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1. INTRODUCTION

In building a finite domain constraint programming solution to a combinatorial
problem a tradeoff arises in the choice of propagation that is used for each con-
straint: stronger propagation methods are more expensive to execute but may
detect failure earlier; weaker propagation methods are (generally) cheaper to exe-
cute but may (exponentially) increase the search space explored to find an answer.
In this paper we investigate the possibility of analysing finite domain constraint
systems, or constraint programs, and determining whether the propagation meth-
ods used for some constraints could be replaced by simpler, and more efficient
alternatives without increasing the size of the search space.

Consider the following example constraint where x1, . . . , x4 range over integer
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values 0 to 10:

x1 ≤ x2, 2x2 = 3x3 + 1, x3 ≤ x4

Each of the constraints could be implemented using domain propagation or bounds
propagation. Clearly if each constraint is implemented using domain propagation
we have stronger information, and the search space explored in order to find all
solutions for the problem will be no larger than if we used bounds propagation. The
question we ask is: can we get the same search space with bounds propagation?

Domain propagation on the constraints x1 ≤ x2 and x3 ≤ x4 is equivalent to
bounds propagation since the constraints only place upper and lower bounds on
their variables. This is not the case for 2x2 = 3x3 + 1 where domain propagation
reduces the domains (sets of possible values) of x2 to {2, 5, 8} and x3 to {1, 3, 5},
while bounds propagation reduces x2 to {2, 3, 4, 5, 6, 7, 8} and x3 to {1, 2, 3, 4, 5}.
The question is: will execution require more search, if we use bounds propagation
for this constraint as well?

Suppose that we use a labelling strategy that either assigns a variable to its
lower bound, or constrains it to be greater than its lower bound. Then none of the
constraints added during search creates holes in the domains. (This is in contrast
to a strategy where we assign a variable to equal its middle value in its domain, or
to exclude its middle value.) Hence the only holes in the domains of x2 and x3 will
come from the constraint 2x2 = 3x3+1. We will show that if the domains of x2 and
x3 have no holes from other sources, domain propagation for 2x2 = 3x3 + 1 fails iff
bounds propagation fails. Hence the search space is the same for both bounds and
domain propagation.

While for this simple example the advantage of bounds propagation over do-
main propagation may not seem significant, for more complex constraints there
can be significant differences in efficiency of domain and bounds propagation. For
example, domain propagation for alldifferent for n variables is O(n2.5) [Régin
1994], while bounds propagation is O(n log n) [Puget 1998] and even O(n) in com-
mon cases [Mehlhorn and Thiel 2000]. Similarly, domain propagation for a linear
equation involving n variables is exponential while bounds propagation is O(n).

In this paper we investigate when bounds and domain propagation will lead to
the same search space.

The contributions of this paper are:

—We classify the behaviour of propagators for common primitive constraints, in
particular introducing the crucial notion of endpoint-relevant propagators.

—We give theorems that allow us to extend reasoning about propagators for a
single constraint to reasoning about propagators for a conjunction of constraints.

—We define an analysis algorithm for CLP(FD) programs that determines where
we can replace domain propagators with bounds propagators without increasing
the search space.

—We show examples where our analysis detects search space equivalent replace-
ments and show the possible performance benefits that arise.

Previous authors [Mehlhorn and Thiel 2000; Puget 1998] have noted the dif-
ference in efficiency in bounds and domain propagation, for particular primitive
constraints but not considered when different propagators lead to the same search

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Bounds and Domain Propagation, Same Search Space · 113

space. The closest related work is [Harvey and Stuckey 2003], which considers the
relative propagation strengths of different equivalent forms of constraints. Although
both domain and bounds propagation are considered, bounds propagation is never
compared to domain propagation.

Another somewhat related approach is to use type inference to derive properties
of constraints [Lesaint 2002]. The framework starts from properties of primitive
constraints and infers properties of conjunctions, disjunctions and negations of such
constraints. In order to use the framework stability of properties under various
operations needs to be established. It does not seem likely that the properties we
introduce in the current paper fit the framework since stability under conjunction
(see Theorem 3.29) has side conditions that do not seem to be expressible in the
framework. Finally, [Lesaint 2002] does not mention how to actually take advantage
of information derived by type inference.

While there has been considerable success in optimizing constraint programs over
real linear constraints [Kelly et al. 1998], there has been little progress in optimizing
finite domain CLP programs. Much of this stems from the difficulty in effectively
analysing the behaviour of CLP(FD) solvers. In this paper we make a first step in
this direction.

The remainder of the paper is organized as follows: in the next section we intro-
duce terminology and define domain and bounds propagators. We then investigate
properties of propagators and sets of propagators that allow us to prove search space
equivalence. In Section 4, we define an analysis of CLP(FD) programs to gather
information about propagation. We use this to define a program transformation
that annotates individual constraints with the form of propagation we should use
for them. Finally in Section 6 we conclude and give some directions for extending
the work.

2. PROPAGATION BASED SOLVING

2.1 Basic Definitions

This paper considers integer constraint solving where Boolean variables are just
considered as integer variables which range over values 0 (false) and 1 (true). We
consider the following kinds of constraints.

—A primitive linear constraint is an equality (=), inequality (≤), or disequation
(6=), written as

∑n

i=1 aixi op d where xi are integer variables, ai, d are integers,
and op ∈ {=,≤, 6=}.

—A primitive reified constraint is of the form x0 ⇔ ∑n
i=1 aixi op d where xi are

integer variables, ai, d are integers, and op ∈ {=,≤, 6=}. These constraints are
interpreted as x0 is 1 if the linear constraint holds and 0 if the linear constraint
does not hold.

—A primitive Boolean constraint is of the form x1 = ¬x2 (negation), x1 =
(x2 && x3) (conjunction), x1 = (x2 || x3) (disjunction), x1 = (x2 ⇒ x3) (im-
plication), or x1 = (x2 ⇔ x3) (equivalence).

—A primitive nonlinear constraint is a multiplication x1 = x2 × x3, a squaring
x1 = x2 × x2, a positive squaring x1 = x2 × x2 ∧ x2 ≥ 0, an absolute value
constraint x1 = |x2|, a minimum constraint x1 = min(x2, x3), an alldifferent con-
straint alldifferent([x1, . . . , xn]), or a default constraint default([x1, . . . , xn]).
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A default constraint represents a nonlinear constraint with no further information
on its constraint propagation available.

A constraint is a conjunction of primitive constraints, which we will sometimes
treat as a set of primitive constraints.

Note that these primitive constraints include almost all integer constraints used
in constraint programming systems. More complex constraints such as x1 + |x2| ×
(x3)

2 6= 3 are broken down into conjunctions of these primitive constraints in
constraint programming systems. For this example, it would be treated as t1 =
|x2| ∧ t2 = x3 × x3 ∧ t3 = t1 × t2 ∧x1 + t3 6= 3 where t1, t2 and t2 are new variables.

We use the notation [x1, . . . , xn] :: [l .. u] as shorthand for the conjunction of
inequalities

x1 ≥ l, x1 ≤ u, . . . , xn ≥ l, xn ≤ u

As additional shorthands, we use
∑n

i=1 aixi ≥ d for
∑n

i=1 −aixi ≤ −d as well as
x0 ⇔ ∑n

i=1 aixi ≥ d for x0 ⇔ ∑n
i=1 −aixi ≤ −d.

An integer (real) valuation θ is a mapping of variables to integer (resp. real)
values, written {x1 7→ d1, . . . , xn 7→ dn}. We extend the valuation θ to map ex-
pressions and constraints involving the variables in the natural way. Let vars be
the function that returns the set of (free) variables appearing in a constraint or
valuation. A valuation θ is an integer (real) solution of a constraint c, if Z |=θ c
(resp. R |=θ c).

A domain D is a complete mapping from a fixed (countable) set of variables V
to finite sets of integers. A false domain D is a domain with D(x) = ∅ for some
x. The intersection of two domains D1 and D2, denoted D1 ⊓ D2, is defined as
the domain D(x) = D1(x) ∩ D2(x) for all x. A domain D1 is stronger than a
domain D2, written D1 ⊑ D2, if D1(x) ⊆ D2(x) for all variables x. A domain D1 is
stronger than (equal to) a domain D2 w.r.t. variables V , denoted D1 ⊑V D2 (resp.
D1 =V D2), if D1(x) ⊆ D2(x) (resp. D1(x) = D2(x)) for all x ∈ V .

In an abuse of notation, we define a valuation θ to be an element of a domain
D, written θ ∈ D, if θ(x) ∈ D(x) for all x ∈ vars(θ). We will be interested
in determining the infimums and supremums of expressions with respect to some
domain D. Define the infimum and supremum of an expression e with respect to a
domain D as infD e = inf {θ(e)|θ ∈ D} and supD e = sup {θ(e)|θ ∈ D}.

A propagator f for a variable x is a function mapping a domain D to a set of
values representing the possible values for x. A propagator only considers part of
the domain corresponding to some subset of variables of interest which we denote
by vars(f).

We can extend propagators f for a variable x to map a domain D to another
domain D′. Let prop(f,D) denote the extension of f to map domains to domains,
defined by D′(x′) = D(x′) for x′ 6= x, and D′(x) = D(x) ∩ f(D). Note that this
extension guarantees prop(f,D) ⊑ D for any domain D.

A propagator f is correct for a constraint c, iff

{θ ∈ D | Z |=θ c} = {θ ∈ prop(f,D) | Z |=θ c}
Example 2.1. For the constraint c ≡ x1 ≥ x2 + 1 the function

f(D) = {d ∈ D(x1) | d ≥ inf
D
x2 + 1}
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is a correct propagator for variable x1.
Let D1(x1) = D1(x2) = {1, 5, 8}, then f(D1) = {5, 8} and prop(f,D1) = D2

where D2(x1) = {5, 8} and D2(x2) = {1, 5, 8}.

A propagation solver solv(F,D) for a set of propagators F and an initial domain
D repeatedly applies all the propagators in F starting from domain D until there
is no further change in the resulting domain. In other words, solv(F,D) returns a
new domain defined by

iter(F,D) = ⊓
f∈F

prop(f,D)

solv (F,D) = gfp(λd. iter (F, d))(D).

where gfp denotes the greatest fixpoint w.r.t. ⊑ lifted to functions.

2.2 Domain-Consistent Propagators

A domain D is domain-consistent for a constraint c, if D is the least domain
containing all integer solutions θ ∈ D of c, i.e, there does not exist D′

< D such
that θ ∈ D ∧ Z |=θ c⇒ θ ∈ D′.

A propagator set F maintains domain-consistency for a constraint c, if solv (F,D)
is always domain-consistent for c.

Define the domain-consistency propagator for a constraint c and a variable x,
dom(c, x), as follows

dom(c, x)(D) = {θ(x) | θ ∈ D and θ is a solution of c,Z |=θ c}.

Example 2.2. Consider the constraint c ≡ x1 = 3x2 + 5x3 and the domain
D(x1) = {2, 3, 4, 5, 6, 7}, D(x2) = {0, 1, 2}, and D(x3) = {−1, 0, 1, 2}.

The solutions of c are

{x1 7→ 3, x2 7→ 1, x3 7→ 0}, {x1 7→ 5, x2 7→ 0, x3 7→ 1}, {x1 7→ 6, x2 7→ 2, x3 7→ 0}

Hence, iter ({dom(c, x1), dom(c, x2), dom(c, x3)}, D) gives a domain D′ such that
D′(x1) = {3, 5, 6}, D′(x2) = {0, 1, 2}, and D′(x3) = {0, 1}. D′ is domain-consistent
with respect to c, hence also solv ({dom(c, x1),dom(c, x2),dom(c, x3)},D) = D′.

2.3 Ranges and Bounds Consistent Propagators

A range of integers [l .. u] is the set of integers {d ∈ Z | l ≤ d ≤ u}. A domain is a
range domain if D(x) is a range for all x. Let D′ = range(D) be the smallest range
domain containingD, i.e. domainD′(x) = [infD x .. supD x] for all x. A domain D1

is bounds-stronger than a domain D2, written D1

b

⊑ D2, if range(D1) ⊑ range(D2).

Two domains D1 and D2 are bounds-equal, denoted D1
b≡ D2, if range(D1) =

range(D2).
There are two different definitions of bounds consistency used in the literature.

We will call them bounds(R)-consistency, used by e.g. [Marriott and Stuckey 1998;
Harvey and Schimpf 2002; Zhang and Yap 2000], and bounds(Z)-consistency, used
by e.g. [Van Hentenryck et al. 1998; Puget 1998; Régin and Rueher 2000; Quimper
et al. 2003]. Apt [Apt 2003] gives both definitions calling the first one bounds
consistency, and the second interval consistency.
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A domain D is bounds(R)-consistent for a constraint c and a variable xi with
vars(c) = {x1, . . . , xn}, if for each di ∈ {infD xi, supD xi} there exist real numbers
dj with infD xj ≤ dj ≤ supD xj , 1 ≤ j 6= i ≤ n such that {x1 7→ d1, . . . , xn 7→ dn}
is a real solution of c. A domain D is bounds(R)-consistent for a constraint c, if it
is bounds(R)-consistent for c and each x ∈ vars(c).

A domain D is bounds(Z)-consistent for a constraint c and a variable xi with
vars(c) = {x1, . . . , xn}, if for each di ∈ {infD xi, supD xi} there exist integer num-
bers dj with infD xj ≤ dj ≤ supD xj , 1 ≤ j 6= i ≤ n such that {x1 7→ d1, . . . , xn 7→
dn} is a integer solution of c. A domain D is bounds(Z)-consistent for a constraint
c, if it is bounds(Z)-consistent for c and each x ∈ vars(c).

A propagator set F maintains bounds(α)-consistency for a constraint c, if solv (F,D)
is always bounds(α)-consistent for c.

In this paper we will concentrate on bounds(R)-consistency, since it is weaker
than bounds(Z)-consistency, and corresponds to the consistency implemented for
most primitive constraints. If we can show domain-consistent propagators and
bounds(R)-consistent propagators lead to equivalent search space, then this auto-
matically extends to the stronger bounds(Z)-consistent propagators.

The bounds(R) propagator bnd(c, x) for a primitive constraint c and variable x
are defined as below.

Primitive linear constraints

—if c ≡∑n

i=1 aixi = d, then for 1 ≤ j ≤ n

bnd(c, xj)(D) = [⌈l⌉ .. ⌊u⌋]
where

l = inf
D

(

d−∑n

i=1,i6=j aixi

aj

)

and u = sup
D

(

d−∑n

i=1,i6=j aixi

aj

)

—if c ≡∑n

i=1 aixi ≤ d, then for 1 ≤ j ≤ n

—if aj > 0, then

bnd(c, xj)(D) =

[

inf
D
xj ..

⌊

d−∑n
i=1,i6=j infD(aixi)

aj

⌋]

—if aj < 0, then

bnd(c, xj)(D) =

[⌈

d−∑n

i=1,i6=j infD(aixi)

aj

⌉

.. sup
D

xj

]

—if c ≡∑n
i=1 aixi 6= d, then for 1 ≤ j ≤ n

bnd(c, xj)(D) =























[l + 1 .. u] if aj l = d−∑n
i=1,i6=j aidi

where D(xi) = {di}, 1 ≤ i ≤ n, i 6= j
[l .. u− 1] if aju = d−∑n

i=1,i6=j aidi

where D(xi) = {di}, 1 ≤ i ≤ n, i 6= j
[l .. u] otherwise

where l = infD xj and u = supD xj .
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Primitive reified constraints

—if c ≡ x0 ⇔ ∑n
i=1 aixi = d, then

—if 1 ≤ j ≤ n, then

bnd(c, xj)(D) =







bnd(
∑n

i=1 aixi = d, xj)(D) if D(x0) = {1}
bnd(

∑n

i=1 aixi 6= d, xj)(D) if D(x0) = {0}
[infD xj .. supD xj ] otherwise

—otherwise

bnd(c, x0)(D) =























{0} if
∑n

i=1 infD(aixi) > d
{0} if

∑n

i=1 supD(aixi) < d
{1} if

∑n

i=1 aidi = d
where D(xi) = {di}, 1 ≤ i ≤ n

[0 .. 1] otherwise

—if c ≡ x0 ⇔ ∑n

i=1 aixi ≤ d, then
—if 1 ≤ j ≤ n, then

bnd(c, xj)(D) =







bnd(
∑n

i=1 aixi ≤ d, xj)(D) if D(x0) = {1}
bnd(

∑n
i=1 aixi ≥ d+ 1, xj)(D) if D(x0) = {0}

[infD xj .. supD xj ] otherwise

—otherwise

bnd(c, x0)(D) =







{0} if
∑n

i=1 infD(aixi) > d
{1} if

∑n

i=1 supD(aixi) ≤ d
[0 .. 1] otherwise

—if c ≡ x0 ⇔ ∑n

i=1 aixi 6= d, then
—if 1 ≤ j ≤ n, then

bnd(c, xj)(D) =







bnd(
∑n

i=1 aixi 6= d, xj)(D) if D(x0) = {1}
bnd(

∑n

i=1 aixi = d, xj)(D) if D(x0) = {0}
[infD xj .. supD xj ] otherwise

—otherwise

bnd(c, x0)(D) =























{1} if
∑n

i=1 infD(aixi) > d
{1} if

∑n

i=1 supD(aixi) < d
{0} if

∑n

i=1 aidi = d
where D(xi) = {di}, 1 ≤ i ≤ n

[0 .. 1] otherwise

Primitive Boolean constraints

—if c ≡ x1 = ¬x2, then for 1 ≤ i ≤ 2

bnd(c, xi)(D) = bnd(x1 + x2 = 1, xi)(D) ∩ [0 .. 1]

—if c ≡ x1 = (x2 && x3), then for 1 ≤ i ≤ 3

bnd(c, xi)(D) = bnd(x1 ⇔ x2 + x3 = 2, xi)(D) ∩ [0 .. 1]

—if c ≡ x1 = (x2 || x3), then for 1 ≤ i ≤ 3

bnd(c, xi)(D) = bnd(x1 ⇔ x2 + x3 ≥ 1, xi)(D) ∩ [0 .. 1]

—if c ≡ x1 = (x2 ⇒ x3), then for 1 ≤ i ≤ 3

bnd(c, xi)(D) = bnd(x1 ⇔ x2 − x3 ≤ 0, xi)(D) ∩ [0 .. 1]
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—if c ≡ x1 = (x2 ⇔ x3), then for 1 ≤ i ≤ 3

bnd(c, xi)(D) = bnd(x1 ⇔ x2 − x3 = 0, xi)(D) ∩ [0 .. 1]

Primitive nonlinear constraints

—if c ≡ x1 = x2 × x3, then

— bnd(c, x1)(D) = [inf E1 .. supE1]

where

E1 = { infD x2 × infD x3, infD x2 × supD x3,
supD x2 × infD x3, supD x2 × supD x3}

— bnd(c, x2)(D) =















[infD x2 .. supD x2] if 0 ∈ [infD x3 .. supD x3]
and 0 ∈ [infD x1 .. supD x1]

[⌈inf E2⌉ .. ⌊supE2⌋] if infD x3 > 0 or supD x3 < 0
[inf R .. supR] otherwise

where

E2 = { infD x1/ infD x3, infD x1/ supD x3,
supD x1/ infD x3, supD x1/ supD x3}

and

R =
⋃

m∈{1,2}

(bnd(c, x2)(Dm) ∩ [infD x2 .. supD x2])

with

D1(x1) = D(x1), D1(x2) = D(x2), D1(x3) = [1 .. supD x3]
D2(x1) = D(x1), D2(x2) = D(x2), D2(x3) = [infD x3 .. − 1]

—The propagator for bnd(c, x3) is defined analogously to bnd(c, x2).

—if c ≡ x1 = x2 × x2, then

— bnd(c, x1)(D) =















[

(infD x2)
2 .. (supD x2)

2
]

if infD x2 ≥ 0
[

(supD x2)
2 .. (infD x2)

2
]

if supD x2 ≤ 0
[

0 .. sup{(infD x2)
2, (supD x2)

2}
]

otherwise

— bnd(c, x2)(D) =















[⌈√

infD x1

⌉

..
⌊√

supD x1

⌋]

if infD x2 ≥ 0
[⌈

−
√

supD x1

⌉

..
⌊

−
√

infD x1

⌋]

if supD x2 ≤ 0

[inf R .. supR] otherwise

where

R = (bnd(c, x2)(D1) ∪ bnd(c, x2)(D2)) ∩ [infD x2 .. supD x2]

with

D1(x1) = D(x1), D1(x2) = [0 .. supD x2]
D2(x1) = D(x1), D2(x2) = [infD x2 .. 0]

—if c ≡ x1 = x2 × x2 ∧ x2 ≥ 0, then for 1 ≤ i ≤ 2

bnd(c, xi)(D) = bnd(x1 = x2 × x2, xi)(D) ∩ [0 .. supD xi]

—if c ≡ x1 = |x2|, then
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— bnd(c, x1)(D) =











[infD x2 .. supD x2] if infD x2 ≥ 0

[supD x2 .. infD x2] if supD x2 ≤ 0

[0 .. sup{infD x2, supD x2}] otherwise

— bnd(c, x2)(D) =







[infD x1 .. supD x1] if infD x2 ≥ 0
[

supD x1 .. infD x1

]

if supD x2 ≤ 0
[inf R .. supR] otherwise

where

R = (bnd(c, x2)(D1) ∪ bnd(c, x2)(D1)) ∩ [infD x2 .. supD x2]

with
D1(x1) = D(x1), D1(x2) = [0 .. supD x2]
D2(x1) = D(x1), D2(x2) = [infD x2 .. 0]

—if c ≡ x1 = min(x2, x3), then

— bnd(c, x1)(D) = [inf{infD x2, infD x3} .. inf{supD x2, supD x3}]

— bnd(c, x2)(D) =

{

[infD x1 .. supD x1] if supD x2 ≤ infD x3 or supD x1 < infD x3

[infD x1 .. supD x2] otherwise

—The propagator for bnd(c, x3) is defined analogously to bnd(c, x2).

Example 2.3. Consider the same constraint c ≡ x1 = 3x2 + 5x3 and do-
main D(x1) = {2, 3, 4, 5, 6, 7}, D(x2) = {0, 1, 2}, and D(x3) = {−1, 0, 1, 2} as in
Example 2.2.

Calculation of

D′ = iter({bnd(c, x1), bnd(c, x2), bnd(c, x3)}, D)

determines that

D′(x1) = [l1 .. u1] = [2 .. 7]

with l1 = sup

{⌈

0 + 3 × 0 + 5 ×−1

1

⌉

, 2

}

and u1 = inf

{⌊

0 + 3 × 2 + 5 × 2

1

⌋

, 7

}

and

D′(x3) = [l3 .. u3] = [0 .. 1]

with l3 = sup

{⌈

0 − 3 × 2 + 1 × 2

5

⌉

,−1

}

and u3 = inf

{⌊

0 − 3 × 0 + 1 × 7

5

⌋

, 2

}

While the domain of x3 is modified, the domains of x1 and x2 remain unchanged.
The resulting domain D′ is bounds(R)-consistent with the constraint c.

Notice that bounds propagation has determined less information than domain
propagation. In particular also less information about bounds has been determined:
bounds propagation computes infD′ x1 to be 2 as opposed to 3 obtained by domain-
propagation in Example 2.2.
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Theorem 2.4. For all c, the set of propagators

{bnd(c, x) | x ∈ vars(c)}
defined above maintains bounds(R)-consistency for c.

Proof. For each c we will assume that F = {bnd(c, x) | x ∈ vars(c)} and
D = solv (F,D0). We use the notation li = infD xi and ui = supD xi. We show
that each bound li, and ui is bounds consistent for c.

Primitive linear constraints

—For c ≡∑n

i=1 aixi ≤ d a proof is given in [Zhang and Yap 2000].

—For c ≡∑n

i=1 aixi = d. We assume for simplicity ai > 0 for 1 ≤ i ≤ n, the other
cases are similar. Consider w.l.o.g. l1 and u1. Now by the definition of bnd(c, x1)

d−∑n
i=2 ai supD xi

a1
≤ l1 ≤ u1 ≤ d−∑n

i=2 ai infD xi

a1

Hence there is clearly a solution θ = {x1 7→ l1} ∪ {xi 7→ di | 2 ≤ i ≤ n} of c
where li ≤ di ≤ ui for 2 ≤ i ≤ n. Similarly there is a solution for x1 7→ u1.

—For c ≡∑n
i=1 aixi 6= d. Consider w.l.o.g. l1 and u1. Now if |D(xi)| ≥ 2 for some

2 ≤ i ≤ n then there are clearly solutions to c with x1 7→ l1 and x1 7→ u1.
Otherwise, |D(xi)| = {di} for all 2 ≤ i ≤ n. Then by the definition of bnd(c, x1)
we have that a1l1 6= d −∑n

i=2 aidi and a1u1 6= d −∑n
i=2 aidi. Hence l1 and u1

are bounds consistent.

Primitive reified constraints. For a reified linear constraint c ≡ (xo ⇔ c′). If
l0 = 1 or u0 = 0 then the bounds consistency follows from the correctness of the
appropriate linear constraint c′. If l0 = 0 and u0 = 1 then clearly the bounds for
the variables xi for 1 ≤ i ≤ n are bounds consistent, since we can either satisfy or
disatisfy the constraint c′.

We now address the bounds consistency of l0 and u0 themselves. For l0 = 0
to be bounds consistent we need to find a valuation which disatisfies c′. Now the
only cases where this is impossible is where each θ such that li ≤ θ(xi) ≤ ui for
1 ≤ i ≤ n satisfies c′. If there is no such valuation, this is captured by bnd(c, x0)
and yields D(x0) = {1}. This contradicts l0 = 1. Similarly for u0 = 1 to be bounds
consistent we need to find a valuation θ such that li ≤ θ(xi) ≤ ui for 1 ≤ i ≤ n
which satisfies c′. Again if there is no such valuation this is captured by bnd(c, x0)
and yields D(x0) = {0}. This contradicts u0 = 0.

Primitive Boolean constraints. For Boolean constraints the proof follows directly
from the correctness of reified linear constraints, and the correctness of the mod-
elling of the Boolean constraints as reified linear constraints.

Primitive nonlinear constraints

—For c ≡ x1 = x2 × x3. We first show that l1 and u1 are bounds consistent.
Suppose a2 × a3 = inf E1 and b2 × b3 = supE1 (see the definition of bnd(c, x1)
for E1), where {ai, bi} ⊆ {li, ui} for 2 ≤ i ≤ 3. Now a2 × a3 ≤ l1 ≤ u1 ≤ b2 × b3.
Due to the continuity of multiplication, there exists di ∈ [ai .. bi] ∪ [bi .. ai] for
2 ≤ i ≤ 3 such that l1 = d2 × d3. And clearly li ≤ di ≤ ui. Hence l1 is bounds
consistent. Similarly for u1.
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Now we consider l2 and u2, the case for l3 and u3 is analogous. If l3 ≤ 0 ≤ u3

and l1 ≤ 0 ≤ u1 then l2 and u2 are bounds consistent setting the other variables
to 0. Suppose l3 > 0. Then l2 ≥ l1/l3 and u2 ≤ u1/l3 by definition of E2. Since
l1/l3 ≤ l2 ≤ u3 ≤ u1/l3 we have a solution l2 = d/l3 and u2 = d′/l3 where
l1 ≤ d ≤ d′ ≤ u1 which shows that l2 and u2 are bounds consistent. We can
similarly argue if u3 < 0.
Otherwise l3 ≤ 0 ≤ u3 and either l1 > 0 or u1 < 0. We argue the case for l1 > 0,
the other case is similar. We break the domain of x3 into two parts containing
the negative and the positive values. Note that the value 0 for x3 cannot lead to
a solution consistent with the domain of x1.

Clearly inf R ≥ l2 by definition but also l2 ≥ inf R since this case of the definition
of bnd(c, x2) applies. Hence inf R = l2 and similarly supR = u2. Now since l1 >

0, we have that bnd(c, x2)(D1) =
[

⌈ l1
u3
⌉ .. u1

]

if u3 > 0. Otherwise bnd(c, x2)(D1)

is empty. Similarly bnd(c, x2)(D2) =
[

−u1 .. ⌊ l1
l3
⌋
]

if l3 < 0 and otherwise it is

empty. Since l2 = inf R either −u1 ≤ l2 ≤ ⌊ l1
l3
⌋ or ⌈ l1

u3
⌉ ≤ l2 ≤ u1. In the

first case, by the continuity of multiplication, there exists d1 ∈ [l1 .. u1] and
d3 ∈ [l3 .. − 1] such that l2 = d1/d3. Hence l2 is bounds consistent, similarly
for the second case d1 ∈ [l1 .. u1] and d3 ∈ [1 .. u3]. Similar reasoning applies to
show that u2 is bounds consistent.

—For c ≡ x1 = x2 × x2. Suppose l2 ≥ 0 then l1 ≥ (l2)
2 and l2 ≥

√
l1 and

hence l1 = (l2)
2. Similarly for u1 = (u2)

2. Hence D is bounds consistent with
c. Suppose u2 ≤ 0 then similarly l1 = (u2)

2 and u1 = (l2)
2 and D is bounds

consistent with c.
Otherwise l2 < 0 and u2 > 0. Then we split the domain of x2 into two parts D1

and D2 where infD1
x2 = 0 and supD2

x2 = 0. Now if bnd(c, x2)(D1)∩ [l2 .. u2] =
∅ then l2 ≥ 0 which is a contradiction. Similarly if bnd(c, x2)(D2) ∩ [l2 .. u2] = ∅
then u2 ≤ 0 which again is a contradiction. Hence −√

u1 ≤ l2 ≤ −√
l1 and√

l1 ≤ u2 ≤ √
u1. Hence both l2 and u2 are bounds consistent. We also have

that u1 ≤ sup{(l2)2, (u2)
2} which together means either u1 = (l2)

2 or u1 = (u2)
2.

So u1 is clearly bounds consistent. Now l1 is bounds consistent since either
l2 = −√

u1 ≤ −
√
l1 or

√
l1 ≤ √

u1 = u2.

—For c ≡ x1 = x2 × x2 ∧ x2 ≥ 0 the proof for x1 = x2 × x2 suffices.

—For c ≡ x1 = |x2| the proof is almost identical to that for x1 = x2 × x2.

—For c ≡ x1 = min(x2, x3). We have that l1 ≥ inf(l2, l3) and l2 ≥ l1 and l3 ≥ l1.
Hence l1 = l2 or l1 = l3. The solution {x1 7→ l1, x2 7→ l2, x3 7→ l3} proves that
the lower bounds are bounds consistent. Now u1 ≤ u2 and u1 ≤ u3. If u1 < l3
then u2 ≤ u1 and hence u1 = u2. In this case the solution {x1 7→ u1, x2 7→
u2, x3 7→ u3} proves the upper bounds are bounds consistent. Otherwise u1 ≥ l3
and the solution {x1 7→ u1, x2 7→ u2, x3 7→ u1} show that the upper bounds of x1

and x2 are bounds consistent. Similarly if u1 < l2 then u3 = u1 and the solution
{x1 7→ u1, x2 7→ u2, x3 7→ u3} proves the upper bounds are bounds consistent.
Otherwise u1 ≥ l2 and the solution {x1 7→ u1, x2 7→ u1, x3 7→ u3} show that the
upper bounds of x1 and x3 are bounds consistent.
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While for almost all propagators we consider bounds(R)-consistency the excep-
tion is the alldifferent constraint. Here the bounds propagators defined in
Puget [1998] or Mehlhorn and Thiel [2000] maintain bounds(Z)-consistency. We
let bnd(c, x) where c is alldifferent([x1, . . . , xn]) be the bounds(Z) propagator
defined as in [Puget 1998] or [Mehlhorn and Thiel 2000].

3. CATEGORISING PROPAGATORS

In order to reason about the propagation behaviour of propagators corresponding
to primitive constraints, we need to be able to categorise their behaviour. In order
for bounds propagation to be as powerful as domain propagation we will need to
understand how individual propagators relate to bounds.

Definition 3.1. A propagator f is bounds-only, if f(D) is a range for all do-
mains D.

A propagator f is bounds-preserving, if for all domains D such that D(x) is a
range for all x ∈ vars(f), then f(D) is a range.

Example 3.2. Clearly all bounds propagators are bounds-only and thus also
bounds-preserving. Typically, domain propagators are not bounds-preserving, for
example dom(x1 = 2x2, x1) is not bounds-preserving.

Some domain propagators are however bounds-preserving, for example dom(x1 =
2x2, x2), or dom(x1 = x2 + 3, x1) as well as dom(x1 = x2 + 3, x2).

Example 3.3. Note that propagation is highly dependent on the nature of the
constraints. For example, if c1 ≡ x1 ≥ 3x2 and c2 ≡ x1 ≤ 3x2 +1, then dom(c1, x1)
and dom(c2, x1) are both bounds-only. But the domain propagator dom(c1∧c2, x1)
on x1 for the combined constraint c1 ∧ c2 is not bounds-only.

For example, if D(x1) = D(x2) = [0 .. 8] and D′ = prop(dom(c1 ∧ c2, x1), D) we
have that D′(x1) = {0, 1, 3, 4, 6, 7}.
3.1 Equivalence and Bounds-Equivalence

In order to replace one set of propagators by another we need to have notions of
equivalence between sets of propagators.

Definition 3.4. Two sets of propagators F1 and F2 are equivalent, if for each
domain D, solv (F1, D) = solv(F2, D).

Equivalent sets of propagators of course can be used to replace each other in
any context. Clearly a bounds propagator and a domain propagator will rarely be
equivalent, since the domain propagator will remove values from inside domains.
Hence we introduce bounds-equivalence.

Definition 3.5. Two sets of propagators F1 and F2 are bounds-equivalent, iff

for each domain D, solv(F1, D)
b≡ solv (F2, D). That is, the resulting domains have

the same endpoints for each variable.

The key to ensuring that two sets of propagators lead to the same search space
is the following obvious result.

Proposition 3.6. Let F1 and F2 be two bounds-equivalent sets of propagators.
For any domain D, then solv (F1, D) is a false domain iff solv(F2, D) is a false
domain.
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With respect to search, this proposition can be interpreted as follows. Bounds-
equivalent sets of propagators lead to the same failed nodes. We will consider two
parallel executions where at each stage the set of propagators in each execution are
bounds-equivalent. This means that one execution fails iff the other execution fails.
We defer the full discussion of this to Section 4.

We are now in a position to examine the domain and bounds propagators for
individual primitive constraints and determine relationships between them. The
first lemma is obvious, its proof can be found in [Zhang and Yap 2000].

Lemma 3.7. Let c ≡ Σn
i=1aixi ≤ d. Then {dom(c, xi)} and {bnd(c, xi)} are

equivalent for 1 ≤ i ≤ n.

Lemma 3.8. Let c ≡ x0 ⇔ Σn
i=1aixi ≤ d. Then {dom(c, xi)} and {bnd(c, xi)}

are equivalent for 0 ≤ i ≤ n.

Proof. First consider x = xi for some 1 ≤ i ≤ n. If D(x0) = [0 .. 1] then
{dom(c, x)} and {bnd(c, x)} both return D(x) since the inequality could hold or
not hold. If D(x0) = {1} then dom(c, x) and bnd(c, x) are equivalent respectively
to dom(c′, x) and bnd(c′, x) where c′ ≡ Σn

i=1aixi ≤ d and hence by Lemma 3.7 they
are equivalent. Similarly, when D(x0) = {0}.

Now consider x = x0. If there exists θ1 ∈ D such that Σn
i=1aiθ1(xi) ≤ d and

θ2 ∈ D such that Σn
i=1aiθ2(xi) > d then both dom(c, x) and bnd(c, x) return [0 .. 1].

Otherwise assume Σn
i=1aiθ(xi) > d for all θ ∈ D and hence dom(c, x)(D) =

{0}. Now by definition Σn
i=1 infD(aixi) = inf{Σn

i=1aiθ(xi) | θ ∈ D}. Hence
Σn

i=1 infD(aixi) > d and thus bnd(c, x)(D) = {0}. Similar reasoning applies for
the case where Σn

i=1aiθ(xi) ≤ d for all θ ∈ D.

Bounds propagators and domain propagators for Boolean constraints are equiv-
alent, essentially because a change to a variable domain also changes its bounds.

Lemma 3.9. Let c be a primitive Boolean constraint, and x ∈ vars(c). Then
{dom(c, x)} and {bnd(c, x)} are equivalent.

Proof. The proofs are simple case analyses, we illustrate the proof for c ≡ x1 =
(x2 && x3).

First consider x1. Now dom(c, x1)(D) reduces the domain of x1 in two cases,
either (a) D(x2) = D(x3) = {1} and it becomes {1}, or (b) D(x2) = {0} or
D(x3) = {0} in which case it becomes {0}. Clearly for (a) the third case of the
definition for bnd(x1 ⇔ x2 + x3 = 2, x1) holds, and for (b) the second case holds.

Now consider x2 (x3 is symmetric). Now dom(c, x2)(D) reduces the domain
of x2 in two cases, either (c) D(x1) = {1} in which case it becomes {1}, or (d)
D(x1) = {0} and D(x3) = {1} in which case it becomes {0}. Clearly for (c)
bnd(c, x2)(D) is equivalent to bnd(x2 + x3 = 2, x2)(D). Using the first case for
primitive linear constraints yields l = 1 (assuming 1 ∈ D(x3), otherwise l = 2 and
we get an empty domain). Thus the appropriate domain change occurs. For (d)
bnd(c, x2)(D) is equivalent to bnd(x2 + x3 6= 2, x2)(D) and since D(x3) = {1} the
value 1 is removed from the domain of x2.

We should be careful, obviously not every constraint involving only Boolean
variables is such that the domain and bounds propagators are equivalent. Consider
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c ≡ 2x1 − 5x2 + 7x3 − 11x4 + 13x5 = 8 where D(xi) = [0 .. 1] , 1 ≤ i ≤ 5 then
prop(dom(c, x1), D) = D′ where D′(x1) = {0} while prop(bnd(c, x1), D) = D.

Unfortunately bounds-equivalence by itself is not a strong enough notion since it
does not hold that given F1 and F2 are bounds equivalents sets of propagators and
F ′

1 and F ′
2 are bounds-equivalent that F1 ∪ F ′

1 and F2 ∪ F ′
2 are bounds-equivalent.

Example 3.10. Consider the constraint c(xi, xj) with solutions

{xi 7→ 0, xj 7→ 1} {xi 7→ 0, xj 7→ −1}
{xi 7→ 1, xj 7→ 0} {xi 7→ −1, xj 7→ 0}

Also consider the propagator fij for variable xj defined as

fij(D) =







[−1 .. 1] 0 ∈ D(xi)
{0} 0 6∈ D(xi), {1,−1} ∩D(xi) 6= ∅
∅ otherwise

Then dom(c(xi, xj), xj) and the propagator fij for variable xj are bounds-equivalent.
Hence dom(c(x1, x2), x2) and f12 are bounds-equivalent, and so are dom(c(x2, x3), x3)
and f23. But {dom(c(x1, x2), x2), dom(c(x2, x3), x3)} and {f12, f23} are not!

Consider D(x1) = {0}, D(x2) = D(x3) = [−1 .. 1]. Then solv({f12, f23}, D) =
D while solv ({dom(c(x1, x2), x2), dom(c(x2, x3), x3)}, D) = D′ where D′(x1) =
D′(x3) = {0} and D′(x2) = {−1, 1}.

Hence we will need to introduce further classifications of propagators.

3.2 Endpoint-Relevance

In order to proceed we need to understand what propagators will give the same be-
haviour when applied to two bounds-equivalent domains. We introduce endpoint-
relevance which captures the idea of a set of propagators in whose result the end-
points of the domain support each other, hence the parts of the domain except the
endpoints are not relevant to the propagators bounds behaviour.

Definition 3.11. A set of propagators F is endpoint-relevant if for all domains

D, if D1 = solv(F,D) and D2
b≡ D1 then solv (F,D2)

b≡ D1.

Note that, crucially, endpoint-relevant propagator sets only have special proper-
ties at fixpoints of the set of propagators. Otherwise the notion is too strong.

Example 3.12. The set {dom(x1 = 2x2, x2), dom(x1 = 2x2, x1)} is endpoint-
relevant. Endpoint-relevance requires that endpoints are supported only by other
endpoints. Note that {dom(x1 = 2x2, x2)} is not endpoint-relevant by itself, con-
sider D1(x1) = [1 .. 7] , D1(x2) = [1 .. 3] and D2(x1) = {1, 3, 4, 5, 7}, D2(x2) =
[1 .. 3].

Because disequalities have very weak propagators there is a strong correspondence
between their domain and bounds propagators.

Lemma 3.13. Let c ≡ Σn
i=1aixi 6= d. Then dom(c, xi) and bnd(c, xi) are bounds-

equivalent and endpoint-relevant for 1 ≤ i ≤ n.

Proof. Both dom(c, xi) and bnd(c, xi) only depend on the endpoints of the
input domain since they only remove a value d when each variable in vars(c)−{xi}
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has a fixed value (in which case the bounds are equal). Hence they are both
endpoint-relevant.

The only difference between dom(c, xi) and bnd(c, xi) is when the non domain-
consistent value d for xi is neither a lower nor upper bound. In either case the
resulting bounds do not change.

Two variable equations are also endpoint-relevant because they only involve two
variables, and there is a one-to-one correspondence between the values in any solu-
tion.

Lemma 3.14. Let c be a linear integer equation of the form b1x1 + b2x2 = e.
Then {dom(c, x1), dom(c, x2)} and {bnd(c, x1), bnd(c, x2)} are bounds-equivalent
and endpoint-relevant.

Proof. Assume w.l.o.g. that b1 > 0. If this is not the case, we can replace x1

by a new variable −x′1 and assume D(x′1) = {−d | d ∈ D(x1)}. Similarly, assume
b2 > 0.

Let D1 = solv ({dom(c, x1), dom(c, x2)}, D) the result of domain propagation and
D2 = solv ({bnd(c, x1), bnd(c, x2)}, D) the result of bounds propagation. First by
definition D1 = iter({dom(c, x1), dom(c, x2)}, D). Hence

d1 ∈ D1(x1) iff
e− b1d1

b2
∈ D(x2) (1)

d2 ∈ D1(x2) iff
e− b2d2

b1
∈ D(x1) (2)

Clearly also b1 infD1
x1 + b2 supD1

x2 = e and b1 supD1
x1 + b2 infD1

x2 = e. By
the definition of bounds propagation we have that b1 infD2

x1 + b2 supD2
x2 = e

and b1 supD2
x1 + b2 infD2

x2 = e. This shows that both sets of propagators are
endpoint-relevant.

Now because the endpoints match the conditions of (1) and (2) we have that
{infD2

x1, supD2
x1} ⊆ D1(x1) and similarly for x2.

Let D0
2 = D, D2i+1

2 = iter(bnd(c, x1), D
2i
2 ), and D2i+2

2 = iter (bnd(c, x2), D
2i+1
2 )

for i ≥ 0. We show by induction that infDk

2
xj ≤ infD1

xj and supDk

2
xj ≥

supD1
xj for j = 1, 2 and k ≥ 0. The base case is straightforward. Suppose

Dk+1
2 (xj) 6= Dk

2 (xj). We show that the result still holds for Dk+1
2 . We consider

the case when the lower bound of x1 changes, the other cases are similar. The

new lower bound is inf
D

k+1

2

x1 = ⌈
e−b2 sup

Dk
2

x2

b1
⌉. Now by induction hypothesis

b2 supDk

2
x2 ≥ b2 supD1

x2 and infD1
x1 =

e−b2 sup
D1

x2

b1
hence inf

D
k+1

2

x1 ≤ infD1
x1.

Finally there exists k > 0 such that Dk
2 = D2 by the definition of D2.

Example 3.15. Perhaps surprisingly the domain and bounds propagators for
reified constraints of the form x0 ⇔ a1x1 + a2x2 = d (or equivalently x0 ⇔ a1x1 +
a2x2 6= d) are not bounds-equivalent. It would seem likely since if x0 = 1 this
acts like the constraint a1x1 + a2x2 = d and if x0 = 0 it acts like the constraint
a1x1 + a2x2 6= d both of which have domain and bounds propagators that are
bounds-equivalent.

The problem is when the constraints acts in the reverse direction (the domains
of x1 and x2 affecting the domain of x0). For example, given c ≡ x0 ⇔ x1 −
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x2 = 0 and domain D(x0) = [0 .. 1], D(x1) = {2, 4, 6}, and D(x2) = {3, 5, 7}, the
domain propagators F for c determines prop(F,D)(x0) = {0}, while for the bounds
propagators F ′ we have prop(F ′, D)(x0) = [0 .. 1].

Similarly to equations on two variables, positive squaring constraints are end-
point-relevant.

Lemma 3.16. Let c be x1 = x2 × x2 ∧ x2 ≥ 0. Then {dom(c, x1), dom(c, x2)}
and {bnd(c, x1), bnd(c, x2)} are bounds-equivalent and endpoint-relevant.

Proof. Let D1 = solv ({dom(c, x1), dom(c, x2)}, D) be the result of domain
propagation and D2 = solv ({bnd(c, x1), bnd(c, x2)}, D) the result of bounds prop-
agation. First by definition D1 = iter({dom(c, x1), dom(c, x2)}, D). Hence

d1 ∈ D1(x1) iff
√

d1 ∈ D(x2) (3)

d2 ∈ D1(x2) iff d2 × d2 ∈ D(x1) (4)

Clearly also infD1
x1 = infD1

x2× infD1
x2 and supD1

x1 = supD1
x2×supD1

x2. By
the definition of bounds propagation we have that infD2

x1 = infD2
x2 × infD2

x2

and supD2
x1 = supD2

x2 × supD2
x2. This shows that both sets of propagators are

endpoint-relevant.
Now because the endpoints match the conditions of (3) and (4) we have that

{infD2
x1, supD2

x1} ⊆ D1(x) and similarly for x2.

Let D0
2 = D, D2i+1

2 = iter(bnd(c, x1), D
2i
2 ), and D2i+2

2 = iter (bnd(c, x2), D
2i+1
2 )

for i ≥ 0. We show by induction that infDk

2
xj ≤ infD1

xj and supDk

2
xj ≥ supD1

xj

for j = 1, 2, k ≥ 0. The base case is straightforward. Suppose Dk+1
2 (xj) 6= Dk

2 (xj).
We show that the result still holds for Dk+1

2 . We consider the case when the
lower bound of x1 changes, the other cases are similar. The new lower bound is
inf

D
k+1

2

x1 = ⌈infD2
k

x2 × infD2
k

x2⌉. Now by induction infDk

2
x2 ≤ infD1

x2, hence

inf
D

k+1

2

x1 ≤ infD1
x1.

Finally there exists k > 0 such that Dk
2 = D2 by the definition of D2.

The above results for endpoint-relevance and bounds-equivalence extend straight-
forwardly to any two variable primitive constraint describing a continuous bijection
(over its co-domain), for example x1 = x2 ×x2 ×x2, x1 = a×x2 ×x2∧x2 ≥ 0, and
x1 = −x4

2 − x3
2 − x2

2 − x2 − 1∧x2 ≥ 1. Three variable constraints are in general not
endpoint-relevant.

Example 3.17. The domain propagators for the linear equation x1 = 3x2 +5x3

from Example 2.2 are not endpoint-relevant. The solutions θ1 = {x1 7→ 3, x2 7→
1, x3 7→ 0} and θ2 = {x1 7→ 5, x2 7→ 0, x3 7→ 1} illustrate the non-endpoint rele-
vance.

Note that even the domain propagators for x1+x2 = x3 are not endpoint-relevant.
Consider the domain-consistent domain D(x1) = {3, 5, 7, 8}, D(x2) = {4, 12, 15},
D(x3) = {9, 11, 15, 20} and the bounds-equal D′(x1) = {3, 8}, D′(x2) = {4, 15},
D′(x3) = {9, 20} which is not domain-consistent.

The importance of endpoint-relevance is that we can show that conjoining sets of
bounds-equivalent and endpoint-relevant propagators maintains these properties.
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Theorem 3.18. If F1 and F2 are bounds-equivalent and endpoint-relevant and
F ′

1 and F ′
2 are bounds-equivalent and endpoint-relevant, then F1 ∪ F ′

1 is bounds-
equivalent to F2 ∪ F ′

2 and both F1 ∪ F ′
1 and F2 ∪ F ′

2 are endpoint-relevant.

Proof. The proof that Fj ∪ F ′
j is endpoint-relevant given both Fj and F ′

j are
endpoint-relevant is straightforward.

We construct a series of bounds-equivalent domains beginning from an arbitrary
domain D.

Define D0
1 = D, D0

2 = D and D0
3 = D. Define D2k+1

j = solv (Fj , D
2k
3 ) for j = 1, 2

and k ≥ 0. Define Di
4 = range(Di

1) to be the range domain such that Di
4

b≡ Di
1 and

let Di
3 = Di

4 ⊓D for i ≥ 0. Define D2k
j = solv (F ′

j , D
2k−1
3 ) for j = 1, 2 and k > 0.

We show that Di
1

b≡ Di
2

b≡ Di
3 for i ≥ 0. The base case is trivial.

Now since F1 and F2 are bounds-equivalent then D2k+1
1

b≡ D2k+1
2 and clearly

D2k+1
4

b≡ D2k+1
1 . By definition D2k+1

1 ⊑ D2k
3 ⊑ D hence the endpoints of D2k+1

1

are in D. Thus D2k+1
3

b≡ D2k+1
4

b≡ D2k+1
1 .

Similarly since F ′
1 and F ′

2 are bounds-equivalent the result holds for i = 2k, k > 0.
We must finally reach an i such that Di+1

3 = Di
3. Let D∗ = Di

3. Clearly then

solv (F1 ∪ F ′
1, D

∗)
b≡ D∗ since both F1 and F ′

1 are endpoint-relevant. Similarly

solv (F2 ∪ F ′
2, D

∗)
b≡ D∗.

It remains to show that solv(Fj ∪ F ′
j , D)

b≡ D∗, j = 1, 2. Clearly since D∗ ⊑ D

we have that D∗ b≡ solv(Fj ∪ F ′
j , D

∗) ⊑ solv (Fj ∪ F ′
j , D) by the monotonicity of

solv . We now prove that solv (Fj ∪ F ′
j , D) ⊑ D∗

We consider the case for j = 1, the case for j = 2 is identical. We now consider
the sequence Di

5 defined as follows: D0
5 = D, D2k+1

5 = solv(F1, D
2k
5 ), k ≥ 0, and

D2k
5 = solv (F ′

1, D
2k−1
5 ), k > 0. We show that Di

5 ⊑ Di
3, i ≥ 0. The base case

is obvious. Clearly D2k+1
5 = solv (F1, D

2k
5 ) ⊑ solv (F1, D

2k
3 ) = D2k+1

1 since solv
is monotonic. Now by definition D2k+1

1 ⊑ D2k+1
3 , hence the induction hypothesis

holds. The same reasoning applies to D2k
5 and D2k

3 for k > 0. Now there exists i
such that Di

5 = solv (Fj ∪ F ′
j , D) ⊑ Di

3 = D∗.

Example 3.19. We can now prove that domain propagation or bounds propa-
gation on the example in the introduction

[x1, x2, x3, x4] :: [0..10], x1 ≤ x2, 2x2 = 3x3 + 1, x3 ≤ x4

is bounds-equivalent. The domain and bounds propagators for 2x2 = 3x3 + 1 are
bounds-equivalent and endpoint-relevant by Lemma 3.14, and each of the propaga-
tors for x1 ≤ x2 and x3 ≤ x4 are endpoint-relevant and equivalent (domain versus
bounds). Hence the conjunction is also bounds-equivalent and endpoint-relevant
by Theorem 3.18.

Typically domain propagation is not ever used for linear equations with more than
two variables. This results from the fact that finding the solutions to a linear integer
equation is NP-hard. Under the assumption that all linear equations involving more
than two variables are handled using bounds propagation, we already have enough
to show a somewhat surprising result. Using domain propagation (modulo the
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above discussion) or bounds propagation on linear integer constraints is bounds-
equivalent.

Proposition 3.20. Let C be a conjunction of linear integer constraints exclud-
ing linear equations with three or more variables. Let C′ be a conjunction of linear
equations with three or more variables.

Then {dom(c, x) | c ∈ C, x ∈ vars(c)} ∪ {bnd(c, x) | c ∈ C ′, x ∈ vars(c)} is
bounds-equivalent to {bnd(c, x) | c ∈ C ∪ C′, x ∈ vars(c)}.

3.3 Range-Equivalence

This section discusses how we can go beyond endpoint-relevance.

Example 3.21. Consider this variation of the example from the introduction

[x1, x2, x3, x4] :: [0..10], x1 ≤ x2, x2 + x3 = x4, x3 ≤ x4

The domain and bounds propagators for the constraint x2 + x3 = x4 are neither
endpoint-relevant nor bounds-equivalent. Yet clearly the only constraint that can
generate holes in the domains is x2 + x3 = x4. But these holes in the domains are
irrelevant to the other constraints. Hence domain propagation or bounds propaga-
tion for this constraint should be equivalent.

Similarly if we added the constraint x1 6= 3, then although it generates a hole in
the domain of x1, this is irrelevant to the constraint x2 +x3 = x4. Again we should
be able to use bounds propagation rather than domain propagation.

Hence we introduce the notion of range-equivalence, which ensures that the sets
of propagators give bounds-equivalent results for range domains.

Definition 3.22. Two sets of propagators F1 and F2 are range-equivalent, iff

for each range domain D, solv (F1, D)
b≡ solv(F2, D).

Clearly range-equivalent propagators detect failure at the same time for input
range domains.

Proposition 3.23. Let F1 and F2 be two range-equivalent sets of propagators.
For any range domain D, solv (F1, D) is a false domain, iff solv(F2, D) is a false
domain.

We will be interested in determining sets of range-equivalent propagators.

Lemma 3.24. Let c be a linear equation
∑n

i=1 aixi = d with |ai| = 1 for 1 ≤ i ≤
n. Then {dom(c, xi)} and {bnd(c, xi)} are bounds-preserving and range-equivalent
for 1 ≤ i ≤ n.

Proof. Assume w.l.o.g. that aj = 1. Let D be a range domain where [l .. u] =
bnd(c, xj)(D). By definition

l = d−
n
∑

i=1,i6=j

sup
D

(aixi)

u = d−
n
∑

i=1,i6=j

inf
D

(aixi)
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We show that for each dj ∈ [l .. u] there is a solution θ ∈ D of
∑n

i=1,i6=j aixi =
d−dj. This proves that dom(c, xj) is bounds-preserving, and that dom(c, xj)(D) =
bnd(c, xj)(D)

Clearly θ1 = {xi 7→ supD(aixi)} is a solution when dj = l, and θ2 = {xi 7→
infD(aixi)} is a solution when dj = u by their definition. Now

u− l = θ2(d−
n
∑

i=1,i6=j

aixi) − θ1(d−
n
∑

i=1,i6=j

aixi − d)

=

n
∑

i=1,i6=j

(sup
D

(aixi) − inf
D

(aixi))

Take dj such that l < dj < u. Then u − dj < u − l and hence there exist ei ≤
supD(aixi) − infD(aixi) such that u − dj =

∑n

i=1,i6=j ei. Now ei + infD(aixi) ∈
D(xi), since D(xi) is a range and θ = {xi 7→ ei + infD(aixi)} is a solution of
∑n

i=1,i6=j aixi = d− dj by construction.

Clearly Examples 2.2 and 2.3 illustrate that domain and bounds propagators for
linear integer equations with arbitrary coefficients are not range-equivalent.

In contrast, minimum constraints are range-equivalent.

Lemma 3.25. Let c be x1 = min(x2, x3). Then {dom(c, xi) | 1 ≤ i ≤ 3} and
{bnd(c, xi) | 1 ≤ i ≤ 3} are bounds-preserving and range-equivalent.

Proof. Given a range domain D, let [li .. ui] = bnd(c, xi)(D) ∩ D(xi) for 1 ≤
i ≤ 3. We show that there exist solutions θ ∈ D for c such that θ(xi) = di for each
value li ≤ di ≤ ui for 1 ≤ i ≤ 3. This proves that dom(c, xi) is bounds-preserving,
and that dom(c, xi)(D) = bnd(c, xi)(D) ∩D(xi)

Clearly {x1 7→ l1, x2 7→ l2, x3 7→ l3} is a solution of c, since l1 = l2 or l1 = l3 by
definition of the propagators.

Suppose w.l.o.g. l1 = l2, then l3 ≥ l1 and hence each valuation {x1 7→ l1, x2 7→
l2, x3 7→ d} for l3 ≤ d ≤ u3 is also a solution of c. This gives a solution for each
value of x3.

Now u1 ≤ inf{u2, u3}, hence {x1 7→ d, x2 7→ d, x3 7→ u3} is a solution of c for
l1 ≤ d ≤ u1. That gives a solution for each value of x1.

If l3 ≥ u2 then u2 ≤ u1 by definition of the propagators and we are finished.
Suppose l3 < u2 then we have not yet provided a solution where x2 takes values in
[u1 + 1 .. u2]. Clearly {x1 7→ l3, x2 7→ d, x3 7→ l3} with u1 + 1 ≤ d ≤ u2 provides
these solutions.

Note that although minimum constraints are range-equivalent, they are not
bounds-equivalent.

Example 3.26. Consider the constraint x1 = min(x2, x3) and domain D(x1) =
{1, 3, 5, 7}, D(x2) = {2, 4, 6} and D(x3) = {3, 8}.

Domain propagation leads to domain D1 where D1(x1) = {3}, D1(x2) = {4, 6}
and D1(x3) = {3}, while bounds propagation leads to domain D2 where D2(x1) =
{3, 5}, D2(x2) = {4, 6} and D2(x3) = {3, 8}.

This is because the constraint is not endpoint-relevant.

Of more interest is the fact that we can produce efficient range-equivalent prop-
agators for complex constraints like alldifferent.
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Lemma 3.27. If c is alldifferent([x1, . . . , xn]), then {dom(c, xi) | 1 ≤ i ≤ n}
and {bnd(c, xi) | 1 ≤ i ≤ n} are range-equivalent.

Proof. See for example [Puget 1998].

Once we have established range-equivalence for primitive constraints, we can
extend this to larger sets of constraints using Theorem 3.29 below. There are some
side conditions about the interaction of variables that first require definition.

Definition 3.28. A variable x is bounds-only w.r.t. a set of propagators F , if
each propagator f ∈ F for variable x is bounds-only.

A set of propagators F is endpoint-relevant for variables V , if for all domains D,

if D1 = solv (F,D) and D2
b≡ D1 and D2 =V−V D1, then solv (F,D2)

b≡ D1.

Theorem 3.29. Let F1 and F2 be range-equivalent. Let F ′
1 and F ′

2 be range-
equivalent. Let F ′

1 and F ′
2 be endpoint-relevant and bounds-only on variables V =

vars(F1) ∪ vars(F2). Then F1 ∪ F ′
1 and F2 ∪ F ′

2 are range-equivalent.

Proof. We construct a series of bounds-equivalent domains beginning from an
arbitrary range domain D.

Define D0
1 = D, D0

2 = D and D0
3 = D. Define D2k+1

j = solv (Fj , D
2k
3 ), k ≥ 0,

for j = 1, 2. Define Di
3 = range(Di

1, that is the range domain such that Di
3

b≡ Di
1.

Define D2k
j = solv (F ′

j , D
2k−1
3 ), k > 0, for j = 1, 2.

We show that Di
1

b≡ Di
2

b≡ Di
3, i ≥ 0. The base case is trivial.

Now since F1 and F2 are range-equivalent, D2k+1
1

b≡ D2k+1
2 and clearly D2k+1

3

b≡
D2k+1

1 .
Similarly since F ′

1 and F ′
2 are range-equivalent the result holds for i = 2k, k > 0.

We must finally reach an i such that Di+1
3 = Di

3. Let D∗ = Di
3. Let Ej =

solv (F ′
j , D

∗). Then Ej =V D∗ since F ′
j is bounds-only on V and by the definition

of D∗. Also E1
b≡ E2 since F ′

1 and F ′
2 are range-equivalent. Let E′

j = solv (Fj , Ej).

Clearly E′
1

b≡ E′
2 since E1 =V D∗ =V E2 and both F1 and F2 only depend on

variables in V . And by the definition of D∗, E′
j =V D∗.

In fact E′
j = solv (Fj ∪ F ′

j , D). Since F ′
j is endpoint-relevant and E′

j =V D∗ we
have that solv (F ′

j , E
′
j) = E′

j . Clearly E′
j is a fixpoint of λx. solv (Fj ∪F ′

j , x⊓D), for
j = 1, 2 and hence E′

j ⊑ solv (Fj∪F ′
j , D). It remains to show that solv (Fj∪F ′

j , D) ⊑
E′

j .
We consider the case when j = 1, the case when j = 2 is identical. We now

consider the sequence Di
5 defined as follows: D0

5 = D, D2k+1
5 = solv (F1, D

2k
5 ), k ≥

0, and D2k
5 = solv (F ′

1, D
2k−1
5 ), k > 0. We show that Di

5 ⊑ Di
3, i ≥ 0. The base

case is obvious. Clearly D2k+1
5 = solv (F1, D

2k
5 ) ⊑ solv (F1, D

2k
3 ) = D2k+1

1 since solv
is monotonic. Now by definition D2k+1

1 ⊑ D2k+1
3 , hence the induction hypothesis

holds. The same reasoning applies to D2k
5 and D2k

3 for k > 0. Now there exists i s.t.
Di

5 = solv (Fj ∪ F ′
j , D) ⊑ Di

3 = D∗. The final two steps follow from the definition
of E′

1.

Example 3.30. Consider two range-equivalent sets of propagators for the con-
straint alldifferent([x1, x2, x3]), one set, F1, based on domain propagation and
the other, F2, based on bounds propagation.
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Let F ′
1 be domain propagators for x1 ≤ x3, 2x3 + x4 ≤ 6, x2 + x5 ≤ 4, x4 =

2x5 − 1, and F ′
2 be bounds propagators for the same system. By Lemma 3.14 and

Theorem 3.18 we have that F ′
1 and F ′

2 are bounds-equivalent and endpoint-relevant.
Clearly on the variables x1, x2 and x3 they are bounds-only.

Consider the initial domain D(xi) = [1 .. 3] for 1 ≤ i ≤ 5. Domain propagation
of F ′

1 obtains D1
1(x1) = [1 .. 2], D1

1(x2) = [1 .. 3], D1
1(x3) = [1 .. 2], D1

1(x4) = {1, 3},
and D1

1(x5) = [1 .. 2]. Bounds propagation of F ′
2 obtains the range domain D1

2 =
range(D1

1). Note that D1
1 ={x1,x2,x3} D

1
2.

Domain propagation on F1 then determines domain D2
1 which modifies D2

1(x2) =
{3}. Similarly for F2 applied to D1

2 obtaining D2
2.

Domain propagation of F ′
1 now obtains D3

1 which modifies D3
1(x4) = {1} and

D3
1(x5) = {1}. Similarly for F2 applied to D2

2 obtaining D3
2. Now both fixpoints

are reached and D3
2 = D3

1 .

Example 3.31. A well-known program for SEND +MORE = MONEY is:

smm(S,E,N,D,M,O,R,Y) :-

[S,E,N,D,M,O,R,Y] :: [0..9],

S >= 1, M >= 1,

1000 * S + 100 * E + 10 * N + D

+ 1000 * M + 100 * O + 10 * R + E

= 10000 * M + 1000 * O + 100 * N + 10 * E + Y,

alldifferent([S,E,N,D,M,O,R,Y]),

labelling([S,E,N,D,M,O,R,Y]).

Assuming that bounds propagation is used for the large linear equation with
more than two variables, then using either bounds or domain propagation for
alldifferent leads to the same search space being traversed. The result holds
using Lemmas 3.7 and 3.27, and Theorem 3.29.

4. ANALYSING FD PROGRAMS

Now we are ready to devise a bottom-up analysis to discover weaker sets of propaga-
tors for a CLP(FD) program that give equivalent search behaviour. We assume we
are given a pure CLP(FD) program and must choose for each primitive constraint
which implementation by a set of propagators to use.

For simplicity, we only consider pure CLP(FD) programs without data struc-
tures. We could extend the approach to CLP(FD) programs with types defined by
deterministic finite tree automata using the methodology of [Lagoon and Stuckey
2001].

Note that often constraint programming systems (other than CLP systems) sim-
ply build a conjunction of constraints and then apply a predefined search strategy.
Since such problems can be described by a CLP(FD) program without data struc-
tures, we can apply the same analysis.

Analysis and “optimization” of the CLP(FD) program proceeds in two phases.

Range and endpoint. In the first phase, a bottom-up analysis determines which
variables are guaranteed to have a range domain, and which are guaranteed to only
appear in endpoint-relevant constraints.
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labelling([]).

labelling([V|Vs]) :- indomain(V), labelling(Vs).

indomain(V) :- V ≤ infD(V ).
indomain(V) :- V ≥ infD(V ) + 1, indomain(V).

labellingff([]).

labellingff(Vs) :- V = choose{v ∈ Vs | |D(v)| is minimal},
indomain(V),

Rs = Vs − {V}, labellingff(Rs).

labellingmid([]).

labellingmid([V|Vs]) :- middomain(V), labellingmid(Vs).

middomain(V) :- V = median D(V ).
middomain(V) :- V 6= median D(V ), middomain(V).

Fig. 1. Pseudo-code implementation of labelling.

Calling context. In the next phase, we determine the calling context (in terms of
range and endpoint information) for each literal, and replace it by the appropriate
propagation method.

We assume the reader is somewhat familiar with abstract interpretation of CLP
programs (see e.g. [Garćıa de la Banda et al. 1996; Marriott and Søndergaard 1990]).
However, we give self-contained algorithms that make the analysis process accessi-
ble to the reader not so familiar with abstract interpretation. We begin by formally
defining CLP(FD) programs, and then define the analysis and transformation re-
quired for replacing domain propagators by bounds propagators.

4.1 CLP(FD) Programs

We briefly define CLP(FD) programs, for more information see e.g. [Marriott and
Stuckey 1998; Van Hentenryck 1989].

An atom is of the form p(x1, . . . , xn) where p is a predicate symbol and x1, . . . , xn

are distinct variables in V . A literal is an atom, labelling literal, or primitive
constraint. A goal is a sequence of literals. A CLP(FD) program is a set of rules
A :- G where A is an atom, and G is a goal.

Note that we assume here a restricted form of programs as all atoms appear with
distinct variable arguments. It is easy to translate any program to an equivalent
program of this form.

A labelling literal is (for our purposes) one of

labelling([x1, . . . , xn])
labellingff([x1, . . . , xn])
labellingmid([x1, . . . , xn])

where x1, . . . , xn are distinct variables. The role of a labelling literal is to ensure
that every variable involved eventually takes a fixed value.

There are many kinds of labelling possible, but the three we use labelling

(default), labellingff (first-fail labelling) and labellingmid (middle-out value
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ordering) illustrate the three different kinds of propagation behaviour. labelling,
and other labellings (such as labelling the variable with least minimum value)
only depend on the endpoints of a domain and only add inequality constraints.
labellingff calculates which variable x to label using the size of the domain
|D(x)|, hence it depends on the entire domain, but it only adds inequality con-
straints. labellingmid and other labellings not only depend on the entire domain
but also add disequality constraints in the disjunction. Pseudo-code for each kind
of labelling is given in Figure 1.

The execution of a CLP(FD) program will rely on a mapping from primitive
constraints to propagators implementing them. An implementation imp(c) of a
constraint c is a set of propagators f such that f is correct for c. The domain-
implementation of c is defined as

imp(c) = {dom(c, x) | x ∈ vars(c)}
while the bounds-implementation of c is defined as

imp(c) = {bnd(c, x) | x ∈ vars(c)}
Other kinds of implementation are possible.

The operational semantics of CLP(FD) programs is defined as usual but here we
separate the domain from propagators, and restrict to matching data structures
(lists) arising in labelling predicates.

A state is a triple 〈 G F D 〉 of a goal G, a set of propagators F , and a
domain D. A derivation step from state 〈 G0 F0 D0 〉 to state 〈 G1 F1 D1 〉 in
program P , written 〈 G0 F0 D0 〉 ⇒P 〈 G1 F1 D1 〉 is defined as follows. Let
G0 ≡ L1, . . . , Ln.

—if L1 is a primitive constraint c, then F1 = F0 ∪ imp(c), D1 = solv (F1, D0) and
—if D1 is a false domain, G1 = 2 (the empty goal);
—otherwise G1 = L2, . . . , Ln.

—if L1 is an atom p(t1, . . . , tm) there is a rule p(s1, . . . , sm) :- G in the program,
and ρ is a renaming such that ρ(si) = ti, then F1 = F0, D1 = D0, and G1 =
ρ(G), L2, . . . , Ln.

—if L1 is a labelling literal p(t1, . . . , tm) there is a rule p(s1, . . . , sm) :- G in the
definition of the labelling literal, and θ is a substitution such that θ(si) = ti, then
F1 = F0, D1 = D0, and G1 = θ(G), L2, . . . , Ln.

A derivation in P , S0 ⇒P S1 ⇒P · · · ⇒P Sn is a sequence of derivation steps.
A derivation is successful if Sn = 〈 2 Fn Dn 〉 and Dn is not a false domain.
A derivation is failed if Sn = 〈 2 Fn Dn 〉 and Dn is a false domain. A
derivation for a goal G is a derivation for the state 〈 G ∅ Dinit 〉 where Dinit is
some default initial domain mapping each variable to some large initial range, for
example Dinit(x) =

[

−106 .. 106
]

.

Example 4.1. A sample successful derivation for the goal

x1 ≥ 0, x2 ≤ 4, 2x1 = x2, labelling([x1, x2])

using the domain-implementation for constraints is shown below. Only constraints
collected are shown rather than the individual domain propagators.
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〈 x1 ≥ 0, x2 ≤ 4, 2x1 = x2, labelling([x1, x2]) ∅ Dinit 〉
⇒P 〈 x2 ≤ 4, 2x1 = x2, labelling([x1, x2]) x1 ≥ 0 D1 〉
⇒P 〈 2x1 = x2, labelling([x1, x2]) x1 ≥ 0 ∧ x2 ≤ 4 D2 〉
⇒P 〈 labelling([x1, x2]) x1 ≥ 0 ∧ x2 ≤ 4 ∧ 2x1 = x2 D3 〉
⇒P 〈 indomain(x1), labelling([x2]) x1 ≥ 0 ∧ x2 ≤ 4 ∧ 2x1 = x2 D3 〉
⇒P 〈 x1 ≤ 0, labelling([x2]) x1 ≥ 0 ∧ x2 ≤ 4 ∧ 2x1 = x2 D3 〉
⇒P 〈 labelling([x2]) x1 ≥ 0 ∧ x2 ≤ 4 ∧ 2x1 = x2 ∧ x1 ≤ 0 D4 〉
⇒P 〈 indomain(x2), labelling([]) x1 ≥ 0 ∧ x2 ≤ 4 ∧ 2x1 = x2 ∧ x1 ≤ 0 D4 〉
⇒P 〈 x2 ≤ 0, labelling([]) x1 ≥ 0 ∧ x2 ≤ 4 ∧ 2x1 = x2 ∧ x1 ≤ 0 D4 〉
⇒P 〈 labelling([]) x1 ≥ 0 ∧ x2 ≤ 4 ∧ 2x1 = x2 ∧ x1 ≤ 0 ∧ x2 ≤ 0 D4 〉
⇒P 〈 2 x1 ≥ 0 ∧ x2 ≤ 4 ∧ 2x1 = x2 ∧ x1 ≤ 0 ∧ x2 ≤ 0 D4 〉
where

D D(x1) D(x2)

D1

[

0 .. 106
] [

−106 .. 106
]

D2

[

0 .. 106
] [

−106 .. 4
]

D3 [0 .. 2] {0, 2, 4}
D4 {0} {0}

4.2 Range and Endpoint Descriptions

The first phase is a simple bottom-up abstract interpretation where we determine
which variables must have range domains, and which variables are only involved in
endpoint-relevant constraints.

For simplicity we start with the simple case of a single conjunction of constraints.
Essentially we examine each constraint to determine two classes of variables. The
variables for which the constraint may cause holes in their domains become non-
range variables. Each variable for which the constraint is not endpoint-relevant
becomes a non-endpoint-relevant variable. We conjoin these sets of variables to get
a total set of non-range and non-endpoint-relevant variables. The variables not in
these sets are guaranteed to, always have a range domain, and, respectively, to not
be involved in non-endpoint-relevant constraints.

Example 4.2. The (non-)range description of x1 ≤ x2 is {} since each of the
variables appearing in it is guaranteed to have a range domain. The (non-)range
description of 2x2+5x3 = 4 is {x2, x3} indicating that both x2 and x3 may not have
range domains. Its (non-)endpoint description is {} indicating that {x2, x3} only
appear in this endpoint-relevant constraint. The (non-)range and (non-)endpoint
descriptions for x5 = x6 × x6 are both {x5, x6} indicating that they may not be
guaranteed to have a range domain, and that this is not an endpoint-relevant con-
straint.
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Consider the conjunction of constraints

x1 ≤ x2, x3 6= 4, 2x2 + 5x3 = 4, x3 ≤ x4 + x5, x5 = x6 × x6

Then the variables which are made non-range are {x3} from x3 6= 4, {x2, x3} from
2x2 + x3 = 4 and {x5, x6} from x5 = x6 × x6. In total the (non-)range variables
are {x2, x3, x5, x6}. Clearly x1 and x4 are guaranteed to have range domains.

The variables which are made (non-)endpoint are {x5, x6} from x5 = x6 × x6.
Each constraint involving variables {x1, x2, x3, x4} is endpoint-relevant.

We will apply this idea to analysis of CLP(FD) programs using a slight extension.
Rather than collecting sets of non-range and non-endpoint-relevant variables we use
Boolean formulae to define the non-range and non-endpoint relevant variables. This
allows us to express bounds-preserving constraints more accurately.

The bottom-up analysis determines for each user-defined constraint p(x1, . . . , xn)
two Boolean formulae1 describing its (non-)range and (non-)endpoint behaviour.
The intuition is that the Boolean variable corresponding to a variable x is true if
the variable is not guaranteed to have a range domain (resp. not guaranteed to only
appear in endpoint-relevant constraints).

Example 4.3. The (non-)range description of x1 ≤ x2 is true since each of
the variables appearing in it is guaranteed to have a range domain. The (non-
)range description of 2x2 + 5x3 = 4 is x2 ∧ x3 indicating that both x2 and x3

may not have range domains. Its (non-)endpoint description is true indicating that
{x2, x3} only appear in this endpoint-relevant constraint. The (non-)range and
(non-)endpoint descriptions for x5 = x6 × x6 are both x5 ∧ x6 indicating that they
may not be guaranteed to have a range domain, and that this is not an endpoint-
relevant constraint.

Consider the conjunction of constraints

x1 ≤ x2, x3 6= 4, 2x2 + 5x3 = 4, x3 ≤ x4 + x5, x5 = x6 × x6

Then the (non-)range description is the conjunction of the (non-)range descriptions
of the individual constraints: x3 from x3 6= 4, x2∧x3 from 2x2 +x3 = 4 and x5∧x6

from x5 = x6 × x6. In total the (non-)range variables are x2 ∧ x3 ∧ x5 ∧ x6.
Similarly the (non-)endpoint description is the conjunction of the (non)-endpoint

descriptions of the individual constraints: that is x5 ∧ x6.

Example 4.4. To see an example of where we gain advantages from the Boolean
representation consider

x1 ≤ x2, x2 + x3 + x4 = 3, x4 − x3 ≤ x5, x5 6= 3

Then the (non-)range description of x2 + x3 + x4 = 3 is (x2 ↔ x3) ∧ (x2 ↔ x4)
indicating that it is bounds-preserving. The total (non-)range description is (x2 ↔
x3) ∧ (x2 ↔ x4) ∧ x5 which we will interpret to mean that only x5 may not have a
range domain.

Definition 4.5. The abstract domain A for both descriptions used is a simple
(inverted) domain of Boolean formulae defined as follows:

1For most of the primitive constraints we could simply restrict ourselves to conjunctions of positive
literals (i.e. sets of Boolean variables). We use the Boolean domain for generality.
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φ1 ⊑A φ2 iff φ2 → φ1. ⊥A = true, ⊤A = false.
φ1 ⊓A φ2 = φ1 ∨ φ2. φ1 ⊔A φ2 = φ1 ∧ φ2.

Definition 4.6. The meaning of a range description φ is defined by the con-
cretization function γR defined below. We first introduce some auxiliary notation.
Define true(φ, c) as the formula (∃(V − vars(c)φ) ↔ true. This formula holds
whenever φ projected onto the variables of c is equivalent to true. Similarly define
iff (φ, c) as the formula (∃(V−vars(c)φ) ↔ (∧x,y∈vars(c)x↔ y). This formula holds
when φ projected onto the variables of c gives a formula where all variables of c are
equivalent.

γR(φ) = {C | C satisfies (1) and (2)}
where

(1) ∀c ∈ C where true(φ, c), ∀x ∈ vars(c) dom(c, x) is bounds-only
(2) ∀c ∈ C where iff (φ, c), ∀x ∈ vars(c) dom(c, x) is bounds-preserving

The meaning of an endpoint description φ is defined by the concretization func-
tion γE :

γE(ψ) = {C |∀c ∈ C where true(φ, c), {dom(c, y) | y ∈ vars(c)} endpoint-relevant}
We can define the approximation function α for the range and endpoint descrip-

tions for each primitive constraint as in Table I. Here we treat labelling goals,
which drive the search for solution, as primitive constraints since their implemen-
tation involves data-structure manipulation.

Note that the only interesting Boolean formulae arise from range descriptions for
linear equations with unit coefficients and min constraints since they are bounds-
preserving.

We can lift the analysis to conjunctions of constraints simply by conjoining the
descriptions, so abstract conjunction is defined as AconjR(φ, φ′) = AconjE(φ, φ′) =
φ ∧ φ′. We can similarly (inaccurately) handle disjunctions by conjunction. So
abstract disjunction is defined as AdisjR(φ, φ′) = AdisjE(φ, φ′) = φ ∧ φ′. Projec-
tion of descriptions onto a set of variables V is Boolean existential quantification,
AprojR(V, φ) = AprojE(V, φ) = ∃(V − V )φ.

For recursive programs we can find the least fixpoint in the usual manner (see
e.g. [Marriott and Søndergaard 1990]). Note that since there are no infinite as-
cending chains this process is finite. We can alternatively use a constraint based
fixpoint rule (as in Hindley-Milner type inference, see e.g. [Demoen et al. 1999])
which simply ensures that recursive calls have the same descriptions as the head.
This is more inaccurate but sound. The function analyseA(G) shown in Figure 2
analyses a goal G using abstract domain A (one of R or E). The function below
will not terminate on recursive programs, but it is straightforward to extend it to
do so, by recognizing recursive calls and calculating fixpoints appropriately. Hence
analyseR(G) and analyseE(G) return the range and endpoint descriptions for a goal
G.

It is straightforward to show that the analysis is correct.

Theorem 4.7. If C is a constraint arising in a derivation for G then C ∈
γR(analyseR(G)), and C ∈ γE(analyseE(G)).
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Table I. Range and endpoint descriptions for primitive constraints.

Constraint αR αE

true true true
Pn

i=1 aixi ≤ d true true

x1 = d true true

a1x1 + a2x2 = d, |ai| = 1 x1 ↔ x2 true

a1x1 + a2x2 = d x1 ∧ x2 true
Pn

i=1 aixi = d, n > 2, see2 ∧n
i=1xi ∧n

i=1xi
Pn

i=1 aixi = d, n > 2, |ai| = 1 ∧n
i=2(x1 ↔ xi) ∧n

i=1xi
Pn

i=1 aixi 6= d ∧n
i=1xi true

x0 ⇔
Pn

i=1 aixi ≤ d true true

x0 ⇔
Pn

i=1 aixi = d ∧n
i=1xi x0 ∧ ∧n

i=1xi

x0 ⇔
Pn

i=1 aixi 6= d ∧n
i=1xi x0 ∧ ∧n

i=1xi

x1 = ¬x2 true true

x1 = (x2 && x3) true true

x1 = (x2 || x3) true true

x1 = (x2 ⇒ x3) true true

x1 = (x2 ⇔ x3) true true

x1 = x2 × x3 x1 ∧ x2 ∧ x3 x1 ∧ x2 ∧ x3

x1 = x2 × x2 ∧ x2 ≥ 0 x1 ∧ x2 true

x1 = x2 × x2 x1 ∧ x2 x1 ∧ x2

x1 = |x2| x1 ∧ x2 x1 ∧ x2

x1 = min(x2, x3) (x1 ↔ x2) ∧ (x1 ↔ x3) x1 ∧ x2 ∧ x3

alldifferent([x1, . . . , xn]) ∧n
i=1xi ∧n

i=1xi

default([x1, . . . , xn]) ∧n
i=1xi ∧n

i=1xi

labelling([x1, . . . , xn]) true true

labellingff([x1, . . . , xn]) true ∧n
i=1xi

labellingmid([x1, . . . , xn]) ∧n
i=1xi ∧n

i=1xi

Example 4.8. Consider the following program:

g(x1, x2, x3, x4, x5) :- x5 6= 6, p(x1, x2, x3, x4, x5).

g(x1, x2, x3, x4, x5) :- x1 = 3x2 + 4x4.

p(x1, x2, x3, x4, x5) :- alldifferent([x1, x2, x3]),

q(x1, x2, x3, x4, x5).

q(x1, x2, x3, x4, x5) :- x1 ≤ x6, x6 ≤ x2, 2x3 + x4 ≤ 6,
x2 + x5 ≤ 4, x4 = 2x5 − 1.

2We often apriori choose bounds propagation for these constraints in which case the description
is (true, true).
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analyseA(A1, . . . , Am)
AP := true
for i = 1..m

case Ai of

primitive constraint or labelling literal c :
AP := AconjA(AP, αA(c))

atom p(y1, . . . , yn):
foreach rule p(x1, . . . , xn) :- B1, . . . , Bk

let ρ be the renaming {xi 7→ yi}
AP ′ := analyseA(B1, . . . , Bk)
AP ′′ := AprojA({x1, . . . , xn}, AP ′)
AP := AconjA(AP, ρ(AP ′′))

return AP

Fig. 2. Algorithm for simple bottom-up analysis of goal A1, . . . , Am using abstract domain A.

The (range,endpoint) answer descriptions for each literal of the program are shown
in the table below:

x1 ≤ x6 (true, true)
x6 ≤ x2 (true, true)
2x3 + x4 ≤ 6 (true, true)
x2 + x5 ≤ 4 (true, true)
x4 = 2x5 − 1 (x4 ∧ x5, true)
x1 = 3x2 + 4x4 (x1 ∧ x2 ∧ x4, x1 ∧ x2 ∧ x4)
x5 6= 6 (x5, true)
q(x1, x2, x3, x4, x5) (x4 ∧ x5, true)
alldifferent([x1, x2, x3]) (x1 ∧ x2 ∧ x3, x1 ∧ x2 ∧ x3)
p(x1, x2, x3, x4, x5) (x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5,

x1 ∧ x2 ∧ x3)
g(x1, x2, x3, x4, x5) (x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5,

x1 ∧ x2 ∧ x3 ∧ x4)

4.3 Determining Calling Contexts

Unlike many analysis-based optimizations, here we need to understand for each
primitive constraint, the effect of the remainder of the program on the variables that
it involves. This is crucially important in determining whether domain propagation
for the constraint will be different to bounds propagation. Even if a constraint can
cause holes in the domain of its variables this may be unimportant, if there are no
other constraints involving these variables that act differently if holes are present.

Given a primitive constraint and a description of the Range and Endpoint in-
formation from the other constraints upon its variables, we can determine when it
is safe to use the bounds propagators for the constraint. Table II gives the weak-
est allowable description for each component that allows the bounds propagators
to be used.3 Each of these optimizations is justified by a lemma. The excep-
tion is labellingff, which we can replace by a version which uses the calculation

3So false allows any description, while true requires that the description is exactly true.
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Table II. Weakest possible descriptions to allow the use of bounds propagators.

Constraint φR φE Lemma

Pn
i=1 aixi ≤ d false false 3.7

Pn
i=1 aixi 6= d false true 3.13

a1x1 + a2x2 = d false true 3.14
Pn

i=1 aixi = d, n > 2, |ai| = 1 true false 3.24

x0 ⇔
Pn

i=1 aixi ≤ d false false 3.8

x1 = ¬x2 false false 3.9

x1 = (x2 && x3) false false 3.9

x1 = (x2 || x3) false false 3.9

x1 = (x2 ⇒ x3) false false 3.9

x1 = (x2 ⇔ x3) false false 3.9

x1 = x2 × x2 ∧ x2 ≥ 0 false true 3.16

x1 = min(x2, x3) true false 3.25

alldifferent([x1, . . . , xn]) true true 3.27

labellingff([x1, . . . , xn]) true true —

supD x − infD x rather than |D(x)| to determine the variable with the smallest
domain, if all the variables involved are guaranteed to have range domains.

The calling contexts for each literal in the program are determined using a top-
down analysis starting from an initial entry point, say main. We can mimic multiple
entry points G1 to Gn by simply defining main as

main :- G1. . . . main :- Gn.

The analysis starts from the calling pattern main : (true,true).

Given we are processing a calling pattern p(x1, . . . , xn) : (CPR, CPE), we process
each rule of the form

p(x1, . . . , xn) :- A1, . . . , Am

by determining the calling context for each literal Ai as the conjunction of the
analysis answers for Aj , 1 ≤ i 6= j ≤ m with the calling description CP . The
algorithm is formalized in Figure 3. Initially it is called with an empty table of
previous optimizations (Table).

Example 4.9. Returning to the program of Example 4.8 and assuming an en-
try point g(x1, x2, x3, x4, x5), transformation determines calling contexts (ignoring
inequalities):
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transform(L : (CPR, CPE), Table)
case L of

primitive constraint or labelling literal c:
if (CPR, CPE) satisfies conditions in Table II

return bnd(c)
else return dom(c)

atom p(y1, . . . , yn):
if ∃L′ : (CP ′

R, CP ′

E) 7→ L′′ ∈ Table and
renaming ρ such that ρ(L′ : (CP ′

R, CP ′

E)) = L : (CPR, CPE)
return ρ(L′′)

let p′ be a new predicate symbol not in Table

Table := Table ∪ {p(y1, . . . , yn) : (CPR, CPE) 7→ p′(y1, . . . , yn)}
foreach rule p(x1, . . . , xn) :- A1, . . . , Am

let ρ be the renaming {xi 7→ yi}
G := true
for i = m..1

CP ′

R := AprojR(vars(Ai), ρ(CPR) ∧
V

{analyseR(Aj) | 1 ≤ j 6= i ≤ m})
CP ′

E
:= AprojE(vars(Ai), ρ(CPE) ∧

V

{analyseE(Aj) | 1 ≤ j 6= i ≤ m})
Oi := transform(Ai : (CP ′

R
, CP ′

E
), Table)

G := (Oi, G)
output p′(x1, . . . , xn) :- G

return p′(y1, . . . , yn)

Fig. 3. Algorithm for transforming calling pattern L : (CPR, CPE) given previous optimizations
in Table.

g(x1, x2, x3, x4, x5) : (true, true)
p(x1, x2, x3, x4, x5) : (x5, true)
alldifferent([x1, x2, x3]) : (true, true)

q(x1, x2, x3, x4, x5) :
(x1 ∧ x2 ∧ x3 ∧ x5,
x1 ∧ x2 ∧ x3)

x5 6= 6 : (x5, true)
x1 = 3x2 + 4x4 : (true, true)
x4 = 2x5 − 1 : (x5, true)

Hence we replace the alldifferent constraint and the constraints x5 6= 6 and
x4 = 2x5 − 1 by their bounds propagation versions. The program output by the
transformation is

g(x1, x2, x3, x4, x5) :- bnd(x5 6= 6), p(x1, x2, x3, x4, x5).

g(x1, x2, x3, x4, x5) :- dom(x1 = 3x2 + 4x4).

p(x1, x2, x3, x4, x5) :- bnd(alldifferent([x1 , x2, x3])),

q(x1, x2, x3, x4, x5).

q(x1, x2, x3, x4, x5) :- bnd(x1 ≤ x6), bnd(x6 ≤ x2),

bnd(2x3 + x4 ≤ 6),
bnd(x2 + x5 ≤ 4),
bnd(x4 = 2x5 − 1).

Note that the optimization is multi-variant, that is it can produce multiple spe-
cialized versions of the same predicate. The result of the transformation is a new
program with primitive constraints and labelling literals annotated by which propa-
gator implementation should be used for them. We assume that the domain imple-
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mentation is used for all primitive constraints and labelling literals in the original
program. The transformed program has the same search space as the original.

Theorem 4.10. If P is a CLP(FD) program and P ′ is the program output by
transform(L : (true, true),∅) then for any derivation of L in P , 〈 L ∅ Dinit 〉 ⇒∗

P

〈 Gn Fn Dn 〉, there is a corresponding derivation of L in P ′, 〈 L ∅ Dinit 〉 ⇒∗
P ′

〈 Gn F ′
n D′

n 〉 such that Fn and F ′
n are range-equivalent and Dn

b≡ D′
n.

Proof. (Sketch) Clearly the programs P and P ′ are identical except for the
implementation of the constraints (and labelling literals). The implementation
replacements made in P ′ are individually justified by the Lemmas shown in Table II
and Theorems 3.18 and 3.29. This ensures that during execution of the programs
the conjunctions of propagators collected in Fn and F ′

n are range-equivalent. Since
Dn = solv(Fn, Dinit) and D′

n = solv (F ′
n, Dinit) by the monotonicity of solv , then

clearly Dn

b≡ D′
n.

One has to be quite careful to go beyond the transformations allowed here, be-
cause interaction of propagators can be subtle.

Example 4.11. Consider the goal

alldifferent([x1, x2, x3, x4, x5, x6]),
x6 = x1 + 3, x4 = x1 + 3.

Since the equations are bounds-preserving we might assume that the alldifferent
bounds and domain propagators will be equivalent. This is not the case. Consider
the domain D(x1) = D(x3) = [1 .. 3], D(x2) = {2}, D(x4) = D(x5) = D(x6) =
[4 .. 6] then domain propagation and bounds propagation are not the same. E.g.
alldifferent domain propagator gives D(x1) = D(x3) = {1, 3}, D(x2) = {2},
D(x4) = D(x5) = D(x6) = [4 .. 6] but then domain propagation on the equalities
givesD(x4) = D(x6) = {4, 6}. Subsequently, the alldifferent domain propagator
gives D(x5) = {5}. The alldifferent bounds propagator gives D(x1) = D(x3) =
[1 .. 3], D(x2) = {2}, D(x4) = D(x5) = D(x6) = [4 .. 6] and there is no further
propagation. The results are not bounds-equal.

There are a number of obvious ways to improve this analysis. We can eliminate
(non-)range information about variables with initial domain of the form [l .. l + 1]
(most notably Boolean variables [0 .. 1]) since they always have range domains. We
can use a preliminary groundness analysis to determine which variables will always
be fixed, and then use this information to treat constraints in simpler forms, e.g.
the constraint x1 = x2 × x3 becomes a two variable equation, if x2 is always fixed
by the time the constraint is reached.

5. EXPERIMENTAL EVALUATION

We have constructed a prototype analyser and transformer for pure CLP(FD) pro-
grams. Here we give experiments to illustrate the effect of the transformation.

We illustrate the effect of the transformation on four classes of benchmarks. The
first class includes NP-hard graph problems and multi-knapsack problems with
unit values. The graph examples (for example, see [Garey and Johnson 1979]) are
vertex cover (vc-*) and independent sets (is-*) modeled in the natural way using
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Table III. Example programs used.

Program Nodes Search Program Nodes Search

vc-20 125 best smm 7 all

vc-40 6 339 best donald 10 967 all

is-20 93 best magic-5 6 821 first

is-40 1 541 best golomb-8 6 489 best

mk-1 135 581 best golomb-9 34 909 best

mk-2 865 163 best golomb-10 191 049 best

photo-1 10 079 best sched-bridge 61 best

photo-2 10 079 best sched-orb06 57 107 best

sched-orb09 5 647 best

sched-la18 19 173 best

sched-mt10 43 627 best

Boolean variables indicating which vertices are in the selected set. The graphs
used are random graphs of 20 and 40 nodes. The constraints are all inequalities
except the objective function which is defined using a large linear equation with
unit coefficients. The multi-knapsack problems (mk-*) are similar and use integer
variables for the number of selected items. The multiple resource restrictions are
expressed by linear inequality constraints, the objective function is again a linear
equality involving all variables with unit coefficients. Both instances are based on
the data set given in [Van Hentenryck 1999, Section 2.1.8]. Analysis shows that
we can replace domain propagation on the linear equation by bounds propagation
without affecting search space.

The second class includes well-known examples smm (see Example 3.31), donald
(DONALD+GERALD = ROBERT ), magic squares magic-5 and Golomb ruler
problems (golomb-*). Here we assume bounds propagation is used on linear equa-
tions with more than three variables. Analysis shows we can use bounds propaga-
tion on the single alldifferent constraint in each benchmark without affecting
search space.

The third class of examples uses a simple placement problem: find the maxi-
mal number of satisfied preferences for placing two persons next to each other in
a photographic picture. Both photo-1 and photo-2 use refied constraints for ex-
pressing satisfaction of preferences with a Boolean variable. The total satisfaction
then is computed by a large linear equation ranging over these Boolean variables.
While photo-1 uses reified linear equations, photo-2 uses reified linear inequalities
to express preferences. Analysis shows for photo-1 that bounds propagation can
be used on the large linear equation. For photo-2, bounds propagation can also
used for the single occuring alldifferent constraint, since the constraints used
for preferences are reified linear inequalities.

The fourth class of examples are scheduling examples: including the well-known
bridge scheduling example [Dincbas et al. 1990], the remainder are job-shop schedul-
ing examples taken from J.E. Beasley’s OR Library [Beasley ]. Here analysis shows
that the cumulativeEF constraint (using a generalization of edge-finding [Martin
and Shmoys 1996]) appearing in the benchmarks only requires bounds propagation.

Table III gives the size of the search space (in searched nodes) and the search
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Table IV. Comparison of original and transformed programs for Mozart

Original Transformed

Program DomChg Exec Time DomChg Exec Time

vc-20 767 490 15.96 = = −70.8%

vc-40 83 292 24 616 2 601.63 = = −87.4%

is-20 271 194 13.83 = = −75.6%

is-40 9 240 3 477 591.25 = = −88.9%

mk-1 1 650 536 1 584 948 16 689.40 = = −51.4%

mk-2 13 290 127 9 240 208 86 143.00 = = −49.6%

smm 33 26 0.38 = = −29.8%

donald 22 605 34 910 562.34 −13.5% +16.3% −31.6%

magic-5 95 910 111 327 857.04 +18.8% +21.3% −36.9%

golomb-8 254 881 294 816 1 522.21 −3.5% +2.8% −33.7%

golomb-9 1 861 679 2 146 317 11 687.60 −6.6% −0.1% −32.0%

golomb-10 13 721 156 15 747 604 91 230.00 −8.2% −2.2% −29.3%

photo-1 47 538 57 852 1 173.27 = +0.0% −14.1%

photo-2 52 824 79 814 533.06 −3.2% +4.5% −31.5%

sched-bridge 3 942 11 973 14.74 = −0.2% +37.5%

sched-orb06 2 969 983 6 047 760 37 634.50 −5.2% −1.0% +37.7%

sched-orb09 307 722 623 668 4 107.17 −5.0% −0.5% +35.5%

sched-la18 386 178 898 733 6 994.25 −4.6% −0.9% +33.2%

sched-mt10 3 023 437 6 107 850 31 248.30 −7.2% −2.3% +39.0%

strategy used for each problem: find all solutions (all in column Search), the first
solution (first), or a best solution (best). It should be noted that, of course, the
number of nodes searched is exactly the same for both the original and transformed
program. This has been empirically checked for all examples and all systems used.

All but the multi-knapsack and the scheduling benchmarks use default labelling
labelling. The labelling for the multi-knapsack problems split the domains of
variables according to the arithmetic mean of infimum and supremum of a variable
(and thus are very close to the default labelling). The scheduling benchmarks use a
labelling strategy similar to that mentioned in [Baptiste et al. 2001] (the labelling
strategy considers and contributes bounds information only and hence is equivalent
to labelling for the purposes of the analysis).

The numbers have been taken on a standard personal computer with a 1.2 GHz
Pentium III processor, 256 MB of main memory, and Windows XP Professional as
operating system. All runtimes are given as wall-time as the arithmetic mean of 25
runs, where the coefficient of deviation is always less than 3.8%.

We have used the Mozart implementation of Oz [Mozart Consortium 1999] (ver-
sion 1.2.5) and the more experimental Gecode system.4 While both systems are
not directly based on CLP(FD), both original and transformed programs execute
with the same semantics as CLP(FD) programs. The choice of systems is mainly
motivated by the fact that only few available systems implement domain consistent
propagators for linear constraints.

4Gecode is currently under development by the first author and is available upon request.
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Table V. Comparison of original and transformed programs for Gecode

Original Transformed

Program DomChg Exec Time DomChg Exec Time

vc-20 909 383 35.77 = −16.4% −98.5%

vc-40 exceeds time limit < −99.9%

is-20 337 204 93.07 = −27.9% −99.7%

is-40 exceeds time limit < −99.9%

mk-1 exceeds time limit < −99.9%

mk-2 exceeds time limit < −99.9%

smm 63 19 0.05 −7.9% = −40.3%

donald 55 741 24 992 120.67 −1.5% +0.0% −50.1%

magic-5 106 717 78 441 301.24 −1.1% +0.9% −59.9%

golomb-8 375 194 329 746 909.72 +0.5% +0.9% −59.1%

golomb-9 2 772 958 2 420 565 8 430.12 +0.6% +0.9% −65.9%

golomb-10 20 641 004 17 934 193 79 546.00 +0.7% +1.1% −72.2%

photo-1 72 672 187 844 217.43 = −15.2% −35.1%

photo-2 75 470 92 292 122.62 = −8.5% −38.9%

Table IV gives results for executing each example for Mozart, while Table V gives
numbers for Gecode. Note that the scheduling examples have been only evaluated
with Mozart.

In order to do the scheduling examples with Mozart, we needed to add a bounds
propagation version of cumulativeEF to Mozart. We mimicked a range-equivalent
version of cumulativeEF by using the domain propagation version on a new copy
(x′1, . . . , x

′
n) of the original variables (x1, . . . , xn), and connecting these to the orig-

inal variables through inequalities xi ≥ x′i and x′i ≥ xi.
The tables contain the number of times the domain of a variable is changed

(DomChg), the number of times a propagator is executed (Exec), and the runtime
(wall-time) in milliseconds. The numbers for the transformed programs are given
relative to the numbers of the original programs. A negative percentage means
that the transformed program improves by that percentage. For example, a time-
value of −50% means that the transformed program is twice as fast, whereas −90%
means that the transformed programs is ten times as fast. A positive percentage is
analogous.

The results show substantial improvement in execution time for the first class
of benchmarks illustrating the expense of domain propagation on large equations.
The number of nodes explored in each case is identical (illustrating Theorem 4.10 in
action) for this and all benchmarks. Moreover the domains in this case are always
identical (not just bounds-equal) as is illustrated by the number of domain changes
(for both systems) and executions (for Mozart). Note that the two systems use
different algorithms to implement domain-consistent linear equalities. The Gecode
systems features a naive algorithm geared at small linear equations. This results
in the fact that all but the two examples using small equalities (vc-20 and is-20)
cannot be solved in reasonable time in the non-transformed version.

The results for the second set of benchmarks show a moderate speedup, which is
slightly larger for Gecode than for Mozart. This is due to the fact that the bounds

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Bounds and Domain Propagation, Same Search Space · 145

version of alldifferent in both systems is based on a simple O(n2) algorithm
presented in [Puget 1998] (with some additional improvements in Gecode). It can
be expected that with a state-of-the-art implementation of a bounds propagation
version of alldifferent (either the O(n logn) algorithm of [Puget 1998], or the
linear algorithm of [Mehlhorn and Thiel 2000]), the improvement in runtime will be
considerably better. Note that for Mozart the number of domain changes reduces
for the larger benchmarks (golomb-*) indicating useless (in terms of search space)
removal of internal values. Interestingly the number of executions of propagators
can be greater for bounds propagation since it may require a number of executions
to determine the same information as the domain version. The comparison of
the two systems shows how different solvers can have markedly different internal
behaviour in terms of domain changes and propagator executions.

The results for the third set of benchmarks show naturally the same behaviour
for photo-1 as the first set of examples (bounds propagation for a large linear
equality), and a combination with the observations made for the second set of
examples for photo-2 (additionally, bounds propagation on alldifferent). It
is interesting to observe that even though most constraints are concerned with
expressing placement satisfaction through reification which are not transformed, the
examples show already promising speedup. This suggests that even if only a fraction
of the involved constraints can be optimized, our transformation is beneficial.

For the fourth class of benchmarks (only for Mozart), we obviously expect a
slow down since we are mimicking a range-equivalent bounds propagation ver-
sion of cumulativeEF using the domain version. However, bounds propagation
requires less variable modifications as well as less constraint executions. This suite
shows that it is worth investigating bounds propagators for cumulativeEF which
are range-equivalent to the current domain version.

6. CONCLUSION

We have examined the propagation behaviour of domain and bounds propagators
for common primitive constraints, and discovered cases where they will determine
failure at the same time. By constructing theorems about how conjunctions of
propagators can be built which maintain this property we are able to prove when
domain and bounds propagation for a constraint system will give the same be-
haviour. We devised an analysis to determine where we can safely replace domain
propagation by bounds propagation in a CLP(FD) program. We have illustrated
a number of real programs where the analysis is able to determine weaker forms
of propagators with equivalent search behaviour, and gave some evidence for the
improvements possible.

The primitive constraints that we consider in this paper, while they include all of
the most common constraints used in integer constraint programs, is not exhaustive.
The approach can be extended to other primitive constraints by evaluating their
endpoint relevance and range equivalence. Indeed the core of the paper is about
establishing bounds equivalence of two sets of propagators. We do not need to
restrict ourselves to bounds or domain propagators to apply the methods herein.

There is plenty more scope for understanding when one form of propagator is
equivalent in strength to another. We should characterise the many global con-
straints available like alldifferent and cumulativeEF in terms of their propaga-
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tion behaviour, and extend the analysis to handle them. The most important use of
this information is probably in building more efficient versions of global constraints
and recognizing where they can be used safely without increasing search space.
There is also scope for finding weaker conditions that maintain bounds-equality of
domains for constraints.

Other kinds of propagation are also worth considering such as value propagation
or propagators for stronger notions of consistency like path consistency.

There is further scope for improving the propagators produced by the transfor-
mation. For example, consider the constraints

x1 + x2 + x3 ≤ 3, x3 + x4 6= 2, alldifferent([x4, x5, x6])

We can safely use the bounds propagator bnd(x3 + x4 6= 2, x3) for one variable in
the disequality while using the domain propagator dom(x3 + x4 6= 2, x4) for the
other variable.
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