
Speeding Up Constraint Propagation

Christian Schulte1 and Peter J. Stuckey2

1 IMIT, KTH - Royal Institute of Technology, Sweden, schulte@imit.kth.se
2 Dept. of Comp. Sci. & Soft. Eng., Univ. of Melbourne, Australia, pjs@cs.mu.oz.au

Abstract. This paper presents a model and implementation techniques
for speeding up constraint propagation. Two fundamental approaches to
improving constraint propagation are explored: keeping track of which
propagators are at fixpoint, and choosing which propagator to apply
next. We show how idempotence reasoning and events help track fix-
points more accurately. We improve these methods by using them dy-
namically (taking into account current domains to improve accuracy).
We define priority-based approaches to choosing a next propagator and
show that dynamic priorities can improve propagation. We illustrate that
the use of multiple propagators for the same constraint can be advanta-
geous with priorities, and introduce staged propagators which combine
the effects of multiple propagators with priorities for greater efficiency.

1 Introduction

At the core of a finite domain constraint programming system is a constraint
propagation engine that repeatedly executes propagators for the constraints of a
problem. Propagators discover and remove values from the domains of variables
which can no longer take part in a solution of the constraints.

There are two important decisions the engine must make: which propaga-
tors should execute, and in which order should they execute. In this paper we
investigate how to make a propagation engine as efficient as possible.

In order to make constraint propagation efficient, it is clear that the engine
needs to take the following issues into account: avoid unnecessary propagator
execution, restrict propagation to relevant variables, and choose the cheapest
possible method for propagation. In this paper we show how propagation can be
speeded up if the engine takes these issues into account.

The contributions of the paper are as follows. We give a formal definition of
propagation systems including idempotent and event-based optimizations used in
current propagation systems. We extend event-based propagation systems to use
dynamically changing event sets. We introduce multiple propagators and staged
propagators for use with propagation queues with priority. We give experimental
results that clarify the impact of idempotent and event-based optimizations and
show that dynamic event sets and staged propagators can be advantageous.

Plan of the Paper. The next section introduces propagation-based constraint
solving, followed by a model for constraint propagation systems in Sect. 3. Sec-
tion 4 presents how to optimize propagation by taking idempotence and events

into account. Which propagator should be executed next and how propagation
can be organized is discussed in Sect. 5. The following section evaluates the
different variants of constraint propagation discussed. Section 7 concludes.

2 Propagation-based Constraint Solving

This section defines terminology and the basic components of a constraint prop-
agation engine. In this paper we restrict ourselves to integer constraint solving.

Domains. A domain D is a complete mapping from a fixed (countable) set of
variables V to finite sets of integers. A false domain D is a domain with D(x) = ∅
for some x ∈ V . Let D⊥(x) = ∅ for all x ∈ V . A variable x ∈ V is fixed by a
domain D, if |D(x)| = 1. The intersection of domains D1 and D2, denoted
D1 ⊓ D2, is defined by the domain D(x) = D1(x) ∩ D2(x) for all x ∈ V .

A domain D1 is stronger than a domain D2, written D1 ⊑ D2, if D1(x) ⊆
D2(x) for all x ∈ V . A domain D1 is stronger than (equal to) a domain D2 w.r.t.
variables V , denoted D1 ⊑V D2 (resp. D1 =V D2), if D1(x) ⊆ D2(x) (resp.
D1(x) = D2(x)) for all x ∈ V .

We shall use range notation [l .. u] to define the set of integers {d | l ≤ d ≤ u}.

Valuations and Constraints. An integer valuation θ is a mapping of variables to
integer values, written {x1 7→ d1, . . . , xn 7→ dn}. We extend the valuation θ to
map expressions and constraints involving the variables in the natural way.

Let vars be the function that returns the set of variables appearing in a
valuation. In an abuse of notation, we define a valuation θ to be an element of
a domain D, written θ ∈ D, if θ(xi) ∈ D(xi) for all xi ∈ vars(θ).

The infimum and supremum of an expression e with respect to a domain D
are defined as infD e = inf {θ(e)|θ ∈ D} and supD e = sup {θ(e)|θ ∈ D}.

A constraint c over variables x1, . . . , xn is a set of valuations θ such that
vars(θ) = {x1, . . . , xn}. We also define vars(c) = {x1, . . . , xn}.

Propagators. We will implement a constraint c by a set of propagators prop(c)
which map domains to domains. A propagator f is a monotonically decreasing
function from domains to domains: f(D) ⊑ D, and f(D1) ⊑ f(D2) whenever
D1 ⊑ D2. A propagator f is correct for a constraint c iff for all domains D

{θ ∈ D} ∩ c = {θ ∈ f(D)} ∩ c

This is a very weak restriction, for example the identity propagator is correct
for all constraints c.

A set of propagators F is checking for a constraint c, if for domains D where
all variables vars(c) are fixed the following holds: f(D) = D for all f ∈ F , iff the
unique valuation θ ∈ D where vars(θ) = vars(c) is a solution of c (θ ∈ c). We
assume that prop(c) is a set of propagators that are correct and checking for c.

The output variables output(f) ⊆ V of a propagator f are the variables
changed by the propagator: x ∈ output(f) if there exists a domain D such

that f(D)(x) 6= D(x). The input variables input(f) ⊆ V of a propagator f is
the smallest subset V ⊆ V such that for each domain D: D =V D′ implies that
D′⊓f(D) =output(f) f(D′)⊓D. Only the input variables are useful in computing
the application of the propagator to the domain.

Example 1. For the constraint c ≡ x1 ≤ x2 + 1 the function fA defined by
fA(D)(x1) = {d ∈ D(x1) | d ≤ supD x2 + 1} and fA(D)(v) = D(v), v 6= x1 is
a correct propagator for c. Its output variables are {x1} and its input variables
are {x2}. Let D1(x1) = {1, 5, 8} and D1(x2) = {1, 5}, then f(D1) = D2 where
D2(x1) = D2(x2) = {1, 5}.

The propagator fB defined as fB(D)(x2) = {d ∈ D(x2) | d ≥ infD x1 − 1}
and fB(D)(v) = D(v), v 6= x2 is another correct propagator for c. Its output
variables are {x2} and input variables {x1}.

The set {fA, fB} is checking for c. The domain D(x1) = D(x2) = {2} corre-
sponding to a solution of c is a fixpoint of both propagators. The non-solution
domain D(x1) = {2}, D(x2) = {0} is not a fixpoint (of either propagator).

A propagation solver for a set of propagators F and an initial domain D,
solv (F, D), finds the greatest mutual fixpoint of all the propagators f ∈ F . In
other words, solv (F, D) returns a new domain defined by

solv (F, D) = gfp(λd.iter (F, d))(D) iter(F, D) = ⊓
f∈F

f(D)

where gfp denotes the greatest fixpoint w.r.t ⊑ lifted to functions.

3 Constraint Propagation Systems

A constraint propagation system evaluates the function solv(F, D) during back-
tracking search. We assume an execution model for solving a constraint problem
with a set of constraints C and an initial domain D0 as follows. We execute the
procedure search(∅, F, D0) for an initial set of propagators F = ∪c∈Cprop(c).
This procedure is used to make precise the optimizations presented in the re-
mainder of the paper.

search(Fo, Fn, D)
D := isolv(Fo, Fn, D) % propagation
if (D is a false domain) return false

if (∃x ∈ V .|D(v)| > 1)
choose {c1, . . . , cm} where C ∧ D |= c1 ∨ · · · ∨ cm % search strategy
for i ∈ [1 .. m]

if (search(Fo ∪ Fn, prop(ci), D)) return true

return true

Note that the propagators are partitioned into two sets, the old propa-
gators Fo and the new propagators Fn. The incremental propagation solver
isolv(Fo, Fn, D) (to be presented later) takes advantage of the fact that D is
guaranteed to be a fixpoint of the old propagators.

The somewhat unusual definition of search is quite general. The default search
strategy for many problems is to choose a variable x such that |D(x)| > 1 and
explore x = infD x or x ≥ infD x + 1. This is commonly thought of as changing
the domain D for x to either {infD x} or {d ∈ D(x) | d > infD x}. This framework
allows more general strategies, for example x1 ≤ x2 or x1 > x2.

The basic incremental propagation solver algorithm is as follows:

isolv(Fo, Fn, D)
F := Fo ∪ Fn; Q := Fn

while (Q 6= ∅)
f := choose(Q) % select next propagator to apply
Q := Q − {f}; D′ := f(D)
Q := Q ∪ new(f, F, D, D′) % add propagators f ′ ∈ F
D := D′ % not necessarily at fixpoint at D′

return D

The algorithm uses a queue of propagators to apply Q. Initially, Q contains the
new propagators. Each time the while loop is executed, a propagator f is deleted
from the queue, f is applied, and then all propagators that may no longer be
at a fixpoint at the new domain D′ are added to the queue. An invariant of the
algorithm is that at the while statement f(D) = D for all f ∈ F − Q.

isolv leaves two components undefined: choose(Q) chooses the propagator f ∈
Q to be applied next; new(f, F, D, D′) determines the set of propagators f ′ ∈ F
which are not guaranteed to be at their fixpoint at the domain D′. The remainder
of the paper investigates how to best implement these two components.

4 Fixpoint Reasoning

The core aim of the constraint propagation solver solv(F, D) is to find a domain
that is a mutual fixpoint of all f ∈ F . The incremental solver isolv(Fo, Fn, D)
already takes into account that initially D is a fixpoint of propagators f ∈ Fo.
The role of new is (generally) to return as few propagators f ∈ F as possible.

A basic definition of new is as follows

newinput (f, F, D, D′) = {f ′ ∈ F | input(f ′) ∩ {x ∈ V | D(x) 6= D′(x)} 6= ∅}

Here all propagators f ′ are added whose input variables domain have changed.
By the definition of input variables, if none of them have changed for f ′, then
f ′(D′) = D′ since f ′(D) = D if f ′ ∈ F − Q.

isolv with this definition of new (assuming Fo = ∅) is more or less equivalent
to the propagation algorithm of Apt ([1] page 267).

4.1 Idempotence

A propagator f is idempotent if f(D) = f(f(D)) for all domains D. That is,
applying f to any domain D yields a fixpoint of f .

Example 2. The propagator fC defined by fC(D)(x1) = {d ∈ D(x1) | 3
2d ∈

D(x2)}, fC(D)(x2) = {d ∈ D(x2) | 2
3d ∈ D(x1)}, and fC(D)(x) = D(x), x 6∈

{x1, x2} is the domain propagator for the constraint 3x1 = 2x2. The propagator
fC is idempotent.

Example 3. While many propagators are idempotent, some widely used ones are
not idempotent. Consider the constraint 3x1 = 2x2 and the propagator fG:

fG(D)(x1) = D(x1) ∩ [⌈(2 infD x2)/3⌉ .. ⌊(2 supD x2)/3⌋]
fG(D)(x2) = D(x2) ∩ [⌈(3 infD x1)/2⌉ .. ⌊(3 supD x1)/2⌋]
fG(D)(x) = D(x) x 6∈ {x1, x2}

Then prop(3x1 = 2x2) = {fG} in almost all constraint programming systems. fG

is the the bounds propagator (considering solutions over the real numbers) for
for 3x1 = 2x2. Now fG is not idempotent. Consider D(x1) = [0 .. 3] and D(x2) =
[0 .. 5]. Then D′ = fG(D) is defined by D′(x1) = [0 .. 3] ∩ [0 .. ⌊10/3⌋] = [0 .. 3]
and D′(x2) = [0 .. 5] ∩ [0 .. ⌊9/2⌋] = [0 .. 4]. Now D′′ = fG(D′) is defined by
D′′(x1) = [0 .. 3] ∩ [0 .. ⌊8/3⌋] = [0 .. 2] and D′′(x2) = [0 .. 4] ∩ [0 .. ⌊9/2⌋] =
[0 .. 4]. Hence fG(fG(D)) = D′′ 6= D′ = fG(D).

We can always create an idempotent propagator f ′ from a propagator f
by defining f ′(D) = solv ({f}, D). Indeed, in some implementations (for exam-
ple [8]) prop(3x1 = 2x2) is defined as the fixpoint of applying fG.

Static Idempotence. Assume that idem(f) = {f} if f is an idempotent propa-
gator and idem(f) = ∅ otherwise. The definition of new is improved by taking
idempotence into account

newsidem(f, F, D, D′) = newinput (f, F, D, D′) − idem(f)

An idempotent propagator is never put into the queue after application.
Note that this is an important optimization. Otherwise each propagator f

that changes the domain is likely to be executed again to check it is at fixpoint.
Almost all constraint propagation solvers take into account static idempotence
(for example ILOG Solver [9], Choco [11], and SICStus [10]). Some systems even
only allow idempotent propagators (for example Mozart [13]).

Dynamic Idempotence. Even if a propagator is not idempotent we can often
determine that f(D) is a fixpoint of f for a specific domain D.

We can make use of dynamic idempotence by extending a propagator f to
return a new domain D′ and an indication whether D′ is a fixpoint. For simplicity
we assume a function idem(f, D) that returns {f} if it can show that f(D) is a
fixpoint for f and ∅ otherwise (of course without calculating f(f(D)), otherwise
we gain nothing). In practice this will be included in the code for f .

newdidem(f, F, D, D′) = newinput (f, F, D, D′) − idem(f, D)

Note that the dynamic case extends the static case since for idempotent f it
holds that idem(f, D) = {f} for all domains D.

Example 4. Consider applying fG from Example 3 to the domain D′′ from the
same example. Now D′′′ = fG(D′′) is defined by D′′′(x1) = [0 .. 2]∩[0 .. ⌊8/3⌋] =
[0 .. 2] and D′′′(x2) = [0 .. 4] ∩ [0 .. ⌊6/2⌋] = [0 .. 3]. Notice that the new bound
x2 ≤ 3 is obtained without rounding ⌊6/2⌋ = 6/2. In this case we are guaranteed
that the propagator is at a fixpoint ([8] Theorem 8).

4.2 Events

The next improvement for avoiding propagators to be put in the queue is to
consider what changes in domains of input variables can cause the propagator
to no longer be at a fixpoint. An event is a change in the domain of a variable.

Assume that the domain D changes to the domain D′ ⊑ D. The usual events
defined in a constraint propagation system are:

– fix(x): the variable x becomes fixed, that is |D′(x)| = 1 and |D(x)| > 1.
– lbc(x): the lower bound of variable x changes, that is infD′ x > infD x.
– ubc(x): the upper bound of variable x changes, that is supD′ x < supD x.
– dmc(x): the domain of variable x changes, that is D′(x) ⊂ D(x).

Clearly the events overlap. Whenever a fix (x) event occurs then a lbc(x) event,
a ubc(x) event, or both events must also occur. If any of the first three events
occur then a dmc(x) event occurs. These events satisfy the following property.

Definition 1. An event φ is a change in domain defined by an event condition

φ(D, D′) which states that event φ occurs when the domain changes from D to

D′ ⊑ D. The event condition must satisfy the following property

φ(D, D′′) = φ(D, D′) ∨ φ(D′, D′′)

where D′′ ⊑ D′ ⊑ D. So an event occurs on a change from D to D′′ iff it occurs

in either the change from D to D′ or from D′ to D′′.

Given a domain D and a stronger domain D′ ⊑ D, then events(D, D′)
is the set of events φ where φ(D, D′). Suppose D′′ ⊑ D′ ⊑ D, then clearly

events(D, D′′) = events(D, D′) ∪ events(D′, D′′).

Most integer propagation solvers use the events defined above, although some
systems collapse ubc(x) and lbc(x) into a single event (for example, SICStus [10]
and ILOG Solver [9]). Choco [11] maintains an event queue and interleaves prop-
agator execution with events causing more propagators to be added to the queue.

Static Event Sets. Re-execution of certain propagators can be avoided since they
require certain events to generate new information.

Definition 2. A propagator f is dependent on a set of events es(f) iff (a) for

all domains D if f(D) 6= f(f(D)) then events(D, f(D)) ∩ es(f) 6= ∅, and (b)
for all domains D and D′ where f(D) = D, D′ ⊑ D and f(D′) 6= D′ then

events(D, D′) ∩ es(f) 6= ∅.

The definition captures the following. If f is not at a fixpoint then one of
the events in its event set occurs. If f is at a fixpoint D then any change to a
domain which is not a fixpoint D′ involves an occurrence of one of the events in
its set. Note that for idempotent propagators the case (a) never occurs.

For convenience later we will store the event set chosen for a propagator f
in an array evset [f] = es(f).

Clearly if we keep track of the events since the last invocation of a propagator,
we do not need to apply a propagator if it is not dependent on any of these events.

Example 5. An event set for fA is {ubc(x2)}. An event set for fB is
{lbc(x1)}. An event set for fC is {dmc(x1), dmc(x2)}. An event set for fG is
{lbc(x1), ubc(x1), lbc(x2), ubc(x2)}. This is easy to see from the definitions of
these propagators. If they use infD x then lbc(x) is in the event set, similarly if
they use supD x then ubc(x) is in the event set. If they use the entire domain
D(x) then dmc(x) is in the event set.

Indexical propagation solvers [17, 5, 4] are based on such reasoning. They
define propagators in the form f(D)(x) = D(x) ∩ e(D) where e is an indexical
expression. The event set for such propagators is automatically defined by the
domain access terms that occur in the expression e.

Using events we can define a much more accurate version of new that only
adds propagators for which one of the events in its event set has occurred.

newevents(f, F, D, D′) = {f ′ ∈ F | evset [f ′] ∩ events(D, D′) 6= ∅} − idem(f, D)

This version of new (without dynamic idempotence) roughly corresponds with
what most constraint propagation systems currently implement.

Dynamic Events Sets. Events help to improve the efficiency of a propagation-
based solver. Just as we can improve the use of idempotence by examining the
dynamic case, we can also consider dynamically updating event sets as more
information is known about the variables in the propagator.

Definition 3. A propagator f is dependent on a set of events es(f, D) in the
context of domain D iff for all domains D0 ⊑ D if f(D0) 6= f(f(D0)) then

events(D0, f(D0)) ∩ es(f) 6= ∅, and for domains D0 and D1 where D0 ⊑ D,

f(D0) = D0, D1 ⊑ D0 and f(D1) 6= D1 then events(D0, D1) ∩ es(f) 6= ∅.

Clearly given this definition es(f, D) is monotonically decreasing with D.
The simplest kind of event reduction occurs by entailment.

Definition 4. A propagator f is entailed for domain D, if for each domain

D′ ⊑ D we have f(D′) = D′.

An entailed propagator makes no future contribution. If f is entailed by D
then es(f, D) = ∅ and f is never re-applied. Most current constraint propagation
systems take into account entailment.

Example 6. Consider the propagator fA and the domain D with D(x1) = [1 .. 3]
and D(x2) = [3 .. 7]. Then the constraint holds for all D′ ⊑ D and es(f, D) = ∅.

Changing event sets can occur in cases other than entailment.

Example 7. Consider the propagator fH for x0 = min(x1, x2) defined by

fH(D)(x0) = D(x0) ∩ [min(infD x1, infD x2) .. min(supD x1, supD x2)]
fH(D)(xi) = D(xi) ∩ [infD x0 .. + ∞] i ∈ {1, 2}
fH(D)(x) = D(x) x 6∈ {x0, x1, x2}

The static event set es(fH) is {lbc(x0), lbc(x1), ubc(x1), lbc(x2), ubc(x2)}. Note
that this propagator is idempotent. But given domain D where D(x0) = [1 .. 3]
and D(x2) = [5 .. 7] we know that modifying the value of x2 will never cause
propagation. A minimal definition of es(fH , D) is {lbc(x0), lbc(x1), ubc(x1)}.

Another example is a propagator for the exactly constraint [18]: exactly m
out of the variables x1, . . . , xn are equal to a value k. As soon as one of the xi

becomes different from k, all events for xi can be ignored.
Using dynamic event sets we can refine our definition of new as follows.

newdevents(f, F, D, D′)
F ′ := {f ′ ∈ F | evset [f ′] ∩ events(D, D′)} − idem(f, D)
evset [f] := es(f, D′)
return F ′

Every time a propagator f is applied its event set is updated to take into account
newly available information.

A related idea is the “type reduction” of [16] where propagators are improved
as more knowledge on domains (here called types) becomes available. For exam-
ple, the implementation of x0 = x1 ×x2 will be replaced by a more efficient one,
when all elements in D(x1) and D(x2) are non-negative.

5 Which Propagator to Execute Next

We now address how to define which propagator f in the queue Q should execute
first, that is how to define the choose function.

The simplest policy is implemented as a FIFO queue of propagators. Propa-
gators are added to the queue, if they are not already present, and choose selects
the oldest propagator in the queue. The FIFO policy ensures fairness so that
computation is not dominated by a single group of propagators, while possibly
not discovering failure (a false domain) from other propagators quickly.

5.1 Priorities

Static Priorities. A statically prioritized queue associates with each propagator
a fixed priority, we will assume an integer in the range [1 .. k]. In effect the queue

Q is split into k queues, Q[1], . . .Q[k] where each Q[i] is a FIFO queue for the
propagators with priority i. Selection always chooses the oldest propagator in
the lowest numbered queue Q[i] which is non-empty. Static prioritization allows
to ensure that quick propagators are executed before slow propagators.

Example 8. We will assume 7 static priorities, and give names to the inte-
ger priorities as follows: UNARY=1 BINARY=2, TERNARY=3 LINEAR=4,
QUADRATIC=5, CUBIC=6, and VERYSLOW=7.

For example the propagator fI for x1 ≤ 4 defined by fI(D)(x1) = D(x1) ∩
[−∞ .. 4] and fI(D)(x) = D(x) when x 6= x1 might be given priority UNARY,
while fC and fG might be given priority BINARY. The domain propagator
defined by Régin [15] for the alldifferent constraint ∧n

i=1∧
n
j=i+1 xi 6= xj (with

complexity O(n2.5)) might be given priority QUADRATIC. The alldifferent

bounds propagator defined by Puget [14] (with complexity O(n log n)) might be
given priority LINEAR.

Another model for priorities in constraint propagation based on composition
operators is [6]. The model, however, runs all propagators of lower priority before
switching propagation back to propagators of higher priority.

Most systems have some form of static priorities, typically using two pri-
ority levels (for example, SICStus [10], Mozart [13]). The two levels are often
not entirely based on cost: in SICStus all indexicals have high priority and all
other lower priority. While ECLiPSe [19, 7] supports 12 priority levels, its finite
domain solver also uses only two priority levels where another level is used to
support constraint debugging. A similar, but more powerful approach is used by
Choco [11] using seven priority levels allowing both LIFO and FIFO traversal.

Prioritizing particular operations during constraint propagation is important
in general. For (binary) arc consistency algorithms, ordering heuristics for the
operations performed during propagation can reduce the total number of oper-
ations required [20]. For interval narrowing, prioritizing constraints can avoid
slow convergence, see for example [12].

Dynamic Priorities. As evaluation proceeds, variables become fixed and propa-
gators can be replaced by more specialized versions. If a propagator is replaced
by a more specialized version, also its priority should change.

Example 9. Consider the propagator fJ for updating x1 in the constraint x1 =
x2 + x3 defined by

fJ(D)(x1) = D(x1) ∩ [infD(x2) + infD(x3) .. supD(x2) + supD(x3)]
fJ(D)(x) = D(x) x 6= x1

might have initial priority TERNARY. When the variable x2 becomes fixed to
d2 say, then the implementation for x1 can change to

fJ(D)(x1) = D(x1) ∩ [d2 + infD(x3) .. d2 + supD(x3)]

and the priority can change to BINARY.

Changing priorities is also relevant when a propagator with n > 3 variables
with priority LINEAR (or worse) reduces to a binary or ternary propagator.

5.2 Combining Propagation

Multiple Propagators. Once we have a prioritized propagation queue it makes
sense to have multiple propagators, say f1 and f2, in prop(c) where f1 is strictly
stronger than the f2 (f1(D) ⊑ f2(D)). Usually we should just run f1. But with
priorities it makes sense to run the weaker (and presumably faster) propagator
f2 with a higher priority than f1. This makes information available earlier to
other propagators. When the stronger propagator f1 is eventually run, it is able
to take advantage from propagation provided by other cheaper propagators.

Example 10. Consider the propagator fK(D) for the alldifferent constraint.

E := ∅
for i ∈ [1 .. n]

if (∃d.D(xi) = {d})
if (d ∈ E) return D⊥ else E := E ∪ {d}

for i ∈ [1 .. n]
if (|D(xi)| > 1) D(xi) := D(xi) − E

return D

The propagator does a linear number of set operations in each invocation and is
checking. It can be made idempotent by testing that no variable becomes fixed.

Another propagator for the same constraint is the domain propagator fL by
Régin [15]. We can use both propagators: fK with priority LINEAR, and fL

with priority QUADRATIC. This means that we will not invoke fL until we
have reached a fixpoint of fK and all LINEAR and higher priority propagators.

If we just use fL then we need to invoke the more expensive fL to obtain the
same domain changes as fK , and then fail.

Staged Propagators. Once we are willing to use multiple propagators for a single
constraint it becomes worth considering how to more efficiently manage them.
Instead of using two (or more) distinct propagators we can combine the several
propagators into a single propagator with more effective behavior.

We assume that a propagator has an internal state variable, called its stage.
When it is invoked, the stage determines what form of propagation applies.

Example 11. Consider the alldifferent constraint with implementations fK

and fL discussed in Example 10. We combine them into a staged propagator:

– On a fix(x) event, the propagator is moved to stage A, and placed in the
queue with priority LINEAR.

– On a dmc(x) event, unless the propagator is in stage A already, the propa-
gator is put in stage B, and placed in the queue with priority QUADRATIC.

– Execution in stage A uses fK , the propagator is put in stage B, and placed
in the queue with priority QUADRATIC, unless it is entailed.

– Execution in stage B uses fL, afterwards the propagator is removed from all
queues (stage NONE).

The behavior of the staged propagator is identical to the multiple propagators
for the sample execution of Example 10. In addition to the obvious advantage
of having a single staged propagator, the advantage comes from avoiding the
execution of fL when the constraint is entailed.

Example 12. Consider the unit coefficient linear equation Σn
i=1aixi = d con-

straint where |ai| = 1, 1 ≤ i ≤ n. We have two implementations, fM which im-
plements bounds consistency (considering real solutions, with linear complexity)
for the constraint, and fN which implements domain consistency (with exponen-
tial complexity).

We combine them into a staged propagator as follows:

– On a lbc(x) or ubc(x) event, the propagator is moved to stage A, and placed
in the queue with priority LINEAR.

– On a dmc(x) event, unless the propagator is in stage A already, the propaga-
tor is put in stage B, and is placed in the queue with priority VERYSLOW.

– Execution in stage A uses fM , afterwards the propagator is put in stage B,
and placed in the queue with priority VERYSLOW, unless each xi has a
range domain in which case it is removed from all queues (stage NONE).

– Execution in stage B uses fN , afterwards the propagator is removed from all
queues (stage NONE).

The staged propagator is advantageous since the “fast” propagator fM can
more often determine that its result D′ = fM (D) is also a fixpoint for fN .

Staged propagators can be used similarly for the bounds version of the
alldifferent constraint. Another area where staged propagators can be used is
constraint-based scheduling, where typically different propagation methods with
different strength and efficiency are available [2].

6 Evaluation

Evaluating dynamic idempotence, modifying event sets, or calculating priorities,
for example, might take more time than the time saved by reduced evaluation of
propagators. Hence it is important to experimentally verify the benefits of these
improvements to propagation solvers.

All experiments use Gecode, a C++-based constraint programming library
currently under development.1 Gecode is a successor to the constraint program-
ming support in Mozart [13]. Its current performance is considerably better than
Mozart. All examples have been run on a Dell Laptop with a 1.5 GHz Pentium M
CPU and 512 MB main memory running Windows XP. Runtimes are the average
of 25 runs with a coefficient of deviation less than 2.5% for all benchmarks.

Table 1 gives the number of propagation steps and Table 2 the runtime for
the different fixpoint reasoning approaches. Propagation steps and runtimes are
given as absolute values for the base solver (input) and relative to the base solver
for all other solvers.
1 The library is available upon request from the first author.

Table 1. Propagation steps for different fixpoint reasoning.

Benchmark input sidem didem events devents

steps relative %

cars 12 018 100.0 100.0 99.7 99.7

golomb-10-d 7 210 956 79.5 79.5 77.3 77.3

partition 147 739 81.7 81.7 81.2 81.2

photo 480 778 99.3 96.8 73.4 73.4

queens-100 505 670 100.0 100.0 3.2 3.2

alpha 262 499 95.7 94.4 73.0 73.0

golomb-10-b 7 159 721 79.0 79.3 77.1 77.1

knights-16 170 376 94.3 129.9 43.7 43.7

queens-100-a 885 100.0 87.7 58.3 58.3

m-seq-500 116 451 100.0 99.9 100.0 56.0

minsort 55 638 81.1 81.1 84.7 54.5

Fixpoint Reasoning. The examples used are standard benchmarks but minsort
which sorts 100 numbers by using 100 min constraints involving 100 variables
each together with binary linear inequalities. A -d (resp. -b) at the end of the
name means that domain (resp. bounds) propagation is used for all occurring
alldifferent and linear equation constraints. queens-100-a uses three naive
(as in Example 10) alldifferent-propagators, while queens-100 uses quadrat-
ically many binary disequality propagators. For clarity, the examples have been
run without using priorities and without multiple or staged propagators.

Table 2. Runtime for different fixpoint reasoning.

Benchmark input sidem didem events devents

milliseconds relative %

cars 7.72 100.4 100.4 100.2 101.3

golomb-10-d 10 107.72 99.9 99.8 102.4 102.4

partition 136.04 90.3 90.4 90.9 90.8

photo 200.69 99.0 98.4 93.9 94.0

queens-100 139.04 102.5 102.6 74.2 72.7

alpha 179.98 99.0 99.4 90.1 90.4

golomb-10-b 6 897.52 104.3 100.7 102.3 102.5

knights-16 313.53 99.5 101.4 98.0 98.1

queens-100-a 6.97 99.7 101.0 101.6 101.6

m-seq-500 634.51 101.9 99.7 101.8 28.1

minsort 142.08 97.3 97.4 98.7 55.0

The benchmarks show that static idempotence (sidem) reduces the num-
ber of propagation steps, in particular for examples using domain-consistent
alldifferent propagators (golomb-10-d, ortho-latin-5). This can also be
true for cheap propagators (minsort). However, the effect on runtime is
less noticeable (one reason is that useless execution of a domain-consistent
alldifferent propagator is cheap due to its incrementality).

Benchmarks that profit from events are in particular those with propagators
that depend on fix(x) events (such as the disequality propagators in queens-100

and reified propagators in photo and knights).
The second group (separate box in the tables) of examples use propagators

that can take advantage of dynamic idempotence (didem). Dynamic idempo-
tence appears to be not beneficial, while it can both increase (knights-16) and
decrease (queens-100-a) propagation steps, the runtime shows no improvement.

The third group of examples stress the importance of using dynamic event
sets. For both examples, where minsort uses min propagators as described in
Example 7 and m-seq-500 uses exactly propagators, the propagation steps re-
duce by almost a factor of two with a considerable reduction in runtime.

Table 3. Propagation steps for different priority and multiple propagator approaches.

no priority static priority dynamic priority
Benchmark none multi stage none multi stage none multi stage

steps relative %

alpha 190 042 100.0 100.0 100.9 100.9 100.9 54.2 54.2 54.2

cars 11 981 100.0 100.0 102.9 102.9 102.9 72.1 72.1 72.1

knights-16 134 727 100.0 100.0 45.8 45.8 45.8 45.8 45.8 45.8

m-seq-500 65 227 100.2 100.2 68.3 68.3 68.3 94.6 94.6 94.6

photo 352 897 100.0 100.0 89.1 89.1 89.2 90.9 90.9 90.9

color-1-d 4 117 534 148.5 102.4 98.7 125.4 101.6 108.9 157.6 112.7

color-2-d 4 705 953 143.9 102.6 102.9 133.1 105.2 116.0 160.9 120.0

donald-b 340 120.9 105.3 100.0 109.1 105.3 100.0 109.1 105.3

donald-d 34 197.1 105.9 108.8 217.6 214.7 108.8 217.6 217.6

golomb-10-b 5 520 302 260.1 114.2 132.5 140.4 140.4 132.5 140.4 140.4

golomb-10-d 5 571 319 101.0 113.4 130.7 138.4 138.4 130.7 138.4 138.4

ortho-latin-5-d 547 872 140.3 108.4 143.8 94.4 139.4 146.9 104.0 137.4

partition-d 119 893 104.7 101.6 88.5 89.4 88.4 84.5 85.3 84.5

square-5-b 71 609 105.1 108.3 129.5 133.8 133.8 106.7 110.9 110.9

square-5-d 56 632 158.5 111.4 125.1 166.6 211.1 116.7 144.1 208.4

Priorities. Table 3 shows the number of propagation steps required to solve
each benchmark, relative to the base solver. Table 4 shows the relative execu-
tion times. Important additional benchmarks are color-1 and color-2 imple-
menting graph coloring on large graphs (50 nodes) with large cliques (for each
clique a domain-consistent alldifferent propagator is used). The first group
of benchmarks (the upper box in the tables) does not use multiple or staged
propagators. The second group uses multiple and staged propagators (bounds-
consistent alldifferent for the -b variants, domain-consistent alldifferent
and linear equalities for the -d variants).

The addition of static or dynamic priorities can substantially decrease the
number of propagations required. It can, more rarely, also increase the number
of propagations required. Once we examine timing we see that dynamic priori-

Table 4. Runtime for different priority and multiple propagator approaches.

No priority Static priority Dynamic priority
Benchmark none multi stage none multi stage none multi stage

millisecs relative %

alpha 165.04 99.7 100.2 95.9 95.8 96.5 71.8 71.7 71.6

cars 7.66 99.9 100.0 104.5 104.8 104.7 86.6 86.6 86.1

knights-16 306.48 99.9 100.0 97.3 97.4 97.4 97.4 97.4 97.5

m-seq-500 175.66 99.9 99.0 113.2 114.0 114.1 108.0 107.3 108.8

photo 188.35 99.5 100.4 96.8 97.7 97.7 98.3 98.9 98.9

color-1-d 10 137.76 116.6 76.9 95.9 103.0 76.6 104.6 123.3 83.2

color-2-d 12 036.52 108.3 80.0 99.4 99.9 79.1 107.5 117.4 89.1

donald-b 0.87 101.5 85.5 101.2 92.2 87.8 101.7 91.6 87.8

donald-d 46.80 94.0 96.3 93.6 95.5 90.8 96.5 91.2 96.3

golomb-10-b 7 022.12 256.2 82.0 53.1 50.5 50.9 52.9 50.8 51.1

golomb-10-d 10 281.96 101.9 84.7 51.8 50.5 50.1 51.8 50.9 50.2

ortho-latin-5-d 2 075.58 104.1 92.2 125.5 63.8 58.1 124.8 70.1 65.3

partition-d 123.46 103.7 96.9 80.6 79.2 78.2 78.5 77.4 76.1

square-5-b 143.64 102.5 82.6 82.0 78.4 77.2 78.6 75.2 73.5

square-5-d 2 830.28 83.9 99.6 120.5 54.0 46.4 112.2 54.0 51.2

ties are slightly advantageous over static priorities in most cases since they run
cheaper propagators.

The addition of multiple or staged propagators unsurprisingly increases the
number of propagations required, since we are increasing the number of prop-
agators in the model, occasionally quite badly (for example, square-5-d). For
large examples, both approaches offer considerable faster runtimes, where staged
propagators are unsurprisingly always better than using multiple propagators. It
is important to note that staged propagation is always best when using priorities.

7 Conclusion and Future Work

We have given a formal definition of propagation systems including idempotence,
events, and priorities used in current propagation systems and have evaluated
their impact. We have introduced dynamically changing event sets which are
shown to improve efficiency considerably. The paper has introduced multiple
and staged propagators which are shown to be an important optimization in
particular for improving the efficiency of costly global constraints.

While the improvements to an engine of a propagation based constraint solver
have been discussed for integer constraints, the techniques readily carry over to
arbitrary constraint domains such as finite sets.

A rather obvious way to further speed up constraint propagation is to con-
sider not only cost but also estimated impact for a propagator. However, while
computing cost is straightforward it is currently not clear to us how to accurately
predict propagation impact.

References

1. K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
2. P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based Scheduling. Kluwer

Academic Publishers, 2001.
3. N. Beldiceanu, W. Harvey, M. Henz, F. Laburthe, E. Monfroy, T. Müller, L. Perron,

and C. Schulte. TRICS 2000. Technical Report TRA9/00, School of Computing,
National University of Singapore, Sept. 2000.

4. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In PLILP’97, volume 1292 of LNCS, pages 191–206. Springer-Verlag, 1997.

5. P. Codognet and D. Diaz. Compiling constraints in clp(FD). The Journal of Logic
Programming, 27(3):185–226, June 1996.

6. L. Granvilliers and E. Monfroy. Implementing constraint propagation by compo-
sition of reductions. In ICLP’03, volume 2916 of LNCS, pages 300–314. Springer-
Verlag, 2003.

7. W. Harvey. Personal communication, Apr. 2004.
8. W. Harvey and P. J. Stuckey. Constraint representation for propagation. In CP’98,

volume 1520 of LNCS, pages 235–249. Springer-Verlag, 1998.
9. ILOG S.A. ILOG Solver 5.0: Reference Manual. Gentilly, France, 2000.

10. Intelligent Systems Laboratory. SICStus Prolog user’s manual, 3.11.1. Technical
report, Swedish Institute of Computer Science, 2004.

11. F. Laburthe. CHOCO: implementing a CP kernel. In Beldiceanu et al. [3], pages
71–85.

12. O. Lhomme, A. Gotlieb, and M. Rueher. Dynamic optimization of interval nar-
rowing algorithms. The Journal of Logic Programming, 37(1–3):165–183, 1998.

13. T. Müller. The Mozart constraint extensions reference, 1999. Available from
www.mozart-oz.org.

14. J.-F. Puget. A fast algorithm for the bound consistency of alldiff constraints. In
Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98),
pages 359–366, Madison, WI, USA, July 1998. AAAI Press/The MIT Press.

15. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceed-
ings of the Twelfth National Conference on Artificial Intelligence, volume 1, pages
362–367, Seattle, WA, USA, 1994. AAAI Press.

16. P. Savéant. Constraint reduction at the type level. In Beldiceanu et al. [3], pages
16–29.

17. P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation and
evaluation of the constraint language cc(FD). Journal of Logic Programming, 37(1–
3):139–164, 1998.

18. P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint satisfaction using
constraint logic programming. Artificial Intelligence, 58:113–159, 1992.

19. M. Wallace, S. Novello, and J. Schimpf. Eclipse: A platform for constraint logic
programming. Technical report, IC-Parc, Imperial College, London, UK, 1997.

20. R. J. Wallace and E. C. Freuder. Ordering heuristics for arc consistency algo-
rithms. In Ninth Canadian Conference on Artificial Intelligence, pages 163–169,
Vancouver, Canada, 1992.

