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Abstract

Constraint propagation solvers interleave propagation (removing
impossible values from variables domains) with search. Propaga-
tion is performed by executing propagators (removing values) im-
plementing constraints (defining impossible values). In order to
specify constraint problems with a propagation solver often many
new intermediate variables need to be introduced. Each variable
plays a role in calculating the value of some expression. But as
search proceeds not all of these expressions will be of interest any
longer, but the propagators implementing them will remain active.
In this paper we show how we can analyse the propagation graph
of the solver in linear time to determine intermediate variables that
can be removed without effecting the result. Experiments show that
applying this analysis can reduce the space and time requirements
for constraint propagation on example problems.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Constraint and logic lan-
guages; D.3.3 [Programming Languages]: Language Constructs
and Features—Constraints

General Terms Languages, Design, Experimentation

Keywords Constraint (logic) programming, constraint propaga-
tion, redundancy, analysis

1. Introduction

Finite domain propagation interleaved with search is a powerful
approach to solving combinatorial problems. Here, finite domain
refers to a finite set of values, typically a finite subset of the inte-
gers. The set of possible values for each variable in the problem
is stored in its domain. A constraint is implemented by a propaga-
tor which considers the domains of the variables in the constraint,
and removes values from the domain of a variable which could not
take part in any solution of the constraint. Propagators are repeat-
edly applied until no new values can be removed. Then a choice is
made, typically fixing a variable to one of the values in its domain,
and with this new information the propagation process is repeated.

Since “most” of the work of the finite domain propagation is
done near the leaves of the search tree, finite domain solvers take
some pains to simplify the problem they are tackling as search pro-
ceeds. This involves: removing fixed variables from propagators in-
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volving them, and eliminating redundant propagators (propagators
that will no longer remove any value from any variable). But there
is more that can be done. In this paper we examine how to elim-
inate variables and propagators during runtime that will not cause
any more useful propagation.

Example 1.1 (Disjunction) Consider placing squares so that they
do not overlap. Given two squares of dimensions w1 × h1 and
w2 × h2, placed with their left corner at (x1, y1) and (x2, y2)
respectively, then the non-overlap constraint is expressed as:

x1 + w1 ≤ x2 ∨ x2 + w2 ≤ x1 ∨
y1 + h1 ≤ y2 ∨ y2 + h2 ≤ y1

In a typical constraint programming system this would be ex-
pressed as a conjunction of reified constraints

∃b1.∃b2.∃b3.∃b4.
b1 ⇔ x1 + w1 ≤ x2 ∧ b2 ⇔ x2 + w2 ≤ x1 ∧
b3 ⇔ y1 + h1 ≤ y2 ∧ b4 ⇔ y2 + h2 ≤ y1 ∧
or(b1, b2, b3, b4)

where e.g. the reified constraint b1 ⇔ x1 + w1 ≤ x2 indicates that
b1 is true (1) if the constraint x1 + w1 ≤ x2 holds, and false (0) if
the negation x1 + w1 > x2 holds.

Imagine that some stage later in the search we have that h1 = 3,
y1 ∈ [0 .. 4] and y2 ∈ [8 .. 10]. Then the propagator b3 ⇔ y1 +
h1 ≤ y2 sets b3 = 1 since the right hand side constraint must hold.
The propagator then removes itself (it is now redundant and cannot
add more information). Now the propagator or(b1, b2, b3, b4) de-
tects it is redundant and removes itself. Assuming h2 ≥ 0 then the
propagator b4 ⇔ y2 + h2 ≤ y1 will set b4 = 0 and remove itself.
The other propagators will remain even though they cannot cause
failure or ever change the domains of any original variable x1, y1,
x2 or y2. 2

Modeling in finite domain propagation systems will rarely in-
volve building models where a variable occurs only once, except
when it is an output variable, and clearly we do not wish to elim-
inate these. But once constraints are found to be redundant it is
quite possible that such systems arise during search. One reason
that these cases occur reasonably frequently is that, in order to sim-
plify the construction of a finite domain solver, constraints are bro-
ken down into components. This introduces new variables that oc-
cur only twice: once for defining the value of an intermediate term,
and once to constrain it.

Example 1.2 (Decomposition) The constraint (x1 −x2)
2 +(y1 −

y2)
2 ≥ d requires the two points (x1, y1) and (x2, y2) to be at least

distance
√

d apart. This constraint is not directly available in most



finite domain solvers, instead it is decomposed into the system:

∃dxx.∃dx.∃dyy.∃dy.
dx = x1 − x2 ∧ dxx = dx × dx ∧
dy = y1 − y2 ∧ dyy = dy × dy ∧
dxx + dyy ≥ d

Imagine at some time the domains of the original variables are
x1 ∈ [0 .. 10], x2 ∈ [15 .. 30], y1 ∈ [0 .. 30], y2 ∈ [0 .. 30], and
d = 25. Then propagation will calculate the domains of the newly
introduced variables as dx ∈ [−30 .. − 5], dxx ∈ [25 .. 900],
dy ∈ [−30 .. 30], dyy ∈ [0 .. 900]. The inequality dxx + dyy ≥
d is redundant, and indeed the original constraint is redundant.
But every further change in the original variables will cause the
propagators for the new intermediate variables to be reexecuted for
no purpose. 2

Global constraints can also be implemented by decomposition,
and in this case we can possibly build large chains of introduced
variables that may not be useful for the lifetime of the global
constraint.

Example 1.3 (Lexicographic order) The constraint for the strict
lexicographic order (x1, . . . , xn) < (y1, . . . , yn) can be encoded
as lt(1, x, y) where:

lt(i, x, y) = false i > n
lt(i, x, y) = (xi < yi) ∨ (xi = yi ∧ lt(i + 1, x, y) otherwise

This is decomposed further to li ⇔ xi < yi, ei ⇔ xi = yi,
ti ⇔ ei ∧ lt(i + 1, q, y) and lt(i, x, y) ⇔ li ∨ ti.

Suppose lj becomes true (because we detect xj < yj holds).
Then by propagation lt(j, x, y) will be set true and the propagator
for lt(j, x, y) ⇔ lk∨tj will be removed as redundant. Now tj only
occurs in one propagator and can be eliminated, which then allows
the elimination of ej and lt(j + 1, x, y). In fact all propagators for
constraints with indices greater than j can be removed.

We can do the same if we determine that lj and ej are both false.
2

There are also special cases of variable elimination that arise
from optimization problems.

Example 1.4 (Linear inequalities) In a typical optimization prob-
lem, there is a variable representing the objective function, de-
fined by some constraint. For example, to minimize

Pn

i=1 aixi

we would define y =
Pn

i=1 aixi and minimize y. Now y only
occurs once in the propagation engine, but when a new solution
is found with value y = d a new constraint is imposed globally
that y ≤ d − 1. In forward computation no constraints will be
placed on y and indeed as soon as we have that all possible values
of

Pn

i=1 aixi are less than d the propagator is removable since no
other constraints will modify y (in forward computation).

In effect, we wish to treat the constraint like
Pn

i=1 aixi ≤ d−1,
although it is implemented using the variable y. 2

We present a runtime analysis to find such eliminable variables,
and remove the useless propagators attached to them. We will see
that this can lead to improved performance in terms of time and
space.

But there is a further use of the analysis. The analysis will visit
all the variables in the problem that may actually affect further
computation. If there are variables that are not traversed from the
search variables (variables that will be assigned during search),
then they will not be modified further by the search. Unless they
have no propagators remaining on them this indicates a modeling
error. We return to this point in Section 4.

The paper is organized as follows. In the next section we define
propagation-based constraint solving, and how it performs redun-
dancy elimination. In Section 3 we define existential redundancy
of propagators, and explain how it can be detected for common
propagators. In Section 4 we define an algorithm for runtime anal-
ysis of the propagation graph that detects variables and propagators
that can be safely removed without affecting future computation. In
Section 5 we discuss some of the issues that arise in implementing
the analysis in practice. In Section 6 we give experiments showing
the overhead and effectiveness of the analysis on example bench-
marks. In Section 7 we discuss related work, and finally conclude.

2. Propagation-based Constraint Solving

This section defines our terminology for the basic components of a
constraint propagation engine. In this paper we restrict ourselves to
finite domain integer constraint solving. Almost all the discussion
applies to other forms of finite domain constraint solving such as
for sets and multisets.

2.1 Propagation

Domains. A domain D is a complete mapping from a fixed (fi-
nite) set of variables V to finite sets of integers. A false domain D
is a domain with D(x) = ∅ for some x ∈ V . A variable x ∈ V
is fixed by a domain D, if |D(x)| = 1. The intersection of do-
mains D1 and D2, denoted D1 ⊓ D2, is defined by the domain
D(x) = D1(x) ∩ D2(x) for all x ∈ V .

A domain D1 is stronger than a domain D2, written D1 ⊑ D2,
if D1(x) ⊆ D2(x) for all x ∈ V . A domain D1 is stronger than
(equal to) a domain D2 w.r.t. variables V , denoted D1 ⊑V D2

(resp. D1 =V D2), if D1(x) ⊆ D2(x) (resp. D1(x) = D2(x))
for all x ∈ V . We use the notation −{x} to denote the variable set
V − {x}.

A range is a contiguous set of integers, we use range notation
[l .. u] to denote the range {d ∈ Z | l ≤ d ≤ u} when l and u are
integers. A domain is a range domain if D(x) is a range for all x ∈
V . Let D′ = range(D) be the smallest range domain containing
D, that is, the unique domain D′(x) = [inf D(x) .. sup D(x)] for
all x ∈ V .

We shall be interested in the notion of a starting domain, which
we denote Dstart. The starting domain gives the initial values pos-
sible for each variable. It allows us to restrict attention to domains
D such that D ⊑ Dstart.

Valuations and constraints. An integer valuation θ is a mapping
of variables to integer values, written {x1 7→ d1, . . . , xn 7→ dn}.
We extend the valuation θ to map expressions and constraints
involving the variables in the natural way.

Let vars be the function that returns the set of variables appear-
ing in a valuation. We define a valuation θ to be an element of a
domain D, written θ ∈ D, if θ(xi) ∈ D(xi) for all xi ∈ vars(θ).

The infimum and supremum of an expression e with respect to
a domain D are defined as infD e = inf{θ(e) | θ ∈ D} and
supD e = sup{θ(e) | θ ∈ D}.

We can map a valuation θ to a domain Dθ as follows

Dθ(x) =



{θ(x)} x ∈ vars(θ)
Dstart(x) otherwise

A constraint c over variables x1, . . . , xn is a set of valuations
θ such that vars(θ) = {x1, . . . , xn}. We also define vars(c) =
{x1, . . . , xn}.

Propagators. We will implement a constraint c by a set of prop-
agators prop(c) that map domains to domains. A propagator f
is a monotonically decreasing function from domains to domains:
f(D) ⊑ D, and f(D1) ⊑ f(D2) whenever D1 ⊑ D2.



A propagator f is correct for a constraint c iff for all domains
D

{θ | θ ∈ D} ∩ c = {θ | θ ∈ f(D)} ∩ c

This is a very weak restriction, for example the identity propagator
is correct for all constraints c.

A set of propagators F is checking for a constraint c, iff for
all valuations θ where vars(θ) = vars(c) the following holds:
f(Dθ) =vars(θ) Dθ for all f ∈ F , iff θ ∈ c. That is, for any
domain Dθ corresponding to a valuation on vars(c), f(Dθ) is a
fixpoint iff θ is a solution of c. We assume that prop(c) is a set of
propagators that is correct and checking for c.

The variables, vars(f), of a propagator f are defined as {x ∈
V | ∃D ⊑ Dstart, f(D)(x) 6= D(x)} ∪ {x ∈ V | ∃D1, D2 ⊑
Dstart, D1 =−{x} D2, f(D1) 6=−{x} f(D2)} The set includes
the variables that can change as a result of applying f , and the
variables that can modify the result of f .

To simplify presentation, we will use props(x) to denote the set
of propagators f with x ∈ vars(f).

Example 2.1 (Propagators) For the constraint c ≡ x1 ≤ x2 + 1
the function f1 defined by

f1(D)(x1) = {d ∈ D(x1) | d ≤ supD x2 + 1}
f1(D)(x) = D(x) x 6= x1

is a correct propagator for c.
Its variables are x1 whose domain can be modified by f1 (the

first part of the definition above) and x2 which can cause the
modification of the domain of x1 (the second part of the definition
above). So vars(f1) = {x1, x2}.

Let D1(x1) = {1, 5, 8} and D1(x2) = {1, 5}, then f(D1) =
D2 where D2(x1) = D2(x2) = {1, 5}.

The propagator f2 defined as

f2(D)(x2) = {d ∈ D(x2) | d ≥ infD x1 − 1}
f2(D)(x) = D(x) x 6= x2

is another correct propagator for c. Again, vars(f2) = {x1, x2}.
The set {f1, f2} is checking for c. The domain Dθ1

(x1) = {2}
and Dθ1

(x2) = {2} corresponding to the solution θ1 = {x1 7→
2, x2 7→ 2} of c is a fixpoint of both propagators. The non-solution
domain Dθ2

(x1) = {2} and Dθ2
(x2) = {0} corresponding to the

valuation θ2 = {x1 7→ 2, x2 7→ 0} is not a fixpoint (of either
propagator). 2

Propagation Solving. A propagation solver solv(F, D) for a set
of propagators F and a domain D finds the greatest mutual fixpoint
of all the propagators f ∈ F . In other words, solv(F, D) returns a
new domain defined by

solv(F, D) = gfp(λd. iter(F, d))(D)
iter(F, D) = ⊓f∈F f(D)

where gfp denotes the greatest fixpoint w.r.t. ⊑ lifted to functions.
A constraint propagation system evaluates solv(F, D) dur-

ing backtracking search. We assume an execution model for
solving a constraint problem with a set of constraints C and
a starting domain Dstart as follows. We execute the procedure
search(∅, F, Dstart, SV ) implementing depth-first search given
in Figure 1 for an initial set of propagators F = ∪c∈C prop(c) on
a set of search variables SV . It either returns false or a domain D
representing a solution (or solutions) of C.

Note that the propagators are partitioned into two sets, the
old propagators Fo and the new propagators Fn. The incremental
propagation solver isolv(Fo, Fn, D) takes advantage of the fact
that D is guaranteed to be a fixpoint of the old propagators Fo.

In this simple version of isolv a propagator f ′ is added back into
the queue Q of propagators to be executed if one of its variables’

search(Fo, Fn, D, SV )
D := isolv(Fo, Fn, D) % propagation
if (D is a false domain)

return false
if (∃x ∈ SV.|D(x)| > 1)

choose {c1, . . . , cm} where
C ∧ D |= c1 ∨ · · · ∨ cm % search strategy

for i ∈ [1 .. m]
D′ := search(Fo ∪ Fn, prop(ci), D, SV )
if (D′ 6= false)

return D′

return false
return D

Figure 1. Search procedure

isolv(Fo, Fn, D)
F := Fo ∪ Fn; Q := Fn

while (Q 6= ∅)
f := choose(Q) % next prop to apply
Q := Q − {f}
D′ := f(D)
V := {x ∈ V | D(x) 6= D′(x)} % modified vars
Q′ := {f ′ ∈ F | vars(f ′) ∩ V 6= ∅} % props to reconsider
Q := Q ∪ Q′

D := D′

return D

Figure 2. Incremental propagation solver

domains has changed, and the choice of next propagator to execute
given by choose is left unspecified. For more detailed discussion
on how isolv is defined in practice see (Schulte and Stuckey 2004,
2008).

Domain and Bounds Propagators. A consistency notion C gives
a condition on domains with respect to constraints. A set of propa-
gators F maintains C consistency for a constraint c, if for domain
D where f(D) = D, f ∈ F is always C consistent for c. Many
propagators in practice are designed to maintain some form of con-
sistency: usually domain or bounds. But note that many more do
not.

The by far most successful consistency technique is arc consis-
tency (Mackworth 1977), which ensures that for each binary con-
straint, every value in the domain of the first variable, has a sup-
porting value in the domain of the second variable that satisfied the
constraint. Arc consistency can be naturally extended to constraints
of more than two variables to give domain consistency (also known
as generalized arc consistency). A domain D is domain consistent
for a constraint c if D is the least domain containing all solutions
θ ∈ D of c. That is, there does not exist a domain D′

⊏ D such
that θ ∈ D ∧ θ ∈ c → θ ∈ D′.

Define the domain propagator dom(c), for a constraint c as

dom(c)(D)(x) = {θ(x) | θ ∈ D ∧ θ ∈ c} x ∈ vars(c)
dom(c)(D)(x) = D(x) otherwise

The basis of bounds consistency is to relax the consistency
requirement to apply only to the lower and upper bounds of the
domain of each variable x. There are a number of different notions
of bounds consistency (Choi et al. 2006), we give the two most
common here.

A domain D is bounds(Z) consistent for a constraint c,
vars(c) = {x1, . . . , xn}, if for each variable xi, 1 ≤ i ≤ n



and for each di ∈ {infD xi, supD xi} there exist integers dj

with infD xj ≤ dj ≤ supD xj , 1 ≤ j ≤ n, j 6= i such that
θ = {x1 7→ d1, . . . , xn 7→ dn} is an integer solution of c.

A domain D is bounds(R) consistent for a constraint c ,
vars(c) = {x1, . . . , xn}, if for each variable xi, 1 ≤ i ≤ n
and for each di ∈ {infD xi, supD xi} there exist real numbers
dj with infD xj ≤ dj ≤ supD xj , 1 ≤ j ≤ n, j 6= i such that
θ = {x1 7→ d1, . . . , xn 7→ dn} is a real solution of c.

A bounds(Z) propagator, zbnd(c) for a constraint c en-
sures that zbnd(c)(D) is bounds(Z) consistent with c, while a
bounds(R) propagator, rbnd(c) ensures bounds(R) consistency.

2.2 Redundancy Elimination

Most propagation-based solvers also determine which propagators
are redundant and no longer can change the domains of variables.
Redundant propagators can be removed from the solver.

A propagator f is redundant for domain D if f(D′) =
D′,∀D′ ⊑ D. Clearly solv(F ∪ {f}, D′) = solv(F, D′) if f
is redundant for domain D ⊒ D′. Redundancy is also known as
entailment or subsumption.

Example 2.2 (Redundancy) Consider the domain propagator for
the constraint or(b1, b2, b3, b4). If any of the Boolean variables
bi is set to 1 then the constraint holds and the propagator can be
removed.

Consider the bounds(R) propagator for the constraint x +
y ≥ z. If at any stage infD x + infD y ≥ supD z then the
constraint is redundant. For example, when D(x) = [25 .. 300],
D(y) = [0 .. 300], and D(z) = [−100 .. 25], the propagator can
be removed. 2

It is also possible that a constraint may become independent of
some of its variables. This means that any further change in the
domain of that variable is irrelevant to the constraint.

A propagator f is independent of x for domain D if f(D′) ⊓
D′

x = f(D′
x) for all D′

x ⊑ D′ ⊑ D where D′ =−{x} D′
x

and D′
x is not a false domain. Note that if |D(x)| = 1 then x is

automatically independent for all propagators f since D′ = D′
x as

they only differ in x and are not false domains.
We can modify the variables of a propagator to remove those

for which it becomes independent.

Example 2.3 (Independence) Consider the domain propagator f
for the constraint x = min{y1, y2, y3} and the domain D(x) =
[0 .. 10], D(y1) = [2 .. 10], D(y2) = [10 .. 25], and D(y3) =
[0 .. 15]. Then y2 is never the sole minimum of the set on the right
hand side.

Hence, changes in the domain of y2 will not effect other vari-
ables through this propagator, and changes to the domains of the
other variables will never effect y2. Hence the propagator for this
constraint can be effectively replaced by the domain propagator for
x = min{y1, y3} without changing any future computation. 2

Note that if propagator f is redundant for D then it is indepen-
dent of all variables x for domain D. We can modify our propa-
gation engine to take into account redundancy and independence
by modifying the variables: remove those for which the propagator
is independent. Let independent(f, D) be the set of variables in
vars(f) for which f is independent for domain D. Then we can
modify the incremental propagation solver of Figure 2 by adding
the following line just before the calculation of V .

vars(f) := vars(f) − independent(f, D′)

In practice, the propagator f will be replaced by the propaga-
tion engine by a new one, which has a smaller set of variables. If

vars(f) becomes empty then the propagator can be removed al-
together (it must be redundant). In addition, the search procedure
usually checks that at the end no propagators remain that are not
redundant. In this way it has a proof that the solution (or solutions)
described by the answer domain D actually satisfies all the con-
straints.

3. Variable elimination

A constraint problem is represented by an existentially quantified
conjunction of primitive constraints. The primitive constraints are
those that can be directly implemented by propagators.

3.1 Existential redundancy

A constraint c is existentially redundant for y at domain D if D |=
∃y.c. That is, for all valuations θ ∈ D of variables vars(c) − {y}
there exists d ∈ D(y) where θ ∪ {y 7→ d} ∈ c.

Since propagators may be weaker than constraints, we can view
the condition on propagators as: A propagator f is existentially
redundant for y at domain D if solv({f}, D′) =−{y} D′ for each
D′ ⊑ D where D(y) = D′(y). That is for all future domains D′

which do not change D(y), applying f (repeatedly) will not change
any variable domain except that of y.

If c is existentially redundant for y at D then any correct prop-
agator f for c is existentially redundant for y at D.

Lemma 3.1 Suppose c is existentially redundant for y at D, and f
is a correct propagator for c. Then f is existentially redundant for
y at D.

Proof: Let vars(c) = {y}∪V . We have that D |= ∃y.c. Hence, for
every valuation θ ∈ D, θ is a solution of ∃y.c and can be extended
to a solution θy ∈ D where θ(x) = θy(x) for all x ∈ V .

Consider an arbitrary valuation θ ∈ D′ where D′ ⊑ D. Then
θy ∈ D′ since no other propagator changes the domain of y and
θy is a solution of c so the value of θy(y) could not be removed by
f as f is correct for c. Since θy ∈ D′ and it is a solution of c we
have that θy ∈ f(D′). Since this holds for arbitrary θ we have that
solv({f}, D′) =−{y} D′. 2

Existential redundancy allows a very simple form of optimiza-
tion of propagation. We can remove the propagator f and variable
y from the propagation engine if f is existentially redundant for
y, and y occurs in no other propagator, without affecting future
computation. The key lemma for variable elimination is thus the
following:

Lemma 3.2 (Key Lemma) Let f be existentially redundant for y
and domain D and y 6∈ vars(f ′) for all f ′ ∈ F . Then

solv(F ∪ {f}, D′) =−{y} solv(F, D
′)

for all D′ ⊑ D if D′(y) = D(y).

Proof: Examine solv(F ∪ {f}, D′) = Dn. This is a sequence of
applications of propagators from F∪{f} resulting in new domains,
until a fixpoint is reached. Let the sequence be denoted:

D
′ = D0 (f0) D1 (f1) · · ·Di (fi) Di+1 · · ·Dn

Consider the sequence

D
′ = D

′
0 (f ′

0) D
′
1 (f ′

1) · · ·D′
m (f) D

′
m+1 (f) · · · (f) D

′
n

of this form where [f ′
i |i ∈ 0..m] = [fi|i ∈ 0..n, fi 6= f ] where

all the applications of propagator f have been moved to the end.
Clearly D′

i(y) = D′(y) = D(y) for i ∈ 0..m since no f ′ ∈ F
involves y. Then since f is existentially redundant at D we have



that D′
n =−{y} D′

m since f cannot modify the domains of any
other variables.

Since none of the propagators f ′ ∈ F make use of the domain
of y and Di+1 = f(Di) =−{y} Di whenever fi = f , we have
that D′

m =−{y} Dn. Since f ′(Dn) = Dn,∀f ′ ∈ F by definition,
we also have that f ′(D′

m) = D′
m. Hence, D′

m = solv(F, D′). 2

3.2 Detecting existential redundancy

Any original model that allows variable elimination is obviously a
poor model. So we will not expect to see it occurring in original
models. There is some possibility of this occurring though, if the
model itself has been generated automatically.

But in any usual model each variable occurs at least twice,
except perhaps some variables that are used only to create output,
and these of course we do not wish to eliminate. So how do we find
variables to eliminate?

As evidenced by the examples in the introduction, existential re-
dundancy arises in two situations. It can arise by the elimination of
propagators. Or, it can arise from the removal of independent vari-
ables leading to variables that occur exactly once in the remaining
propagators.

The remaining requirement is that we can detect a propagator as
existentially redundant. But how practical or frequent is this? The
definition given in the previous section is clearly too expensive to
check. Thankfully, existential redundancy is often easy to check.

All binary domain propagators are always existentially redun-
dant for both variables involved.

Lemma 3.3 Let f be a domain propagator for a binary constraint
c where vars(f) = {x1, x2} (so f enforces arc consistency). Then
f is existentially redundant for x1 and x2 for domains D where
f(D) = D.

Proof: By definition, f(D) is domain consistent with c and hence
∀d1 ∈ D(x1),∃d2 ∈ D(x2) where {x1 7→ d1, x2 7→ d2} satisfies
c. Hence D |= ∃x2.c. By Lemma 3.1 f is existentially redundant
for x2 at D. The same applies for x1. 2

Many propagators for functional constraints can be checked for
existential redundancy reasonably easily. A Boolean total function
constraint, such as y ⇔ (∨n

i=1xi), y ⇔ (∧n
i=1xi), y ⇔ (⊕n

i=1xi)
(xor), y ⇔ (x1 → x2), and y ⇔ ¬x, is existentially redundant if
there is a full domain on the function variable y.

Lemma 3.4 Let f be a propagator for the total functional con-
straint y = e(x̄), where y is Boolean then f is existentially re-
dundant for y at D if D(y) = {0, 1}.

A bounds(Z) or bounds(R) propagator for a functional con-
straint y = e(x̄), where e is a total function, for example y =
a0 +

Pn

i=1 aixi and y = maxn
i=1 xi, can often easily be checked

for existential redundancy.

Lemma 3.5 Let f be a bounds(Z) or bounds(R) propagator for
the functional constraint y = e(x̄) where e is a total function
and D(y) ⊇ [infD e(x̄) .. supD e(x̄)], then f is existentially
redundant for y at D.

Note that the result above holds trivially from Lemma 3.1. The
usefulness of the above lemma is that bounds propagators typically
calculate the value of the expressions infD e(x̄) and supD e(x̄), or
some weakening of them, in order to execute the propagator. For
example the bounds(R) propagator for y = 3x1 + 10x2 + 19x3

will calculate 3 infD x1 + 10 infD x2 + 19 infD x3 as well as

analyse(D,OV ,SV )
for (v ∈ V)

interested[v] := no
visited[v] := false

for (v ∈ OV ∪ SV )
interested[v] := yes

for (v ∈ SV )
traverse(v,−,D)

traverse(v,g,D)
if (visited[v])

return interested[v]
if (interested[v] = no)

interested[v] := maybe
visited[v] := true
for (f ∈ props(v) − {g})

if (f is existentially redundant for y 6= v at D)
if (traverse(y,f ,D) 6= no)

interested[v] := true
for (v′ ∈ vars(f) − {v, y})

traverse(v′, f, D)
else % not interested in y

delete f (remove f from prop(v′) for v′ ∈ vars(f))
else

interested[v] := true
for (v′ ∈ vars(f) − {v})

traverse(v′, f, D)
if (interested[v] = maybe)

interested[v] := no
return interested[v]

Figure 3. Dynamic analysis for eliminable variables

3 supD x1 +10 supD x2 +19 supD x3 during propagation. Hence
checking the existential redundancy is straightforward.

Propagators do not necessarily have to be “equational” to be
existentially redundant. The domain propagator for

Pn

i=1 aixi ≥
d is existentially redundant for xj at D if

sup
D

ajxj ≥ d −
n

X

i=1,i6=j

inf
D

aixi.

Since the propagator determines
Pn

i=1 infD aixi in order to de-
termine redundancy it is straightforward to extend it to check for
existential redundancy.

Many propagators are unlikely to be existentially redundant un-
less they are almost redundant, that is, they will almost never prop-
agate further. For example alldifferent(x1, . . . , xn) is existentially
redundant for xj if D(xi) ∩ D(xj) = ∅, 1 ≤ i 6= j ≤ n and some
further conditions hold. At this point the alldifferent is almost re-
dundant itself.

4. Dynamic analysis for variable elimination

We now give a simple linear time analysis algorithm for finding
variables to eliminate. The analysis analyse shown in Figure 3
takes a current domain D, the set of output variables OV , and
the set of search variables SV . The output variables cannot be
eliminated as they are needed in the computed answer. The search
variables cannot be eliminated as search will add new constraints
on them.

The algorithm marks all output and search variables as being
interesting, and then traverses each search variable in turn. The
traverse function visits a variable v to determine if it can be
eliminated and visits other variables reachable from this variable.



It returns if we are interested in the variable (that is, the variable
cannot be eliminated). The traversal first checks that the variable
has not already been visited. If the variable has already been visited
the previous result is returned.

If the variable has not already been visited, its status is set to
maybe meaning we are still determining whether it is interesting.

All propagators f attached to v are considered, except the prop-
agator g by which v has been reached. If f is existentially redun-
dant for some y 6= v and we are not interested in y then the propa-
gator f can be removed. Otherwise, all variables reachable through
f are traversed.

If all propagators for v are removed then traverse will return
that we are uninterested in v. The point of the maybe recording
is to ensure correctness for loops. If we find a loop returning to v
while determining the interest of v, then the answer will be yes.

Theorem 4.1 Let F0 be a set of propagators, D a domain, SV
a set of variables, and OV a set of variables. Suppose after ex-
ecuting analyse(D,OV, SV ) for F0 we have that F ⊂ F0 re-
main. Then solv(F, D′) =OV solv(F0, D

′) for all D′ ⊑ D where
D′ =−OV ∪SV D.

Proof: Let F ′ = F0 −F . The proof is by induction on elimination
of propagators f ∈ F ′. If traverse eliminates a propagator f then
f must be existentially redundant for some y at D, such that all
other occurrences of y are in eliminated propagators. Note that
y 6∈ OV ∪ SV .

We can order the propagators F ′ say f1, . . . , fn such that fi

is existentially redundant for yi at D and yi appears in no prop-
agator in F ∪ {fi+1, . . . fn}. Note that this reverses the order
of traversal of the propagators. Then using Lemma 3.2 we can
show that solv(F ∪ {fi, fi+1, . . . fn}, D′) =−{yi} solv(F ∪
{fi+1, . . . fn}, D′) for all D′ ⊑ D where D′(y) = D(y).

By induction solv(F0, D
′) =−{y1,...,yn} solv(F ′, D′) for all

D′ ⊑ D where D(yi) = D′(yi), 1 ≤ i ≤ n. Since OV ∪ SV ⊆
V − {y1, . . . , yn} the result holds. 2

In order for the algorithm to be efficient, we do not wish to
spend too much time checking if f is existentially redundant for
some y 6= v at D. For binary propagators, there is only one
candidate variable. For most n-ary propagators this is still simple
as there is only likely to be one variable that can be detected as
existentially redundant, the variable being “equationally defined”
by the propagator, e.g. y in y = a0 +

Pn

i=1 aixi

But some constraints can be detected as existentially redun-
dant for multiple variables, for example propagators for c ≡
Pn

i=1 aixi = d where ai ∈ {−1, 1}, 1 ≤ i ≤ n. For a par-
ticular domain D it could be existentially redundant for any vari-
able xi, since this constraint can be read as equationally defining
each variable, e.g. xj = d +

Pn

i=1,i6=j
aixi when aj = −1, and

xj = −d − Pn

i=1,i6=j
aixi when aj = 1.

Luckily for this constraint c and any domain D there is only a
maximum of two candidates for which it can be existentially redun-
dant at any domain D, and the remaining variables are fixed, and
hence are independent of the propagator for c. Hence either only
one variable is possibly existentially redundant, or the constraint is
binary. In either case the traversal algorithm only has to visit one
possible variable y (different from v).

Lemma 4.2 Suppose the bounds propagator f for
Pn

k=1 akxk =
d where ak ∈ {−1, 1} for 1 ≤ k ≤ n is existentially redundant
for xi and xj at domain D. Then the remaining variables are fixed
in D.

Proof: Let

L = infD

Pn

k=1 akxk − d
U = supD

Pn

k=1 akxk − d

Assume for simplicity that ai and aj are positive, the other cases
follow similarly.

Let lk = infD xk and uk = supD xk. Since c is existentially
redundant for xi, both aili ≤ aiui − U and aiui ≥ aili − L.
Similarly, we have aj lj ≤ ajuj − U and ajuj ≥ ajlj − L.

By definition Uij = supD

Pn

k=1,k 6=i,k 6=j
aixi − d = U −

aiui − ajuj ≥ L − aili − ajlj = infD

Pn

k=1,k 6=i,k 6=j
aixi −

d = Lij . From U − aiui − ajuj ≥ L − aili − ajlj and
aiui − U ≥ aili we determine that −ajuj ≥ L − ajlj , or
equivalently ajlj − ajuj ≥ L and from ajuj ≥ aj lj − L we
have L ≥ aj lj − ajuj hence L = ajlj − ajuj . Similar reasoning
gives U = ajuj−ajlj , L = aili−aiui and U = aiui−aili. Now
Uij = U −aiui −ajuj = (aiui−aili)−aiui−ajuj = −aili−
ajuj and Lij = L− aili − ajlj = (ajlj − ajuj)− aili − ajlj =
−aili − ajuj = Uij . Hence all variables xi, 1 ≤ k 6= i 6= j ≤ n
must be fixed in D. 2

There are constraints where there are multiple possible existen-
tially redundant variables at a single domain. Consider x1 + x2 +
x3 ≥ 3 with domain D(x1) = D(x2) = D(x3) = [0 .. 10],
then the propagator is existentially redundant for all variables at D.
The algorithm above only considers one such variable, otherwise
we have to backtrack undoing the marking, and try other possibili-
ties. While this may find more variables to eliminate, it is certainly
more expensive, and the cases of constraints which can have multi-
ple possible existentially redundant variables for some domain are
rare.

Under the assumption that the calculation of existential redun-
dancy for propagator f is linear in the size of f , as in all the exam-
ples discussed above, and with an additional marking to ensure we
do not visit the same propagator twice (see Section 5) the analysis
is linear in the size of the problem.

Other uses of the analysis. The analysis takes into account the
output variables OV which we never wish to eliminate since they
will be needed for the final result, and the search variables SV
which cannot be eliminated since we will add new propagators on
these variables during search.

But what happens if the analyse algorithm never visits a vari-
able v which is still involved in a propagator f? Then clearly no
modification of the domains of the search variables can lead to a
change in the domain of v. Hence the propagator f will never be
executed. Since the propagator f is not known to be redundant the
search procedure will return an answer without determining that
the constraint that f implements is solved. Hence the program can
return wrong solutions.

One can argue that we can check this simply by examining
the remaining propagators, at the end of the search. If propagators
remain, then the domain D may not encode only solutions. The
difficulty with this is that the search may never return an answer
because the fact that propagator f is incorrectly modeled means
that not enough domain reduction may occur and the search may
be stuck in an effectively infinite search space.

Hence whenever we run the analysis we should also check that
no variable remains unvisited, unless it is involved in no propaga-
tors. If this is the case we should immediately abort execution and
report the modeling error. In this sense we should always run the
analysis independent of its use for improving execution behavior,
just to catch such modeling errors.



5. Implementation

The algorithm in Figure 3 has been implemented in Gecode, but
most of the decisions made in the implementation should readily
carry over to other constraint programming systems.

Implementing analysis. While treatment of variables is generic
in the analysis algorithm, the way how propagators are traversed
depends on the particular propagator. Propagators are implemented
as objects in Gecode (as in most other systems, see for example the
architecture underlying ILOG Solver (Puget and Leconte 1995)).
Propagators provide methods for propagation, creation, deletion,
and so on. For traversal, we add a traverse method that can
be implemented for each individual propagator. Many traverse
methods can be reused through inheritance, for example, the same
method can be reused for all reified propagators.

Like variables, also propagators maintain a field interested
which is initialized to maybe. The traverse method for a prop-
agator f will check whether some of its variables are existentially
redundant. In case it finds a variable y to be existentially redundant
and traversal finds that nobody is interested in y, the interested
field of the propagator is set to no. Note that the propagator is not
immediately deleted (see the discussion below). If there is no ex-
istentially redundant variable, the propagator will traverse its vari-
ables vars(f) and set interested to yes.

The analysis starts from a solver state that hosts variables
and propagators belonging to a single node in the search tree.
After marking the search and output variables as interested, the
traversal starts from the search variables. Search variables are
available from the labellings (branchings) which the solver state
maintains for search, whereas output variables are available from
the implemented model. Only after traversal finishes, propagators
with interested set to no are deleted, while propagators with
interested set to maybe are reported as a possible modeling er-
ror (see Section 4). Propagators are not immediately deleted during
traversal. As all propagators have to be inspected to find those with
interested set to maybe, it is simpler to delete propagators in
this separate inspection pass.

Interestingly, analysis does not increase the memory required
for variables and propagators: both provide sufficient space to
maintain the information for marking as interested or visited. The
availability of sufficient space is due to the fact that the analysis
is only run when the solver is at fixpoint, hence some fields that
are used during propagation can be used during analysis and are
restored after analysis finishes.

One critical aspect for the analysis to be efficient is that our
experimental implementation uses recursion as directly available
in C++. Recursion (which is mutual and can be very deep during the
analysis) in C++ is not very efficient with respect to both memory
and runtime. A production quality implementation of the analysis
might use an explicit stack to manage traversal.

Gecode uses advisors in addition to propagators for achieving
incremental propagation (Lagerkvist and Schulte 2007). An advi-
sor is associated with a single propagator to provide information
about how a particular variable changes during propagation. When
traversing the propagators prop(x) attached to a variable x this has
to be reflected in that also advisors can be attached to the variable x.
In case of an attached advisor, traversal will immediately continue
with the advisor’s propagator.

Dynamic event sets and watched literals. Due to the more ex-
perimental nature of our analysis implementation, we make the as-
sumption that for all variables x ∈ vars(f) for a propagator f there
exists also an edge in the propagation graph from the variable x to
the propagator f (the algorithm in Figure 3 uses prop(x) to find all
propagators for a variable x).

Some propagators might not require propagation even though
the domains of some of its variables change. That is, even though
x ∈ vars(f) it can be the case that f 6∈ prop(x). In (Schulte
and Stuckey 2008) this is used for dynamic event sets and in (Gent
et al. 2006) this is used for watched literals to speed up propa-
gation. A typical example is a propagator for Boolean disjunction
or([x1, . . . , xn]) where it is sufficient that f is included in at least
two of the sets prop(xi).

The problem with the analysis as presented is that during traver-
sal, a variable x can be visited and no propagator in prop(x) is
interested in x, even though there might be a propagator f with
x ∈ vars(f). A simple solution that would incur some general
overhead would be to register all propagators f with f ∈ vars(x)
also in prop(x) where these extra entries are specially marked such
that they are only considered for analysis but not for propagation.

To avoid any overhead during propagation, these additional en-
tries into prop(x) could be entered just before analysis is per-
formed. After analysis finishes, the entries are removed again. Pro-
vided the system maintains a list of all relevant propagators, this
would be straightforward as the datastructures for prop(x) are de-
signed to support dynamic addition and deletion. An additional ad-
vantage of this idea is that the extra entries are only available dur-
ing analysis, hence propagation would not have to check whether
an entry is just needed for traversal.

When to run the analysis. An important aspect is when the anal-
ysis should actually be run. The highest accuracy is obviously ob-
tained by performing the analysis each time after a fixpoint has
been computed (that is, directly after the while-loop in Figure 2
terminates). This might be too expensive (evaluation in Section 6
confirms that this is indeed the case). A remedy is to run the anal-
ysis only every n-th fixpoint computed to achieve a good compro-
mise between accuracy and overhead of the analysis.

A different strategy is to run the analysis just before the recur-
sive call to search in Figure 1. Depending on how search is im-
plemented, this can be beneficial. Gecode uses recomputation and
copying for implementing backtracking (similar to the model de-
scribed in (Schulte 2002, Chapter 7)). Here, a copy of the search
state will be created just before the recursive call to search. This
copy will then be reused for recomputation several times. One
promising strategy for analysis might be to run the analysis just be-
fore creating the copy that is reused several times: the effort spent in
analysis once is reused every time a copy is created for recomputa-
tion. Moreover, creating a copy after several propagators have been
deleted due to analysis might save space and time during copying.
Again, the analysis can be run only every n-th time a copy is cre-
ated for recomputation.

6. Experimental evaluation

Evaluation platform. All experiments use Gecode, a C++-based
constraint programming library (Gecode Team 2006). Gecode is
one of the fastest constraint programming systems currently avail-
able, benchmarks comparing Gecode to other systems are avail-
able from Gecode’s webpage. The version used here corresponds
to Gecode 2.1.1. Gecode has been compiled with the Microsoft Vi-
sual Studio Express Edition 2008.

All examples have been run on a Laptop with a 2.2 GHz
Core2 Duo CPU and 2048 MB main memory running 32bit Win-
dows Vista. Runtimes are the average of 25 runs with a coefficient
of deviation less than 5% for all benchmarks.

Example characteristics. Table 1 summarizes the characteristics
of the examples used for evaluation. Time is runtime in millisec-
onds, memory is allocated memory in KB, and exec refers to the
number of propagator executions. Note that the same runtime for



Table 1. Example characteristics
Example variables propagators failures time (ms) memory (KB) exec

bibd-6-3-30 9 281 8 535 2 303 252.08 1 741 1 112 526
bibd-6-4-30 4 631 4 260 1 344 156.62 969 678 027
bibd-7-3-20 10 760 9 925 426 139.76 3 473 343 879
bibd-7-3-40 21 540 19 865 866 536.64 5 915 1 240 958

circle-6-21 72 77 56 867 536.64 125 2 548 578
circle-8-24 128 145 32 345 485.44 245 2 766 188

s-p-8-5 128 145 19 706 212.16 131 1 558 275
s-p-8-10 128 145 635 591 6 786.60 132 49 574 399

p-s-p-21-112 5 810 5 978 150 96.72 3 652 1 548 480
p-s-p-25-147 8 894 9 142 1 109 412.44 4 869 1 761 354
p-s-p-28-201 13 226 13 548 833 741.92 7 236 7 964 519
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Figure 4. Average analysis accuracy: • shows the accuracy at the n-th fixpoint and × shows the accuracy at the n-th invocation of search.

bibd-7-3-40 and circle-6-21 is just a coincidence and not
a mistake in the evaluation.

The examples are as follows:

• bibd-v-k-l are instances of a balanced incomplete block de-
sign problem with parameters (v, k, l) (prob028 in (CSPLib
2006)). The model involves Boolean-sum propagators and
propagators implementing lexicographic order for symmetry
breaking as described in Example 1.3.

• circle-n-s are circle packing problem where n circles must
be packed into a s×s square. The example uses the propagators
described in Example 1.2 for constraining circles to not overlap.

• s-p-n-s are variants of the square packing problem for
n squares to be packed into a s×s square (prob009 in (CSPLib
2006)), where multiple squares of the same size are allowed.
The only constraints used are those discussed in Example 1.1.

• p-s-p-n-s is similar, in addition it uses many small reified
constraints to improve capacity propagation by taking the size
of squares packed at a particular x or y coordinate into account.

The choice of examples is motivated by the following facts.
First, all examples feature propagators that our analysis could re-
move. Second, analysis for bibd-v-k-l is bound to be very ex-
pensive: many propagators need to be traversed during analysis and
only few can be deleted during each run. For circle-n-s and
s-p-n-s, analysis should be very efficient: all propagators can po-
tentially be deleted. p-s-p-n-s provides an interesting contrast
to s-p-n-s in that only few propagators could be deleted and also
the impact of deletion will be rather small as most propagation is
concerned with capacity.

Analysis accuracy. Figure 4 provides an overview of the accu-
racy of analysis. The analysis is run either every n-th fixpoint

(shown as black bullet) or every n-th recursive invocation of search
(shown as cross) where n ranges from 1 to 20 and accuracy from
0% to 100%. The measure of accuracy is based on the number
of propagator executions avoided by deleting propagators during
analysis. An accuracy of 100% is achieved by running the analysis
immediately after every fixpoint computed. An accuracy of 50%
means that only half of all propagator executions are avoided. The
percentage numbers displayed in Figure 4 are the geometric means
of the accuracy of all examples.

An important observation is that the accuracy deteriorates only
relatively slowly with running the analysis more infrequently. Par-
ticularly interesting is that for both strategies, after fixpoint and be-
fore search, the analysis accuracy stays around 50% up to running
the analysis only every 10 to 15 operations. This is significant as
it gives ample opportunity to balance the overhead of analysis with
its accuracy.

Best performance. Before studying in more detail the tradeoff
between accuracy and cost of the analysis, let us first establish
that the analysis can actually deliver speedup in most cases and
independent of whether the analysis is run after fixpoint or before
search.

Table 2 (a) gives the best n for running the analysis after every
n-th fixpoint, whereas Table 2 (b) gives the best n for running
the analysis before every n-th recursive call to search. Here, best
refers to shortest runtime. Accuracy is shown as described earlier,
whereas all other measures are given relatively to not running the
analysis at all as in Table 1. A negative percentage means that
the measure is decreased by that percentage (hence, better) and a
positive percentage means that the measure is increased by that
percentage (hence, worse).

The reason why many examples do not show an improvement
in memory consumption is due to the fact that memory refers



Table 2. Best performance for analysis
Example n time memory exec accuracy

bibd-6-3-30 17 −23.0% −7.4% −35.3% 96.3%
bibd-6-4-30 11 −16.7% ±0.0% −25.8% 87.1%
bibd-7-3-20 19 −8.5% −5.5% −17.8% 84.1%
bibd-7-3-40 19 −7.0% −6.5% −19.1% 91.8%

circle-6-21 3 −24.7% ±0.0% −20.4% 87.3%
circle-8-24 3 −7.2% ±0.0% −7.1% 72.2%

s-p-8-5 5 −10.2% ±0.0% −25.4% 79.3%
s-p-8-10 5 −13.6% ±0.0% −23.2% 85.8%

p-s-p-21-112 13 +1.3% ±0.0% −0.1% 29.3%
p-s-p-25-147 13 +2.1% −1.3% −0.5% 70.0%
p-s-p-28-201 13 +2.2% −1.8% ±0.0% 40.0%

(a) Analysis after fixpoint

Example n time memory exec accuracy

bibd-6-3-30 17 −23.1% −7.4% −35.1% 95.8%
bibd-6-4-30 11 −16.1% ±0.0% −25.6% 86.4%
bibd-7-3-20 14 −6.8% −5.5% −19.0% 89.5%
bibd-7-3-40 20 −5.4% −6.5% −18.4% 88.6%

circle-6-21 1 −27.6% ±0.0% −22.0% 94.3%
circle-8-24 1 −7.7% ±0.0% −8.2% 83.5%

s-p-8-5 3 −15.7% ±0.0% −28.5% 89.1%
s-p-8-10 3 −15.5% ±0.0% −25.2% 93.3%

p-s-p-21-112 11 −0.4% ±0.0% −0.1% 29.3%
p-s-p-25-147 7 −2.4% −2.6% −0.8% 100.0%
p-s-p-28-201 9 +1.1% −1.8% ±0.0% 61.4%

(b) Analysis before search

Table 3. Analysis after fixpoint
Example n = 1 n = 2 n = 5

time mem acc time mem acc time mem acc

bibd-6-3-30 +32.9% − 7.4% 100.0% +3.7% −7.4% 99.6% −15.8% −7.4% 98.0%

bibd-6-4-30 +41.4% ±0.0% 100.0% +12.7% ±0.0% 98.7% −9.4% ±0.0% 94.8%

bibd-7-3-20 +63.9% −12.9% 100.0% +30.1% −11.1% 97.6% +5.1% −9.2% 92.1%

bibd-7-3-40 +73.9% −13.0% 100.0% +31.7% −10.8% 98.6% +5.6% −9.7% 95.4%

circle-6-21 −21.8% ±0.0% 100.0% −23.3% ±0.0% 94.0% −21.5% ±0.0% 72.4%

circle-8-24 −0.9% ±0.0% 100.0% −5.7% ±0.0% 84.5% −6.8% ±0.0% 57.6%

s-p-8-5 +5.9% ±0.0% 100.0% −6.3% ±0.0% 96.7% −10.2% ±0.0% 79.3%

s-p-8-10 +2.9% ±0.0% 100.0% −8.7% ±0.0% 96.8% −13.6% ±0.0% 85.8%

p-s-p-21-112 +31.3% −3.5% 100.0% +15.9% −3.5% 100.0% +7.4% ±0.0% 60.7%

p-s-p-25-147 +53.4% −3.9% 100.0% +23.8% −3.9% 99.6% +9.4% −2.6% 88.4%

p-s-p-28-201 +45.8% −1.8% 100.0% +22.5% −1.8% 100.0% +12.8% −1.8% 95.0%

Example n = 10 n = 15 n = 20

time mem acc time mem acc time mem acc

bibd-6-3-30 −18.7% −7.4% 97.4% −20.5% −7.4% 95.0% −16.8% −3.7% 86.3%

bibd-6-4-30 −5.0% ±0.0% 70.2% −9.0% ±0.0% 75.7% −5.0% ±0.0% 38.7%

bibd-7-3-20 −3.1% −5.5% 87.1% −1.8% −9.2% 85.0% −5.6% −5.5% 78.4%

bibd-7-3-40 +4.9% −6.5% 92.4% −3.9% −8.7% 94.1% −4.5% −6.5% 88.6%

circle-6-21 −7.8% ±0.0% 37.1% −7.9% ±0.0% 36.4% +0.5% ±0.0% 0.8%

circle-8-24 −1.9% ±0.0% 28.3% ±0.0% ±0.0% 6.7% −2.6% ±0.0% 27.7%

s-p-8-5 −5.0% ±0.0% 48.3% −3.8% ±0.0% 50.8% +1.5% ±0.0% 8.8%

s-p-8-10 −9.5% ±0.0% 64.5% −7.6% ±0.0% 45.1% −7.4% ±0.0% 40.0%

p-s-p-21-112 +5.9% ±0.0% 57.1% +1.4% ±0.0% 31.9% +1.9% ±0.0% 41.1%

p-s-p-25-147 +5.6% −1.3% 59.5% +4.4% −1.3% 43.4% +3.0% −1.3% 56.1%

p-s-p-28-201 +5.6% −1.8% 94.4% +8.6% −0.9% 49.2% +5.5% −0.9% 86.8%



to allocated rather than used memory. Gecode allocates relatively
large blocks of memory that are then used: hence less memory
might be in use even though the same amount of memory gets
allocated.

In the best case, the number of propagator executions is reduced
by one third. In these cases also the runtime is reduced by up to
25%.

The examples where it is most difficult to obtain a speedup are
the p-s-p-n-s examples. One has to keep in mind that only a
fraction of the propagators can be deleted by the analysis. With
that in mind, the analysis is successful as it does not slowdown
execution while it still saves a little memory. It is very important to
put this into perspective: one should always run the analysis now
and then to catch modeling errors as discussed in Section 4.

When small propagators due to decompositions are frequent
the analysis shows its true potential: the runtime overhead of the
analysis is easily outweighed by its benefits and regardless of how
often the analysis runs, it will always save memory.

It is interesting to note that running the analysis before search
rather than after fixpoint appears to be the better decision, even
though the benefit might only be specific to Gecode as the system
used for the evaluation. Running analysis before search slightly
reduces the accuracy but the effect of every single analysis run is
apparently reused several times.

How often to run the analysis. The key question is whether a
user can determine how often she should run the analysis a priori.
Finding an appropriate frequency by inspecting runtimes of several
tries might be infeasible.

In the following we will restrict our attention to running the
analysis directly after fixpoint, as the insight to be gained from
running before search is similar. Table 3 shows relative runtime,
memory usage, and accuracy for several values of n.

It is obvious that trying to run the analysis very often is infea-
sible, interesting values for n start with n = 5. More importantly,
for all examples values between 10 and 15 offer a feasible com-
promise between accuracy and reduction in memory and runtime.
Hence it is plausible that a user can use n = 10 as a starting point
for the analysis. With vastly different problem sizes the user might
decrease the frequency depending on problem size.

7. Related Work

The detection of redundant propagators, and their elimination from
the propagation system in forward execution has been a part of
propagation systems since almost the beginning. But this redun-
dancy detection does not know which variables are of interest to
the answer and hence cannot dynamically eliminate variables.

There has been earlier work on variable elimination, most no-
tably in the context of constraint logic programming over the real
numbers (Jaffar et al. 1992). Here, particularly with recursive def-
initions, many intermediate variables are introduced, and analysis
can sometimes determine that they can be eliminated during ex-
ecution. The difference here is that these solvers can use Gauss-
Jordan variable elimination (Macdonald et al. 1993), and Fourier
elimination (Fordan and Yap 1998) to eliminate variables that only
appear in linear real constraints. While elimination that could be
detected at compile time and removed using Gauss-Jordan elimi-
nation (Macdonald et al. 1993) was clearly beneficial, for the more
complex Fourier elimination (Fordan and Yap 1998) the cost of
the elimination was only paid back in certain circumstances. Elim-
ination of variables in finite domain constraints is much more re-
stricted.

There is a relationship of this work with so-called “don’t care”
propagation in non-clausal SAT solvers (Thiffault et al. 2004).
Here Boolean formulae are represented as a DAG with leaves

made up of the Boolean variables. Don’t care propagation of
the node representing e.g. a disjunctive constraint or(x1, . . . , xn)
realizes that if the node is true and xi is true for some 1 ≤
i ≤ n then this node does not care about the remaining nodes
x1, . . . , xi−1, xi+1, . . . , xn. If no parent cares about a node xj

then its value becomes “don’t-care” and this may propagate to its
child nodes. The result is akin to dynamic variable elimination
on the propagator graph representing the DAG. The solver used
“don’t-care” values to avoid propagation rather than eliminating
the variables altogether.

Finally, the work of Brand and Yap (Brand and Yap 2006)
on finer control of propagation is related. It effectively extends
the “don’t care” propagation of (Thiffault et al. 2004) to formu-
lae involving non-Boolean leaf constraints, and uses this to pre-
vent “unrolling” of complex constraint definitions. So it ties vari-
able elimination and constraint definition together. In this way it
can define 2-literal watching, and domain consistent lex propaga-
tion. In contrast our approach does not consider preventing un-
rolling/decomposition of global constraints but the existential re-
dundancy approach is not restricted to Boolean variables.

8. Conclusion

Dynamic variable elimination is a useful optimization for finite do-
main constraint systems, since modeling requires the introduction
of many intermediate variables, which may become irrelevant in
later solving. We give a linear time analysis of the propagator graph
to detect occurrences of dynamic variables to eliminate. We show
that the analysis can improve space and time performance for fi-
nite domain problems. There is an ancillary benefit, the analysis
can detect modelling errors that leave part of the propagation graph
separated from the search variables.

An avenue for future research is to automatically find out when
it is profitable to run the analysis. A simple scheme could start from
the idea to dynamically adapt the frequency as follows: when a run
of the analysis was useful (that is, many propagators were deleted),
the frequency is increased. Otherwise, the frequency is decreased.

In a production level implementation we believe the overhead
of the analysis could be reduced substantially from this prototype.
Indeed if tied to the copying of search state, the analysis could
be folded into the copying stage and should execute with little
overhead compared to the copying itself.
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