
View-based Propagator Derivation (Extended abstract)⋆

Christian Schulte1 and Guido Tack2

1 SCALE, KTH Royal Institute of Technology, Sweden

cschulte@kth.se
2 National ICT Australia (NICTA) and Monash University, Australia

guido.tack@monash.edu

Abstract. When implementing a propagator for a constraint, one must de-

cide about variants: When implementing min, should one also implement max?

Should one implement linear equations both with and without coefficients? Con-

straint variants are ubiquitous: implementing them requires considerable effort,

but yields better performance. This abstract shows how to use views to derive

propagator variants where derived propagators are perfect in that they inherit es-

sential properties such as correctness and domain and bounds consistency. Tech-

niques for systematically deriving propagators are developed, and the abstract

sketches an implementation architecture for views that is independent of the un-

derlying constraint programming system. Evaluation of views implemented in

Gecode shows that derived propagators are efficient and that views often incur no

overhead. Views have proven essential for implementing Gecode, substantially

reducing the amount of code that needs to be written and maintained.

1 Introduction

When implementing a propagator for a constraint, one typically must also decide

whether to implement some of its variants. When implementing a propagator for the

constraint max{x1, . . . ,xn} = y, should one also implement min{x1, . . . ,xn} = y? The

latter can be implemented using the former as max{−x1, . . . ,−xn}=−y. When imple-

menting a propagator for the reified linear equation (∑n
i=1 xi = c)⇔ b, should one also

implement (∑n
i=1 xi 6= c)⇔ b? These two constraints only differ by the sign of b, as the

latter is equivalent to (∑n
i=1 xi = c)⇔¬b.

The two straightforward approaches for implementing constraint variants are to ei-

ther implement dedicated propagators for the variants, or to decompose. In the last

example, for instance, the reified constraint could be decomposed into two propagators,

one for (∑n
i=1 xi = c)⇔ b′, and one for b ↔¬b′, introducing an additional variable b′.

Implementing the variants inflates code and documentation and is error prone.

Given the potential code explosion, one may be able to only implement some vari-

ants (say, min and max). Other variants important for performance (say, ternary min

and max) may be infeasible due to excessive programming and maintenance effort. De-

composing, on the other hand, massively increases memory consumption and runtime.

⋆ This is a summary of the paper View-based propagator derivation by Christian Schulte and

Guido Tack, Constraints 18(1), 75–107 (2013).

Our paper View-based Propagator Derivation [9] presents a third approach, intro-

ducing views to derive propagators, which combines the efficiency of dedicated prop-

agator implementations with the simplicity and effortlessness of decomposition. Some

preliminary results from this paper were presented as a poster at CP 2008 [8] which con-

tains a formal model of views and derived propagators, which was used to prove that

derived propagators inherit properties such as correctness and propagation strength.

This extended abstract focuses on the majority of the material in the journal pa-

per that has not been presented at a conference. In particular, it describes techniques

for systematically deriving propagators such as transformation, generalization, special-

ization, and type conversion; it presents an implementation architecture for views based

on parametric polymorphism; and it summarizes the experimental evaluation that shows

that derived propagators are efficient and that views often incur no runtime overhead.

2 Deriving Propagators using Views

We call the basic building block for propagator derivation a view. A view can be re-

garded as a restricted form of a bi-directional indexical [2, 10], or an expression such

as those supported by IBM ILOG CP Optimizer [4], where the restrictions have been

chosen carefully such that the resulting derived propagator satisfies important proper-

ties concerning correctness and effectiveness, and such that the implementation does

not incur any overhead.

Consider a propagator for the constraint max(x,y) = z. Given three additional

propagators for x′ = −x, y′ = −y, and z′ = −z, we could propagate the constraint

min(x′,y′) = z′ using the propagator for max(x,y) = z. Instead of these three additional

propagators, we will derive a propagator for max from the propagator for min using

views that perform the simple negation transformations.

Views transform input and output of a propagator. For example, a minus view on a

variable x transforms the variable domain of x by negating each element. When a prop-

agator reads the domain of the minus view, the view returns this transformed domain

of x. When the propagator updates the domain (e.g. changing a bound or removing a

value), the view performs the inverse transformation before updating the domain of x.

With views, the implementation of the maximum propagator can be reused: a propa-

gator for the minimum constraint can be derived from a propagator for the maximum

constraint and a minus view for each variable.

3 Propagator Derivation Techniques

This section introduces systematic techniques for deriving propagators using views. The

techniques capture the transformation, generalization, specialization, and type conver-

sion of propagators. Each technique is illustrated with an example.

Transformation. A transformation view performs a simple operation such as a negation

or inversion of a variable domain. The most basic examples are negation views for

Boolean variables, which correspond to literals in SAT solvers. From disjunction x∨
y = z one can then derive conjunction x∧ y = z with negation views on x, y, z, and

2

implication x → y = z with a negation view on x. From equivalence x ↔ y = z one can

derive exclusive or x⊕ y = z with a negation view on z.

Scheduling propagators. Many propagation algorithms for constraint-based schedul-

ing [1] are based on tasks t characterized by start time, processing time, and end time.

These algorithms are typically expressed in terms of earliest start time (est(t)), latest

start time (lst(t)), earliest completion time (ect(t)), and latest completion time (lct(t)).
Another particular aspect of scheduling algorithms is that they are often required in

two dual variants. Let us consider not-first/not-last propagation as an example. Assume

a set of tasks T and a task t 6∈ T to be scheduled on the same resource. Then t cannot

be scheduled before the tasks in T , if ect(t) > lst(T) (where lst(T) is a conservative

estimate of the latest start time of all tasks in T) and hence est(t) can be adjusted. The

dual variant is that t is not-last: if ect(T)> lst(t) then lct(t) can be adjusted. Running the

dual variant of a scheduling algorithm on tasks t ∈ T is the same as running the original

algorithm on the dual tasks t ′ ∈ T ′, which are simply mirrored at the 0-origin of the

time scale: est(t ′) =− lct(t), ect(t ′) =− lst(t), lst(t ′) =−ect(t), and lct(t ′) =−est(t).
The dual variant of a scheduling propagator can be automatically derived using a minus

view that transforms the time values. In our example, only a propagator for not-first

needs to be implemented and the propagator for not-last can be derived (or vice versa).

Generalization. Common views for integer variables capture linear transformations of

the integer values: an offset view for a variable x and a constant offset o behaves like

x+o, while a scale view for a ∈ Z on x behaves like a× x.

Offset and scale views are useful for generalizing propagators. Generalization has

two key advantages: simplicity and efficiency. A more specialized propagator is often

simpler to implement (and simpler to implement correctly) than a generalized version.

The specialized version can save memory and runtime during execution.

We can devise an efficient propagation algorithm for the common case of a linear

equality constraint with unit coefficients ∑
n
i=1 xi = c. The more general case ∑

n
i=1 aixi =

c can be derived by using scale views for ai on xi.

Specialization. We employ constant views to specialize propagators. A constant view

behaves like an assigned variable. In practice, specialization has two advantages. Fewer

variables require less memory. And specialized propagators can be compiled to more

efficient code (constants are known at compile time). Few examples for specialization

are: a propagator for binary linear inequality x+y ≤ c derived from a propagator for x+
y+ z ≤ c by using a constant 0 for z; propagators for the counting constraints |{i | xi =
c}| = z and |{i | xi = y}| = c from a propagator for |{i | xi = y}| = z; a propagator for

set disjointness from a propagator for x∩ y = z and a constant empty set for z.

Type conversion. A type conversion view lets propagators for one type of variable

work with a different type, by translating the underlying representation. For example,

Boolean variables are essentially integer variables restricted to the values {0,1}. CP

systems may choose a more efficient implementation for Boolean variables and hence

the types for integer and Boolean variables differ. By wrapping an efficient Boolean

variable in an integer view, all integer propagators can be directly reused.

3

4 Implementation

The implementation architecture for views and derived propagators is based on making

propagators parametric. Deriving a propagator then means instantiating a parametric

propagator with views. The architecture is an orthogonal layer of abstraction on top of

any solver implementation.

In an object-oriented implementation of this model, a propagator is an object with

a propagate method that accesses and modifies a domain through the methods of

variable objects. Such an object-oriented model is used for example by ILOG Solver [7]

and Choco [5], and is the basis of most of the current propagation-based constraint

solvers.

In order to derive a propagator using view objects, we use parametricity, a mech-

anism provided by the implementation language that supports the instantiation of the

same code (the propagator) with different parameters (the views). In C++, for example,

a propagator is based on C++ templates, it is parametric over the types of the views

it uses and can be instantiated with any view that provides the necessary operations.

This type of parametricity is called parametric polymorphism, and is available in other

programming languages for example in the form of Java generics [3] or Standard ML

functors [6].

In Gecode (version 3.7.2), views are used to derive 616 propagators from 154 prop-

agator implementations. On average, every propagator implementation therefore results

in four derived propagators. Propagator implementations in Gecode account for almost

40000 lines of code and 21000 lines of documentation. As a rough estimate, deriving

propagators using views thus saves around 120000 lines of code and 60000 lines docu-

mentation to be written, tested, and maintained. Views make up less than 8000 lines of

code, yielding a 1500% return on investment.

5 Experimental Evaluation

This section is a summary of our experimental evaluation of views in Gecode (version

3.7.2).

Our experiments showed that generalization and specialization can be implemented

without any performance overhead compared to handwritten propagators. Transforma-

tion views on Boolean and integer variables (negation) showed negligible overhead. For

set constraints, the basic view operations cannot be fully optimized by the compiler, re-

sulting in an overhead of 32% (geometric mean) across a number of experiments. We

also evaluated a decomposition of a constraint compared to a propagator derived using

views. The geometric mean of the runtime overhead in this case was 175%, with some

examples running almost four times slower. Finally, we evaluated the effect of using

parametric polymorphism in C++, comparing it to virtual function calls, which we found

to be 28% slower in the geometric mean.

The experiments show that deriving propagators using C++ templates yields compet-

itive (in many cases optimal) performance compared to dedicated handwritten propaga-

tors. The results also clarify that deriving propagators is vastly superior to decomposing

the constraints into additional variables and simple propagators.

4

Acknowledgements Christian Schulte has been partially funded by the Swedish Re-

search Council (VR) under grant 621-2004-4953. NICTA is funded by the Australian

Government through the Department of Communications and the Australian Research

Council through the ICT Centre of Excellence Program.

References

1. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based Scheduling. International Series in

Operations Research & Management Science, Kluwer Academic Publishers (2001)

2. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In:

Glaser, H., Hartel, P.H., Kuchen, H. (eds.) Programming Languages: Implementations, Log-

ics, and Programs. LNCS, vol. 1292, pp. 191–206. Springer, Southampton, UK (Sep 1997)

3. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification. Addison-

Wesley Professional, third edn. (2005)

4. IBM Corporation: IBM ILOG CP Optimizer V2.3 User’s Manual (2009)

5. Laburthe, F.: Choco: Implementing a CP kernel. In: Beldiceanu, N., Harvey, W., Henz, M.,

Laburthe, F., Monfroy, E., Müller, T., Perron, L., Schulte, C. (eds.) Proceedings of TRICS:

Techniques foR Implementing Constraint programming Systems, a post-conference work-

shop of CP 2000. pp. 71–85 (September 2000)

6. Milner, R., Tofte, M., MacQueen, D.: The Definition of Standard ML. MIT Press, Cam-

bridge, MA, USA (1997)

7. Puget, J.F.: A C++ implementation of CLP. In: Proceedings of the Second Singapore Interna-

tional Conference on Intelligent Systems (SPICIS). pp. B256–B261. Singapore (Nov 1994)

8. Schulte, C., Tack, G.: Perfect derived propagators. In: Stuckey, P.J. (ed.) Fourteenth Interna-

tional Conference on Principles and Practice of Constraint Programming. LNCS, vol. 5202,

pp. 571–575. Springer, Sydney, Australia (Sep 2008)

9. Schulte, C., Tack, G.: View-based propagator derivation. Constraints 18(1), 75–107 (2013),

http://dx.doi.org/10.1007/s10601-012-9133-z

10. Van Hentenryck, P., Saraswat, V.A., Deville, Y.: Design, implementation, and evaluation of

the constraint language cc(FD). Journal of Logic Programming 37(1-3), 293–316 (1998)

5

