
Implementing Efficient Propagation Control

Christian Schulte1 and Guido Tack2

1 KTH – Royal Institute of Technology, Sweden
2 Katholieke Universiteit Leuven, Belgium

Abstract. In propagation-based constraint solvers, propagators imple-
ment constraints by removing inconsistent values from variable domains.
To make propagation efficient, modern constraint solvers employ two
mechanisms of propagation control, event-based and prioritized propa-
gation. Events, such as a bounds change of a particular variable, control
which propagators need to be scheduled for re-evaluation. Prioritization
controls which of the scheduled propagators is executed next.
While it has been shown that the combination of event-based and priori-
ty-based scheduling is an efficient approach for propagation control, this
is the first publication on the implementation details of such a system.
This paper presents the design of efficient data structures for propagator
priority queues and the event system. The paper introduces the notions
of modification events and propagation conditions, which refine the event-
based model of propagation and yield an efficient implementation. The
presented architecture is the basis of Gecode.

1 Introduction

In propagation-based constraint solvers, each constraint is implemented by a
propagator, whose task it is to prune variable domains, removing values that are
inconsistent with the implemented constraint. The constraint solver executes the
propagators in turn until none of them can prune any domain any longer, thus
establishing a fixpoint.

The fixpoint computation is the core of the solving process, its efficiency in
terms of runtime and memory is vital for a solver’s performance. Apart from
actually executing the propagators, the solver has to perform efficient propaga-
tion control, which has two aspects: (1) if the propagator has modified some
variable domains, the solver decides which other propagators it has to reconsider,
or schedule, for propagation due to the changes; and (2) the solver picks one of
the scheduled propagators for execution.

The standard technique for (1) is to specify which events a propagator de-
pends on. An event describes how a particular variable has been changed, and a
propagator that depends on a certain event will only be scheduled if that event
happens. For example, a propagator for the constraint x ≤ y only depends on
the events that the lower bound of x or the upper bound of y changes. In any
other case, it cannot prune any variable domain and is thus at a fixpoint.

For (2), it is essential to organize the scheduled propagators in a queue (as
opposed to a stack, which can suffer from starvation). Furthermore, it can be



beneficial to prioritize propagators by their estimated runtime cost of propaga-
tion, first picking cheap propagators, and only later executing more expensive
ones that can then take advantage of the cheap pruning done before.

Schulte and Stuckey [16] have performed a thorough evaluation of event-based
and prioritized propagation.

Contributions. This paper develops implementation techniques and concrete
data structures for efficient event-based, prioritized propagation control. It es-
tablishes the notions of modification events and propagation conditions, which
are used to describe sets of events in a compact way. The paper develops in-
dexed dependency arrays as an efficient data structure for the dependencies,
and priority bucket queues for prioritized propagator scheduling. The developed
architecture has been fully implemented and is the basis of Gecode [5].

Plan. After setting up the preliminaries in Section 2, Section 3 introduces prop-
agation conditions and modification events, and Section 4 develops indexed de-
pendency arrays. Section 5 discusses prioritized propagation and presents the
priority bucket queue. Section 6 discusses related work, and Section 7 concludes
the paper.

2 Preliminaries

This section recapitulates propagator-centered propagation, presenting the basic
notions such as variables, propagators, and events.

Variables, constraints, domains, propagators. Constraint problems are
modeled in terms of variables, representing the objects of the problem, and
constraints, representing the relations that the objects are engaged in. In pro-
pagation-based constraint solvers, each variable has a variable domain, a set of
values that it can take.

A domain d is a function mapping variables to sets of values. The set of
values in d for a particular variable x, d(x), is called the variable domain of x.
A domain d is stronger than a domain d′, written d ⊆ d′, iff for all variables x,
d(x) ⊆ d′(x).

Each constraint is implemented by a propagator, whose task it is to prune the
domains. A propagator is a function that takes a domain and returns a stronger
domain, possibly removing inconsistent values from the variable domains.

The constraint solver executes the propagators in turn until none of them
can contribute any more pruning. The system thus reaches a mutual fixpoint.
For a discussion of the properties of propagators that guarantee fixpoints, see
[17]. Constraint propagation is incomplete, so the solver interleaves propagation
with tree search, which yields a sound and complete solution procedure.

A propagator is subsumed in a domain d if it is at a fixpoint for any stronger
domain d′ ⊆ d, i.e., p(d′) = d′. As subsumed propagators do not prune in the
remaining subtree of the search, they can be removed.

2



In this paper, we will use the terms variable, domain, and propagator more
freely, sometimes referring to the mathematical objects introduced above, some-
times referring to objects as implemented in a concrete constraint solver.

Events. An event describes how a variable domain was modified. Events are
used to determine which propagators have to be re-executed when a variable
domain is modified.

In the most basic event system, propagators only notify the solver of which
variables they are interested in. For example, a propagator for the constraint
x ≤ y only needs to be re-executed if either x or y has been modified since its
last execution.

Most solvers use more complex events, which not only describe which domains
have changed, but also how they have changed. A typical system for integer vari-
ables may consist of the events asn (the variable was assigned a value), lbc (the
lower bound changed), ubc (the upper bound changed), and dmc (the domain
changed). Events can overlap, for example, whenever the event lbc happens, also
dmc happens. Looking again at the x ≤ y example, the propagator only needs
re-execution when a lbc event on x or a ubc event on y happens.

An event e is characterized by a condition e(d(x), d′(x)) for two variable
domains d′(x) ⊆ d(x). For variable domains d′′(x) ⊆ d′(x) ⊆ d(x), it must satisfy
e(d(x), d′′(x)) if and only if e(d(x), d′(x)) or e(d′(x), d′′(x)). An event always
describes an actual domain modification: if d(x) = d′(x), then e(d(x), d′(x))
must be false.

We define the set events(d(x), d′(x)) := {e | e(d(x), d′(x))} for two variable
domains d′(x) ⊆ d(x). This construction ensures that events are monotonic, they
are never discarded by further changes to a variable domain. For three variable
domains d′′(x) ⊆ d′(x) ⊆ d(x), monotonicity implies that events(d(x), d′′(x)) =
events(d(x), d′(x)) ∪ events(d′(x), d′′(x)).

We say that an event e implies an event e′ (written e → e′) if and only if for
all variable domains d(x) and d′(x), e(d(x), d′(x)) implies e′(d(x), d′(x)).

Our example event system features the following implications:

asn

dmc

lbc ubc

A simple propagation loop. The goal of the propagation loop is to compute
a fixpoint of all propagators. Instead of re-executing all propagators in a loop,
constraint solvers typically keep track of which propagators are known to be at a
fixpoint; these are called idle. All other propagators are called active and are kept
in a data structure called the agenda. The propagation loop picks a propagator
p from the agenda, executes it, and determines which other propagators need to
be put on the agenda again, based on what kind of events p caused. When the
agenda is empty, propagation stops with a mutual fixpoint of all propagators.

The following pseudo-code is a high-level implementation of the propagation
loop, assuming an object-oriented implementation language where q is an agenda
of propagator objects, and each propagator object has a method propagate that

3



(destructively) performs the propagation. This code leaves out the details of how
the agenda q is implemented, or how the dependent propagators P are computed
exactly. The rest of this paper fills in these details.

fixpoint()

1 while not q.empty()
2 p = q.head()
3 q.idle(p)
4 p.propagate()
5 P = propagators depending on events generated by p

6 ∀p′ ∈ P : q.enqueue(p′)

Recomputation versus trailing. Constraint solvers backtrack during search:
The solver builds one path in the tree, and if it hits a failed state, it returns to a
previous search state, chooses a different alternative, and continues the search.

Backtracking can be implemented using two different techniques, trailing and
recomputation [15]. The former relies on storing undo information, which can be
used to revert all the changes made during propagation and search between the
failed state and the state that the solver is backtracking to. The latter, on the
other hand, stores information how to redo the steps between a copy of the state
higher up in the tree and the backtracking target state.

This paper describes the architecture of the Gecode [5] propagation kernel,
which is based on copying and recomputation. The data structures are therefore
designed to be memory efficient, because in a copying system, memory efficiency
immediately yields a runtime advantage, too.

3 Modification Events and Propagation Conditions

This section introduces the notions of modification events and propagation con-

ditions, which both capture different sets of events that a solver needs for prop-
agator scheduling.

In order to perform propagator scheduling, the solver needs to record which
events happen on which variables, and then determine the propagators that
depend on these events. We are thus dealing with two different types of sets of
events. A modification event is the set of events that happen when a variable
domain is modified. A propagation condition is the set of events on a particular
variable that a certain propagator depends on.

For example, when increasing the lower bound of an integer variable, the
corresponding modification event may be {lbc, dmc}. A propagator that reacts
to changes of either bound of a variable x has propagation condition {lbc, ubc} on
x. The solver schedules those propagators where for any variable, the intersection
of the modification event and the propagation condition is not empty.

Propagator scheduling is one of the critical operations of a constraint solver
kernel. The goal is therefore to make two operations as efficient as possible:

4



maintaining the set of events that has happened, and computing its intersection
with the propagation conditions.

This can be achieved by representing each modification event and each prop-
agation condition by an integer that can be used as an index into an appropriate
data structure that represents the dependencies, as developed in the following
section. The remainder of this section shows how to arrive at minimal definitions
for propagation conditions and modification events, in order to keep the integer
encoding as small as possible.

Propagation conditions. Some event sets are equivalent for the purpose of
propagator scheduling. For example, the event sets {lbc, dmc} and {dmc} are
equivalent, as lbc implies dmc. More generally, if a propagator should be sched-
uled by an event e, then it will also be scheduled by any event e′ such that
e′ → e. We therefore restrict propagation conditions to the equivalence classes
with respect to reverse implication:

A propagation condition π is a set of events that is closed under the converse
of implication: for any two events e and e′, if e ∈ π and e′ → e, then e′ ∈ π.

Our example event system yields the following propagation conditions:

{asn, lbc, ubc, dmc}
{asn, lbc, ubc}

{asn} {asn, lbc} {asn, ubc}
{lbc} {ubc} {lbc, ubc}

Modification events. Event-directed scheduling requires determining the set
events(d(x), d′(x)) when the domain changes from d to d′. Instead of comput-
ing this set from two given domains, an implementation will maintain a set of
events incrementally during propagation. Such a set of events represents the
modifications between two variable domains, and we call it a modification event.

Similar to propagation conditions, not all sets of events actually occur as
modification events in practice. For instance, the set {lbc} cannot occur, as an
lbc event always implies that a dmc event has happened, too. In general, we
therefore define that a modification event me is a set of events that is closed
under implication.

The definition implies that modification events are closed under union. This
makes it easy to maintain the set of events incrementally for any variable. Again,
as there are only few events in typical event systems, we can enumerate all mod-
ification events for a particular event system. An implementation can therefore
represent modification events as small integers. In our example event system,
we can simplify even further, as the asn event always implies either lbc or ubc.
Therefore, the modification event {asn, dmc} does not have to be represented.

The following modification events are therefore derived from the example
event system:

{asn, lbc, ubc, dmc}
{asn, lbc, dmc} {lbc, ubc, dmc} {asn, ubc, dmc}
{lbc, dmc} {dmc} {ubc, dmc}

5



The asn event. The event system presented above can be simplified further by
treating the asn event as if it implies any other event:

asn

dmc

lbc ubc

Consequently, the propagation conditions are now:

{asn, lbc, ubc, dmc}
{asn, lbc, ubc}

{asn} {asn, lbc} {asn, ubc}

And the modification events look as follows:

{asn, lbc, ubc, dmc}
{lbc, ubc, dmc}

{lbc, dmc} {dmc} {ubc, dmc}

In this simplified system, all propagators are executed at least once when all
variables are assigned. In a solver that is based on copying, this additional strong
invariant proves useful because it means that all propagators will eventually
test for and report subsumption. Subsumed propagators are removed from the
system and therefore do not have to be copied any longer, which saves memory
and runtime. Gecode uses the simplified system for all its variable types3.

4 Dependencies

This section develops the data structures that represent the propagator depen-
dencies.

The propagation loop in Section 2 defined scheduling in a high-level way:

P = propagators depending on events generated by p

∀p′ ∈ P : q.enqueue(p′)

Instead of collecting the events and then computing the set of propagators
to schedule, we embed the scheduling into the variable modification operations.
Whenever a propagator updates a variable domain in its propagate method,
the variable computes the corresponding modification event me and schedules
all propagators with corresponding propagation conditions.

The dependency data structure must therefore provide three basic operations:

– x.subscribe(p, π) adds the propagator p to the dependencies of x at prop-
agation condition π.

3 For integer variables, Gecode uses a single event bnd instead of two separate events
lbc and ubc. This was shown to be sufficient and increase efficiency [16]. We chose
the more complicated setup for this paper to be able to discuss the full system.

6



– x.cancel(p, π) removes the propagator p from the dependencies of x at prop-
agation condition π.

– x.schedule(πi, πj) iterates over the propagators between propagation con-
ditions πi and πj of x to schedule them.

The most important operation is iteration. It is performed whenever an event
happens, so we will design the data structure to be as efficient as possible in this
case. For subscription and canceling, efficiency is not quite as important, as they
happen less frequently.

We enforce a strong contract between propagators and the dependencies. A
propagator must not cancel subscriptions that it has not established before, and
it must cancel all its subscriptions when it ceases to exist (e.g. because it detects
subsumption). We will discuss below why the invariants enforced by this contract
are important.

Furthermore, the data structure must be backtrackable, i.e., the solver must
be able to revert it to a previous state. We will discuss how to achieve this using
either copying or trailing.

4.1 Indexed dependency arrays

The most efficient data structure for fast iteration is an array. So, in principle,
we could have one array of propagators per propagation condition. However, in
practice a single modification event often triggers several propagation conditions.

The dependencies are therefore stored in a single dependency array dep,
sorted by propagation condition. In addition, we maintain the dependency index

idx, which partitions the dependency array by propagation condition. Figure 1
shows this architecture.

Propagators p1 p2 p3 p4 p5 p6 p7 p8 p9

Dependency array dep =

Dependency index idx =
π0 π1 π2 π3 πend

Fig. 1: Dependency data structures

For each propagation condition πi, the dependency index points to the first
propagator in the dependency array that is subscribed with πi. For example, the
first propagator subscribed with π1 in Figure 1 is dep[idx[π1]] = p7. To iterate

7



subscribe(p, πi)

1 for j = k downto i

2 dep[idx[πj+1]] = dep[idx[πj ]]
3 idx[πj+1] = idx[πj+1] + 1
4 dep[idx[πi]] = p

(a)

cancel(p, πi)

1 jp = idx[πi]
2 while dep[jp] 6= p do jp = jp + 1
3 dep[jp] = dep[idx[πi+1]− 1]
4 for j = i+ 1 to k

5 dep[idx[j] − 1] = dep[idx[πj+1]− 1]
6 idx[πj ] = idx[πj ]− 1
7 idx[πend] = idx[πend]− 1

(b)

Fig. 2: Subscribing (a) and canceling (b)

over all propagators subscribed with a certain propagation condition πi, we start
at dep[idx[πi]] and finish at dep[idx[πi+1]−1]. There is one additional propaga-
tion condition, πend, so that πi+1 and idx[πi+1] are defined for all propagation
conditions πi.

Again for the example in Figure 1, scheduling all propagators that are sub-
scribed with propagation condition π1 would amount to scheduling the propa-
gators p7 and p8. No propagator is subscribed with π2 (as idx[π2] = idx[π3]).
Through this index data structure, iterating over all propagators subscribed with
a particular propagation condition is as efficient as possible, taking constant time
per propagator, and with low constants in practice.

We can now define the method schedule(πi, πj), which schedules all propaga-
tors starting at propagation condition πi and finishing at propagation condition
πj . For the above example, schedule(π0, π2) would thus schedule p1, p2, p5, p7,
and p8. The following code implements schedule, assuming a method enqueue

that puts a propagator into the right queue:

schedule(πi, πj)

1 for k = idx[πi] to idx[πj+1]− 1
2 enqueue(dep[k])

4.2 Subscribing and cancelling

The remaining operations to be defined are subscribing and canceling. Subscrib-
ing a propagator p with propagation condition πi means adding it at the appro-
priate position to the dependency array and modifying the index accordingly.
Assuming that the dependency array is resized dynamically, subscription can be
implemented to have amortized run-time O(k−i) as shown in Figure 2(a). First,
some space is cleared for the new subscription at dep[idx[πi]] (lines 1–3). Then
the new subscription is entered (line 4).

A subscription can be canceled in O(idx[πi+1] − idx[πi] + i) (Figure 2(b)).
The while loop in line 2 finds the index of p in the dependency array (note that

8



the loop is only correct if the propagator is actually subscribed to the variable).
After finding the index jp, the position dep[jp] is reused (lines 3–7).

Assigned variables. Variables that are assigned, i.e., whose domain is a single-
ton, cannot produce any events any more. Therefore, subscribing and canceling
on these variables is useless, and the overhead can be avoided by a simple check.

Scheduling upon subscription. A propagator typically subscribes to its vari-
ables when it is created. A newly created propagator must be scheduled for exe-
cution (otherwise, no propagation would happen for the first fixpoint). There is
one exception: If the propagator subscribes only with {asn} propagation condi-
tions and none of the variables is assigned, it does not have to be scheduled.

Rewriting. A special case of canceling and subscribing is propagator rewriting.
E.g., consider the case when all but two variables in a long linear equation are
assigned. Then the propagator for the linear equation can be rewritten to a sim-
pler, more efficient binary version. The old propagator cancels its subscriptions,
and the new propagator subscribes. Note that this order is essential: it means
that the dependency arrays will not need resizing, as the old propagator leaves
enough space for the new one.

4.3 Scheduling

When a variable domain is modified resulting in a modification event me, the
variable determines which ranges of propagation conditions intersect with me

(this is implemented as a lookup table), and then schedules each of those ranges
πi, πj using schedule(πi, πj).

Assume the following enumeration of the propagation conditions of our sim-
plified event system:

π4 = {asn, lbc, ubc, dmc}
π3 = {asn, lbc, ubc}

π0 = {asn} π1 = {asn, lbc} π2 = {asn, ubc}

The scheduling then looks as follows:

1 case me of

2 {asn, lbc, ubc, dmc}: x.schedule(π0, π4)
3 {lbc, ubc, dmc}: x.schedule(π1, π4)
4 {lbc, dmc}: x.schedule(π1, π1); x.schedule(π3, π4)
5 {ubc, dmc}: x.schedule(π2, π4)
6 {dmc}: x.schedule(π4, π4)

9



4.4 Copying and trailing

Dependencies can be modified dynamically. For example, a propagator may “lose
interest” in some of its variables, if it can determine that no further change of
their domains will cause any propagation. Or, propagators can replace themselves
with simpler versions. Or, in the most dynamic case, the propagator only needs
subscriptions to a dynamically changing subset of the variables, such as for the
watched literals technique [12,7].

In most of these cases, the dependencies must be backtrackable. We can
achieve this either by copying them, or by trailing any changes [15].

Copying. When copying the dependency arrays, it is advantageous to allocate
enough memory for all dependency arrays of all variables in one block. That
way, the copy will be compact and the overhead for allocation is low.

Trailing. Dynamic dependencies change infrequently (typically much less than
variable domains). A simple trailing scheme that stores a function pointer to-
gether with the data which dependency needs to be changed works well [15].

5 Propagator Priority Queue

This section develops a priority queue data structure that provides efficient op-
erations for priority-based propagator scheduling. We first recapitulate priority-
based propagator scheduling, and then present the priority bucket queue.

5.1 Propagator priorities

Schulte and Stuckey showed [16] that propagator priorities are an important
technique for efficient propagator scheduling4.

Obviously, prioritized propagation requires some measure to determine a
propagator’s priority. For this paper, we assume that priorities model the es-
timated runtime cost of propagation. The execution of propagators with high
estimated runtime cost is postponed, so that they can take advantage of the
pruning of the cheaper propagators that are run first.

A straightforward way to estimate the cost is to classify the propagators
according to their algorithmic complexity. We will use the following system
of costs and priorities: unary = 7, binary = 6, ternary = 5, linear = 4,
quadratic = 3, cubic = 2, veryslow = 1. The names suggest the arity of
the corresponding propagator (for the highest three priorities), or the asymp-
totic run-time for n-ary propagation algorithms. The cost of propagation often
changes dynamically. For instance, a typical algorithm for propagating linear
equations has an asymptotic run-time linear in the number of unassigned vari-
ables. Accordingly, when all but three variables are assigned, the cost should be
reported as ternary instead of linear.

4 Priorities are particularly useful for implementing staged propagation [16], which is
out of the scope of this paper, but can be implemented easily on top of the presented
prioritized, event-based system.

10



5.2 Priority bucket queue

For our purposes, the priority queue must provide four operations:

– enqueue(p) adds propagator p at the priority determined by its costmethod.
If p is already in the queue, it is re-prioritized according to its current cost.

– empty() tests whether the queue is empty.
– head() returns the oldest propagator at the highest priority.

– idle(p) removes propagator p from its current queue and marks it as idle.

All four operations are performed extremely often during the fixed point com-
putation, and are hence crucial for the solver’s performance.

Common algorithms for priority queues are based on variations of the heap

data structure (see for example [11,3]). Heaps support an arbitrary number of
priority levels. For most types of heaps, the run-time complexity of the enqueue
and dequeue operations depends on the number of elements in the queue. For
example, using binary heaps, both operations require time in O(log n) if n is the
number of elements in the queue.

In order to make enqueue and dequeue as efficient as possible, we restrict
the number of priority levels to a small, fixed set of integers (such as the cost
values introduced above). Then, a priority queue based on buckets can be used
(see [11]), providing constant-time enqueue and dequeue operations. We will
now see how a bucket-based priority queue of propagators can be implemented.

The bucket queue. A bucket-based priority queue consists of an array of
doubly-linked lists of propagators. The list at array index i represents the queue
of propagators at priority i. Furthermore, a propagator can only be in one queue
at a time. We can hence embed the links for the doubly-linked lists into the
propagator objects. In addition to the lists for each priority, the solver maintains
the list of idle propagators, the so-called idle queue (in our case modeled as
priority 0). The invariant is then that a propagator is always in exactly one
queue.

Each list of propagators is cyclic and terminated by a sentinel element. The
sentinels are kept in an array that represents the priority queue. Figure 3 depicts
an example of this architecture. An empty queue is depicted as a sentinel with
a simple cycle (as at priority k − 1).

This implementation of a bucket queue yields efficient access. Inserting and
removing a propagator can be done in constant time—unlink it from its cur-
rent queue, and link it at the position before the sentinel element of the target
queue. Finding the next propagator to schedule costs at most k tests. Queues
are managed as follows:

– The solver can access the queue with priority i as Q[i].
– p.next() returns the propagator following p in the linked list.

– p.unlink() removes propagator p from its current queue.

– Q[i].tail(p) adds p as the last propagator to the queue with priority i.

11



Sentinel Propagators

idle p6 p4 p3

prio. 1 p7 p2 p1 p9

prio. k − 1

prio. k p5 p8

Fig. 3: Propagators in prioritized queues

A propagator is added to the queue that corresponds to its cost, which it
reports using the cost method. The following code implements the enqueue,
head, and idle methods, as well as a method empty that reports whether all
queues except the idle queue are empty, indicating that propagation has reached
a fixpoint.

enqueue(p)

1 p.unlink() // remove p from current queue
2 Q[p.cost()].tail(p) // put p into new queue

head()

1 for i = k downto 1
2 if Q[i].next() 6= Q[i] then return Q[i].next()

idle(p)

1 p.unlink() // remove p from current queue
2 Q[0].tail(p) // put p into idle queue

empty()

1 for i = k downto 1
2 if Q[i].next() 6= Q[i] then return false

3 return true

Avoiding re-scheduling of propagators. The code above schedules a prop-
agator anytime its propagation condition matches a modification event. This
involves unlinking the propagator, re-evaluating its cost, and putting it into
the queue again. If the propagator already was in the queue due to a previous
variable modification, the overhead of re-scheduling it should be avoided.

12



As an indication of whether the propagator is already in the correct queue,
we will use the set of events since its last invocation, called the modification event
delta ∆me, and store it in every propagator. Before executing a propagator, it
is set to the empty set. The schedulemethod then takes the modification event
that caused the scheduling as an additional argument:

schedule(πi, πj ,me)

1 for k = idx[πi] to idx[πj+1]− 1
2 if me * dep[k].∆me then

3 dep[k].∆me = dep[k].∆me ∪me

4 enqueue(dep[k])

Line 2 makes sure that a propagator is only added to the queue if the new
modification event me is not already contained in the propagator’s modification
event delta. This is correct because if me ⊆ dep[k].∆me, then the propagator
has already been put into the queue before through line 3.

Memory and run-time efficiency. The bucket queue is as efficient as possible,
both in terms of memory requirements and run-time. The asymptotic run-time
for all operations is a small constant if we restrict the priorities to a small, fixed
set. Priority-based scheduling with a fixed number of priorities is the standard in
all propagation-based solvers (see Section 6), and has proven effective in practice.
In terms of memory, this architecture requires two pointers per propagator for
the doubly-linked list, which, theoretically, is an overhead of one pointer per
propagator compared to an array-based implementation. However, using arrays
for the queues would require dynamic resizing, which again costs memory and/or
runtime. In practice, embedding the double links in the propagator objects is
therefore without overhead.

6 Related Work

Most constraint solvers are based on propagator-centered, event-directed, prior-
itized propagation as presented in this paper.

◮ SICStus Prolog [1] employs a priority queue of propagators, using two
priority levels.
◮ Mozart OZ [13] maintains a two-level priority queue of propagators, and
scheduling is based on events. Mozart offers additional priorities for non-mono-
tonic propagators (as described in [14]): each non-monotonic propagator gets its
own priority level, effectively fixing the order in which non-monotonic propaga-
tors are run and hence maintaining the guarantee to compute a unique fixed
point.
◮ Eclipse Prolog [18] has a feature called suspension, which attaches a Prolog
goal to finite domain variables. When the variable domain changes, the goal,
which may implement a propagator, is scheduled. The Eclipse system features
twelve priority levels, but like SICStus and Mozart, its finite domain solver only
makes use of two levels.

13



◮ B-Prolog [19] queues action rules, which correspond to propagator invoca-
tions. A particularity of B-Prolog is that the same propagator can appear several
times in the queue, once for each variable that triggered its scheduling.
◮ Choco [9] provides a sophisticated priority system with seven levels and both
FIFO and LIFO scheduling, but is not propagator-centered, as explained below.

Variable-centered propagation. In our setup, the agenda holds the prop-
agators that are not necessarily at a fixed point. Some solvers, notably ILOG
Solver [8], Choco [2], and Minion [6], use an alternative approach: an agenda

of modified variables instead of an agenda of propagators. A solver that bases
scheduling on an agenda of variables performs variable-centered propagation.

ILOG Solver, Choco, and Minion actually implement a hybrid approach.
When a modified variable is taken from the queue, its dependent propagators
can either be run immediately, or put into a queue of propagators.

The advantage of variable-centered over propagator-centered propagation is
that whenever a propagator is invoked, the information which variable exactly
triggered the propagation is directly available. The propagator can take this
information into account in order to compute the new domain incrementally,
without recomputing from scratch. Lagerkvist and Schulte [10] show how advi-

sors can be used to implement incremental propagation in a propagator-centered
system. Their implementation is a straightforward extension of the data struc-
tures presented in this paper.

Propagator queues. It is folklore knowledge that propagators should be sched-
uled in a FIFO fashion. Similarly, using events to prevent gratuitous scheduling
of propagators has been used in constraint solvers for a long time—one can ar-
gue that it was already present in the early DPLL algorithm [4]. Schulte and
Stuckey [16] perform detailed experiments with different agenda strategies as
well as priority queues, substantiating this folklore knowledge with empirical ev-
idence. They also provide a comprehensive study of events, including a detailed
experimental evaluation of different event schemes, fixed point reasoning, and
staged propagation.

7 Conclusions

This paper developed an architecture and concrete data structures for event-
based, prioritized propagator scheduling. It introduced the notions of modifica-

tion events and propagation conditions, which capture exactly the sets of events
that occur during propagator scheduling. Based on these notions, the paper de-
veloped indexed dependency arrays, an efficient data structure for storing and
accessing the dependency information.

Furthermore, the paper presents the design of priority bucket queues, which
are used to implement propagator scheduling prioritized by estimated cost of
propagation.

The presented data structures are the core of the Gecode constraint solver,
one of the most efficient solvers available today.

14



Acknowledgements. The authors would like to thank Mikael Z. Lagerkvist for
many discussions about details of the Gecode architecture, and the anonymous
reviewers for helpful comments that improved this version of the paper.

References

1. Mats Carlsson, Greger Ottosson, and Björn Carlson. An open-ended finite domain
constraint solver. In Hugh Glaser, Pieter H. Hartel, and Herbert Kuchen, editors,
PLILP’97, volume 1292 of LNCS, pages 191–206. Springer, 1997.

2. CHOCO, 2010. http://choco-solver.net.
3. Thomas M. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. MIT Press, 2nd ed. edition, 2001.
4. Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Communications of the ACM, 5(7):394–397, 1962.
5. Gecode, generic constraint development environment, 2010.

http://www.gecode.org.
6. Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable con-

straint solver. In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo
Traverso, editors, ECAI 2006, pages 98–102. IOS Press, 2006.

7. Ian P. Gent, Christopher Jefferson, and Ian Miguel. Watched literals for constraint
propagation in Minion. In Frédéric Benhamou, editor, CP 2006, volume 4204 of
LNCS, pages 182–197. Springer, 2006.

8. ILOG Solver, part of ILOG CP, 2009. http://www.ilog.com/products/cp.
9. F. Laburthe. Choco: Implementing a CP kernel. In TRICS, pages 71–85, September

2000.
10. Mikael Z. Lagerkvist and Christian Schulte. Advisors for incremental propagation.

In Christian Bessière, editor, CP 2007, volume 4741 of LNCS, pages 409–422.
Springer, 2007.

11. Kurt Mehlhorn and Stefan Näher. LEDA - A platform for combinatorial and

geometric computing. Cambridge University Press, 1999.
12. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: engineering an efficient SAT solver. In DAC ’01, pages 530–535, New
York, NY, USA, 2001. ACM Press.

13. The Mozart programming system, 2009. http://www.mozart-oz.org.
14. Tobias Müller. Constraint Propagation in Mozart. Doctoral dissertation, Univer-

sität des Saarlandes, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung
Informatik, Saarbrücken, Germany, 2001.

15. Raphael M. Reischuk, Christian Schulte, Peter J. Stuckey, and Guido Tack. Main-
taining state in propagation solvers. In Ian Gent, editor, CP 2009, volume 5732 of
LNCS, pages 692–706. Springer, 2009.

16. Christian Schulte and Peter J. Stuckey. Efficient constraint propagation engines.
Transactions on Programming Languages and Systems, 31(1):2:1–2:43, dec 2008.

17. Christian Schulte and Guido Tack. Weakly monotonic propagators. In Ian Gent,
editor, Proceedings of the 15th international conference on principles and practice

of constraint programming, volume 5732 of LNCS, pages 723–730. Springer, 2009.
18. Mark Wallace, Stefano Novello, and Joachim Schimpf. Eclipse: A platform for

constraint logic programming. Technical report, IC Parc, Imperial College, London,
1997.

19. Neng-Fa Zhou. Programming finite-domain constraint propagators in action rules.
Theory and Practice of Logic Programming, 6:483–507, 2006.

15


	Implementing Efficient Propagation Control
	Introduction
	Preliminaries
	Modification Events and Propagation Conditions
	Dependencies
	Indexed dependency arrays
	Subscribing and cancelling
	Scheduling
	Copying and trailing

	Propagator Priority Queue
	Propagator priorities
	Priority bucket queue

	Related Work
	Conclusions


