Dynamic Analysis of Bounds versus Domain Propagation

Christian Schulte ${ }^{1}$ and Peter J. Stuckey ${ }^{2}$
${ }^{1}$ ICT, KTH - Royal Institute of Technology, Sweden, cschulte@kth. se
${ }^{2}$ National ICT Australia, Victoria Laboratory, Department of Computer Science and Software Engineering, University of Melbourne, Australia, pjs@cs.mu.oz.au

Abstract

Constraint propagation solvers interleave propagation (removing impossible values from variable domains) with search. Previously, Schulte and Stuckey introduced the use of static analysis to determine where in a constraint program domain propagators can be replaced by more efficient bounds propagators and still ensure that the same search space is traversed. This paper introduces a dynamic yet considerably simpler approach to uncover the same information. The information is obtained by a linear time traversal of an analysis graph that straightforwardly reflects the properties of propagators implementing constraints. Experiments confirm that the simple dynamic method is efficient and that it can be used interleaved with search, taking advantage of the simplification of the constraint graph that arises from search.

1 Introduction

In building a finite domain constraint programming solution to a combinatorial problem a tradeoff arises in the choice of propagation that is used for each constraint: stronger propagation methods are more expensive to execute but may detect failure earlier; weaker propagation methods are (generally) cheaper to execute but may (exponentially) increase the search space explored to find an answer. In this paper we investigate the possibility of dynamically analysing finite domain constraint problems and determining whether the propagation methods used for some constraints could be replaced by simpler, and more efficient alternatives without increasing the size of the search space.

Example 1. Consider the following constraints where x_{1}, \ldots, x_{4} range over integer values -3 to 3 (the constraint graph is shown in Fig. 1):

$$
x_{1}=\left|x_{2}\right|, \quad x_{2} \neq x_{3}, \quad 2 x_{3}+3 x_{4}=3, \quad x_{4} \geq x_{1}
$$

Each constraint could be implemented using domain propagation or bounds propagation. If each constraint uses domain propagation we have stronger information, and the search space explored in order to find all solutions for the problem will be no larger than if we used bounds propagation. The question we ask is: can we get the same search space with bounds propagation?

Fig. 1. Binary constraint graph for $x_{1}=\left|x_{2}\right|, x_{2} \neq x_{3}, 2 x_{3}+3 x_{4}=3, x_{4} \geq x_{1}$

Domain propagation on $x_{4} \geq x_{1}$ is equivalent to bounds propagation since the constraint only places upper and lower bounds on its variables. This is not the case for the remaining constraints: If $x_{2}=2$ and $x_{3} \in[-3 . .3]$ then domain propagation on $x_{2} \neq x_{3}$ determines that $x_{3} \in\{-3,-2,-1,0,1,3\}$ whereas bounds propagation infers nothing. Similarly if $x_{1} \in\{0,2,3\}$ and $x_{2} \in[-3 . .3]$ then domain propagation on $x_{1}=\left|x_{2}\right|$ determines that $x_{2} \in\{-3,-2,0,2,3\}$ but bounds propagation infers nothing. From the initial set of values domain propagation determines that $x_{3} \in\{-3,0,3\}$ and $x_{4} \in\{-1,1,3\}$ while bounds propagation determines that $x_{3} \in[-3 . .3]$ and $x_{4} \in[-1 . .3]$.

Suppose that we use a labelling strategy that either assigns a variable to its lower bound, or constrains it to be greater than its lower bound. Then none of the constraints added during search creates holes in the domains and depends only on the variable bounds. This is in contrast to a strategy that assigns a variable to its middle domain value, or excludes its middle domain value.

Domain propagation and bounds propagation differs if changing the bounds of some variable (by search) causes change in the bounds of some variable by domain propagation which is not found by bounds propagation.

Suppose search sets $x_{3}=0$, then bounds and domain propagation of $2 x_{3}+$ $3 x_{4}=3$ sets $x_{4}=1$. Bounds (and domain, as it is identical) propagation of $x_{4} \geq x_{1}$ forces $x_{1} \in[-3 . .0]$. Bounds and domain propagation on $x_{1}=\left|x_{2}\right|$ forces $x_{2} \in[-1 . .1]$. Bounds propagation on $x_{2} \neq x_{3}$ makes no changes, resulting in a fixpoint for bounds propagation. Domain propagation on $x_{2} \neq x_{3}$ makes $x_{2} \in\{-1,1\}$. Domain propagation on $x_{1}=\left|x_{2}\right|$ then forces $x_{1}=1$. The resulting bounds for x_{1} have changed, hence future search is affected.

But we do not need to use domain propagation for all constraints. Domain propagation on $x_{2} \neq x_{3}$ and $x_{1}=\left|x_{2}\right|$ is vital, as the above discussion shows. Domain propagation on $2 x_{2}+3 x_{3}=3$ is not required. As discussed above, the bounds of x_{2} and x_{3} after domain or bounds propagation are identical, and indeed we can prove this is always the case. Neither of the other constraints on x_{2} and x_{3} can propagate information from holes in their domains, hence the resulting propagation will be the same.

Previously [1] we introduced a static analysis of a finite domain CLP program that was able to determine when to replace domain propagators by bounds propagators without increasing search space. This paper provides a dynamic linear time analysis of the propagation graph that determines whether domain propagators can be replaced by bounds propagators without increasing search space. The approach simplifies and generalizes the previous approach.

Example 2. Consider the constraints

$$
x_{1}=\left|x_{2}\right|, \quad x_{2} \neq x_{3}, \quad 2 x_{3}+3 x_{4}=x_{5}, \quad x_{4} \geq x_{1}, \quad x_{5} \neq x_{4}-1, \quad x_{5} \geq x_{2}
$$

where x_{1}, \ldots, x_{5} range over integers from -3 to 3 . Analysis using the method of [1] or this paper determines that no domain propagator can be replaced by a bounds propagator. But if search sets $x_{5}=3$ the constraints of Example 1 are obtained, since x_{5} is replaced by 3 in $2 x_{3}+3 x_{4}=x_{5}$, and the redundant constraints $x_{5} \neq x_{4}-1$ and $x_{5} \geq x_{2}$ are removed. A dynamic analysis can now detect that bounds propagation can be used for $2 x_{3}+3 x_{4}=3$.

The contributions of this paper are:

- A linear time analysis of the propagation graph that determines whether bounds propagators can be replaced by domain propagators without increasing search space.
- The analysis is dynamic, that is it can be run at any stage during the search. Since propagators become simpler as search proceeds this provides more scope for optimization than a static analysis before search begins.
- We show examples where our analysis detects search space equivalent replacements for both static and dynamic uses and show the possible performance benefits that arise.

2 Propagation-based Constraint Solving

This section defines our terminology for the basic components of a constraint propagation engine. In this paper we restrict ourselves to finite domain integer constraint solving. Almost all the discussion applies to other forms of finite domain constraint solving such as for sets and multisets.

Domains. A domain D is a complete mapping from a fixed (finite) set of variables \mathcal{V} to finite sets of integers. A false domain D is a domain with $D(x)=\emptyset$ for some $x \in \mathcal{V}$. A variable $x \in \mathcal{V}$ is fixed by a domain D, if $|D(x)|=1$. The intersection of domains D_{1} and D_{2}, denoted $D_{1} \sqcap D_{2}$, is defined by the domain $D(x)=D_{1}(x) \cap D_{2}(x)$ for all $x \in \mathcal{V}$. By $-\{x\}$ we denote the variable set $\mathcal{V}-\{x\}$.

A domain D_{1} is stronger than a domain D_{2}, written $D_{1} \sqsubseteq D_{2}$, if $D_{1}(x) \subseteq$ $D_{2}(x)$ for all $x \in \mathcal{V}$. A domain D_{1} is stronger than (equal to) a domain D_{2} w.r.t. variables V, denoted $D_{1} \sqsubseteq_{V} D_{2}$ (resp. $D_{1}=_{V} D_{2}$), if $D_{1}(x) \subseteq D_{2}(x)$ (resp. $\left.D_{1}(x)=D_{2}(x)\right)$ for all $x \in V$.

A range is a contiguous set of integers, we use range notation $[l . . u]$ to denote the range $\{d \in \mathbb{Z} \mid l \leq d \leq u\}$ when l and u are integers. A domain is a range domain if $D(x)$ is a range for all x. Let $D^{\prime}=\operatorname{range}(D)$ be the smallest range domain containing D, that is, the unique domain $D^{\prime}(x)=[\inf D(x) . . \sup D(x)]$ for all $x \in \mathcal{V}$. A domain D is bounds equivalent to a domain D^{\prime}, written $D \stackrel{B}{=} D^{\prime}$ iff range $(D)=\operatorname{range}\left(D^{\prime}\right)$.

Valuations and constraints. An integer valuation θ is a mapping of variables to integer values, written $\left\{x_{1} \mapsto d_{1}, \ldots, x_{n} \mapsto d_{n}\right\}$. We extend the valuation θ to map expressions and constraints involving the variables in the natural way.

Let vars be the function that returns the set of variables appearing in a valuation. We define a valuation θ to be an element of a domain D, written $\theta \in D$, if $\theta\left(x_{i}\right) \in D\left(x_{i}\right)$ for all $x_{i} \in \operatorname{vars}(\theta)$.

The infimum and supremum of an expression e with respect to a domain D

A constraint c over variables x_{1}, \ldots, x_{n} is a set of valuations θ such that $\operatorname{vars}(\theta)=\left\{x_{1}, \ldots, x_{n}\right\}$. We also define vars $(c)=\left\{x_{1}, \ldots, x_{n}\right\}$.

Propagators. We will implement a constraint c by a set of propagators prop (c) that map domains to domains. A propagator f is a monotonically decreasing function from domains to domains: $f(D) \sqsubseteq D$, and $f\left(D_{1}\right) \sqsubseteq f\left(D_{2}\right)$ whenever $D_{1} \sqsubseteq D_{2}$. For the purposes of this paper we also assume that propagators are idempotent, that is $f(f(D))=f(D)$ for all domains D. This assumption is just required for defining the edges in the analysis graph correctly, it is not important for the actual execution.

A propagator f is correct for a constraint c iff $\{\theta \mid \theta \in D\} \cap c=\{\theta \mid \theta \in$ $f(D)\} \cap c$ for all domains D. This restriction is very weak, for example the identity propagator is correct for all constraints.

The variables $\operatorname{vars}(f)$ of a propagator f are $\{x \in \mathcal{V} \mid \exists D . f(D)(x) \neq D(x)\} \cup$ $\left\{x \in \mathcal{V} \mid \exists D_{1}, D_{2} . D_{1}={ }_{-\{x\}} D_{2}, f\left(D_{1}\right) \neq{ }_{-\{x\}} f\left(D_{2}\right)\right\}$. The set includes the variables that can change as a result of applying f, and the variables that can modify the result of f.

Example 3. For the constraint $c \equiv x_{1} \leq x_{2}+1$ the function f_{1} defined by $f_{1}(D)\left(x_{1}\right)=\left\{d \in D\left(x_{1}\right) \mid d \leq \sup _{D} x_{2}+1\right\}$ and $f(D)(v)=D(v), v \neq x_{1}$ is a correct propagator for c. Its variables are x_{1} whose domain can be modified by f_{1} (the first case of the definition above) and x_{2} which can cause the modification of the domain of x_{1} (the second case of the definition above). So $\operatorname{vars}\left(f_{1}\right)=$ $\left\{x_{1}, x_{2}\right\}$. Let $D_{1}\left(x_{1}\right)=\{1,5,8\}$ and $D_{1}\left(x_{2}\right)=\{1,5\}$, then $f\left(D_{1}\right)=D_{2}$ where $D_{2}\left(x_{1}\right)=D_{2}\left(x_{2}\right)=\{1,5\}$. The propagator is idempotent.

A propagation solver $\operatorname{solv}(F, D)$ for a set of propagators F and an initial domain D finds the greatest mutual fixpoint of all the propagators $f \in F$. In other words, $\operatorname{solv}(F, D)$ returns a new domain defined by

$$
\operatorname{solv}(F, D)=\operatorname{gfp}(\lambda d . \operatorname{iter}(F, d))(D) \quad \operatorname{iter}(F, D)=\prod_{f \in F} f(D)
$$

where gfp denotes the greatest fixpoint w.r.t \sqsubseteq lifted to functions.
Domain and bounds propagators. A consistency notion C gives a condition on domains with respect to constraints. A set of propagators F maintains C consistency for a constraint c, if for a domain D where $f(D)=D, f \in F$ is always C consistent for c. Many propagators in practice are designed to maintain some form of consistency: usually domain or bounds.

The most prominent consistency technique is arc consistency [2], which ensures that for each binary constraint, every value in the domain of the first variable has a supporting value in the domain of the second variable that satisfies the constraint. Arc consistency can be naturally extended to domain consistency for constraints with more than two variables. A domain D is domain consistent for a constraint c if D is the least domain containing all solutions $\theta \in D$ of c. That is, there does not exist $D^{\prime} \sqsubset D$ such that $\theta \in D \wedge \theta \in c \rightarrow \theta \in D^{\prime}$.

Define the domain propagator $\operatorname{dom}(c)$, for a constraint c as

$$
\begin{array}{ll}
\operatorname{dom}(c)(D)(x)=\{\theta(x) \mid \theta \in D \wedge \theta \in c\} & \\
\text { where } x \in \operatorname{vars}(c) \\
\operatorname{dom}(c)(D)(x)=D(x) & \\
\text { otherwise }
\end{array}
$$

Bounds consistency relaxes the consistency requirement to apply only to the lower and upper bounds of each variable x. There are a number of different notions of bounds consistency [3], we give the two most common here.

A domain D is bounds (\mathbb{Z}) consistent for a constraint c if for each $x_{i} \in$ $\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{vars}(c), 1 \leq i \leq n$ and for each $d_{i} \in\left\{\inf _{D} x_{i}, \sup _{D} x_{i}\right\}$ there exist integers d_{j} with $\inf _{D} x_{j} \leq d_{j} \leq \sup _{D} x_{j}, 1 \leq j \leq n, j \neq i$ such that $\theta=\left\{x_{1} \mapsto d_{1}, \ldots, x_{n} \mapsto d_{n}\right\}$ is an integer solution of c.

A domain D is bounds (\mathbb{R}) consistent for a constraint c if for each $x_{i} \in$ $\left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{vars}(c), 1 \leq i \leq n$ and for each $d_{i} \in\left\{\inf _{D} x_{i}, \sup _{D} x_{i}\right\}$ there exist real numbers d_{j} with $\inf _{D} x_{j} \leq d_{j} \leq \sup _{D} x_{j}, 1 \leq j \leq n, j \neq i$ such that $\theta=\left\{x_{1} \mapsto d_{1}, \ldots, x_{n} \mapsto d_{n}\right\}$ is a real solution of c.

A propagator f is a bounds propagator if it only relies on bounds and creates new bounds

$$
\forall D . f(D)=\operatorname{range}(f(\operatorname{range}(D))) \sqcap D
$$

We can define bounds propagators for the two consistency notions above. A bounds (\mathbb{Z}) propagator, $\operatorname{zbnd}(c)$ for a constraint c ensures that $\operatorname{zbnd}(c)(D)$ is bounds (\mathbb{Z}) consistent with c, while a bounds (\mathbb{R}) propagator, $\operatorname{rbnd}(c)$ ensures bounds (\mathbb{R}) consistency.

3 An Abstraction of Propagation

The aim of this paper is to find where we can replace a propagator f by a bounds propagator f^{B} without changing the search space, under the assumption that

$$
\forall D . f(\operatorname{range}(D))) \stackrel{B}{=} f^{B}(D)
$$

That is, applied to range domains the propagators give the same bounds. Note that if $f=\operatorname{dom}(c)$ and $f^{B}=\operatorname{zbnd}(c)$ then this property holds. We will not attempt to replace domain propagators by bounds (\mathbb{R}) propagators since the property does not hold.

Example 4. Consider the constraint $c \equiv x=3 y+5 z$, and the range domain $D(x)=[2 . .7], D(y)=[0 . .2]$ and $D(z)=[-1 . .2]$, then $\operatorname{dom}(c)(D)(x)=$ $\{3,5,6\}$ while $\operatorname{rbnd}(c)(D)(x)=[2 . .7]$. The bounds are different.

In order to detect that we can replace domain propagators by bounds propagators, we build an analysis graph that shows how each propagator reacts to holes and creates holes in the domain of its variables. The analysis graph is in some sense an abstraction of the constraint (hyper)graph where an edge is an abstract propagator. Analysis of the graph corresponds to executing the abstract propagators to fixpoint, hence is an abstract propagation process.

The nodes of an analysis graph G are labelled by variables $v \in \mathcal{V}$, as well as the special nodes source \oplus and $\sin k \ominus$. The analysis graph G for a set of propagators F contains directed edges for each propagator f as follows:

- An edge $x \xrightarrow{f} y$ between two variables x and y labelled by a propagator f indicates that f can propagate holes in the domain of x to the domain of y. There is an edge $x \xrightarrow{f} y$ in G, iff there exist domains D, D^{\prime} and variables $S \subseteq \mathcal{V}$ with $D^{\prime}=_{V-S} D, D \stackrel{B}{=} D^{\prime}, D^{\prime}(x) \neq D(x)$, and $x \in S$ such that $f\left(D^{\prime}\right)(y) \neq f(D)(y) \cap D^{\prime}(y)$. That is, D^{\prime} differs from D only because of the removal of internal values for variables S including x.
- An edge $x \xrightarrow{f} \ominus$ between variable x and the sink indicates that by propagating f, holes in the domain of x can cause bounds changes on other variables. There is an edge $x \xrightarrow{f} \ominus$ in G, iff there exist domains D, D^{\prime} and variables $S \subseteq V$ with $D^{\prime}={ }_{V-S} D, D \stackrel{B}{=} D^{\prime}, D^{\prime}(x) \neq D(x)$, and $x \in S$ such that $f\left(D^{\prime}\right) \neq f(D)$.
- An edge $\oplus \stackrel{f}{\rightarrow} x$ between the source and variable x indicates that the propagator f can create holes in the domain of x from a range domain.
There is an edge $\oplus \xrightarrow{f} x$ in G, iff there exists a range domain D (that is, $D=\operatorname{range}(D))$ such that $f(D)(x) \neq \operatorname{range}(f(D))(x)$. That is, applying f to a range domain D can create a hole in the domain of x.

As an example, let us consider the edges in the analysis graph for some common domain propagators (a full list is given in Table 1):
$\operatorname{dom}(x=y+k)(x, y \in \mathcal{V}, k \in \mathbb{Z}):\{x \xrightarrow{f} y, y \xrightarrow{f} x\}$. Holes are propagated, but neither created nor converted to bounds.
$\operatorname{dom}(x \neq y) \quad(x, y \in \mathcal{V}):\{\oplus \xrightarrow{f} x, \oplus \xrightarrow{f} y\}$. Holes are not propagated, but created. $\operatorname{dom}(x=k \times y)(x, y \in \mathcal{V}, k \in \mathbb{Z}):\{x \xrightarrow{f} y, y \xrightarrow{f} x, \oplus \xrightarrow{f} x\}$. Holes are propagated and holes for x are created (as only multiples of k are kept for x).
$\operatorname{dom}(x=|y|)(x, y \in \mathcal{V}):\{x \xrightarrow{f} y, y \xrightarrow{f} x, \oplus \xrightarrow{f} y, y \xrightarrow{f} \ominus\}$. Holes are transmitted, holes for y are created (by bounds of x), and holes in y can change bounds (for x).
$\operatorname{dom}\left(\sum_{i=1}^{n} x_{i} \leq k\right)\left(x_{i} \in \mathcal{V}, k \in \mathbb{Z}\right):\{ \}$. No holes are created or transmitted.
$\operatorname{dom}\left(\sum_{i=1}^{n} x_{i}=k\right)\left(x_{i} \in \mathcal{V}, k \in \mathbb{Z}\right):\left\{x_{i} \xrightarrow{f} x_{j} \mid 1 \leq i \neq j \leq n\right\}$. Holes are transmitted between each pair of variables.
$\operatorname{dom}(b \Leftrightarrow x=y) \quad(b, x, y \in \mathcal{V}, b$ Boolean $):\{x \xrightarrow{f} y, y \xrightarrow{f} x, \oplus \xrightarrow{f} x, \oplus \xrightarrow{f} y, x \xrightarrow{f}$ $\ominus, y \xrightarrow{f} \ominus\}$. Unsurprisingly the union of $x=y$ and $x \neq y$, except that holes

Fig. 2. Analysis graph for $x_{1}=\left|x_{2}\right|, x_{2} \neq x_{3}, 2 x_{3}+3 x_{4}=3, x_{4} \geq x_{1}$.
in x and y can create bounds changes in b. For example, $D(x)=\{1,3,5\}$ and $D(y)=\{2,4,6\}$ yields $b=0$.
$\operatorname{dom}\left(\right.$ alldifferent $\left.\left(x_{1}, \ldots, x_{n}\right)\right)\left(x_{i} \in \mathcal{V}\right):\left\{x_{i} \xrightarrow{f} x_{j} \mid 1 \leq i \neq j \leq n\right\} \cup\{\oplus \xrightarrow{f}$ $\left.x_{i}, x_{i} \xrightarrow{f} \ominus \mid 1 \leq i \leq n\right\}$. The propagator can do everything. But we should be careful, we do have a bounds (\mathbb{Z}) propagator that will give the same bounds, if no other propagator causes holes in the domains.
$\operatorname{dom}(x=\min (y, z))(x, y, z \in \mathbb{Z}):\{x \xrightarrow{f} y, y \xrightarrow{f} x, x \xrightarrow{f} z, z \xrightarrow{f} x, y \xrightarrow{f} \ominus, z \xrightarrow{f} \ominus\}$. There is no direct transmission from y to z, and no changes of ranges from holes. Notice that for $D(x)=\{1,3,4\}, D(y)=\{1,3,5\}, D(z)=\{2,4,6\}$ the constraint includes the solutions $(1,1,2),(3,3,4),(4,5,4),(3,3,6)$. But changing $D(z)$ to $\{2,6\}$ changes the upper bound of x.

Example 5. The analysis graph for the problem of Example 1 is shown in Figure 2, where $f=\operatorname{dom}\left(x_{1}=\left|x_{2}\right|\right), g=\operatorname{dom}\left(x_{2} \neq x_{3}\right), h=\operatorname{dom}\left(2 x_{3}+3 x_{4}=3\right)$ and $\operatorname{dom}\left(x_{4} \geq x_{1}\right)$ does not generate any edges. The reasoning in Example 1 is now explicitly viewable. The path from $\oplus \xrightarrow{g} x_{2} \xrightarrow{f} \ominus$ shows that holes created by g can cause bounds to change through f as illustrated in Example 1.

While h can create new holes (edges from \oplus to x_{3} and x_{4}), these holes can never change the bounds of a variable (reach \ominus). Hence h can be replaced by a bounds (\mathbb{Z}) propagator, without changing propagation.

In order to replace propagators we have to take into account the constraints that will be added by search. Edges are added corresponding to the behaviour of the search procedure. If search relies (f refers to the labelling):

- on bounds information to make decisions and only adds bounds constraints, no edges are added (e.g. standard labelling $\left(x_{1}, \ldots, x_{n}\right)$);
- on all domain information to make decisions but only add bounds constraints, $\left\{x_{i} \xrightarrow{f} \ominus \mid 1 \leq i \leq n\right\}$ are added (e.g. labellingff $\left(x_{1}, \ldots, x_{n}\right)$ for first-fail labelling);
- on all domain information and may add constraints that add holes to domains, $\left\{\oplus \xrightarrow{f} x_{i}, x_{i} \xrightarrow{f} \ominus \mid 1 \leq i \leq n\right\}$ are added (e.g. middle out labelling labellingmid $\left.\left(x_{1}, \ldots, x_{n}\right)\right)$.

Constraint	G	zbnd
$\begin{array}{\|l\|} \hline \sum_{i=1}^{n} a_{i} x_{i} \leq d \\ x_{0}=d \\ a_{1} x_{1}+a_{2} x_{2}=d,\left\|a_{i}\right\|=1 \\ a_{1} x_{1}+a_{2} x_{2}=d \\ \sum_{i=1}^{n} a_{i} x_{i}=d, n>2, \\ \sum_{i=1}^{n} a_{i} x_{i}=d, n>2,\left\|a_{i}\right\|=1 \\ \sum_{i=1}^{n} a_{i} x_{i} \neq d \end{array}$	$\begin{aligned} & \emptyset \\ & \left\{x_{1} \xrightarrow{f} x_{2}, x_{2} \xrightarrow{f} x_{1}\right\} \\ & \left\{x_{1} \xrightarrow{f} x_{2}, x_{2} \xrightarrow{\rightarrow} x_{1}, \oplus \xrightarrow{f} x_{1}, \oplus \xrightarrow{f} x_{2}\right\} \\ & \left\{\oplus, x_{1}, \ldots, x_{n}\right\} \xrightarrow{f}\left\{x_{1}, \ldots, x_{n}, \ominus\right\} \\ & \left\{x_{1}, \ldots, x_{n}\right\} \xrightarrow{f}\left\{x_{1}, \ldots, x_{n}\right\} \\ & \{\oplus\} \xrightarrow{f}\left\{x_{1}, \ldots, x_{n}\right\} \\ & \hline \end{aligned}$	ν ν ν ν ν ν ν
$\begin{aligned} & x_{0} \Leftrightarrow \sum_{i=1}^{n} a_{i} x_{i} \leq d \\ & x_{0} \Leftrightarrow \sum_{i=1}^{n} a_{i} x_{i}=d \end{aligned}$	$\begin{array}{\|l} \emptyset \\ \left\{\oplus, x_{1}, \ldots, x_{n}\right\} \xrightarrow{f}\left\{x_{1}, \ldots, x_{n}, \ominus\right\} \end{array}$	\checkmark
$\begin{aligned} & x_{1}=\neg x_{2} \\ & x_{1}=\left(x_{2} \wedge x_{3}\right) \\ & \hline \end{aligned}$		\checkmark
$\left\lvert\, \begin{aligned} & x_{1}=x_{2} \times x_{3} \\ & x_{1}=x_{2} \times x_{2} \wedge x_{2} \geq 0 \\ & x_{1}=x_{2} \times x_{2} \\ & x_{1}=\left\|x_{2}\right\| \\ & x_{0}=\min \left(x_{1}, \ldots, x_{n}\right) \\ & \operatorname{alldifferent}\left(x_{1}, \ldots, x_{n}\right) \\ & \operatorname{default}\left(x_{1}, \ldots, x_{n}\right) \end{aligned}\right.$	$\begin{aligned} & \left\{\oplus, x_{1}, x_{2}, x_{3}\right\} \xrightarrow{f}\left\{x_{1}, x_{2}, x_{3}, \ominus\right\} \\ & \left\{x_{1} \xrightarrow{f} x_{2}, x_{2} \xrightarrow[\rightarrow]{f} x_{1}, \oplus \xrightarrow{f} x_{1}\right\} \\ & \left\{x_{1} \xrightarrow{f} x_{2}, x_{2} \xrightarrow{f} x_{1}, \oplus \xrightarrow{f} x_{1}, x_{2} \xrightarrow{f} \ominus\right\} \\ & \left\{x_{1} \xrightarrow[\rightarrow]{\rightarrow} x_{2}, x_{2} \xrightarrow{\rightarrow} x_{1}, \oplus \xrightarrow{f} x_{2}, x_{2} \xrightarrow{f} \ominus\right\} \\ & \left\{x_{0}\right\} \xrightarrow{f}\left\{x_{1}, \ldots, x_{n}, \ominus\right\} \cup\left\{x_{1}, \ldots, x_{n}\right\} \xrightarrow{f}\left\{x_{0}\right\} \\ & \left\{\oplus, x_{1}, \ldots, x_{n}\right\} \xrightarrow{f}\left\{x_{1}, \ldots, x_{n}, \ominus\right\} \\ & \left\{\oplus, x_{1}, \ldots, x_{n}\right\} \xrightarrow{f}\left\{x_{1}, \ldots, x_{n}, \ominus\right\} \\ & \hline \end{aligned}$	
$\begin{aligned} & \hline \text { labelling }\left(x_{1}, \ldots, x_{n}\right) \\ & \text { labellingff }\left(x_{1}, \ldots, x_{n}\right) \\ & \text { labellingmid }\left(x_{1}, \ldots, x_{n}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \left\{x_{1}, \ldots, x_{n}\right\} \xrightarrow{f}\{\ominus\} \\ & \{\oplus\} \xrightarrow{f}\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{x_{1}, \ldots, x_{n}\right\} \xrightarrow{f}\{\ominus\} \end{aligned}$	

Table 1. The table lists analysis graph edges for primitive constraints and some labellings, where $N \xrightarrow{f} M$ with $N \subseteq\{\oplus\} \cup \mathcal{V}$ and $M \subseteq\{\ominus\} \cup \mathcal{V}$ denotes the set $\{n \xrightarrow{f} m \mid n \in N, m \in M, n \neq m\}-\{\oplus \xrightarrow{f} \ominus\}$. The last column shows whether a bounds (\mathbb{Z}) propagator for the constraint is commonly available.

4 Main Result

A path from \oplus to \ominus is evidence of where bounds information can create holes in domains, and where holes then can change bounds. We must keep track of the holes in the domains in order to have accurate bounds information.

Theorem 1. Let G be the analysis graph for a set of propagators F. Let $B \subseteq F$ be the set of propagators such that G contains no paths from \oplus to \ominus labelled with two or more propagators. Then $F^{\prime}=\left\{f^{B} \mid f \in B\right\} \cup\{f \mid f \in F-B\}$ is such that $\operatorname{solv}\left(F, D_{0}\right) \stackrel{B}{=} \operatorname{solv}\left(F^{\prime}, D_{0}\right)$ for all range domains D_{0}.

Proof. The proof is by induction. Let $f_{1}, f_{2}, \ldots, f_{n}$ be the sequence of propagators applied in calculating $\operatorname{solv}\left(F, D_{0}\right)$. Let

$$
D_{1}=f_{1}\left(D_{0}\right), D_{2}=f_{2}\left(D_{1}\right), \ldots, D_{n}=f_{n}\left(D_{n-1}\right)=\operatorname{solv}\left(F, D_{0}\right)
$$

We let g_{i} be the corresponding propagator to f_{i} in F^{\prime}, that is $g_{i}=f_{i}$ if $f_{i} \in F-B$ and $g_{i}=f_{i}^{B}$ if $f_{i} \in B$. Define

$$
D_{0}^{\prime}=D_{0}, D_{1}^{\prime}=g_{1}\left(D_{0}^{\prime}\right), D_{2}^{\prime}=g_{2}\left(D_{1}^{\prime}\right), \ldots, D_{n}^{\prime}=g_{n}\left(D_{n-1}^{\prime}\right)
$$

be the analogous sequence of propagators in F^{\prime}. Note that since $\forall D^{\prime \prime} . f_{i}\left(D^{\prime \prime}\right) \sqsubseteq$ $g_{i}\left(D^{\prime \prime}\right)$ we have that $D_{i} \sqsubseteq D_{i}^{\prime}$. We show that $D_{i} \stackrel{B}{=} D_{i}^{\prime}$ for $0 \leq i \leq n$.

We show by induction: for each $0 \leq i \leq n$ that $D_{i} \stackrel{B}{=} D_{i}^{\prime}$, and for each $v \in \mathcal{V}$ where $D_{i}(v)$ is not a range then there is a path from \oplus to v in the analysis graph.

Clearly the induction hypothesis holds for $D_{0}=D_{0}^{\prime}$. Assume the hypothesis holds for $0 \leq i<K$.

Suppose to the contrary that $D_{K} \neq D_{K}^{\prime}$. If $D_{K-1}={ }_{\operatorname{vars}\left(f_{K}\right)} \operatorname{range}\left(D_{K-1}\right)$ then $D_{K}=f_{K}\left(D_{K-1}\right)=f_{K}\left(\operatorname{range}\left(D_{K-1}\right)\right) \stackrel{B}{=} g_{K}\left(D_{K-1}\right) \stackrel{B}{=} g_{k}\left(D_{K-1}^{\prime}\right)=D_{K}^{\prime}$. Contradiction. Hence there exists $v \in \operatorname{vars}\left(f_{K}\right)$ such that $D_{K-1}(v)$ is not a range. By the induction hypothesis, there is a path from \oplus to v. And by definition $v \xrightarrow{f_{K}} \ominus$ is in the analysis graph G. The witnesses for D^{\prime}, D, S and x in the definition of $v \xrightarrow{f_{K}} \ominus$ are $D^{\prime}=D_{K-1}, D=D_{K-1}^{\prime}, S=\operatorname{vars}\left(f_{K}\right)$ and $x=v$. Hence all propagators modifying the interior of the domain of v are either f_{K} or are not in B. In the first case, since f_{K} is idempotent $f_{k}\left(D_{K-1}\right)=f_{K}\left(\operatorname{range}\left(D_{K-1}\right)\right.$ as no other propagators have changed the interior of the domains of $\operatorname{vars}\left(f_{K}\right)$. Thus $D_{K}=f_{K}\left(D_{K-1}\right)=f_{K}\left(\operatorname{range}\left(D_{K-1}\right)\right) \stackrel{B}{=} g_{K}\left(D_{K-1}^{\prime}\right)=D_{K}^{\prime}$. Contradiction. In the second case since all propagators acting on the interior of domains of $\operatorname{vars}\left(f_{K}\right)$ are in $F-B$ we have that $D_{K-1}={ }_{\operatorname{vars}\left(f_{K}\right)} D_{K-1}^{\prime}$, and $f_{K}=g_{K}$ hence $D_{K} \stackrel{B}{=} D_{K}^{\prime}$. Contradiction. As a result we have that $D_{K} \stackrel{B}{=} D_{K}^{\prime}$.

Suppose that $D_{K}(v)$ is not a range, and $D_{K}(v) \neq D_{K-1}(v)$
If $D_{K-1}=\operatorname{vars}\left(f_{K}\right)$ range $\left(D_{K-1}\right)$ then we have an edge $\oplus \xrightarrow{f_{K}} v$ in the analysis graph G. The witnesses D and x in the definition of $\oplus \xrightarrow{f_{K}} v$ are $D=$ $\operatorname{range}\left(D_{K-1}\right)$ and $x=v$, since $D=\operatorname{range}(D)$ and $f_{K}(D)(v)=f_{K}\left(D_{K-1}\right)(v) \neq$ range $\left(f_{K}(D)\right)(v)$.

Otherwise $D_{K-1} \not{\neq \operatorname{vars}\left(f_{K}\right)}$ range $\left(D_{K-1}\right)$, and so there exists $u \in \operatorname{vars}\left(f_{K}\right)$ where $D_{K-1}(u)$ is not a range. Then we have an edge $u \xrightarrow{f_{K}} v$ in the analysis graph G. The witnesses are $D^{\prime}=D_{K-1}$ and $D=\operatorname{range}\left(D_{K-1}\right), S=\operatorname{vars}\left(f_{K}\right)$, $x=u$ and $y=v$. By the induction hypothesis there is a path from \oplus to u in the analysis graph, and hence also to v.

As a result of the proof by induction we have that $D_{n} \stackrel{B}{=} D_{n}^{\prime}$. Then since D_{n} is a fixpoint for all f_{i}, and since g_{i} where they differ from f_{i} only depend on bounds, we have that D_{n} is a fixpoint for all g_{i}. Now $\operatorname{solv}\left(F^{\prime}, D_{0}\right)$ is the greatest fixpoint of F^{\prime} less than D_{0} and since D_{n} is such a fixpoint we have that $D_{n} \sqsubseteq \operatorname{solv}\left(F^{\prime}, D_{0}\right) \sqsubseteq D_{n}^{\prime}$ and hence $\operatorname{solv}\left(F, D_{0}\right)=D_{n} \stackrel{B}{=} \operatorname{solv}\left(F^{\prime}, D_{0}\right)$.

Note that the proof can be applied for non-range domains D, by adding artificial propagators f that remove the internal values of range (D) to give D. In effect we add edges $\oplus \xrightarrow{f} v$ for each v where $D(v) \neq \operatorname{range}(D)(v)$.

Importantly the theorem is based on propagators rather than constraints, hence we might have bounds propagators in the original set of propagators F we are trying to improve.

Example 6. Consider propagators for the SEND+MORE=MONEY problem: $f=\operatorname{dom}(\operatorname{alldifferent}(S, E, N, D, M, O, R, Y))$, a large linear bounds propagator $\operatorname{rbnd}(S E N D+M O R E=M O N E Y), \operatorname{dom}(S>0)$, and $\operatorname{dom}(M>0)$. The only edges are $\{x \xrightarrow{f} y \mid x, y \in\{S, E, N, D, M, O, R, Y\}, x \neq y\} \cup\{\oplus \xrightarrow{f}$ $x, x \xrightarrow{f} \ominus \mid x \in\{S, E, N, D, M, O, R, Y\}\}$. All propagators can be replaced by bounds propagators. If the long linear constraint used domain propagation the propagator for the alldifferent constraint could not be improved.

5 Finding which Propagators to Replace

In order to use Theorem 1 we need to determine which propagators appear on paths from \oplus to \ominus, involving at least two propagators. Rather than track (a possibly exponential number of) paths explicitly, we mark each variable x by the propagators on paths from \oplus to x, and by the propagators on paths from x to \ominus. We can check each edge for a propagator f to see whether it causes f to be on a path from \oplus to \ominus, involving at least two propagators.

The algorithm is shown in Figure 3. Assuming that munion $\left(m_{1}, m_{2}\right)$ is simply defined as $m_{1} \cup m_{2}$, the propagators on a path from \oplus to n are stored in source $[n]$, while $\operatorname{sink}[n]$ holds the propagators on a path from n to \ominus. The forward marking starts from all variables adjacent to \oplus and marks them, and then follows any edges. It checks if the variable has been marked previously with the current set and if so immediately returns. The backward marking works analogously. Finally the new propagator set F^{\prime} is constructed by checking each edge for propagator f, and if f takes part in a path from \oplus to \ominus involving at least two propagators, adding the original version f to F^{\prime}, otherwise adding the bounds version f^{B}.

Theorem 2. Let G be the analysis graph for F. Let B be the set of propagators $f \in F$ such that G contains no paths from \oplus to \ominus labelled with two or more propagators. Then analyse $(F)=\left\{f^{B} \mid f \in B\right\} \cup\{f \mid f \in F-B\}$ and the complexity of analyse (F) is $O(G)$.

Proof. (Sketch) Under the assumption that munion $\left(m_{1}, m_{2}\right)$ is simply defined as $m_{1} \cup m_{2}$ it is easy to see that variables source $[n]$ and $\operatorname{sink}[n]$ contain the set of propagators appearing in paths from \oplus to n and n to \ominus respectively. The domain-test \mid source $\left[n_{1}\right] \cup\{f\} \cup \operatorname{sink}\left[n_{2}\right] \mid>1$ correctly determines if f appears on a path from \oplus to \ominus involving at least two propagators.

```
munion \(\left(m_{1}, m_{2}\right)\)
    if \(\left(\left|m_{1} \cup m_{2}\right|>1\right)\) return \(F\) else return \(m_{1} \cup m_{2}\)
forward ( \(x, m\) )
    if ( \(m \subseteq\) source \([x]\) ) return
    source \([x] \leftarrow\) munion(source \([x], m\) )
    for \((x \xrightarrow{g} y \in G)\)
        forward \((y\), munion \((\) source \([x],\{g\}))\)
backward \((x, m)\)
    if ( \(m \subseteq \operatorname{sink}[x]\) ) return
    \(\operatorname{sink}[x] \leftarrow\) munion \((\operatorname{sink}[x], m)\)
    for \((y \xrightarrow{g} x \in G)\)
        backward \((y\), munion \((\operatorname{sink}[x],\{g\}))\)
domain \((f, G)\)
    return \(\exists n_{1} \xrightarrow{f} n_{2} \in G . \mid\) munion(source \(\left[n_{1}\right]\), munion \(\left.\left(\{f\}, \operatorname{sink}\left[n_{2}\right]\right)\right) \mid>1\)
analyse \((F)\)
    let \(G\) be the analysis graph for \(F\)
    for \((n \in \mathcal{V} \cup\{\oplus, \ominus\})\)
        source \([\mathrm{n}] \leftarrow \operatorname{sink}[\mathrm{n}] \leftarrow \emptyset\)
    for \((\oplus \xrightarrow{f} x \in G)\)
        forward \((x,\{f\})\)
    for \((x \xrightarrow{f} \ominus \in G)\)
        backward \((x,\{f\})\)
    \(\operatorname{return}\{f \mid f \in F \wedge \operatorname{domain}(f, G)\} \cup\left\{f^{B} \mid f \in F \wedge \neg \operatorname{domain}(f, G)\right\}\)
```

Fig. 3. Propagation analysis of the set of propagators F

Now consider the actual definition of munion $\left(m_{1}, m_{2}\right)$. This is in effect an abstraction of the original algorithm where all sets of cardinality greater than 1 are replaced by F. This does not change the result of the domain-test. For the test to fail, source $\left[n_{1}\right]$ and $\operatorname{sink}\left[n_{2}\right]$ are either $\{f\}$ or \emptyset, and these results are maintained by the actual definition of munion $\left(m_{1}, m_{2}\right)$. For the test to pass |source $\left[n_{1}\right] \cup\{f\} \cup$ $\operatorname{sink}\left[n_{2}\right] \mid>1$ and hence also \mid munion(source $\left[n_{1}\right]$, munion $\left.\left(\{f\}, \operatorname{sink}\left[n_{2}\right]\right)\right) \mid>1$. Hence the algorithm is correct.

The complexity result follows since forward can only update source[n] at most twice, after which source $[n]=F$ and all further calls immediately return. Hence the complexity of all calls to forward is $O(G)$. The same reasoning applies to backward and hence to analyse.

The astute reader will have noticed that, while analyse is linear in the size of the analysis graph, the analysis graph may be quadratically larger in size than the constraint graph, since some propagators add edges $\left\{x_{i} \xrightarrow{f} x_{j} \mid 1 \leq i \neq j \leq n\right\}$. This is fixed by replacing $\left\{x_{i} \xrightarrow{f} x_{j} \mid 1 \leq i \neq j \leq n\right\}$ by $\left\{x_{i} \xrightarrow{f} z, z \xrightarrow{f} x_{i} \mid 1 \leq\right.$
$i \leq n\}$ where z is a new variable. The resulting analysis graph is linear in the size of the constraint graph and gives the same results as the original graph.

Implementation. The algorithm in Figure 3 has been implemented in Gecode, but the decisions made in the implementation should readily carry over to other constraint programming systems.

While treatment of variables is generic in the analysis algorithm, the way how propagators are analysed depends on the particular propagator. Propagators are implemented as objects in Gecode. Propagators provide methods for propagation, creation, deletion, and so on. For analysis, we add an analyse method that can be implemented for each individual propagator: execution of the method adds the edges for the propagator to the analysis graph.

The values of source $[x]$ and $\operatorname{sink}[x]$ are directly stored in the variable x. Rather than storing a set of propagators F for source $[x]$ and $\operatorname{sink}[x]$, it is sufficient to use a pointer to a propagator f (if $F=\{f\}$) and two special marks $\langle 0\rangle$ $(|F|=0)$ and $\langle 2\rangle(|F| \geq 2)$. Then munion $\left(m_{1}, m_{2}\right)$ returns m as follows: if $m_{1}=m_{2}$ then $m=m_{1}$; if $m_{1}=\langle 2\rangle$ or $m_{2}=\langle 2\rangle$ then $m=\langle 2\rangle$; if $m_{1}=\langle 0\rangle$ then $m=m_{2}$; if $m_{2}=\langle 0\rangle$ then $m=m_{1}$.

6 Experimental Evaluation

All experiments use Gecode, a C++-based constraint programming library [4]. Gecode is one of the fastest constraint programming systems currently available, benchmarks comparing Gecode to other systems can be found on Gecode's webpage. The version used here corresponds to Gecode 2.1.1. Gecode has been compiled with the Microsoft Visual Studio Express Edition 2008 (32 bit).

All examples have been run on a Mac Pro with two 2.8 GHz Quad Core Xeon 5400 CPUs and 8192 MB main memory running 64 bit Windows Vista. Runtimes are the average of 25 runs with a coefficient of deviation less than 3%.

Table 2. Static analysis

Example	original	optimized		both
	time	time	analysis	nodes
is-20	127.800	$0.054(-100.0 \%)$	15.1\%	13
is-40	-	0.162 (-100.0\%)	17.5\%	28
vc-20	87.680	0.029 (-100.0\%)	27.8\%	4
vc-40	-	0.076 (-100.0\%)	36.9\%	6
photo-eq	890.400	$429.240 \quad(-51.8 \%)$	0.0\%	5472
photo-lq	714.480	$78.800 \quad(-89.0 \%)$	0.0\%	10350
money	0.020	0.017 (-18.0\%)	5.6\%	- 4
donald	21.722	$21.220 \quad(-2.3 \%)$	0.0\%	5788
magic-5	1324.880	1103.920 (-16.7\%)	0.0\%	89016

Static analysis. Table 2 shows the runtime (time, in milliseconds), which percentage of the runtime is spent on the analysis in the optimized case, and the number of nodes during search (as to be expected, the same for both). Examples with a - as entry have been stopped after a runtime of one hour. The examples are chosen to provide for a direct comparison with the results reported in [1], there also more information on the benchmarks can be found.

The examples is $-n$ (independent sets) and vc- n (vertex cover) for random graphs with n nodes are modeled in the natural way using Boolean variables. The constraints are all inequalities except the objective function which is defined using a large linear equation with unit coefficients (optimized by analysis). photo-* are simple placement problems and use reified constraints for expressing satisfaction of preferences with a Boolean variable. The total satisfaction then is computed by a large linear equation ranging over these Boolean variables. While photo-eq uses reified linear equations, photo-lq uses reified linear inequalities to express preferences. Analysis shows for photo-eq that bounds propagation can be used on the large linear equation. For photo-lq, bounds propagation can also be used for the single occurring alldifferent constraint. The well-known examples money (see Example 6), donald ($D O N A L D+G E R A L D=R O B E R T$), and magic square magic-5 use bounds propagation for linear equations with more than three variables. Analysis shows that bounds propagation can be used for the single alldifferent constraint in each example.

The analysis is run before evaluating solv for the first time (such that infeasible domain propagators could be optimized away). The benefit of the analysis clearly outweighs its cost (for already medium sized examples the cost is zero). This is true for the expensive (exponential) and often infeasible domain propagators for long linear equations (for example, is $-n$ and $\mathrm{vc}-n$) but also for feasible domain propagators such as alldifferent.

Dynamic analysis and analysis cost. In the following we evaluate a variation of the analysis in order to assess its cost and benefit. We assume that the feasibility of domain propagation is classified as follows. For a constraint c (or for a propagator f implementing c) a predicate feasible (c) holds, iff domain propagation is sufficiently efficient for c. For example, one could define feasible $\left(\sum_{i=1}^{n} a_{i} x_{i}=d\right)$ to hold iff $n \leq 3$, and feasible(alldifferent $\left(x_{1}, \ldots, x_{n}\right)$) to always hold.

Initially, all constraints are propagated by bounds propagators. Propagators might become feasible during search(e.g., some x_{i} in $\sum_{i=1}^{n} a_{i} x_{i}=d$ become fixed). A bounds propagator will be replaced by a domain propagator, if it is feasible and the analysis shows that domain propagation might be beneficial. Hence, we construct the analysis graph G as follows: if the propagator is a domain propagator, the edges are entered as before. If the propagator is a feasible bounds propagator for the constraint c, the edges for $\operatorname{dom}(c)$ are entered. After running the analysis phase, domain propagators are replaced by bounds propagators if possible as before. If domain (f, G) holds for a feasible bounds propagator f, it is replaced by a corresponding domain propagator.

By this, only bounds propagators that are feasible and can potentially improve propagation are replaced by domain propagators. Just using feasibility

Table 3. Dynamic analysis and analysis cost

	$n=1$		$n=5$		$n=10$		$n=25$			
	Example	nodes	time	nodes	time	nodes	time	nodes	time	nod
:---										

(a) analysis with optimization

alpha	-80.7%	-40.7%	-72.8%	-43.0%	-68.4%	-9.9%	-32.6%	-4.5%
money-c	$\pm 0.0 \%$	$+45.6 \%$	$\pm 0.0 \%$	$+11.0 \%$	$\pm 0.0 \%$	$+5.9 \%$	$\pm 0.0 \%$	$+3.5 \%$
donald-c	-7.5%	$+117.7 \%$	-6.5%	$+37.9 \%$	-2.8%	$+25.0 \%$	-0.9%	$+12.6 \%$
magic-4	-15.2%	$+485.3 \%$	-6.5%	$+314.0 \%$	-3.4%	$+209.1 \%$	-1.7%	$+120.5 \%$

(b) only analysis

alpha	$\pm 0.0 \%$	$+91.8 \%$	$\pm 0.0 \%$	$+20.8 \%$	$\pm 0.0 \%$	$+10.7 \%$	$\pm 0.0 \%$	$+5.1 \%$
money-c	$\pm 0.0 \%$	$+43.0 \%$	$\pm 0.0 \%$	$+10.6 \%$	$\pm 0.0 \%$	$+6.0 \%$	$\pm 0.0 \%$	$+2.5 \%$
donald-c	$\pm 0.0 \%$	$+99.8 \%$	$\pm 0.0 \%$	$+22.7 \%$	$\pm 0.0 \%$	$+12.7 \%$	$\pm 0.0 \%$	$+4.7 \%$
magic-4	$\pm 0.0 \%$	$+94.7 \%$	$\pm 0.0 \%$	$+20.8 \%$	$\pm 0.0 \%$	$+10.9 \%$	$\pm 0.0 \%$	$+5.3 \%$

alone would, in all benchmark examples discussed above, immediately replace the bounds propagator for alldifferent by a useless domain propagator. Note that as search proceeds, a bounds propagator for a constraint can be replaced by a domain propagator when becoming feasible, and later be replaced by a bounds propagator when the analysis finds that bounds propagation is sufficient.

Table 3 shows the runtime and the number of nodes during search relative to execution of the examples without running any analysis and using bounds propagators. The analysis is run every n-th time before solv is computed by the solver, where for (a) bounds and domain propagators are replaced, while for (b) the analysis results are ignored (measuring analysis cost). It is important that the analysis is run before solv is evaluated as the replacement of bounds by domain propagators might require re-evaluation of solv. The examples all use an alldifferent constraint and some linear equations (money-c and donald-c use several linear equations for a model using carries in the letter equation).

Clearly, running the analysis before every evaluation of solv is infeasible, however running it every 10 times reduces the overhead to around 10% : that means the analysis is efficient enough to be actually run dynamically. It may be that an incremental version of the analysis could reduce this overhead substantially. In cases where replacing bounds by domain propagators is useful as the search space shrinks, the additional cost of domain propagation might still be too high. There is at least some evidence (alpha) that dynamic analysis can be beneficial, and we have just scratched the surface of possibilities for automatic selection of propagation style.

7 Conclusion and Related Work

The original work on analysing when domain propagation could be replaced by bounds propagation [1] works in a completely different way. Propagators are classified as bounds-preserving: meaning that on range domains they always give range domains; and endpoint-relevant: meaning that the bounds resulting from
applying the propagator only depend on the bounds it is applied to. Bounds preserving propagators are propagators with no edges $\oplus \stackrel{f}{\rightarrow} x$, while endpointrelevant propagators are propagators with no edges $x \xrightarrow{f} \ominus$. Two analyses are undertaken to find (Boolean) bounds preservation and endpoint relevant descriptions for the context of each constraint. Each constraint is then given the appropriate propagator by examining its context. The algorithms used in the approach are $O(n m)$ where n is the size of the constraint graph and m is the number of constraints. The analysis is substantially more complicated to implement than the approach in this paper, and indeed has never been implemented. The approach of this paper is

- considerably simpler, easier to prove, and implemented;
- $O(n)$ where n is the size of the constraint graph; and
- more expressive, although this does not lead to more replacement of domain propagators by bounds propagators. An example is the description for $\operatorname{dom}\left(x_{1}=\left|x_{2}\right|\right)$ which in the new approach tracks the behaviour of x_{1} and x_{2} more accurately than is possible in the old approach.

As future work we will consider proving and implementing a stronger version of Theorem 1 where we let B be the set of all propagators where there is no path from \oplus to \ominus where adjacent edges have to be from different propagators.

Example 7. Consider the propagators $f=\operatorname{dom}\left(x_{1}=x_{2}\right), g=\operatorname{dom}\left(x_{2}=\left|x_{3}\right|\right)$, and $h=\operatorname{dom}\left(x_{3}=x_{4}\right)$, which generate the analysis graph $x_{1} \xrightarrow{f} x_{2}, x_{2} \xrightarrow{f} x_{1}$, $\oplus \xrightarrow{g} x_{2}, x_{2} \xrightarrow{g} x_{3}, x_{3} \xrightarrow{g} x_{2}, x_{3} \xrightarrow{g} \ominus, x_{3} \xrightarrow{h} x_{4}, x_{4} \xrightarrow{h} x_{3}$. The analysis detects that nothing can be a bounds propagator. But indeed all could be replaced because any holes generated by g are only fed back to itself, and hence cannot change bounds. There are no alternating paths from \oplus to \ominus.

Acknowledgements. Part of the work has been carried out while the first author has been a visiting researcher at the NICTA Victoria research laboratory, Melbourne, Australia. The authors thank Mikael Z. Lagerkvist, Guido Tack, and the anonymous reviewers for helpful comments.

References

1. Schulte, C., Stuckey, P.J.: When do bounds and domain propagation lead to the same search space? ACM Trans. Program. Lang. Syst. 27 (3) (May 2005) 388-425
2. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence $\mathbf{8}(1)$ (1977) 99-118
3. Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds consistency revisited. In: AI 2006: Advances in Artificial Intelligence. Volume 4304 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany (2006) 49-58
4. Gecode Team: Gecode: Generic constraint development environment (2006) Available from http://www.gecode.org.
