Choco [36] using
seven priority levels allowing both LIFO and FIFO traversal.

Schulte and Stuckey describe a model for dynamic prioritiesbased on the complexity of
a propagator in [58]. They describe how priorities can be used to achieve staged propaga-
tion: propagators dynamically change priority to first perform weak and cheap propagation
and only later perform stronger and more complex propagation. Another model for priori-
ties in constraint propagation based on composition operators is [25]. This model runs all
propagators of lower priority before switching propagation back to propagators of higher
priority.

Prioritizing particular operations during constraint propagation is important in general.
For (binary) arc consistency algorithms, ordering heuristics for the operations performed
during propagation can reduce the total number of operations required [72]. For interval
narrowing, prioritizing constraints can avoid slow convergence, see for example [38].

14.2.2 Variable Domains

In a reasonable software architecture, propagators do not manipulate variable domains
directly, but use the relevant propagation services. Theseservices return information about
the domain or update the domain. In addition, they handle failure (the domain becomes
empty) and control propagation.

Value operations. A value operationon a variable involves a single integer as result
or argument. We assume that a variablex with D = dom(x) provides the following
value operations:x.getmin() returnsmin(D); x.getmax() returnsmax(D); x.hasval(n)
returnsn ∈ D; x.adjmin(n) updatesdom(x) to {m ∈ D | m ≥ n}; x.adjmax(n)
updatesdom(x) to {m ∈ D | m ≤ n}; andx.excval(n) updatesdom(x) to {m ∈ D |
m 6= n}. These operations are typical for finite domain constraint programming systems
like Choco, ILOG Solver, ECLiPSe, Mozart, and SICStus Prolog. Some systems provide
additional operators such as for fixing values.

Iterators. It is quite common for a propagator to iterate over all valuesof a given vari-
able. Suppose thati is a value iterator for some variable providing the following operations:
i.done() tests whether all values have been iterated;i.value() returns the current value; and
i.next() moves to the next value.

Domain operations. A domain operationsupports simultaneous access or update of
multiple values of a variable domain. If the multiple valuesform a consecutive interval
[n,m], such operations need only taken andm as arguments. Many systems provide gen-
eral sets of values by supporting an abstract set type, e.g. Choco, ECLiPSe, Mozart and
SICStus Prolog. Schulte and Tack describe in [60] domain operations based on generic

508 14. Finite Domain Constraint Programming Systems

range and value iterators. Other systems like ILOG Solver only allow access by iteration
over the values of a variable domain.

Subscription. When a propagatorp is created, itsubscribesto its input variables. Sub-
scription guarantees thatp is executed whenever the domain of one of its variables changes
according to an event. Options for representing the subscriber set of a given variablex
include the following:

1. A single suspension list of pairsEi.pi whereEi denotes the event set for which
propagatorpi requires execution. When an event onx occurs, the list is traversed
and the relevant propagators are selected for execution. Obviously, a lot of pairs that
do not match the event could be scanned.

2. Multiple suspension lists of propagators for different events. On subscription, the
propagator is placed in one of the lists. When an event onx occurs, all propagators
on the relevant lists are selected for execution. Typically, there is one list for each
event typee ∈ {fix(x),minc(x),maxc(x), any(x)} plus one list for propagators
whose event set contains bothminc(x) andmaxc(x). This is the design used in
Choco, ECLiPSe, Mozart, and SICStus Prolog. Other systems collapseminc(x)
andmaxc(x) into a single eventminmaxc(x) (for example, ILOG Solver [32] and
Gecode [24]).

3. An array of propagators, partitioned according to the various events. When an
event onx occurs, all propagators in the relevant partitions are selected for exe-
cution. This representation is particularly attractive ifthe possible events aree ∈
{fix(x),minmaxc(x), any(x)}, in which case the relevant partitions form a single
interval.

Domain representation. Popular representations ofD = dom(X) include range se-
quences and bit vectors. Arange sequencefor a finite set of integersI is the shortest
sequences = {[n1,m1] , . . . , [nk,mk]} such thatI is covered

(

I = ∪k
i=1 [ni,mi]

)

and
the ranges are ordered by their smallest elements (ni ≤ ni+1 for i ≤ i < k). Clearly, a
range sequence is unique, none of its ranges is empty, andmi + 1 < ni+1 for 1 ≤ i < k.
A bit vectorfor a finite set of integersI is a string of bits such that theith bit is 1 iff i ∈ I.

Table 14.1 compares the worst-case complexity of the basic operations for these rep-
resentations. Range sequences are usually represented as singly or doubly linked lists.
Bit vectors are typically represented as a number of consecutive memory words, with an
implementation defined size limit, usually augmented with direct access tomin(D) and
max(D). Range sequence thus seem to be more scalable to problems with large domains.

14.2.3 Propagators

A propagatorp is a software entity with possibly private state (we allow ourselves to refer
to the function as well as its implementation as propagator). It (partially) implements a
constraintc over some variables orparameters. The task of a propagator is to observe
its parameters and, as soon as a value is removed from the domain of a parameter, try to
remove further values from the domains of its parameters. The algorithm employed in the

Christian Schulte and Mats Carlsson 509

Table 14.1: Complexity of basic operations for range sequences of lengthr and bit vectors
of sizev augmented with explicit bounds.

Operations Range sequence Bitvector
x.getmin() O(1) O(1)
x.getmax() O(1) O(1)
x.hasval(n) O(r) O(1)
x.adjmin(n) O(r) O(1)
x.adjmax(n) O(r) O(1)
x.excval(n) O(r) O(v)

i.done() O(1) O(v)
i.value() O(1) O(1)
i.next() O(1) O(v)

process is called afiltering algorithm. Thus, the filtering algorithm is repeatedly executed
in a coroutining fashion.

The main work of a filtering algorithm consists in computing values to remove and to
perform these value removals via the value and domain operations described above. The
events raised by these operations cause other propagators to be scheduled for execution.

Life cycle. The life cycle of a propagatorp is depicted in Figure 14.3. When a constraint
c is posted, its parameters are checked and subscribed to,p is created, its private state is
allocated, and it is scheduled for execution. If the constraint c is implemented by more
than one propagator, all propagators implementingc are created likewise.

One run ofp has one of three possible outcomes:

• p may realize that the constraint has no solution, e.g. by a domain becoming empty.
The parameters are unsubscribed to, the private state is deallocated, and the current
search node fails.

• p may discover that the constraint holds no matter what of the remaining values are
taken by the parameters. The parameters are unsubscribed toand the private state is
deallocated,

• None of the above.p is moved to the set of suspended propagators, and will remain
there until the relevant events are raised.

Idempotent propagators. Suppose a propagatorp runs and removes some values. This
raises some events, which would normally reschedulep for execution, asp subscribes to
the very variables whose domains it just pruned. But supposenow thatp is idempotent.
Then by definition runningp again would be useless. Thus, idempotence is a desirable
property of propagators: ifp is known to be idempotent, thenp itself can be excluded from
the set of propagators scheduled for execution by events raised byp.

However, guaranteeing idempotence may be a serious difficulty in the design of a fil-
tering algorithm—it is certainly more convenient to not guarantee anything and instead

510 14. Finite Domain Constraint Programming Systems

add p to suspended set add p to runnable set

some events

execute p

resume

allocate and subscribe to p

create

suspend

discard p

entail

discard p and fail

fail

Figure 14.3: Life cycle of propagatorp

leave the fixpoint computation to the propagation loop, at the cost of some redundant runs
of p. Also, if the same variable occurs multiple times in the parameters, there is usually no
straightforward way to guarantee idempotence.

Most systems do not require of propagators to be idempotent;some optimize the
scheduling of propagators that are known to be idempotent. Mozart, as an exception, only
supports idempotent propagators [45].

Schulte and Stuckey describedynamic idempotencein [58] as a generalization: a prop-
agatorp signals after application whether the new domain is a fixpoint of p (similar to
signaling failure or entailment as described above).

Multiple value removals. Suppose a propagatorp runs and multiple values are removed
by multiple operations from the same variablex. It would be very wasteful to traverse the
suspension list(s) ofx and schedule subscribing propagators for each removal. A much
more reasonable design is to perform such traversal once permodified parameter, at the
end of executingp. Therefore, the value and domain operations described above usually
do not perform such scheduling. Instead, propagators call the relevant propagation services
near the end of the filtering algorithm.

This is already manifest in thepropagate function described in Section 14.1.2: it
records the modified variables (or the events that occurred)and schedules the propagators
only after the propagator has been applied.

Amount of information available. When a propagatorp is resumed, it is usually inter-
ested in knowing which values have been deleted from which parameters since last time.
The propagation services may provide part of this information, or even all of it. Of course,
there is a trade-off between the efforts spent by the propagation services maintaining this

Christian Schulte and Mats Carlsson 511

information and the efforts spent by the propagators discovering it. One can distinguish
three levels of granularity of the information provided top:

coarse p is told that something has changed, but not what. This is the information provided
in SICStus Prolog and Mozart.

medium p is told which parameters have been changed. This is the information provided
in CHIP.

fine p is told which parameters have been changed, as well as the setof removed values.
This is the information provided in ILOG Solver.

Use of private state. The private state that each propagator maintains can be usedfor a
number of things:

auxiliary data structures Many filtering algorithms contain as components algorithms
operating on specific data structures (digraphs, bipartitegraphs, heaps etc.). The
private state stores such data structures.

incrementality When a propagator is resumed, it is often the case that a singleparameter
has been changed, and that a single change has been made to it.Many filtering algo-
rithms can exploit this fact and be incremental, i.e. perform its computation based on
a previous state and changes made since that state was saved.An incremental com-
putation is typically an order of magnitude cheaper than computing from scratch, but
if many changes have been made, it is not necessarily the case.

domain information Suppose that the propagation services do not provide fine-grained
information when a propagator is resumed. Nevertheless, bymaintaining in its pri-
vate state a copy of the parameter domains, or some suitable abstraction, the propa-
gator can compute the required information.

fixed parameters It is often useful for a propagator of aritym to maintain a partitioning
of its parametersX into two setsXf , whose values have been fixed, andXv, whose
values have not yet been fixed. Most filtering algorithms focus their attention on
the setXv. This partitioning is easily achieved by a simple arrayA of pointers or
indices, such thatXf occupies array elementsA[1, . . . , k] andXv array elements
A[k + 1, . . . ,m], wherek = |Xf |. As a parameter is fixed, the relevant array
elements are simply swapped andk is incremented.

Multiple variable occurrences. The same variable may occur multiple times among the
parameters of a propagatorp, initially as well as dynamically due to unification. This by
itself does not cause problems, except, as noted above, any guarantees of idempotence are
usually given under the assumption that no variable aliasing occurs.

Some propagators may also use variable aliasing in order to propagate more. For ex-
ample, suppose that in a propagator for the constraintx− y = z, x andy are aliased. The
propagator can then concludez = 0, no matter what value is taken byx andy. Harvey
and Stuckey discuss multiple occurrences of the same variable for linear integer constraints
introduced by substitution in [29] and show how the amount ofpropagation changes with
allowing substitution.

512 14. Finite Domain Constraint Programming Systems

14.2.4 Daemons

So far, we have been assuming that an element of a suspension list is just a passive data
structure pointing at a propagatorp to schedule for execution. One can extend this design
by associating with such elements a procedure called adaemon, which has access top
and its private state. If during traversal of the suspensionlist a daemon is encountered,
instead of scheduling the propagator for execution, the daemon is simply run. This design
is motivated by the following reasons:

• If the propagation services do not tell propagators which parameters have been
changed, the daemon can maintain that information, since a daemon is always asso-
ciated with a given parameter.

• Scheduling and resuming a propagator often involves largeroverhead than running
a daemon. If there is some simple test to determine whether the propagator can
propagate anything, then the daemon can run that test, and ifsuccessful, schedule
the propagator for execution.

• If there is some information in the private state that needs to be updated incremen-
tally as the parameters are modified, daemons are a convenient mechanism for doing
so.

Systems using daemons include CHIP, SICStus Prolog, and ILOG Solver.

14.2.5 Indexicals

Indexicals [66, 19, 15], also known as projection constraints [62], are a popular approach
to implement simple propagators using a high-level specification language.

An indexical is a propagator with a single output variable and is defined in terms of
a range expression. A constraintc(x1, . . . , xn) is then implemented byn indexicalspi.
Each indexicalpi is defined byxi in ri whereri is a range expression (to be explained
later). Each of the indexicalspi has the input variables{x1, . . . , xn}.

Executing an indexicalp of the formxi in ri with a current domainD computes the
projectionĉi of c ontoxi from D(x1), . . . ,D(xi−1),D(xi+1), . . . ,D(xn). The domain
returned byp is p(D)(xi) = D(xi) ∩ ĉi andp(D)(xj) = D(xj) for all 1 ≤ i 6= j ≤ n.

Indexicals can be seen as a programming interface for fine-grained control over prop-
agation. They do not provide for the integration of sophisticated filtering algorithms for
global constraints. Figure 14.4 shows a subset of the range expressions used in SICStus
Prolog.

Example 9. To illustrate the use of indexicals for controlling the amount of propagation,
consider the constraintx = y + c wherec is assumed to be a constant. This may be
expressed with indexicals maintaining arc consistency:

(x in dom(y) + c, y in dom(x)− c)

or with indexicals maintaining bounds consistency:

(x in min(y) + c .. max(y) + c, y in min(x)− c .. max(x)− c)

Christian Schulte and Mats Carlsson 513

R ::= T .. T | R ∩R | R ∪R | R ? R | \R
| R + T | R− T | R mod T | dom(x)
| a finite subset ofZ

T ::= N | T + T | T − T | T ∗ T | ⌈T/T ⌉ | ⌊T/T ⌋ | T mod T
| min(x) | max(x) | card(x)

N ::= x | i, wherei ∈ Z | ∞ | −∞

Figure 14.4: Range expressions in SICStus Prolog indexicals

As discussed in [66, 19, 15], range expressions for indexicals must comply with cer-
tain monotonicity rules to make sense logically and operationally (corresponding to the
properties that hold true for propagators and for propagators being the implementation of
a constraint).

14.2.6 Reification

A reified constraint(also known asmeta constraint) c ↔ b reflects the truth value of the
constraintc onto a 0/1-variableb. So if c is entailed (disentailed) by the constraint store,b
is constrained to 1 (0), and ifb = 1 (b = 0), c (¬c) is posted.

One way of providing reification of a class of constraints is by extending the indexical
mechanism, as proposed in [66] and implemented in SICStus Prolog [15]. Indexicals as
described above are used for posting a constraintc. For reification, however, we also need
to be able to post¬c, and to check whetherc is entailed or disentailed. This can be done
by introducingchecking indexicals. A checking indexical has the same format as a regular
one,xi in ri, but instead of updating the domain forxi, it checks whetherD(xi) ⊆ ĉi

holds for a given domainD.

14.3 Implementing Search

This section describes how systems implement search. As introduced in Section 14.1,
a system needs to implement branching, state restoration, and exploration. The section
discusses each of these issues in turn.

14.3.1 Branching

How a system implements branching depends in particular on whether the system is based
on a programming language that has search built-in (such as Prolog or Oz). In this case,
a branching strategy is expressed easily from the primitiveof the language that controls
search. In Prolog-based systems, for example, several clauses of a predicate then define
the branching strategy. With relation to Figure 14.2, each clause corresponds to one of the
alternativesprop(ci)).

514 14. Finite Domain Constraint Programming Systems

Other languages provide special constructs that allow to express several alternatives.
OPL, for example, offers atry-statement with several clauses corresponding to the al-
ternatives [69]. A similar approach is taken in Oz, where achoice-statement serves the
same purpose [63, 54]. For Oz, Schulte gives in [54] a reduction to a primitive that only
allows one to assign an integer to a variable.

If the underlying language does not have search built-in (such as for libraries built on
top of C++) systems provide some other means to describe a choice point. ILOG Solver [32],
for example, provides the concept of a choice point (some data structure), which consists of
several alternatives calledgoals. Goals themselves can be composed from several subgoals.

A common pattern for branching strategies is to select a particular not-yet fixed variable
x according to some criteria. A common example is first-failure branching, which selects a
variable with smallest domain. Here it is important to understand what the strategy does in
case of ties: which one of the possibly many variables with a smallest domain is selected.
For example, Wallace, Schimpf, et al. note in [71] that comparing search in systems can
be particularly difficult due to a different treatment of ties in different systems.

14.3.2 State Restoration

As described in Section 14.1.6 search requires that a previous state of the system can
be restored. The state includes the domain of the variables,propagators (for example,
propagators that became entailed need to be restored), and private state of propagators.

Exploration (to be discussed in Section 14.3.3) creates a search tree where the nodes
of the search tree correspond to the state of the system. In relation tosearch as shown in
Figure 14.2, a new node is defined by each recursive invocation of search.

Systems use basically three different approaches to state restoration (the term state
restoration has been coined by Choi, Henz, et al. in [18]):

copying A copy of a node is created before the node is changed.

trailing Changes to nodes are recorded such that they can be undone later.

recomputation If needed, a node is recomputed from scratch.

Expressiveness. The main difference as it comes to expressiveness is the number of
nodes that are simultaneously available for further exploration. With copying, all nodes
that are created as copies are directly ready for further exploration. With trailing, explo-
ration can only continue at a single node at a time.

In principle, trailing does not exclude exploration of multiple nodes. However, they
can be explored in an interleaved fashion only and switchingbetween nodes is a costly
operation.

Having more than a single node available for exploration is essential to search strategies
like concurrent, parallel, or breadth-first.

Trailing. A trailing-based system uses a trail to store undo information. Prior to per-
forming a state-changing operation, information to reconstruct the state is stored on the
trail. In a concrete implementation, the state changing operations considered are updates
of memory locations. If a memory update is performed, the location’s address and its old
content is stored on the trail. To this kind of trail we refer as single-value trail. Starting

Christian Schulte and Mats Carlsson 515

exploration from a node puts a mark on the trail. Undoing the trail restores all memory
locations up to the previous mark. This is essentially the technology used in Warren’s
Abstract Machine [74, 8].

In the context of trailing-based constraint programming systems two further techniques
come into play:

time-stamping With finite domains, the domain of a variable can be narrowed multiple
times. However it is sufficient to trail only the original value, intermediate values
need no restoration: each location needs to appear at most once on the trail. Other-
wise memory consumption is no longer bounded by the number ofchanged locations
but by the number of state-changing operations performed. To ensure this property,
time-stamping is used: as soon as an entity is trailed, the entity is stamped to prevent
it from further trailing until the stamp changes again.

The time-stamp changes every time a new mark is put on the trail. Note that time-
stamping concerns both the operations and the data structures that must contain the
time-stamp.

multiple-value trail A single-value trail needs2n entries forn changed locations. A
multiple value trail uses the optimization that if the contents of n > 1 successive
locations are changed,n + 2 entries are added to the trail: one for the first location’s
address, a second entry forn, andn entries for the locations’ values.

For a discussion of time-stamps and a multiple value trail inthe context of the CHIP
system, see [1, 3].

Copying. Copying needs for each data structure a routine that createsa copy and also
recursively copies contained data structures. A system that features a copying garbage
collector already provides almost everything needed to implement copying. For example
in the Mozart implementation of Oz [43], copying and garbagecollection share the same
routines parameterized by a flag that signals whether garbage collection is performed or
whether a node is being copied.

By this all operations on data structures are independent ofsearch with respect to both
design and implementation. This makes search in a system an orthogonal issue.

Discussion. Trailing is the predominating approach used for state restoration in finite
domain constraint programming systems. Clearly, all Prolog-based systems use trail-
ing but also most other systems with the exception of Oz/Mozart [43], Figaro [31], and
Gecode [24].

Trailing requires that all operations be search-aware: search is not an orthogonal issue
to the rest of the system. Complexity in design and implementation is increased: it is a
matter of fact that a larger part of a system is concerned withoperations rather than with
basic data structure management. A good design that encapsulates update operations will
avoid most of the complexity. To take advantage of multiple value trail entries, however,
operations require special effort in design and implementation.

Semantic backtrackingas an approach to state restoration that exploits the semantics of
an underlying solver for linear constraints over the reals is used in CLP(R) [33] and also
in [65]. Semantic backtracking stores constraints that areused to reestablish an equivalent

516 14. Finite Domain Constraint Programming Systems

state of the system rather than trailing all changes to the underlying constraints. By this the
approach can be seen as a hybrid between trailing and recomputation. A similar technique
is used by Ŕegin in [51], where the author describes how to maintain arc consistency by
restoring equivalent states rather than identical states.

Recomputation. Recomputation trades space for time, a node is reconstructed on de-
mand by redoing constraint propagation. The space requirements are obviously low: only
the path in the search tree leading to the node must be stored.Basing exploration on re-
computation alone is infeasible. Suppose a complete binarysearch tree of heightn, which
has2n leafs. To recompute a single leaf,n exploration steps are needed. This gives a total
of n2n exploration steps compared to2n+1 − 2 exploration steps without recomputation
(that is, the number of arcs).

The basic idea of combining recomputation with copying or trailing is as follows: copy
(or start trailing) a node from time to time during exploration. Recomputation then can
start from the last copied (or trailed) node on the path to theroot. The implementation of
recomputation is straightforward, see [56, 54] for example.

If exploration exhibits a failed node it is quite likely thatnot only a single node is failed
but that an entire subtree is failed. It is unlikely that onlythe last decision made in explo-
ration was wrong. This suggests that as soon as a failed node occurs during exploration,
the attitude for further exploration should become more pessimistic. Adaptive recompu-
tation [54] takes a pessimistic attitude by creating intermediatecopies as follows: during
recomputation an additional copy is created at the middle ofthe path for recomputation.

Performance of recomputation depends critically on the amount of information stored
for the path. In naive recomputation, the path is stored as a list of integers identifying which
alternative (that is, thei in prop(ci)) needs to be recomputed. While this makes the space
requirements for recomputation problem independent,n fixpoints need to be computed for
a path of lengthn.

In batch recomputation[18], the alternativesprop(ci) are stored. To recompute a
node it is sufficient to compute a single fixpoint. Batch recomputation is shown to be
considerably more efficient than naive recomputation in [18]. Decomposition-based search
as a similar idea to batch recomputation is reported by Michel and Van Hentenryck in [41].
Here also the alternatives rather than just integers are stored for recomputation.

14.3.3 Exploration

The architecture for search in a finite domain constraint programming system described in
Section 14.1.5 only considers left-most depth-first exploration of the search tree. Clearly,
systems offer more exploration strategies to allow for example search for a best solution.
A few systems also provide abstractions from which new exploration strategies can be
programmed.

Predefined exploration strategies. All Prolog-based languages systems support single-
and all-solution search following depth-first explorationas sketched in Section 14.1.5.
Best-solution search is controlled by a single cost variable and amounts to search for a
solution with smallest or largest cost. CLP-based systems offer an interactive toplevel for
controlling exploration that allows the user to prompt for multiple solutions. The inter-
active toplevel cannot be used within programs. ECLiPSe provides visual search through

Christian Schulte and Mats Carlsson 517

the Grace tool [39] and other strategies such as LDS [30] and time and resource bounded
search.

ILOG Solver [32] and OPL [64] offer LDS [30], DDS [73], and IDFS [40]. Best-
solution search in ILOG Solver also uses a cost variable. To avoid recomputation of the
best solution, the program must be modified to explicitly store solutions. Search in ILOG
Solver is incremental in that solutions can be computed on request.

Programming exploration. The first system to offer support for programming explo-
ration has been Oz/Mozart. Schulte and Smolka introduce thesolve combinator in [57],
which allows to program exploration based on the idea of having a first-class representation
of nodes in the search tree. Schulte describes computation spaces as a refinement [56, 54]
of the solve combinator, which also allows to program strategies supporting recomputa-
tion and parallel execution. Computation spaces have been used to realize user-controlled
interactive search [55] and parallel search on networked computers [53]. Curry [27] offers
the same programming model as thesolve combinator.

Another system providing support for programming exploration is ILOG Solver [32]
(OPL [64] offers an equivalent model for programming exploration). Programming ex-
ploration in ILOG Solver is based on limits and node evaluators [47, 69]. Programmable
limits allow to stop exploration (time limit, for example).Node evaluators map search tree
nodes to priorities. Node priorities determine the exploration order of nodes. Additionally,
a special priority discards nodes.

ILOG Solver supports switching between arbitrary nodes in the search tree by full
recomputation. For example, best-first search needs to switch between arbitrary nodes. To
limit the amount of switching, Solver uses an additional threshold value. Only if the cost
improvement exceeds the threshold, nodes are switched. This results in an approximation
of best-first search. Fully interactive exploration is not feasible with full recomputation.

SALSA [37] is a language for the specification of search algorithms that cover ex-
ploration strategies for tree search as well as neighborhood-based search (local search).
SALSA requires a host language that supports search (for example, Claire [16]) as compi-
lation target.

14.4 Systems Overview

This section discusses different approaches used for finitedomain programming systems
and a brief overview of existing systems.

14.4.1 Approaches

Several approaches and systems have been suggested to solvecombinatorial problems with
finite domain constraints. Historically, many systems havebeen implemented by embed-
ding into an existing Prolog host system. There are many reasons for such an approach:

1. Much of the required infrastructure of the constraint solver is provided by the host
language: data structures, memory management, support forsearch and backtrack-
able updates.

518 14. Finite Domain Constraint Programming Systems

2. The high level and declarative nature of Prolog makes it a reasonable choice of lan-
guage for expressing combinatorial problems.

From the point of view of writing applications in mainstreamobject-oriented program-
ming languages such as C++ and Java, although they can readily interface to modules writ-
ten in other languages, providing a constraint solver as a class library is arguably a more
attractive approach. This requires a larger implementation effort to provide the necessary
infrastructure, but also gives more opportunities for optimization, as there are no design
constraints imposed by a host system.

14.4.2 Prominent Systems

This section gives a brief overview of some finite domain constraint programming systems.
As it is impossible to cover all systems that exist or have existed, we have selected systems
that introduced some new ground-breaking ideas or that are prominent in other ways. The
systems are partitioned into autonomous systems and library systems.

Autonomous Systems

B-Prolog [75]. Extends a Prolog virtual machine with instructions for constraint propa-
gation. Introduces action rules, a generalization of indexicals.

cc(FD) [66, 67, 68]. A representative of the concurrent and glass-box constraint pro-
gramming research directions. Significant contributions include indexicals and constraint
combinators.

clp(FD) [22, 19]. A representative of the approach of extending a Prolog virtual ma-
chine [74] with instructions for constraint propagation. Uses indexicals. Precursor of GNU
Prolog.

CHIP [1, 2, 3]. A Prolog system with a constraint solver written in C. A pioneer in the
global constraints research area [4, 11]. Provides a rich set of global constraints. Also
available as C/C++ libraries.

ECL iPSe [70, 5, 14]. A Prolog system with constraint solving based on a general corou-
tining mechanism and attributed variables. A pioneer in theareas of integration with MIP
solvers such as CPLEX and XPRESS-MP and using hybrid methodsfor constraint solv-
ing [61].

GNU Prolog [20, 21]. The successor ofclp(FD), compiles Prolog programs with con-
straints to native binaries, extending a Prolog virtual machine [74] with instructions for
constraint propagation. Uses indexicals.

Mozart [63, 43]. A development platform based on the Oz language, mixing logic, con-
straint, object-oriented, concurrent, distributed, and multi-paradigm programming. Search
in Mozart is based on copying and recomputation.

Christian Schulte and Mats Carlsson 519

Nicolog [62]. Extends a Prolog virtual machine with instructions for constraint propaga-
tion. Introducesprojection constraints, extending indexicals with conditional expressions
and tests.

PaLM [34]. PaLM (Propagation and Learning with Move) is a constraint programming
system, based on the Choco constraints library. Its most important contributions are its
explanation-based features, which can be used to control the search as well as provide
answers to questions such as:

• Why does my problem not have any solution?

• Why can variablex not take valuea in a solution?

• Why is variablex currently assigned toa?

SICStus Prolog [35, 15]. A Prolog system with constraint solving based on a general
coroutining mechanism and attributed variables. Constraint solver written in C using global
constraints as well as indexicals.

Library Systems

CHIP [1, 2, 3]. C/C++ library version of the CHIP constraint solver as described above.

Choco [36]. A constraint solver kernel, originally written in the Claire programming lan-
guage. A more recent Java version is available. Designed to be a platform for CP research,
allowing for easy extensions and experimentation with event handling and scheduling poli-
cies. A library of global constraints, Iceberg, is available.

FaCiLe [9]. A constraint programming library written in OCaml, featuring constraints
over integer as well as integer set finite domains.

Gecode [24, 58, 60]. A constraint solver library implemented in C++. Designed to be not
used directly for modeling but for interfacing to systems offering modeling support (for
example, Alice [6] an extension to Standard ML, interfaces to Gecode). Gecode is based
on copying and recomputation rather than trailing.

ILOG Solver and JSolver [32]. A constraint solver library tightly integrated into the C++

and Java languages. Features constraints over integer as well as integer set finite domains.
A pioneer in constraint solver libraries and in integratingconstraint and object-oriented
programming.

14.5 Outlook

Finite-domain constraint programming systems have provenuseful tools for solving many
problems in a wide range of application areas. As witnessed by this chapter many useful
techniques for the implementation of constraint systems are available, both for constraint
propagation as well as for search.

520 14. Finite Domain Constraint Programming Systems

However, due to the change of available hardware platforms,the advent of new meth-
ods for problem solving and new constraints and propagators, and new requirements for
systems, it is quite clear that the development of constraint programming systems will be
faced with many new and difficult challenges. Some of the challenges are as follows.

Parallelism. Search for constraint programming offers great potential for parallelism:
rather than exploring a single node at a time, explore several nodes of the search tree in
parallel. There has been considerable work in the area of parallel search in general and
parallel search for logic programming in particular [17, 26], however only little attention
has been given to parallel search for constraint programming: only few systems support
parallel search (ECLiPSe [44, 50], ILOG Solver [47], and Mozart [53, 54]) and only little
experience in using parallel search for solving real-life problems is available [46, 48].

This is in sharp contrast to the fact that solving constraintproblems is difficult and par-
allel computers are commodities. Networked computers are available everywhere and are
mostly being idle. Pretty much all desktop machines sold in the next few years will feature
processors providing parallel execution by multiple processing cores. The challenge for
systems is to exploit the resources provided by parallel computers and making their useful
exploitation simple.

Hybrid architectures. Propagation-based constraint programming is clearly not the only
approach for solving combinatorial optimization problems. Other approaches such as inte-
ger programming and local search have shown their potentialand even hybrid approaches
are emerging. The questions for a system is how to best combine and provide services
based on different approaches. One of the key questions is ofcourse how tight the integra-
tion can and should be. Shen and Schimpf discuss the integration of linear integer solvers
in ECLiPSe in [61].

Correctness. The last decade has seen the advent of an ever increasing number of pow-
erful filtering algorithms used in propagators for the implementation of global constraints.
However, implementing these propagators is typically complex and it is far from obvious
that an implementation is actually correct for a given constraint. Additionally, taking ad-
vantage of properties such as idempotence and entailment add additional complexity to the
implementation.

Ideally, a system should only offer propagators that are known to be correct. So far,
a systematic methodology for proving correctness of these algorithms is missing. Worse
still, even approaches for the systematic testing with sufficient coverage for propagators are
not available. Correctness is important as the usefulness of constraint programming relies
on the very fact that what is computed by a system is actually asolution to the problem
solved.

Open interfaces. Today’s development and deployment of constraint-based applications
is often system specific: a programmer develops a constraint-based solution to a problem
and integrates it into some larger software system. Development is system-specific as
the model used can not easily be ported or adapted to a different system. Deployment
is system-specific as many systems (notably language-basedsystems) require quite some
effort for integrating constraint-based components into larger software systems.

Christian Schulte and Mats Carlsson 521

The challenge is to devise open interfaces such that the samemodel can be used with
many different systems without any porting effort and that the integration into software
systems is easy. The former issue is partly addressed by using modeling languagessuch as
OPL [64] or ESRA [23], for example. Modeling languages, however, only address part of
the challenge as different systems offer vastly different services (think of what collection
of global constraints systems support).

Richer coordination. One of the beauties of constraint programming is the simplicity
of how constraint propagation can be coordinated: propagators are connected by variables
acting as simple communication channels enjoying strong properties such as being de-
creasing. The beauty comes at the price of making communication low-level: only value
removal is communicated.

The challenge is to provide richer communication to achievestronger propagation. A
potential candidate for communication are graph properties expressing information on a
collection of constraints. Another approach, which chooses propagators for constraints
to minimize propagation effort while retaining search effort, is based on properties that
characterize the interaction among several constraints sharing variables [59].

Acknowledgments

The authors are grateful to Peter Stuckey for much of the material in Section 14.1, which
is based on joint work by Peter Stuckey and Christian Schulte. Martin Henz, Mikael
Lagerkvist, and Peter Stuckey provided helpful comments, which considerably improved
this chapter. The authors thank Pascal Van Hentenryck for convincing them to give an
invited tutorial at CP 2002 on finite domain constraint programming systems, which has
served as a starting point for this chapter. Christian Schulte is partially funded by the
Swedish Research Council (VR) under grant 621-2004-4953.

Bibliography

[1] Abderrahmane Aggoun and Nicolas Beldiceanu. Time Stamps Techniques for the
Trailed Data in Constraint Logic Programming Systems. In S.Bourgault and
M. Dincbas, editors,Actes du Śeminaire 1990 de programmation en Logique, pages
487–509, Tŕegastel, France, May 1990. CNET, Lannion, France.

[2] Abderrahmane Aggoun and Nicolas Beldiceanu. Overview of the CHIP Compiler
System. In Koichi Furukawa, editor,Proceedings of the Eight International Con-
ference on Logic Programming, pages 775–788, Paris, France, June 1991. The MIT
Press.

[3] Abderrahmane Aggoun and Nicolas Beldiceanu. Overview of the CHIP compiler
system. In Fŕed́eric Benhamou and Alain Colmerauer, editors,Constraint Logic Pro-
gramming: Selected Research, pages 421–437. The MIT Press, Cambridge, MA,
USA, 1993.

[4] Abderrahmane Aggoun and Nicolas Beldiceanu. ExtendingCHIP in order to solve
complex scheduling and placement problems.Journal of Mathematical and Com-
puter Modelling, 17(7):57–73, 1993.

522 14. Finite Domain Constraint Programming Systems

[5] Abderrahmane Aggoun, David Chan, Pierre Dufresne, Eamon Falvey, Hugh Grant,
Warwick Harvey, Alexander Herold, Geoffrey Macartney, Micha Meier, David
Miller, Shyam Mudambi, Stefano Novello, Bruno Perez, Emmanuel Van Rossum,
Joachim Schimpf, Kish Shen, Periklis Andreas Tsahageas, and Dominique Henry de
Villeneuve. ECLiPSe 5.0. User manual, IC Parc, London, UK, November 2000.

[6] Alice Team. The Alice system, 2003. Programming SystemsLab, Universiẗat des
Saarlandes. Available fromwww.ps.uni-sb.de/alice/.

[7] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

[8] Hassan Äıt-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. Logic
Programming Series. The MIT Press, Cambridge, MA, USA, 1991.

[9] Nicolas Barnier and Pascal Brisset. FaCiLe: a functional con-
straint library. ALP Newsletter, 14(2), May 2001. Available from
www.recherche.enac.fr/opti/facile/.

[10] Peter Van Beek, editor.Eleventh International Conference on Principles and Practice
of Constraint Programming. Lecture Notes in Computer Science. Springer-Verlag,
Sitges, Spain, October 2005.

[11] Nicolas Beldiceanu and Evelyne Contejean. Introducing global constraints in CHIP.
Journal of Mathematical and Computer Modelling, 20(12):97–123, 1994.

[12] Nicolas Beldiceanu, Warwick Harvey, Martin Henz, François Laburthe, Eric Mon-
froy, Tobias M̈uller, Laurent Perron, and Christian Schulte. Proceedingsof TRICS:
Techniques foR Implementing Constraint programming Systems, a post-conference
workshop of CP 2000. Technical Report TRA9/00, School of Computing, National
University of Singapore, 55 Science Drive 2, Singapore 117599, September 2000.

[13] Frederic Benhamou. Heterogeneous Constraint Solving. In Proceedings of the Fifth
International Conference on Algebraic and Logic Programming (ALP’96), LNCS
1139, pages 62–76, Aachen, Germany, 1996. Springer-Verlag.

[14] Pascal Brisset, Hani El Sakkout, Thom Frühwirth, Warwick Harvey, Micha Meier,
Stefano Novello, Thierry Le Provost, Joachim Schimpf, and Mark Wallace. ECLiPSe
Constraint Library Manual 5.8. User manual, IC Parc, London, UK, February 2005.

[15] Mats Carlsson, Greger Ottosson, and Björn Carlson. An open-ended finite domain
constraint solver. In Hugh Glaser, Pieter H. Hartel, and Herbert Kuchen, editors,
Programming Languages: Implementations, Logics, and Programs, 9th International
Symposium, PLILP’97, volume 1292 ofLecture Notes in Computer Science, pages
191–206, Southampton, UK, September 1997. Springer-Verlag.

[16] Yves Caseau, François-Xavier Josset, and François Laburthe. CLAIRE: Combin-
ing sets, search and rules to better express algorithms. In Danny De Schreye, edi-
tor, Proceedings of the 1999 International Conference on Logic Programming, pages
245–259, Las Cruces, NM, USA, November 1999. The MIT Press.

[17] Jacques Chassin de Kergommeaux and Philippe Codognet.Parallel logic program-
ming systems.ACM Computing Surveys, 26(3):295–336, September 1994.

[18] Chiu Wo Choi, Martin Henz, and Ka Boon Ng. Components forstate restoration in
tree search. In Toby Walsh, editor,Proceedings of the Seventh International Con-
ference on Principles and Practice of Constraint Programming, Lecture Notes in
Computer Science, vol. 2239. Springer Verlag, 2001.

[19] Philippe Codognet and Daniel Diaz. Compiling constraints inclp(FD). The Jour-
nal of Logic Programming, 27(3):185–226, June 1996.

Christian Schulte and Mats Carlsson 523

[20] Daniel Diaz and Philippe Codognet. GNU prolog: Beyond compiling Prolog to C.
In Enrico Pontelli and V́ıtor Santos Costa, editors,Practical Aspects of Declarative
Languages, Second International Workshop, PADL 2000, volume 1753 ofLecture
Notes in Computer Science, pages 81–92, Boston, MA, USA, January 2000. Springer-
Verlag.

[21] Daniel Diaz and Philippe Codognet. Design and implementation of the GNU prolog
system.Journal of Functional and Logic Programming, 2001(6), 2001.

[22] Daniel Diaz and Philippe Codognet. A minimal extensionof the WAM for clp(FD).
In David S. Warren, editor,Proceedings of the Tenth International Conference on
Logic Programming, pages 774–790, Budapest, Hungary, June 1993. The MIT Press.

[23] Pierre Flener, Justin Pearson, and MagnusÅgren. Introducing ESRA, a relational
language modelling combinatorial problems. In Maurice Bruynooghe, editor,Logic
Based Program Synthesis and Transformation: 13th International Symposium, vol-
ume 3108 ofLecture Notes in Computer Science, pages 214–229, Uppsala, Sweden,
August 2004. Springer-Verlag.

[24] Gecode. Gecode: Generic constraint development environment, 2005. Available
from www.gecode.org.

[25] Laurent Granvilliers and Eric Monfroy. Implementing constraint propagation by com-
position of reductions. InICLP’03, volume 2916 ofLecture Notes in Computer Sci-
ence, pages 300–314. Springer-Verlag, 2003.

[26] Gopal Gupta, Enrico Pontelli, Khayri Ali, Mats Carlsson, and Manuel Hermenegildo.
Parallel execution of Prolog programs.ACM Transactions on Programming Lan-
guages and Systems, 23(4):472–602, July 2001.

[27] Michael Hanus. A unified computation model for functional and logic programming.
In Neil D. Jones, editor,The 24th Symposium on Principles of Programming Lan-
guages, pages 80–93, Paris, France, January 1997. ACM Press.

[28] Warwick Harvey. Personal communication, April 2004.
[29] Warwick Harvey and Peter J. Stuckey. Improving linear constraint propagation by

changing constraint representation.Constraints, 7:173–207, 2003.
[30] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Chris S.

Mellish, editor,Fourteenth International Joint Conference on Artificial Intelligence,
pages 607–615, Montréal, Qúebec, Canada, August 1995. Morgan Kaufmann Pub-
lishers.

[31] Martin Henz, Tobias M̈uller, and Ka Boon Ng. Figaro: Yet another constraint pro-
gramming library. In In̂es de Castro Dutra, V́ıtor Santos Costa, Gopal Gupta, En-
rico Pontelli, Manuel Carro, and Peter Kacsuk, editors,Parallelism and Implementa-
tion Technology for (Constraint) Logic Programming, pages 86–96, Las Cruces, NM,
USA, December 1999. New Mexico State University.

[32] ILOG S.A. ILOG Solver 6.0: Reference Manual. Gentilly, France, October 2003.
[33] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The CLP(R)

language and system.Transactions on Programming Languages and Systems, 14(3):
339–395, 1992.

[34] Narendra Jussien and Vincent Barichard. The PaLM system: explanation-based con-
straint programming. In Beldiceanu et al. [12], pages 118–133.

[35] Intelligent Systems Laboratory. SICStus Prolog user’s manual, 3.12.1. Technical
report, Swedish Institute of Computer Science, Box 1263, 164 29 Kista, Sweden,
April 2005.

524 14. Finite Domain Constraint Programming Systems

[36] François Laburthe. CHOCO: implementing a CP kernel. In Beldiceanu et al. [12],
pages 71–85.

[37] François Laburthe and Yves Caseau. SALSA: A language for search algorithms. In
Michael Maher and Jean-François Puget, editors,Proceedings of the Fourth Interna-
tional Conference on Principles and Practice of ConstraintProgramming, volume
1520 of Lecture Notes in Computer Science, pages 310–324, Pisa, Italy, October
1998. Springer-Verlag.

[38] Olivier Lhomme, Arnaud Gotlieb, and Michel Rueher. Dynamic optimization of
interval narrowing algorithms.The Journal of Logic Programming, 37(1–3):165–
183, 1998.

[39] Micha Meier. Debugging constraint programs. In Montanari and Rossi [42], pages
204–221.

[40] Pedro Meseguer. Interleaved depth-first search. In Pollack [49], pages 1382–1387.
[41] Laurent Michel and Pascal Van Hentenryck. A decomposition-based implementa-

tion of search strategies.ACM Transactions on Computational Logic, 5(2):351–383,
2004.

[42] Ugo Montanari and Francesca Rossi, editors.Proceedings of the First International
Conference on Principles and Practice of Constraint Programming, volume 976 of
Lecture Notes in Computer Science. Springer-Verlag, Cassis, France, September
1995.

[43] Mozart Consortium. The Mozart programming system, 1999. Available from
www.mozart-oz.org.

[44] Shyam Mudambi and Joachim Schimpf. Parallel CLP on heterogeneous networks. In
Pascal Van Hentenryck, editor,Proceedings of the Eleventh International Conference
on Logic Programming, pages 124–141. The MIT Press, Santa Margherita Ligure,
Italy, 1994.

[45] Tobias M̈uller. Constraint Propagation in Mozart. Doctoral dissertation, Universität
des Saarlandes, Fakultät für Mathematik und Informatik, Fachrichtung Informatik,
Im Stadtwald, 66041 Saarbrücken, Germany, 2001.

[46] Claude Le Pape, Laurent Perron, Jean-Charles Régin, and Paul Shaw. Robust and
parallel solving of a network design problem. InEigth International Conference on
Principles and Practice of Constraint Programming, volume 2470 ofLecture Notes
in Computer Science, pages 633–648, Ithaca, NY, USA, September 2002. Springer-
Verlag.

[47] Laurent Perron. Search procedures and parallelism in constraint programming. In
Joxan Jaffar, editor,Proceedings of the Fifth International Conference on Principles
and Practice of Constraint Programming, volume 1713 ofLecture Notes in Computer
Science, pages 346–360, Alexandra, VA, USA, October 1999. Springer-Verlag.

[48] Laurent Perron. Practical parallelism in constraint programming. In Narendra Jussien
and François Laburthe, editors,Proceedings of the Fourth International Workshop on
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimisation Problems (CP-AI-OR’02), pages 261–275, Le Croisic, France, March,
25–27 2002.

[49] Martha E. Pollack, editor.Fifteenth International Joint Conference on Artificial In-
telligence. Morgan Kaufmann Publishers, Nagoya, Japan, August 1997.

[50] Steven Prestwich and Shyam Mudambi. Improved branch and bound in constraint
logic programming. In Montanari and Rossi [42], pages 533–548.

Christian Schulte and Mats Carlsson 525

[51] Jean-Charles Ŕegin. Maintaining arc consistency algorithms during the search with-
out additional cost. In Beek [10], pages 520–533.

[52] Pierre Sav́eant. Constraint reduction at the type level. In Beldiceanuet al. [12], pages
16–29.

[53] Christian Schulte. Parallel search made simple. In Beldiceanu et al. [12], pages
41–57.

[54] Christian Schulte.Programming Constraint Services, volume 2302 ofLecture Notes
in Artificial Intelligence. Springer-Verlag, Berlin, Germany, 2002.

[55] Christian Schulte. Oz Explorer: A visual constraint programming tool. In Lee Naish,
editor, Proceedings of the Fourteenth International Conference onLogic Program-
ming, pages 286–300, Leuven, Belgium, July 1997. The MIT Press.

[56] Christian Schulte. Programming constraint inferenceengines. In Gert Smolka, edi-
tor, Proceedings of the Third International Conference on Principles and Practice of
Constraint Programming, volume 1330 ofLecture Notes in Computer Science, pages
519–533, Schloß Hagenberg, Linz, Austria, October 1997. Springer-Verlag.

[57] Christian Schulte and Gert Smolka. Encapsulated search in higher-order concurrent
constraint programming. In Maurice Bruynooghe, editor,Logic Programming: Pro-
ceedings of the 1994 International Symposium, pages 505–520, Ithaca, NY, USA,
November 1994. The MIT Press.

[58] Christian Schulte and Peter J. Stuckey. Speeding up constraint propagation. In Mark
Wallace, editor,Tenth International Conference on Principles and Practiceof Con-
straint Programming, volume 3258 ofLecture Notes in Computer Science, pages
619–633, Toronto, Canada, September 2004. Springer-Verlag.

[59] Christian Schulte and Peter J. Stuckey. When do bounds and domain propagation lead
to the same search space?Transactions on Programming Languages and Systems,
27(3):388–425, May 2005.

[60] Christian Schulte and Guido Tack. Views and iterators for generic constraint imple-
mentations. In Beek [10], pages 817–821.

[61] Kish Shen and Joachim Schimpf. Eplex: An interface to mathematical programming
solvers for constraint logic programming languages. In Beek [10], pages 622–636.

[62] Gregory Sidebottom.A Language for Optimizing Constraint Propagation. PhD the-
sis, Simon Fraser University, 1993.

[63] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,Computer
Science Today, volume 1000 ofLecture Notes in Computer Science, pages 324–343.
Springer-Verlag, Berlin, 1995.

[64] Pascal Van Hentenryck.The OPL Optimization Programming Language. The MIT
Press, Cambridge, MA, USA, 1999.

[65] Pascal Van Hentenryck and Viswanath Ramachandran. Backtracking without trailing
in clp(r-lin). ACM Trans. Program. Lang. Syst., 17(4):635–671, 1995.

[66] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Constraint processing in
cc(FD). Manuscript, 1991.

[67] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implementation
and evaluation of the constraint language cc(FD). In Andreas Podelski, editor,Con-
straint Programming: Basics and Trends, volume 910 ofLecture Notes in Computer
Science, pages 293–316. Springer-Verlag, 1995.

[68] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implementation,
and evaluation of the constraint language cc(FD).The Journal of Logic Programming,

526 14. Finite Domain Constraint Programming Systems

37(1–3):139–164, October 1998.
[69] Pascal Van Hentenryck, Laurent Perron, and Jean-Franc¸ois Puget. Search and strate-

gies in OPL. ACM Transactions on Computational Logic, 1(2):285–320, October
2000.

[70] Mark Wallace, Stefano Novello, and Joachim Schimpf. Eclipse: A platform for con-
straint logic programming. Technical report, IC-Parc, Imperial College, London, GB,
August 1997.

[71] Mark Wallace, Joachim Schimpf, Kish Shen, and Warwick Harvey. On benchmarking
constraint logic programming platforms.Constraints, 9(1):5–34, 2004.

[72] Richard J. Wallace and Eugene C. Freuder. Ordering heuristics for arc consistency
algorithms. InNinth Canadian Conference on Artificial Intelligence, pages 163–169,
Vancouver, Canada, 1992.

[73] Toby Walsh. Depth-bounded discrepancy search. In Pollack [49], pages 1388–1393.
[74] David H. D. Warren. An abstract Prolog instruction set.Technical Note 309, SRI

International, Artificial Intelligence Center, Menlo Park, CA, USA, October 1983.
[75] Neng-Fa Zhou. Programming finite-domain constraint propagators in action rules.

Theory and Practice of Logic Programming, 6(1):1–26, 2006. To appear.

