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Abstract

This paper introduces an architecture for generic constraint implementations based on variable views
and range iterators. Views allow, for example, to scale, translate, and negate variables. The paper
shows how to make constraint implementations generic and how to reuse a single generic implementation
with different views for different constraints. Applications of views exemplify their usefulness and
their potential for simplifying constraint implementations. We introduce domain operations compatible
with views based on range iterators. The paper evaluates different implementation techniques for the
presented architecture.

1 Introduction

A challenging aspect in developing and extending a constraint programmingsystem is implementing acom-
prehensiveset of constraints. Ideally, a system should provide simple, expressive, and efficient abstractions
that ease development and reuse of constraint implementations.

This paper contributes a new architecture based on variable views and range iterators. The architecture
comprises an additional level of abstraction to decouple variable implementations from propagators (as con-
straint implementations). Propagators compute generically with variable views instead of variables. Views
support operations like scaling, translation, and negation of variables. For example, a simple generic propa-
gator for linear equality∑k

i=1xi = c can be used with a scale-viewxi = ai ·yi to obtain an implementation of
∑k

i=1ai ·yi = c. Variable views assist in implementing propagators on a higher level of abstraction.
Range iterators support powerful and efficient domain operations on variables and variable views. The

operations can access and modify multiple values of a variable domain simultaneously. Range iterators are
efficient as they help avoiding temporary data structures. They simplify propagators by serving as adaptors
between variables and propagator datastructures.

The architecture is carefully separated from its implementation. Two different implementation ap-
proaches are presented and evaluated. An implementation using parametric polymorphism (such as tem-
plates in C++) is shown to not incur any runtime cost. The architecture can be used for arbitrary constraint
programming systems and has been fully implemented in Gecode [2].

Plan of the paper. The next section presents a model for finite domain constraint programming systems.
Sect. 3 introduces variable views and exemplifies their use. Sect. 4 introduces iterator-based domain oper-
ations that are applied to views in the following section. Variable views for setconstraints are discussed
in Sect. 6. In Sect. 7 implementation approaches for views and iterators are presented, followed by their
evaluation in Sect. 8. The last section concludes.
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2 Constraint Programming Systems

This section introduces the model for finite domain constraint programming systems considered in this paper
and relates it to existing systems.

Variables and propagators. Finite domain constraint programming systems offer services to support con-
straint propagation and search. In this paper we are only concerned with variables used for constraint prop-
agation. We assume that a constraint is implemented by apropagator. A propagator maintains a collection
of variables and performs constraint propagation by executing operations on them. In the following we con-
sider finite domain variables and propagators. A finite domain variablex has an associateddomaindom(x)
being a subset of some finite subset of the integers.

Propagators do not manipulate variable domains directly but use operationsprovided by the variable.
These operations return information about the domain or update the domain. In addition, they handle failure
(the domain becomes empty) and control propagation.

Value operations. A value operationon a variable involves a single integer as result or argument. We
assume that a variablex with D = dom(x) provides the following value operations:x.getmin() returns minD,
x.getmax() returns maxD, x.adjmin(n) updates dom(x) to {m∈D |m≥ n}, x.adjmax(n) updates dom(x) to
{m∈D |m≤ n}, andx.excval(n) updates dom(x) to {m∈D |m 6= n}. These operations are typical for finite
domain constraint programming systems like Choco [6], ILOG Solver [9, 11,4], Eclipse [1], Mozart [8],
and Sicstus [5]. Some systems provide additional operations such as for assigning values.

Domain operations. A domain operationsupports simultaneous access or update of multiple values of
a variable domain. In many systems this is provided by supporting an abstractset-datatype for variable
domains, as for example in Choco [6], Eclipse [1], Mozart [8], and Sicstus [5]. ILOG Solver [9, 11, 4] only
allows access by iterating over the values of a variable domain.

Subscription. When a propagatorp is created, itsubscribesto its variables. Subscription guarantees that
p is executed whenever the domain of one of its variables changes according to an event. An event describes
when the propagator requires execution:e= fix when dom(x) becomes a singleton,e= min if mindom(x)
changes,e = max if maxdom(x) changes, ande = any if dom(x) changes. For more on events, see for
example [13].

Range and value sequences. Range notation[n .. m] is used for the set of integers{l ∈ Z | n≤ l ≤m}. A
range sequenceranges(I) for a finite integer setI ⊆ Z is the shortest sequences= 〈[n1 .. m1] , . . . , [nk .. mk]〉
such thatI is covered (set(s) = I , where set(s) is defined as

⋃k
i=1 [ni .. mi ]) and the ranges are ordered by

their smallest elements (ni ≤ ni+1 for 1≤ i < k). The above range sequence is also written as〈[ni .. mi ]〉
k
i=1.

Clearly, a range sequence is unique, none of its ranges is empty, andmi +1 < ni+1 for 1≤ i < k.
A value sequencevalues(I) for a finite set of integersI ⊆Z is the shortest sequences= 〈n1, . . . ,nk〉 (also

written as〈ni〉
k
i=1) such thatI is covered (set(s) = I , where set(s) =

⋃k
i=1ni) and that the values are ordered

(ni ≤ ni+1 for 1≤ i < k). Again, this sequence is unique and has no duplicate values.

3 Variable Views with Value Operations

This section introduces variable views with value operations. The full design with domain operations and a
discussion of their properties follows in Sect. 5.
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Example 1 (Smartn-Queens) Consider the well-known finite domain constraint model forn-Queens using
three alldifferent constraints: each queen is represented by a variablexi (0≤ i < n) with domain{0, . . . ,n−
1}. The constraints state that the values of allxi , the values of allxi− i, and the values of allxi + i must be
pairwise different for 0≤ i < n.

If the used constraint programming system lacks versions of alldifferentsupporting that the values of
xi +ci are different, the user must resort to using additional variablesyi and constraintsyi = xi +ci and the
single constraint that theyi are different. This approach is clearly not very efficient: it triples the number of
variables and requires additional 2n binary constraints.

Systems with this extension of alldifferent must implement two very similar versionsof the same propa-
gator. This is tedious and increases the amount of code that requires maintenance. In the following we make
propagatorsgeneric: the same propagator can be reused for several variants.

To make a propagator generic, all its operations on variables are replaced by operations on variable
views. A variable view(view for short) implements the same operations as a variable. A view stores a
reference to a variable. Invoking an operation on the view executes the appropriate operation on the view’s
variable. Multiple variants of a propagator can be obtained by instantiating thesingle generic propagator
with multiple different variable views.

Offset-views. For anoffset-view v= voffset(x,c) for a variablex and an integerc, performing an operation
onv results in performing an operation onx+c. The operations on the offset-view are:

v.getmin() := x.getmin()+c v.getmax() := x.getmax()+c
v.adjmin(n) := x.adjmin(n−c) v.adjmax(n) := x.adjmax(n−c)
v.excval(n) := x.excval(n−c)

To obtain both alldifferent propagators required by Example 1, also anidentity-viewis needed. An
operation on an identity-view vid(x) for a variablex performs the same operation onx. That is, identity-
views turn variables into views to comply with propagators now computing with views.

Obtaining the two variants of alldifferent is straightforward: the propagator is made generic with respect
to which view it uses. Using the propagator with both an identity-view and an offset-view yields the required
propagators.

Sect. 7 discusses how views can be implemented whereas this section focuses on the architecture only.
However, to give some intuition, in C++ for example, propagators can be made generic by implementing them
as templates with the used view as template argument. Instantiating the generic propagator then amounts to
instantiating the corresponding template with a particular view.

Views are orthogonal to the propagator. In the above example, offset-views can be used for any imple-
mentation of alldifferent using value operations. This includes the naive version propagating when variables
become assigned or the bounds-consistent version [10].

Scale-views. In the above example, views allow to reuse the same propagator for variantsof a constraint,
avoiding duplication of code and effort. In the following, views can also simplify the implementation of
propagators.

Example 2 (Linear inequalities) A common constraint is linear inequality∑n
i=1ai · xi ≤ c (equality and

disequality is similar) with integersai and c and variablesxi . In the following we restrict theai to be
positive.

A typical bounds-propagator executes for 1≤ j ≤ n:

x j .adjmax(⌈(c− l j)/a j⌉) with l j = ∑n
i=1,i 6= j ai ·xi .getmin()
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Quite often, models feature the special caseai = 1 for 1≤ i ≤ n. For this case, it is sufficient to execute
for 1≤ j ≤ n:

x j .adjmax(c− l j) with l j = ∑n
i=1,i 6= j xi .getmin()

As this case is common, a system should optimize it. An optimized version requires less space (noai

required) and less time (no multiplication, division, and rounding). But, a moreinteresting question is: can
one just implement the simple propagator and get the full version by using views?

With scale-views, the simple implementation can be used in both cases. Ascale-view v= vscale(a,x)
for a positive integera > 0 and a variablex defines operations fora·x:

v.getmin() := a·x.getmin() v.getmax() := a·x.getmax()
v.adjmin(n) := x.adjmin(⌈n/a⌉) v.adjmax(n) := x.adjmax(⌊n/a⌋)
v.excval(n) := if n moda = 0 then x.excval(n/a)

From the simpler implementation the special case (identity-views) and the general case (scale-views)
can be obtained. Multiplication, division, and rounding is separated from actually propagating the inequality
constraint. Views hence support separation of concerns and can simplify the implementation of propagators.
In particular, multiplication, division, and rounding need to be implemented only once for the scale-view:
any generic propagator can use scale-views.

Minus-views. Another common optimization is to implement binary and ternary variants of commonly
used constraints. This optimization reduces the overhead with respect to both time and memory as no array
is needed.

Example 3 (Binary linear inequality) Consider a propagator forv1 +v2≤ c with viewsv1 andv2 propagat-
ing as described in Example 2. With scale-viewsv1 = vscale(a1,x1) andv2 = vscale(a2,x2) the propagator
also implementsa1 ·x1 +a2 ·x2≤ c provided thata1,a2 > 0. However,x1−x2≤ c cannot be obtained with
scale-views. Even if scale-views allowed negative constants, it would beinefficient to multiply, divide, and
round to just achieve negation.

A minus-view v= vminus(x) for a variablex provides operations such thatv behaves as−x. Its op-
erations reflect that the smallest possible value forx is the largest possible value for−x and vice versa:

v.getmin() :=−x.getmax() v.getmax() :=−x.getmin()
v.adjmin(n) := x.adjmax(−n) v.adjmax(n) := x.adjmin(−n)
v.excval(n) := x.excval(−n)

With minus-views,x1−x2≤ c can be obtained from an implementation ofv1+v2≤ c with v1 = vid(x1)
andv2 = vminus(x2). With an offset-view it is actually sufficient to implementv1+v2≤ 0. Thenx1+x2≤ c
can be implemented by an identity-view vid(x1) for v1 and an offset-view voffset(x2,−c) for v2. But again,
given justv1 +v2≤ 0, an implementation forx1−x2≤ c with c 6= 0 cannot be obtained.

Derived views. It is unnecessarily restrictive to define views in terms of variables. The actual requirement
for a view is that its variable provides the same operations. It is straightforward to make views generic
themselves: views can be defined in terms of other views. The only exceptionare identity-views as they
serve the very purpose of casting a variable into a view. Views such as offset, scale, and minus are called
derived views: they are derived from some other view.

With derived views being defined in terms of views, the first step to use a derived view is to turn a
variable into a view by an identity-view. For example, a minus-viewv for the variablex is obtained from a
minus-view and an identity-view:v = vminus(vid(x)).
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Example 4 (Binary linear inequality reconsidered) With the help of offset-views, minus-views, and scale-
views, all possible variants of binary linear inequalities can now be obtainedfrom a propagator forv1 +
v2 ≤ 0. For example,a · x1− x2 ≤ c with a > 0 can be obtained withv1 = vscale(a,vid(x1)) and v2 =
vminus(voffset(vid(x2),c)) or v2 = voffset(vminus(vid(x2)),−c).

Scale-views reconsidered. The coefficient of a scale-view is restricted to be positive. Allowing arbitrary
non-zero constantsa in a scale-views= vscale(a,x) requires to take the signedness ofa into account. This
can be seen for the following two operations (the others are similar):

s.getmin() := if a < 0 then a·x.getmax() else a·x.getmin()
s.adjmax(n) := if a < 0 then x.adjmin(⌊n/a⌋) else x.adjmax(⌊n/a⌋)

This extension might be inefficient. Consider Example 2: inside the loop implementing propagation on
all views, the decision whether the coefficient in question is positive or negative must be made. For modern
computers, conditionals — in particular in tight loops — can reduce performance considerably. A more
efficient way is to restrict scale-views to positive coefficients and use anadditional minus-view for cases
where negative coefficients are required.

Example 5 (Linear inequalities reconsidered) An efficient way to implement a propagator for linear in-
equality distinguishes positive and negative variables as in∑n

i=1xi +∑m
i=1−yi ≤ c.

The propagator is simple: it consists of two parts, one for thexi and one for theyi . Both parts share
the same implementation used with different views. To propagate to thexi , identity-views are used. To
propagate to theyi , minus-views are used. Arbitrary coefficients are obtained from scale-views as shown
above.

The example shows that it can be useful to make parts of a propagator generic and reuse these parts
with different views. Puget presents in [10] an algorithm for the bounds-consistent alldifferent. The paper
presents only an algorithm for adjusting the upper bounds of the variablesxi and states that the lower bounds
can be adjusted by using the same algorithm on variablesyi whereyi =−xi . With views, this technique for
simplifying the presentation of an algorithm readily carries over to its implementation: the implementation
can be reused together with minus-views.

Another aspect in the design of scale-views is numerical precision: for large a the values occurring
in computations with a scale-view vscale(a,v) can exceed the range of normal integer computations. A
system can provide several scale-views that differ in which numerical datatype is used for computation. For
example, a system can provide a scale-view that computes with normal integers or with double-precision
floating point numbers.

Constant-views. Derived views exploit that views do not need to be implemented in terms of variables.
This can be taken to the extreme in that a view has no access at all to a variable. A constant-viewv= vcon(c)
for an integerc provides operations such thatv behaves as a variablex being equal toc:

v.getmin() := c v.getmax() := c
v.adjmin(n) := if n > c then fail v.adjmax(n) := if n < c then fail
v.excval(n) := if n = c then fail

Example 6 (Ternary linear inequalities) Another optimization for linear constraints are ternary variants.
Given a propagator forv1+v2+v3≤ c and using a constant-view vcon(0) for one of the viewsvi , all binary
variants as discussed earlier can be obtained.

In summary, for linear inequalities (this carries over to linear equalities and disequalities), views support
many optimized special cases from just two implementations (the generaln-ary case and the ternary case).
These implementations are simple as they do not need to consider coefficients.
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Events. The handling of events in subscribing to a variable is straightforward. Clearly, for a constant-
view subscription does nothing. For all but the minus-view the events on the variable and the events on the
derived view coincide. Ifv′ = vminus(v), then a change of the minimum ofv corresponds to a change of the
maximum ofv′ and vice versa.

4 Domain Operations and Range Iterators

Today’s constraint programming systems support domain operations eitheronly for access or by means of
an explicitly represented abstract datatype. In this paper, we propose domain operations based on range
iterators. These operations are shown to be simple, expressive, and efficient. Additionally, range iterators
are essential for views as presented in Sect. 5.

Range iterators. A range iterator rfor a range sequences= 〈[ni .. mi ]〉
k
i=1 allows to iterate overs: each

of the [ni .. mi ] can be obtained in sequential order but only one at a time. A range iteratorr provides the
following operations:r.done() tests whether all ranges have been iterated,r.next() moves to the next range,
andr.min() andr.max() return the minimum and maximum value for the current range. By set(r) we refer
to the set defined by an iteratorr (which must coincide with set(s)).

A possible implementation of a range iteratorr for s maintains an indexir which is initially ir = 1, the
operations can then be defined as:

r.done() := ir > k r.next() := (ir ← ir +1)
r.min() := nir r.max() := mir

A range iterator hides its implementation. Iteration can be by position as above, but it can also be by
traversing a list. The latter is particularly interesting if variable domains are implemented as lists of ranges
themselves.

Iterators are consumed by iteration. Hence, if the same sequence needs tobe iterated twice, a fresh
iterator is needed. If iteration is cheap, a reset-operation for an iterator can be provided so that multiple
iterations are supported by the same iterator. For more expensive iterators, a solution is discussed later.

Domain operations. Variables are extended with operations to access and modify their domains with
range iterators. For a variablex, the operationx.getdom() returns a range iterator for ranges(dom(x)).
For a range iteratorr the operationx.setdom(r) updates dom(x) to set(r) provided that set(r) ⊆ dom(x).
The responsibility for ensuring that set(r) ⊆ dom(x) is left to the programmer and hence requires careful
consideration. Later richer (and safe) domain operations are introduced. The operationx.setdom(r) is
genericwith respect tor: any range iterator can be used.

Domain operations can offer a substantial improvement over value operations, if many values need to be
removed from a variable domain simultaneously. Assume a typical implementation ofa variable domainD
which organizes ranges(D) = 〈[ni .. mi ]〉

k
i=1 as a linked-list. Removing a single element fromD takesO(k)

time and might increase the length of the linked-list by one (introducing an additional hole). Hence, in the
worst case, removingl elements takesO(l(k+ l)) time. With domain operations based on iterators, removal
takesO(k+ l) time.

Range iterators serve as simplistic abstract datatype to describe finite sets ofintegers. However, they
provide some essential advantages over an explicit set representation.First, any range iterator regardless
of its implementation can be used to update the domain of a variable. This turns outto allow for simple,
efficient, and expressive updates of variable domains. Second, no costly memory management is required
to maintain a range iterator as it provides access to only one range at a time. Third, iterators are essential in
providing domain operations on variable views as will be discussed in Sect. 5.
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Intersection iterators. Let us consider intersection as an example for computing with range iterators.
Intersection is computed by an intersection iteratorr (returned by iinter(a,b)) taking two range iteratorsa
andb as input where set(r) = set(a)∩set(b). The intersection iterator maintains integersn andm for storing
the smallest and largest value of its current range. When initialized, the next operation is executed once.
The operations for access are obvious:r.min() returnsn andr.max() returnsm. The other operations are:

r.done() := a.done()∨b.done()
r.next() := if a.done()∨b.done() then return

repeat
while ¬a.done()∧ (a.max() < b.min()) do a.next()
if a.done() then return
while ¬b.done()∧ (b.max() < a.min()) do b.next()
if b.done() then return

until a.max()≥ b.min()
n←max(a.min(),b.min()); m←min(a.max(),b.max())
if a.max() < b.max() then a.next() else b.next()

The repeat-loop iteratesa andb until their ranges overlap. The tests whethera or b are done ensure that
no operation is performed on a done iterator. The remainder computes the resulting range and prepares for
computing a next range.

The iteratorsa andb can be arbitrary iterators (again, the intersection iterator isgeneric), so it is easy
to obtain an iterator that computes the intersection of three iterators by using twointersection iterators.
Intersection is but one example for a generic iterator, other useful iterators are for example:r = iunion(a,b)
for iterating the union ofa andb (set(r) = set(a)∪set(b)) andr = iminus(a,b) for iterating the set difference
of a andb (set(r) = set(a)\set(b)).

Example 7 (Propagating equality) Consider a propagator that implements domain-consistent equality:x =
y (assuming thatx andy are variables, views are discussed later). The propagator can be implemented as
follows: get range iterators forx andy by rx = x.getdom() and ry = y.getdom(), create an intersection
iteratorri = iinter(rx, ry), update one of the variable domains byx.setdom(ri), and copy the domain fromx
to y by y.setdom(x.getdom()).

Cache-iterators. The above example suggests that for some propagators it is better to actuallycreate an
intermediate representation of the range sequence computed by an iterator.The intermediate representation
can be reused as often as needed. This is achieved by acache-iterator: it takes an arbitrary range iterator
as input, iterates it completely, and stores the obtained ranges in an array. Its actual operations then use the
array. The cache-iterator also implements a reset operation as discussedabove. By this, the possibly costly
input iterator is used only once, while the cache-iterator can be used as often as needed.

Richer domain operations. With the help of iterators, richer domain operations are effortless. For a
variablex and a range iteratorr, the operationx.adjdom(r) replaces dom(x) by dom(x)∩ set(r), whereas
x.excdom(r) replaces dom(x) by dom(x)\set(r):

x.adjdom(r) := x.setdom(iinter(x.getdom(), r))
x.excdom(r) := x.setdom(iminus(x.getdom(), r))
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Value versus range iterators. Another design choice is to base domain operations on value iterators:
iterate values rather than ranges of a set. This is not efficient: a value sequence is considerably longer than
a range sequence (in particular for the common case of a singleton range sequence).

For implementing propagators, however, it can be simpler to iterate values. This can be achieved by a
range-to-value iterator. A value iteratorv has the operationsv.done(), v.next(), andv.val() to access the
current value. A range-to-value iterator takes a range iterator as inputand returns a value iterator iterating
the values of the range sequence. The inverse is a value-to-range iterator: it takes as input a value iterator
and returns the corresponding range iterator. For a value-to-range iterator it is helpful to allow duplicates in
the increasing value sequence. This iterator has many applications, as is explained below.

Iterators as adaptors. Global constraints are typically implemented by a propagator computing over some
involved data structure, such as for example a variable-value graph fordomain-consistent all-distinct [12].
After propagation, the new variable domains must be transferred from thedata structure to the variables.
This can be achieved by using a range or value iterator as adaptor. The adaptor operates on the data structure
and iterates the value or range sequence for a particular variable. The iterator (together with a value-to-range
iterator for a value iterator) then can be passed to the appropriate domain operation.

5 Variable Views with Domain Operations

This section discusses domain operations for variable views using iterators.

Identity and constant views. Domain operations for identity-views and constant-views are straightfor-
ward. The domain operations for an identity-viewv= vid(x) use the domain operations onx: v.getdom() :=
x.getdom() andv.setdom(r) := x.setdom(r). For a constant-viewv= vcon(c), the operationv.getdom() re-
turns an iterator for the singleton range sequence〈[c .. c]〉. The operationv.setdom(r) just checks whether
the range sequence ofr is empty.

Derived views. Domain operations for an offset-view voffset(v,c) are provided by an offset-iterator. The
operations of an offset-iteratoro for a range iteratorr and an integerc (created by ioffset(r,c)) are as follows:

o.min() := r.min()+c o.max() := r.max()+c
o.done() := r.done() o.next() := r.next()

The domain operations for an offset viewv = voffset(x,c) are as follows:
v.getdom() := ioffset(x.getdom(),c) v.setdom(r) := x.setdom(ioffset(r,−c))

For minus-views we just give the range sequence as iteration is obvious. For a given range sequence
〈[ni .. mi ]〉

k
i=1, the negative sequence is obtained by reversal and sign change as〈[−mk−i+1 .. −nk−i+1]〉

k
i=1.

The same iterator for this sequence can be used both for setdom and getdom operations. Note that the iterator
is quite complicated as it changes direction of the range sequence, possibleimplementations are discussed
in Sect. 7.

Assume a scale-views = vscale(a,v) with a > 0 and〈[ni .. mi ]〉
k
i=1 being a range sequence forv. If

a = 1, the range sequence remains unchanged. Otherwise, the corresponding range sequence fors is
〈{a·n1},{a· (n1 +1)}, . . . ,{a·m1}, . . . ,{a·nk},{a· (nk +1)}, . . . ,{a·mk}〉.

Assume that〈[ni .. mi ]〉
k
i=1 is a range sequence fors. Then the ranges[⌈ni/a⌉ .. ⌊mi/a⌋] for 1≤ i ≤ k

correspond to the required variable domain forv, however they do not necessarily form a range sequence
as the ranges might be empty, overlapping, or adjacent. Iterating the rangesequence is simple by skipping
empty ranges and conjoining overlapping or adjacent ranges.
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Consistency. An important issue is how views affect the consistency of a propagator. Let us first consider
all views except scale-views. These views compute bijections on the valuesas well as on the ranges of a
domainD. A bounds (domain) consistent propagator for a constraintC with variablesx1, . . . ,xn establishes
bounds (domain) consistency for the constraintC with all the variables replaced byvk(xk) (if vk computes
the view ofxk).

Scale-views only compute bijections on values: a range does not remain a range after multiplication.
This implies that bounds consistent propagators do not establish bounds consistency on scale-views. Con-
sider for example a bounds consistent propagator for alldifferent. Withx,y,z∈ {1,2}, alldifferent(4x,4y,4z)
cannot detect failure, while alldifferent(x,y,z) can. Note that this is not a limitation of our approach but a
property of multiplication.

6 Views for Set Constraints

Views and iterators readily carry over to other constraint domains. This section shows how to apply them to
finite sets.

Finite sets. Most systems approximate domains of finite set variables by a greatest lowerand least upper
bound [3]: dom(x) = (glb, lub). The fundamental operations are similar to domain operations on finite
domain variables:x.glb() returns glb(x), x.lub() returns lub(x), x.adjglb(D) updates dom(x) to (glb(x)∪
D, lub(x)), andx.adjlub(D) updates dom(x) to (glb(x), lub(x)∩D).

All these operations take sets as arguments, so iterators play an important role here. In fact, range
iterators provide exactly the operations that set propagators need: union, intersection, and complement.
Most propagators thus do not require temporary datastructures.

As before, propagators now operate on views. In addition to the identity view, the following derived
views make propagators more generic. As for finite domains,constant-views– like the empty set, the
universe, or some arbitrary set – help derive binary propagators from ternary ones. For example,s1∩s2 = s3

implements set disjointness ifs3 is the constant empty set. With acomplement-view, s1 = s2 \ s3 can be
implemented ass1 = s2∩s3

Cross-domain views. With finite domain and set constraints in a single system, cross-domain views come
into play. The most obvious cross-domain view is a finite domain variable viewedas singleton set. Using
generic propagators, this immediately leads to domain-connecting constraints like x∈ s (using{x} ⊆ s), or
s= {x1, . . . ,xk} (usings= {x1}⊎ · · ·⊎{xk}).

For cross-domain views, variable subscription handles the different sets of events. For instance, if a
finite domain variablex has an any event, all propagators subscribed to upper-bound-change events of a
singleton-view ofx must be executed.

Cross-domain views can support more than one implementation for the same variable type. Set variables,
for example, can be implemented with lower and upper bounds or with their full domain using ROBDDs [7].
A cross-domain view allows lower/upper bound propagators to operate onROBDD-based sets, reusing
propagators for which no efficient BDD representation exists.

7 Implementation

The presented architecture can be implemented as an orthogonal layer of abstraction for any constraint
programming system. This section presents the fundamental mechanisms necessary for iterators and views.
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Polymorphism. The implementation of generic propagators, views, and iterators requirespolymorphism:
propagators operate on different views, domain operations and iterators on different iterators. Both subtype
polymorphism (through inheritance in Java, inheritance and virtual methodsin C++) and parametric poly-
morphism (through templates in C++, generics in Java, polymorphic functions in ML or Haskell) can be
used.

In C++, parametric polymorphism through templates is resolved at compile-time, and the generated code
is monomorphic. This enables the compiler to perform aggressive optimizations, in particular inlining. The
hope is that the additional layer of abstraction can be optimized away entirely.Some ML compilers also
apply monomorphization, so similar results could be achieved. Java genericsare compiled into casts and
virtual method calls, probably not gaining much efficiency.

Achieving high efficiency in C++ with templates sacrifices expressiveness. Instantiation canonlyhappen
at compile-time. Hence, either C++ must be used for modeling, or all potentially required propagator variants
must be provided by explicit instantiation. Forn-ary constraints like linear inequality, this can be a real
limitation, as all arrays must be monomorphic (only a single kind of view per array is allowed). The same
holds true forn-ary set constraints, where especially constant-views for the empty set or the universe would
come in handy.

A compromise is to use template-based polymorphism whenever possible and only resort to subtype
polymorphism when necessary. This can be achieved by instantiating all propagators with special views that
can be subclassed, and having an operation to construct such a view from an identity view. In Gecode, we
currently only use template-based polymorphism. This makes the system very efficient, as will be analyzed
in the next section.

For the instantiation of templates as well as for inlining, the code that should be instantiated or inlined
must be available at compile time of the code that uses it. This is why most of the actual code in Gecode
resides in C++ header files, slowing down compilation of the system. On the interface level however, no
templates are used, such that the header files needed forusingthe library are reasonably small.

System requirements. Variable views and range iterators can be added as an orthogonal extension to
existing systems. While value operations are not critical as discussed in Sect. 2, depending on which domain
operations a system provides, efficiency can differ. In the worst case, domain operations need to be translated
into value operations. This would decrease efficiency considerably, however intermediate computations on
range iterators would still be carried out efficiently.

A particularly challenging aspect is reversal of range sequences required for the minus-iterator. One
approach to implement reversal is to extend all iterators such that they can iterate both backwards and
forwards. Another approach is similar to a cache-iterator: store the ranges generated from the input iterator
in an array and iterate in reverse order from the array. In Gecode, wehave chosen so far the latter approach
due to its simplicity. We are going to explore also the former approach: as variable domains in Gecode are
provided as doubly-linked lists, iteration in both directions can be provided efficiently.

8 Analysis and Evaluation

This section analyzes the impact different implementations of iterators and views have on efficiency. Two
aspects are evaluated: compile-time polymorphism versus run-time polymorphism, and iterators versus
temporary data structures.

The experiments use the Gecode C++ constraint programming library [2]. All tests were carried out on
a Intel Pentium IV with 2.8GHz and 1GB of RAM, running Linux. Runtimes are the average of 25 runs,
with a coefficient of deviation less than 2.5% for all benchmarks. Theoptimizedcolumn gives the time
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Table 1: Runtime comparison
Benchmark optimized virtual temporary

time in ms relative %

Alpha 90.50 147.20 103.00
Donald 0.79 124.10 100.00
Golomb 10 (bound) 314.00 173.20 101.70
Golomb 10 (domain) 512.80 138.40 100.50
Magic Sequence 500 270.60 173.50 102.80
Magic Square 6 0.96 149.00 102.30
Partition 32 4 881.20 179.70 102.40
Photo 116.84 141.50 103.50
Queens 100 1.75 146.90 100.00
Crew 5.20 — 159.40
Golf 8-4-9 356.00 — 196.90
Hamming 20-3-32 1 539.60 — 163.00
Steiner 9 110.80 — 226.10

in milliseconds of the optimized system, the other columns are relative tooptimized. The examples used
are standard benchmarks, the first group using only integer constraints, the second group using mainly set
constraints.

Code inspection. A thorough inspection of the code generated by several C++ compilers shows that they
actually perform the optimizations we consider essential. Operations on both views and iterators are inlined
entirely and thus implemented in the most efficient way. The abstractions do notimpose a runtime penalty
(compared to a system without views and iterators).

Templates versus virtual methods. As the previous section suggested, in C++, compile-time polymor-
phism using templates is far more efficient than virtual method calls. To evaluatethis, we changed the basic
operations of finite domain views into virtual methods. The required changesare rather involved, so we
did not try the same for iterators and set views. The numbers give an idea of how much more efficient a
template-based implementation is. Table 1 shows the results in columnvirtual. Virtual method calls cause a
runtime overhead between 25% and 80%.

Temporary datastructures. One important claim is that iterators are advantageous because they avoid
temporary datastructures. Table 1 shows in columntemporarythat computing temporary datastructures
has limited impact on finite domain variables (about 3%), but considerable impact for set constraints (59%
to 126% overhead). Temporary datastructures have been emulated by wrapping all iterators in a cache-
iterator as described in Sect. 4.

9 Conclusion

The paper has introduced an architecture decoupling propagators from variables based on views and range
iterators. We have argued how to make propagators generic, simpler, andreusable with views for different
constraints. We have introduced range iterators as abstractions for efficient domain operations compatible
with views. The architecture has been shown to be applicable to finite domain and finite set constraints.
Using parametric polymorphism for views and iterators leads to an efficient implementation that incurs no
runtime cost.
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