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Abstract

This paper introduces an architecture for generic comdtirmplementations based on variable views
and range iterators. Views allow, for example, to scaleydi@te, and negate variables. The paper
shows how to make constraint implementations generic amddceuse a single generic implementation
with different views for different constraints. Applicatis of views exemplify their usefulness and
their potential for simplifying constraint implementat& We introduce domain operations compatible
with views based on range iterators. The paper evaluatéegafit implementation techniques for the
presented architecture.

1 Introduction

A challenging aspect in developing and extending a constraint progransystgm is implementing@m-
prehensiveset of constraints. Ideally, a system should provide simple, expressideefficient abstractions
that ease development and reuse of constraint implementations.

This paper contributes a new architecture based on variable views gl itarators. The architecture
comprises an additional level of abstraction to decouple variable implemestitiom propagators (as con-
straint implementations). Propagators compute generically with variable vietemthof variables. Views
support operations like scaling, translation, and negation of variabbegx@mple, a simple generic propa-
gator for linear equalityi!‘zlxi = c can be used with a scale-vieyv= g - y; to obtain an implementation of
Zikzlai -y = ¢. Variable views assist in implementing propagators on a higher level obalistr.

Range iterators support powerful and efficient domain operationswsables and variable views. The
operations can access and modify multiple values of a variable domain simulsine®ange iterators are
efficient as they help avoiding temporary data structures. They simplifyagators by serving as adaptors
between variables and propagator datastructures.

The architecture is carefully separated from its implementation. Two diffengplementation ap-
proaches are presented and evaluated. An implementation using parambtmonphism (such as tem-
plates in G+) is shown to not incur any runtime cost. The architecture can be usedbitmagy constraint
programming systems and has been fully implemented in Gecode [2].

Plan of the paper. The next section presents a model for finite domain constraint programysteyss.
Sect. 3 introduces variable views and exemplifies their use. Sect. 4 ind®decator-based domain oper-
ations that are applied to views in the following section. Variable views foceestraints are discussed
in Sect. 6. In Sect. 7 implementation approaches for views and iteratorsemenfed, followed by their
evaluation in Sect. 8. The last section concludes.



2 Constraint Programming Systems

This section introduces the model for finite domain constraint programmingrsgsonsidered in this paper
and relates it to existing systems.

Variablesand propagators. Finite domain constraint programming systems offer services to suppert con
straint propagation and search. In this paper we are only conceiitfedasiables used for constraint prop-
agation. We assume that a constraint is implementedpg@agator A propagator maintains a collection
of variables and performs constraint propagation by executing opesaiiothem. In the following we con-
sider finite domain variables and propagators. A finite domain variabées an associatetbmaindom(x)
being a subset of some finite subset of the integers.

Propagators do not manipulate variable domains directly but use operptimrided by the variable.
These operations return information about the domain or update the domautdition, they handle failure
(the domain becomes empty) and control propagation.

Value operations. A value operatioron a variable involves a single integer as result or argument. We
assume that a variabkewith D = dom(x) provides the following value operationsgetmin() returns mirD,
x.getmax) returns mab, x.adjmin(n) updates dorfx) to {me D | m> n}, x.adjmaxn) updates dorfx) to

{me D | m< n}, andx.excvaln) updates dortx) to {me D | m# n}. These operations are typical for finite
domain constraint programming systems like Choco [6], ILOG Solver [94],1Eclipse [1], Mozart [8],

and Sicstus [5]. Some systems provide additional operations such asigniag values.

Domain operations. A domain operatiorsupports simultaneous access or update of multiple values of
a variable domain. In many systems this is provided by supporting an absttadatatype for variable
domains, as for example in Choco [6], Eclipse [1], Mozart [8], andt8&5]. ILOG Solver [9, 11, 4] only
allows access by iterating over the values of a variable domain.

Subscription.  When a propagatqp is created, isubscribedo its variables. Subscription guarantees that
p is executed whenever the domain of one of its variables changes agctwadin event. An event describes
when the propagator requires executier: fix when don{x) becomes a singletoe,= min if mindom(x)
changesge = max if maxdon{x) changes, ané = any if dom(x) changes. For more on events, see for
example [13].

Range and value sequences. Range notatiomn .. m| is used for the set of integefs € Z |[n < <m}. A
range sequenceangesl ) for a finite integer set C Z is the shortest sequense= ([ny .. my], ..., [Nk .. My])
such thatl is covered (sét) = |, where sgf) is defined agJ¥ ; [ni .. m]) and the ranges are ordered by
their smallest elementsi(< nj11 for 1 <i < k). The above range sequence is also writtefi@as. m]>!‘:l.
Clearly, a range sequence is unique, none of its ranges is emptyy antl< nj 1 for 1 <i < k.

A value sequencealuegl) for a finite set of integersC Z is the shortest sequense- (ny, ..., n) (also
written as(ni)!‘zl) such that is covered (sé6) = |, where sefs) = |U<_; n;) and that the values are ordered
(m <niyq for 1 <i < K). Again, this sequence is unique and has no duplicate values.

3 Variable Viewswith Value Operations

This section introduces variable views with value operations. The full degilp domain operations and a
discussion of their properties follows in Sect. 5.



Example 1l (Smartn-Queens) Consider the well-known finite domain constraint modei-fQueens using
three alldifferent constraints: each queen is represented by a vaxigle i < n) with domain{0,...,n—
1}. The constraints state that the values ofalthe values of alk; — i, and the values of ak +i must be
pairwise different for 6<i < n.

If the used constraint programming system lacks versions of alldiffengmporting that the values of
X + ¢; are different, the user must resort to using additional varialasd constrainty; = x; + ¢; and the
single constraint that thg are different. This approach is clearly not very efficient: it triples thener of
variables and requires additional Binary constraints.

Systems with this extension of alldifferent must implement two very similar versibiiie same propa-
gator. This is tedious and increases the amount of code that requiresmaaicge In the following we make
propagatorgieneric the same propagator can be reused for several variants.

To make a propagator generic, all its operations on variables are réggceperations on variable
views. A variable view(view for short) implements the same operations as a variable. A view stores a
reference to a variable. Invoking an operation on the view executepfite@iate operation on the view’s
variable. Multiple variants of a propagator can be obtained by instantiatingiriigke generic propagator
with multiple different variable views.

Offset-views.  For anoffset-view v= voffset(x, c) for a variablex and an integee, performing an operation
onv results in performing an operation &R-c. The operations on the offset-view are:

v.getmin() :=x.getmin))+c vgetmax) :=x.getmax)+c
v.adjmin(n) := x.adjmin(n—c) v.adjmaxn) := x.adjmaxn—c)
v.excvaln) :=x.excvaln—c)

To obtain both alldifferent propagators required by Example 1, alsmemtity-viewis needed. An
operation on an identity-view vid) for a variablex performs the same operation &n That is, identity-
views turn variables into views to comply with propagators now computing withsziew

Obtaining the two variants of alldifferent is straightforward: the propagatmade generic with respect
to which view it uses. Using the propagator with both an identity-view andfaetefiew yields the required
propagators.

Sect. 7 discusses how views can be implemented whereas this sectiorsfonuke architecture only.
However, to give some intuition, in*€for example, propagators can be made generic by implementing them
as templates with the used view as template argument. Instantiating the genegiggtoophen amounts to
instantiating the corresponding template with a particular view.

Views are orthogonal to the propagator. In the above example, offsgtcan be used for any imple-
mentation of alldifferent using value operations. This includes the naiggorepropagating when variables
become assigned or the bounds-consistent version [10].

Scale-views. In the above example, views allow to reuse the same propagator for varfantonstraint,
avoiding duplication of code and effort. In the following, views can also fgnphe implementation of
propagators.

Example 2 (Linear inequalities) A common constraint is linear inequafity ; & - x; < ¢ (equality and
disequality is similar) with integers; and c and variables. In the following we restrict they to be
positive.

A typical bounds-propagator executes foclj < n:

xj.adjimax[(c—1j)/aj]) with Iy =3, ;a-x.getmin)
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Quite often, models feature the special case 1 for 1 <i < n. For this case, it is sufficient to execute
forl<j<n
xj.adjmaxc—1j) with |j =73, ;%.getmin)

As this case is common, a system should optimize it. An optimized version requesespace (ng;
required) and less time (no multiplication, division, and rounding). But, a rimbeeesting question is: can
one just implement the simple propagator and get the full version by usingview

With scale-views, the simple implementation can be used in both casssalé-view = vscalé€a, x)
for a positive integea > 0 and a variable defines operations fa- x:

v.getmin() :=a-x.getmin)) v.getmax) :=a-x.getmax)
v.adjmin(n) := x.adjmin([n/a]) v.adjmaxn) := x.adjmax |n/a|)
v.excvaln) := if nmoda= 0then x.excvaln/a)

From the simpler implementation the special case (identity-views) and the geasea(scale-views)
can be obtained. Multiplication, division, and rounding is separated fatonally propagating the inequality
constraint. Views hence support separation of concerns and can githplimplementation of propagators.
In particular, multiplication, division, and rounding need to be implemented amdg dor the scale-view:
any generic propagator can use scale-views.

Minus-views. Another common optimization is to implement binary and ternary variants of commonly
used constraints. This optimization reduces the overhead with respec¢httrbe and memory as no array
is needed.

Example 3 (Binary linear inequality) Consider a propagator ¥er v, < ¢ with viewsv; andv, propagat-

ing as described in Example 2. With scale-views= vscaléa;, x;) andv, = vscaléay, X2) the propagator
also implements; - X; + az - X2 < ¢ provided thaty, a, > 0. Howeverx; — X < ¢ cannot be obtained with
scale-views. Even if scale-views allowed negative constants, it woultelfiecient to multiply, divide, and
round to just achieve negation.

A minus-view = vminugx) for a variablex provides operations such thabehaves as-x. Its op-
erations reflect that the smallest possible valuexfig the largest possible value ferx and vice versa:

v.getmin() := —x.getmax) v.getmax) := —x.getmin)
v.adjmin(n) := x.adjmax—n) v.adjmaxn) := x.adjmin(—n)
v.excvaln) = x.excval—n)

With minus-viewsx; — x < ¢ can be obtained from an implementatiorveft v» < c with v; = vid(x1)
andv; = vminugxz). With an offset-view it is actually sufficient to implement+v, < 0. Thenx; +x; < c
can be implemented by an identity-view () for v and an offset-view voffset,, —c) for v,. But again,
given justvy + v» < 0, an implementation fax; — X < c with ¢ # 0 cannot be obtained.

Derived views. Itis unnecessarily restrictive to define views in terms of variables. Theahequirement
for a view is that its variable provides the same operations. It is straighafdrte make views generic
themselves: views can be defined in terms of other views. The only exceptddentity-views as they
serve the very purpose of casting a variable into a view. Views suchset,afcale, and minus are called
derived viewsthey are derived from some other view.

With derived views being defined in terms of views, the first step to useigedeview is to turn a
variable into a view by an identity-view. For example, a minus-wefar the variablex is obtained from a
minus-view and an identity-views = vminugvid(x)).
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Example 4 (Binary linear inequality reconsidered) With the help of offset-views, miiaws, and scale-
views, all possible variants of binary linear inequalities can now be obtdioetd a propagator fov; +
v2 < 0. For examplea-x; —x2 < ¢ with a > 0 can be obtained with; = vscalda,vid(x;)) andvy =
vminugvoffset(vid(xz),c)) or vo = voffsef vminugvid(xz)), —c).

Scale-viewsreconsidered. The coefficient of a scale-view is restricted to be positive. Allowing antyitra
non-zero constantin a scale-views = vscaléa, x) requires to take the signednessadhto account. This
can be seen for the following two operations (the others are similar):

sgetmin() :=if a<Othen a-x.getmax) elsea-x.getmin)
s.adjmaxn) := if a < Othen x.adjmin(|n/a]) elsex.adjmax|n/a|)

This extension might be inefficient. Consider Example 2: inside the loop implermagapagation on
all views, the decision whether the coefficient in question is positive aativegmust be made. For modern
computers, conditionals — in particular in tight loops — can reduce perfarenaansiderably. A more
efficient way is to restrict scale-views to positive coefficients and usadditional minus-view for cases
where negative coefficients are required.

Example5 (Linear inequalities reconsidered) An efficient way to implement a prdpagder linear in-
equality distinguishes positive and negative variables &glinx + /", —y; <c.

The propagator is simple: it consists of two parts, one fon¢hend one for they;. Both parts share
the same implementation used with different views. To propagate tg; theentity-views are used. To
propagate to thg;, minus-views are used. Arbitrary coefficients are obtained from ageves as shown
above.

The example shows that it can be useful to make parts of a propagatniagand reuse these parts
with different views. Puget presents in [10] an algorithm for the bowtaisistent alldifferent. The paper
presents only an algorithm for adjusting the upper bounds of the varialalad states that the lower bounds
can be adjusted by using the same algorithm on varigble@berey; = —x;. With views, this technique for
simplifying the presentation of an algorithm readily carries over to its implementdtierimplementation
can be reused together with minus-views.

Another aspect in the design of scale-views is numerical precision: ifge &the values occurring
in computations with a scale-view vsc@dev) can exceed the range of normal integer computations. A
system can provide several scale-views that differ in which numeratatype is used for computation. For
example, a system can provide a scale-view that computes with normal tegeith double-precision
floating point numbers.

Constant-views. Derived views exploit that views do not need to be implemented in terms ofolasia
This can be taken to the extreme in that a view has no access at all to a vakiablestant-view = vcon(c)
for an integerc provides operations such thabehaves as a varialebeing equal ta:

v.getmin() :=c vgetmax) :=c

v.adjmin(n) := if n > c then fail v.adjmaxn) := if n < c then fail

v.excvaln) :=if n= cthen fail

Example 6 (Ternary linear inequalities) Another optimization for linear constraints areatg variants.
Given a propagator for; + v + vz < ¢ and using a constant-view vc@) for one of the views;, all binary
variants as discussed earlier can be obtained.

In summary, for linear inequalities (this carries over to linear equalities apdulidities), views support
many optimized special cases from just two implementations (the garargicase and the ternary case).
These implementations are simple as they do not need to consider coefficients.
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Events. The handling of events in subscribing to a variable is straightforward. rigldar a constant-
view subscription does nothing. For all but the minus-view the events oratiiegle and the events on the
derived view coincide. I/ = vminugv), then a change of the minimum wtorresponds to a change of the
maximum ofv and vice versa.

4 Domain Operationsand Range Iterators

Today’s constraint programming systems support domain operations eitlyefor access or by means of
an explicitly represented abstract datatype. In this paper, we proposaim operations based on range
iterators. These operations are shown to be simple, expressive,famehef Additionally, range iterators
are essential for views as presented in Sect. 5.

Rangeiterators. A range iterator rfor a range sequenee= ([n; .. m})!‘zl allows to iterate oves: each
of the [n; .. m] can be obtained in sequential order but only one at a time. A range iterptovides the
following operationsr.dond) tests whether all ranges have been iteratagxt ) moves to the next range,
andr.min() andr.max() return the minimum and maximum value for the current range. By sefe refer
to the set defined by an iterato(which must coincide with sét)).
A possible implementation of a range iteratdor s maintains an indek which is initially i, = 1, the

operations can then be defined as:

r.dond) :=i >k rnext) := (ir —ir+1)

r.min() :=n r.max() :==m,

A range iterator hides its implementation. Iteration can be by position as ahavié,clan also be by
traversing a list. The latter is particularly interesting if variable domains are impkechas lists of ranges
themselves.

Iterators are consumed by iteration. Hence, if the same sequence ndmlgdamted twice, a fresh
iterator is needed. If iteration is cheap, a reset-operation for an iteratobe provided so that multiple
iterations are supported by the same iterator. For more expensive itegasotation is discussed later.

Domain operations. Variables are extended with operations to access and modify their domains with
range iterators. For a variable the operatiorx.getdont) returns a range iterator for rangdem(x)).

For a range iterator the operatiorx. setdonfr) updates dortx) to setr) provided that s¢t) C dom(x).

The responsibility for ensuring that et C dom(x) is left to the programmer and hence requires careful
consideration. Later richer (and safe) domain operations are intrddutle operatiorx.setdonfr) is
genericwith respect ta: any range iterator can be used.

Domain operations can offer a substantial improvement over value opesaficmany values need to be
removed from a variable domain simultaneously. Assume a typical implementatiovaeoiable domaiiD
which organizes rangé3) = ([n; .. m})rzl as a linked-list. Removing a single element fr@makesO(k)
time and might increase the length of the linked-list by one (introducing an adalitimle). Hence, in the
worst case, removingelements take®(l (k+1)) time. With domain operations based on iterators, removal
takesO(k+1) time.

Range iterators serve as simplistic abstract datatype to describe finite seEgefs. However, they
provide some essential advantages over an explicit set representatisty).any range iterator regardless
of its implementation can be used to update the domain of a variable. This turtes alaw for simple,
efficient, and expressive updates of variable domains. Second stlg oemory management is required
to maintain a range iterator as it provides access to only one range at a tiirte.ifEhators are essential in
providing domain operations on variable views as will be discussed in Sect. 5
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Intersection iterators. Let us consider intersection as an example for computing with range iterators
Intersection is computed by an intersection iterat@meturned by iintefa, b)) taking two range iteratora
andb as input where sét) = se(a) Nse(b). The intersection iterator maintains intege@ndm for storing

the smallest and largest value of its current range. When initialized, ttieoperation is executed once.
The operations for access are obviousiin() returnsn andr.max() returnsm. The other operations are:

r.dong) := a.don€) v b.dong)
r.next) := if a.dond) v b.dong) then return
repeat
while —a.dong) A (aamax) < b.min()) do a.next)
if a.don€g) then return
while —b.don€) A (b.max() < a.min()) do b.next)
if b.dong) then return
until amax) > b.min()
n < max(amin(),b.min()); m«< min(a.max),b.max))
if amax() < b.max() then a.next() else b.next)

The repeat-loop iteratesa andb until their ranges overlap. The tests whetheasr b are done ensure that
no operation is performed on a done iterator. The remainder computestigngrange and prepares for
computing a next range.

The iteratorsa andb can be arbitrary iterators (again, the intersection iteratgergerig, so it is easy
to obtain an iterator that computes the intersection of three iterators by usinigteveection iterators.
Intersection is but one example for a generic iterator, other useful iterate for exampler. = iunion(a, b)
for iterating the union o andb (se(r) = sefa) Use(b)) andr = iminug(a, b) for iterating the set difference
of aandb (se(r) = se{a) \ se(b)).

Example 7 (Propagating equality) Consider a propagator that implements domainteomgiguality:x =

y (assuming thax andy are variables, views are discussed later). The propagator can be impdehas
follows: get range iterators for andy by rx = x.getdon{) andry = y.getdont), create an intersection
iteratorri = iinter(rx,ry), update one of the variable domainsbgetdontri), and copy the domain from

to y by y. setdonix. getdon)).

Cache-iterators. The above example suggests that for some propagators it is better to actaatly an
intermediate representation of the range sequence computed by an itEnatortermediate representation
can be reused as often as needed. This is achievedchghe-iterator it takes an arbitrary range iterator
as input, iterates it completely, and stores the obtained ranges in an &sragtual operations then use the
array. The cache-iterator also implements a reset operation as disabssed By this, the possibly costly
input iterator is used only once, while the cache-iterator can be useteasasfneeded.

Richer domain operations. With the help of iterators, richer domain operations are effortless. For a
variablex and a range iteratar, the operatiorx. adjdon{r) replaces dortx) by dom(x) Nse{r), whereas
x.excdontr) replaces dorfx) by domx) \ se{r):

x.adjdom(r) := x.setdontiinter(x. getdont),r))
x.excdontr) := x. setdontiminus(x. getdont),r))



Value versus range iterators. Another design choice is to base domain operations on value iterators:
iterate values rather than ranges of a set. This is not efficient: a valuersajis considerably longer than
a range sequence (in particular for the common case of a singleton emgense).

For implementing propagators, however, it can be simpler to iterate valuescdinbe achieved by a
range-to-value iterator. A value iteratehas the operationgdone), v.next), andv.val() to access the
current value. A range-to-value iterator takes a range iterator asamoluteturns a value iterator iterating
the values of the range sequence. The inverse is a value-to-rangeritérgakes as input a value iterator
and returns the corresponding range iterator. For a value-to-ramgmité is helpful to allow duplicates in
the increasing value sequence. This iterator has many applications, ataisied below.

Iteratorsasadaptors. Global constraints are typically implemented by a propagator computing aver so
involved data structure, such as for example a variable-value gragtofoain-consistent all-distinct [12].
After propagation, the new variable domains must be transferred fromataestructure to the variables.
This can be achieved by using a range or value iterator as adaptorddpaoperates on the data structure
and iterates the value or range sequence for a particular variable. fdterifgogether with a value-to-range
iterator for a value iterator) then can be passed to the appropriate doneaétiop.

5 Variable Viewswith Domain Operations

This section discusses domain operations for variable views using iterators

Identity and constant views. Domain operations for identity-views and constant-views are straightfor-
ward. The domain operations for an identity-view vid(x) use the domain operations gnv. getdont) :=
x.getdon{) andv. setdonfr) := x. setdontr). For a constant-view = vcon(c), the operatiow. getdont) re-
turns an iterator for the singleton range sequeffice c|). The operatiorv. setdonfr) just checks whether
the range sequence pfs empty.

Derived views. Domain operations for an offset-view vofféeic) are provided by an offset-iterator. The
operations of an offset-iteratorfor a range iterator and an integec (created by ioffs€t, c)) are as follows:

omin() :=r.min()+c  omax):=r.max)+c
o.don€) :=r.dong) o.next) :=r.next)

The domain operations for an offset view- voffset(x, c) are as follows:
v.getdon) := ioffset(x. getdont), c) v.setdongr) := x. setdongioffset(r, —c))

For minus-views we just give the range sequence as iteration is obviousa diven range sequence
([ .. m]>!‘:1, the negative sequence is obtained by reversal and sign chaKigenas; 1 .. — nk,i+1]>!‘:1.
The same iterator for this sequence can be used both for setdom anch@gtel@tions. Note that the iterator
is quite complicated as it changes direction of the range sequence, pasgildmentations are discussed
in Sect. 7.

Assume a scale-view = vscalda,v) with a > 0 and([n; .. m]>!‘:1 being a range sequence far If
a = 1, the range sequence remains unchanged. Otherwise, the codiespaange sequence faris
({a-m},{a-(m+1)},....{a-m},.... {a-n},{a- (k+1)},....,{a-mc}).

Assume that[n; .. m]>:‘:1 is a range sequence fer Then the rangefn;i/al .. [m/a|] for 1 <i <k
correspond to the required variable domainvyphowever they do not necessarily form a range sequence
as the ranges might be empty, overlapping, or adjacent. Iterating thesaqgence is simple by skipping
empty ranges and conjoining overlapping or adjacent ranges.
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Consistency. An important issue is how views affect the consistency of a propagatdudfirst consider
all views except scale-views. These views compute bijections on the \aduesll as on the ranges of a
domainD. A bounds (domain) consistent propagator for a constfaintth variablesxs, ..., X, establishes
bounds (domain) consistency for the constr@nwith all the variables replaced by (xx) (if vk computes
the view ofxy).

Scale-views only compute bijections on values: a range does not remaige after multiplication.
This implies that bounds consistent propagators do not establish boomsistency on scale-views. Con-
sider for example a bounds consistent propagator for alldifferent. X\tla € {1, 2}, alldifferent4x, 4y, 4z)
cannot detect failure, while alldiffereixty,z) can. Note that this is not a limitation of our approach but a
property of multiplication.

6 Viewsfor Set Constraints

Views and iterators readily carry over to other constraint domains. Thigaeshows how to apply them to
finite sets.

Finitesets. Most systems approximate domains of finite set variables by a greatestdodiégast upper
bound [3]: donix) = (glb,lub). The fundamental operations are similar to domain operations on finite
domain variablesx.glb() returns gligx), x.lub() returns lulfx), x.adjglb(D) updates dorfx) to (glb(x) U
D,lub(x)), andx.adjlub(D) updates dorfx) to (glb(x),lub(x) N D).

All these operations take sets as arguments, so iterators play an impotéahere. In fact, range
iterators provide exactly the operations that set propagators need, umiersection, and complement.
Most propagators thus do not require temporary datastructures.

As before, propagators now operate on views. In addition to the identity, e following derived
views make propagators more generic. As for finite domaiosstant-views- like the empty set, the
universe, or some arbitrary set — help derive binary propagatrstiErnary ones. For exampig/Ns, = s3
implements set disjointness g§ is the constant empty set. Withcamplement-viens; = s, \ S3 can be
implemented as; = NS

Cross-domain views.  With finite domain and set constraints in a single system, cross-domain views come
into play. The most obvious cross-domain view is a finite domain variable viasesihgleton set. Using
generic propagators, this immediately leads to domain-connecting constragntslg(using{x} C s), or
S={X1,..., %/} (usings= {x¢} W--- W {X}).

For cross-domain views, variable subscription handles the differémtofevents. For instance, if a
finite domain variablex has an any event, all propagators subscribed to upper-boundelearnts of a
singleton-view ofx must be executed.

Cross-domain views can support more than one implementation for the sdatsestype. Set variables,
for example, can be implemented with lower and upper bounds or with theirdiolhth using ROBDDs [7].
A cross-domain view allows lower/upper bound propagators to operaRQBDD-based sets, reusing
propagators for which no efficient BDD representation exists.

7 Implementation

The presented architecture can be implemented as an orthogonal layesti@cdon for any constraint
programming system. This section presents the fundamental mechanismsangtasiterators and views.
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Polymorphism. The implementation of generic propagators, views, and iterators reqguahgsorphism
propagators operate on different views, domain operations and iematdatifferent iterators. Both subtype
polymorphism (through inheritance in Java, inheritance and virtual metiho@s) and parametric poly-
morphism (through templates in“Cgenerics in Java, polymorphic functions in ML or Haskell) can be
used.

In C++, parametric polymorphism through templates is resolved at compile-time, andribeaged code
is monomorphic. This enables the compiler to perform aggressive optimizatiguerticular inlining. The
hope is that the additional layer of abstraction can be optimized away entBelwe ML compilers also
apply monomorphization, so similar results could be achieved. Java geasricempiled into casts and
virtual method calls, probably not gaining much efficiency.

Achieving high efficiency in € with templates sacrifices expressiveness. Instantiatiomegrhappen
at compile-time. Hence, eitherGnust be used for modeling, or all potentially required propagator variants
must be provided by explicit instantiation. Fofary constraints like linear inequality, this can be a real
limitation, as all arrays must be monomorphic (only a single kind of view pey asrallowed). The same
holds true fom-ary set constraints, where especially constant-views for the empty et oniverse would
come in handy.

A compromise is to use template-based polymorphism whenever possible lgnesort to subtype
polymorphism when necessary. This can be achieved by instantiatingpdigmtors with special views that
can be subclassed, and having an operation to construct such a emarfridentity view. In Gecode, we
currently only use template-based polymorphism. This makes the systenffiggng as will be analyzed
in the next section.

For the instantiation of templates as well as for inlining, the code that shouldtaniiated or inlined
must be available at compile time of the code that uses it. This is why most of tred actle in Gecode
resides in € header files, slowing down compilation of the system. On the interface levwedJss, no
templates are used, such that the header files neededifythe library are reasonably small.

System requirements. Variable views and range iterators can be added as an orthogonasiexten
existing systems. While value operations are not critical as discussedtir2 Séepending on which domain
operations a system provides, efficiency can differ. In the worst, cisnain operations need to be translated
into value operations. This would decrease efficiency considerabhever intermediate computations on
range iterators would still be carried out efficiently.

A particularly challenging aspect is reversal of range sequencesreddgor the minus-iterator. One
approach to implement reversal is to extend all iterators such that they care itoth backwards and
forwards. Another approach is similar to a cache-iterator: store thesaggnerated from the input iterator
in an array and iterate in reverse order from the array. In Gecodhawechosen so far the latter approach
due to its simplicity. We are going to explore also the former approach: adileadamains in Gecode are
provided as doubly-linked lists, iteration in both directions can be proviffaiesmtly.

8 Analysisand Evaluation

This section analyzes the impact different implementations of iterators and wigve on efficiency. Two
aspects are evaluated: compile-time polymorphism versus run-time polynmorpéisl iterators versus
temporary data structures.

The experiments use the Gecode €nstraint programming library [2]. All tests were carried out on
a Intel Pentium IV with 2.8GHz and 1GB of RAM, running Linux. Runtimes are délierage of 25 runs,
with a coefficient of deviation less than 2.5% for all benchmarks. dptémizedcolumn gives the time
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Table 1: Runtime comparison

Benchmark optimized | virtual | temporary
time in ms relative %
Alpha 90.50 | 147.20 103.00
Donald 0.79 | 124.10 100.00
Golomb 10 (bound) 314.00| 173.20 101.70

Golomb 10 (domain) 512.80| 138.40 100.50
Magic Sequence 50( 270.60| 173.50 102.80

Magic Square 6 0.96 | 149.00 102.30
Partition 32 4881.20| 179.70 102.40
Photo 116.84 | 141.50 103.50
Queens 100 1.75 | 146.90 100.00
Crew 5.20 — 159.40
Golf 8-4-9 356.00 — 196.90
Hamming 20-3-32 1539.60| — 163.00
Steiner 9 110.80 — 226.10

in milliseconds of the optimized system, the other columns are relatioptimized The examples used
are standard benchmarks, the first group using only integer constithietsecond group using mainly set
constraints.

Code ingpection. A thorough inspection of the code generated by severat@npilers shows that they
actually perform the optimizations we consider essential. Operations onieats &nd iterators are inlined
entirely and thus implemented in the most efficient way. The abstractions dmpase a runtime penalty
(compared to a system without views and iterators).

Templates versus virtual methods. As the previous section suggested, in, Compile-time polymor-
phism using templates is far more efficient than virtual method calls. To evdhisteve changed the basic
operations of finite domain views into virtual methods. The required chaagegather involved, so we
did not try the same for iterators and set views. The numbers give an ideavomuch more efficient a
template-based implementation is. Table 1 shows the results in colwtmal. Virtual method calls cause a
runtime overhead between 25% and 80%.

Temporary datastructures. One important claim is that iterators are advantageous because they avoid
temporary datastructures. Table 1 shows in coluemporarythat computing temporary datastructures
has limited impact on finite domain variables (about 3%), but considerable ifguaset constraints (59%

to 126% overhead). Temporary datastructures have been emulatedapping all iterators in a cache-
iterator as described in Sect. 4.

9 Conclusion

The paper has introduced an architecture decoupling propagatorvémables based on views and range
iterators. We have argued how to make propagators generic, simpleewsable with views for different
constraints. We have introduced range iterators as abstractions toergfflomain operations compatible
with views. The architecture has been shown to be applicable to finite domeifinite set constraints.
Using parametric polymorphism for views and iterators leads to an efficieémgmtation that incurs no
runtime cost.
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