
Design and Implementation of
Bounded-Length Sequence Variables

Joseph D. Scott1, Pierre Flener1, Justin Pearson1, and Christian Schulte2

1 Department of Information Technology, Uppsala University, Sweden
{Joseph.Scott, Pierre.Flener, Justin.Pearson}@it.uu.se

2 KTH Royal Institute of Technology, Sweden
cschulte@kth.se

Abstract We present the design and implementation of bounded-length
sequence (BLS) variables for a CP solver. The domain of a BLS variable
is represented as the combination of a set of candidate lengths and a se-
quence of sets of candidate characters. We show how this representation,
together with requirements imposed by propagators, affects the imple-
mentation of BLS variables for a copying CP solver, most importantly the
closely related decisions of data structure, domain restriction operations,
and propagation events. The resulting implementation outperforms tra-
ditional bounded-length string representations for CP solvers, which use
a fixed-length array of candidate characters and a padding symbol.

1 Introduction

String variables are useful for expressing a wide variety of real-world problems,
such as test generation [7], program analysis [4], model checking [10], security [3],
and data mining [16]. Despite this usefulness, string variables have never received
an optimized implementation in a modern constraint programming (CP) solver.

We describe the design and implementation of a string variable type for
a copying CP solver. Properly designed, a string variable can be much more
efficient, in both time and space complexity, than the decompositions commonly
used to model strings in CP. Additionally, string variables greatly simplify the
modeling of problems including strings, with benefits to both readability and
correctness. We choose to implement a bounded -length sequence (BLS) variable
type, as it provides much more flexibility [9, 18] than fixed-length approaches,
but avoids the blow-ups that plague unbounded-length representations.

We make contributions in three dimensions. First, we select a data struc-
ture for the BLS variable domain, namely a dynamic list of bitsets, to represent
domains in reasonable space. The data structure is designed for efficient im-
plementation of domain restriction operations, which BLS variables expose to
propagators; we develop a correct and minimal set of these operations. Vari-
ables in turn notify propagators of domain changes using propagation events; we
design a monotonic set of propagation events that are useful for propagators on
BLS variables. Second, the BLS variable is implemented on top of Gecode [25],
a mature CP toolkit with state-of-the-art performance and many deployments

in industry. Third, we show that BLS variables outperform other string solv-
ing methods in CP, as demonstrated upon both a string problem in the CSPlib
repository and a representative benchmark from the field of software verification.

In this paper, we summarize [22, Chapters 10 and 11]: this is an improvement
of our [23], as discussed in the experiments of Section 7. We forego discussion
in this paper of several interesting and important theoretical aspects of the
BLS representation, as previous publications cover these theoretical aspects in
detail: [22] provides an extended discussion of the logical properties of the re-
presentation, a justification for the utility of BLS variables in string constraint
problems, a comparison of different modeling strategies, a survey of related work
in CP such as [11], and a discussion of intensional representations; these topics
are also presented in briefer form in [23]. Hence we choose to deal specifically with
the implementation of an efficient BLS variable, rather than repeating material
that has been presented elsewhere.

Plan of the Paper Section 2 discusses the design of variable implementations in
general. Section 3 defines a domain representation appropriate for BLS variables
and motivates the design choices of subsequent sections. Section 4 considers sev-
eral representations for each of the components of a BLS variable and motivates
why particular choices have been made. Section 5 defines restriction operations,
which allow propagators to modify the domain of such a variable. Section 6 de-
scribes BLS-specific systems of propagation events, which describe restrictions
of the domain of a variable. Section 7 justifies these design choices by an exper-
imental evaluation. Section 8 concludes the paper.

2 Variables and Propagators

We summarize key concepts relating to propagators as implementations of con-
straints and three fundamental choices of how to implement a variable type.

Propagators A propagator implements a constraint and is executed by a prop-
agation loop. The execution of a propagator results in the restriction of some
variable domains pruning values for variables that are in conflict with the im-
plemented constraint. The propagation loop executes the propagators until no
propagator can prune any values, the propagator is said to be at fixpoint. For a
more detailled discussion of propagators see for example [19].

Variables The central decision in implementing a variable type is how to repres-
ent the domain of a variable. With this representation decided, the implement-
ation of the variable type must take into account three primary choices: how a
domain is stored, how a propagator prunes a domain, and how a propagator is
informed of a restriction of a domain. We consider each of these choices in turn.

No data structure exists in a vacuum, and every choice of data structure rep-
resents a tradeoff between memory requirements and computational complexity.
Evaluating the choices made in designing a data structure, therefore, requires

Variable
Implementation

Domain
Data Structure

Propagator

propagation event

restriction operation

Figure 1. Interactions of a variable implementation and a propagator: a propagator
requests a change to the domain of a variable via a restriction operation, and a variable
notifies a propagator via a propagation event that its domain has been restricted.

considering the environment in which the data structure will function. For a
variable implementation, that means considering how it interacts with the CP
solver, and most importantly how it interacts with propagators. A simplistic
view of this interaction is shown in Figure 1.

In an implementation, propagators work by modifying the domains of vari-
ables. These domains are not exposed directly to propagators; rather the vari-
able implementation encapsulates the domain representation and exposes some
restriction operations by which propagators can request that the domain be mod-
ified. Restriction operations provide an interface to the domain that allows the
removal of candidate values; no other modifications are allowed, as a propagator
is required to be contracting on domains.

When the domain of a variable is restricted by a propagator, any other prop-
agator that implements a constraint on the corresponding variable must be no-
tified, as it is possible that the latter propagator is no longer at fixpoint. Most
CP solvers make use of more fine-grained information than simply which vari-
able has a newly restricted domain. This more detailed information is called a
propagation event (for an extended discussion of events, see [20]); for an integer
variable X, for example, a propagation event might indicate that the upper
bound of dom(X) has shrunk, or that dom(X) has become a singleton.

3 BLS Variables

The domain of a string variable is a set of strings. Even in the bounded-length
case, sets of strings are difficult to represent in extension, due to high space com-
plexity; on the other hand, intensional representations, such as finite automata
or regular expressions, generally have a higher time complexity for operations.
However, both the time complexity and space complexity may be reduced if the
representation of the set of strings is not required to be exact. For example, an
integer interval is a compact and efficient representation for a set of integers.
Of course, many sets of integers cannot be exactly represented by an interval;
however, every set of integers may be over-approximated by some interval.

We now define an over-approximation that is appropriate for representing the
domain of a bounded-length set of strings. We then give an example of how a
propagator for a string constraint would interact with domains thus represented.

〈
A b,N

〉
=

〈〈
A[1], . . . ,A[5],A[6], . . . ,A[10],A[11], . . . ,A[15]

〉
,
{

5, 7, 10
}〉

mandatory optional forbidden

∅ ∅· · ·

Figure 2. Example of a b-length sequence 〈A b,N 〉 with maximum length b = 15. Each
set A[i] of candidate characters is the set of all symbols at index i for some string in
the domain; the set N of candidate lengths is {5, 7, 10}. The lower bound, 5, and upper
bound, 10, of the set of candidate lengths partition the sets of candidate characters into
mandatory, optional, and forbidden regions, as indicated. A set of candidate characters
is empty if and only if it is found in the forbidden region.

Representation of a String Domain For any finite set W of strings over an
alphabet Σ there exists an upper bound on the lengths of the strings in W, i.e.,
some number b ∈ N such that for every string w ∈ W the length of w is not
greater than b. Such a set W may be over-approximated by a pair 〈A b,N 〉,
consisting of a sequence A b of sets 〈A[1], . . . ,A[b]〉 over Σ, where every A[i] ⊆
Σ is the set of all candidate characters occurring at index i ∈ [1, b] for some
string in W, and a set N ⊆ [0, b] of candidate lengths of the strings in W. This
over-approximation, illustrated in Figure 2, is called the bounded-length sequence
representation. A pair 〈A b,N 〉 is referred to as a b-length sequence, and is an
abstract representation of the set of all strings that have a length ` ∈ N and a
character at each index i ∈ [1, `] taken from the set A[i] of symbols.

The domain of a string variable Xj , written dom(Xj), is a finite set of strings;
thus, the domain of any string variable Xj can be over-approximated by a b-
length sequence 〈A b

j ,Nj〉 for some appropriately large value of b. In this context,

we will sometimes write dom(A b
j ,Nj) to mean the domain of a string variable Xj

that is represented by the b-length sequence 〈A b
j ,Nj〉; thus we have:

dom
(
A b

j ,Nj

)
=
⋃

`∈Nj

{
w ∈ Σ`

∣∣ ∀i ∈ [1, `] : w[i] ∈ Aj [i]
}

(1)

Bounded-length sequences are not unique: if the sequences 〈A b
1 ,N 〉 and 〈A b

2 ,N 〉
differ only in one or more pair of sets A1[i] and A2[i] where i > max(N), then
〈A b

1 ,N 〉 and 〈A b
2 ,N 〉 represent the same set of strings. Uniqueness may be im-

posed by a representation invariant that only allows bounded-length sequences
of a canonical form, in which a set A[i] of candidate characters is the empty set
if and only if the index i is greater than max(N). As illustrated in Figure 2,
the set N of candidate lengths divides the sequence A b into three regions: the
mandatory candidate characters, with an index at most min(N); the optional
candidate characters, with an index greater than min(N) but at most max(N);
and the forbidden candidate characters, with an index greater than max(N).

Propagation A properly designed variable implementation must take into ac-
count the operation of propagators implementing constraints for the corres-
ponding variable type. For string variables, expected constraints include regular

〈
A3[1],A3[2],A3[3],A3[4],A3[5],A3[6], . . .

〉
N1 = {3} :

〈
A1[1],A1[2],A1[3],A2[1],A2[2],A2[3], . . .

〉
N1 = {4} :

〈
A1[1],A1[2],A1[3],A1[4],A2[1],A2[2], . . .

〉
N1 = {5} :

〈
A1[1],A1[2],A1[3],A1[4],A1[5],A2[1], . . .

〉
N1 = {6} :

〈
A1[1],A1[2],A1[3],A1[4],A1[5],A1[6], . . .

〉

⊆

∪

∪

∪

Figure 3. The post-condition, implied by the constraint Cat(X1, X2, X3), on the set
of candidate characters A3[5], is determined by the four candidate lengths of X1, each
yielding a possible alignment between the three string variables.

language membership (RegularL), string length (Len), reversal (Rev), and
concatenation (Cat); many others are possible (see, e.g., [22]). The following
example provides a sample of the inference required by typical propagators for
such constraints, and gives context to the design decisions that follow.

Example 1 (Concatenation). The constraint Cat(X1, X2, X3) holds if the con-
catenation of string variables X1 and X2 is equal to the string variable X3.
Consider string variables X1, X2, and X3 with domains represented by the b-
length sequences 〈A b

1 ,N1〉, 〈A b
2 ,N2〉, and 〈A b

3 ,N3〉, each with maximum length
b = 15, and sets of candidate lengths N1 = [3, 6], N2 = [4, 7], and N3 = [5, 14].

A propagator is a contracting function on tuples of variable domains. A
propagator implementing the constraint Cat is a function of the following form:

Cat
(
dom

(
A b

1 ,N1

)
,dom

(
A b

2 ,N2

)
,dom

(
A b

3 ,N3

))
=
〈
dom

(
A ′b

1 ,N ′
1

)
,dom

(
A ′b

2 ,N ′
2

)
,dom

(
A ′b

3 ,N ′
3

)〉 (2)

The simplest inference relevant to the propagation of Cat is the initial arithmetic
adjustment of the candidate lengths. For example, every candidate length for X3

should be the sum of some candidate lengths for X1 and X2:

N ′
3 := {n3 ∈ N3 | ∃n1 ∈ N1, n2 ∈ N2 : n3 = n1 + n2} = [7, 13] (3)

For sets of candidate characters, there are dependencies not only upon sets of
candidate characters from the other string variables constrained by Cat, but
also on the sets of candidate lengths. For example, Figure 3 illustrates the four
possible alignments of X1, X2, and X3, corresponding to the four candidate
lengths in the set N1 = [3, 6]. If, on the one hand, the length of X1 were fixed
to either of the two smallest of these candidates, then any symbol in the set
A′

3[5] of candidate characters would also have to be an element in either A2[2]
or A2[1]. If, on the other hand, the length of X1 were fixed to either of the two
largest of these candidates, then in either case any symbol in the set A′

3[5] of
candidate characters would have to be an element of the set A1[5]. Hence:

A′
3[5] := A3[5] ∩ (A2[1] ∪ A2[2] ∪ A1[5]) (4)

The resulting sets of candidate lengths also depend upon the sets of candidate
characters. For example, if the intersection of A2[2] and A3[5] were empty, then
the uppermost alignment illustrated in Figure 3, where N1 = {3} could be ruled
out: for any combination of strings X1, X2, and X3 satisfying Cat(X1, X2, X3)
such that the length of X1 was 3, the maximum length of X3 would be 4 /∈ [7, 13],
since the set A3[5] of candidate characters would be empty. ut

Solver-Based Requirements In a CP solver, the propagation loop described in
Section 2 is interleaved with a backtracking search. If that loop ends with some
variables as yet unassigned, then the search tree is grown by partitioning the
search space to create two or more subproblems, obtained by mutually exclusive
decisions on the domain of an unassigned variable; the propagation loop is then
executed on the chosen subproblem. On the other hand, if the propagation loop
results in a failed domain, then some prior decision is undone: the search returns
to a previously visited node, from which the tree is grown, if possible, by choosing
another of the mutually exclusive decisions that were determined at that node.

There are two main CP techniques for restoring a previously visited node
during backtracking [19]: trailing, in which changes to the variable domains dur-
ing search are stored on a stack, and backtracking consists of reconstructing a
previously visited node; and copying, in which the domains are copied before a
choice is applied, and every new node of the search tree begins with a fresh copy.

The choice of a copying solver has two main impacts on the design of a vari-
able type. First, under copying, the search procedure and the fixpoint algorithm
are orthogonal, while under trailing all the solver components are affected by
backtracking; thus, under copying, design choices can be made without reference
to the details of the search procedure. Second, for a copying system, memory
management is critical. The amount of memory required by a data structure
used to represent the domain of a variable (as well as data structures used to
store the states of other solver components) should therefore be minimal.

4 Data Structure

For a string variable X with a domain represented by a bounded-length sequence,
there are three largely orthogonal structural choices to be considered: the repre-
sentation of the set N of candidate lengths, the representation of the sets A[i]
of candidate characters, and the construction of the sequence 〈A[1], . . . ,A[b]〉
itself. Lengths are natural numbers, and any finite alphabet may be mapped to
the natural numbers (upon imposing an ordering over the alphabet); therefore
the possible implementations for both the set N of candidate lengths and the
sets A[i] of candidate characters at all indices i of X are the same. However,
lengths and characters have different characteristics and benefit from different
choices of representation. Each of these choices is now considered in turn.

The Set of Candidate Lengths The set N of candidate lengths may be exactly
represented or over-approximated. An exact representation could utilize a data

structure such as those used in CP solvers to exactly represent the domain of
an integer variable (e.g., a range sequence or a bitset). Alternately, the set of
candidate lengths can be over-approximated as an interval: a pair of integers
representing the lower and upper bounds of the set.

Recall from Example 1 that a propagator implementing the constraint Cat
must calculate sums of all candidate lengths for its string variables. This com-
putation is quadratic in the size of the set representation (i.e., in the number of
elements, ranges, or bounds used to represent the set). For the interval represen-
tation, the representation size is constant, but for exact set representations it is
not. Example 1 also shows that the upper and lower bounds of N are slightly
more useful during propagation than interior values of N . The lower bound of
the set of candidate lengths defines the smallest sequence of sets of candidate
characters that an implementation should represent explicitly, as every candid-
ate solution must have some symbol at those mandatory indices. In contrast,
all, some, or none of the other sets of candidate characters might be explicitly
represented; the upper bound of the set of candidate lengths divides these sets
of candidate characters into those at optional indices that participate in some of
the candidate solutions, and those at forbidden indices that participate in none.

An exact representation would allow some extra inference during the propa-
gation of string constraints, and could be sensible given enough string constraints
with efficient propagators performing non-trivial reasoning on the interior values
of N . Otherwise, an interval representation appears to be most suitable.

Sets of Candidate Characters The exact composition of an alphabet is problem
dependent; however, several properties generally apply. First, alphabet sizes are
typically manageable; this is certainly true for many interesting classes of string
constraint problems, such as occur in computational biology, natural-language
processing, and the verification and validation of software. Second, the symbols
of an alphabet often have a known total ordering, in which case the strings of any
language on that alphabet have a corresponding lexicographic order; even when
no meaningful order exists, such an order may be imposed as needed. Third,
intervals of symbols often have little or no inherent meaning, as, in contrast
to numeric types, there is generally no logical relationship between consecutive
symbols in even a totally-ordered alphabet. Finally, as shown in Example 1, the
propagation of constraints over string variables with bounded-length sequence
domain representations depends heavily on standard set operations (i.e., union
and intersection) between sets of candidate characters.

Upon considering these properties, we propose to implement each set of can-
didate characters as a bitset. A bitset for a finite set S ⊂ N is a sequence of
max(S) bits (i.e., values in {0, 1}) such that the i-th bit is equal to 1 if and only
if i ∈ S. With word size w, a bitset representation of S requires k = dmax(S)/we
words, or a total of kw bits. Bitsets allow for very fast set operations (typically, a
small constant number of operations per word is required): specifically, the com-
plexity of the union and intersection operations is linear in k. Furthermore, as
long as |Σ| is not significantly larger than w, the memory requirement of a bitset
representation is competitive with other common exact set representations.

Sequence The sequence 〈A[1], . . . ,A[b]〉 of sets of candidate characters could
be implemented in two ways: as an array-based structure, requiring minimal
memory overhead and affording direct access to the elements; or as a list-based
structure, allowing for better memory management of dynamic-sized lists, but
no direct access. A key observation is that the maximum length of any b-length
sequence is already given, namely b. We propose a hybrid array-list implement-
ation: a fixed-length array of n pointers to blocks of m bitsets each, where
n = db/me. This design offers more efficient access to individual nodes than
a traditional linked list, and easier memory (de)allocation than a static-sized
array. Blocks are allocated as needed: at a minimum, a number of blocks suffi-
cient to accommodate min(N) sets of candidate characters (i.e., the mandatory
region) is allocated; additional blocks are allocated when min(N) increases, or
when a restriction operation is applied to a set of candidate characters in the op-
tional region. Deallocation is performed as needed upon a decrease of max(N).
For an evaluation of alternate sequence implementations, see [22].

5 Domain Restriction Operations

As seen in Section 2, propagators interact with domains via restriction opera-
tions that are exposed by the variable implementation. A restriction operation
should satisfy three important properties. First, the operation should be useful
for the implementation of some propagator. Second, the operation should be effi-
cient when executed on the data structure that implements the variable domain.
Finally, the operation should be correct, meaning that the resulting domain is
actually restricted according to the semantics of the operation.

We now describe restriction operations appropriate for a BLS variable type.
The data structure chosen in Section 4 allows an efficient implementation of
these operations. Interestingly, though, the correct semantics of BLS variable
restriction operations is not obvious, so before proceeding we define the semantics
of string equality and disequality that is most suited to string variables.

Restriction Operations on String Variables Table 1 lists several restriction opera-
tions that might be provided by a string variable implementation. The operations
are divided into two categories, affecting either lengths or characters.

The first category of operations works on sets of candidate lengths: the equal-
ity (leq) operation restricts the domain of the variable to strings of a given
length, and two inequality operations tighten the lower (lgr) or upper (lle)
bound of the set of candidate lengths. The second category of operations works
on sets of candidate characters: the equality and disequality operations restrict
the domain of the variable to strings with a given symbol at the specified index
(ceq) or to exclude all strings with a given symbol at the specified index (cnq),
two inequality operations tighten the lower (cgr) or upper (cle) bound of the
set of candidate characters, and the set intersection and set subtraction opera-
tions restrict the set of candidate characters to their intersection with a given
set of symbols (cin) or to exclude a given set of symbols (cmi). Note that strict

Table 1. Restriction operations for bounded-length string variables.

restriction operator

length
equality leq(dom(X), `) = {x ∈ dom(X) | |x| = `}
≤ lle(dom(X), `) = {x ∈ dom(X) | |x| ≤ `}
> lgr(dom(X), `) = {x ∈ dom(X) | |x| > `}

character

equality ceq(dom(X), i, c) = {x ∈ dom(X) | x[i] = c}
disequality cnq(dom(X), i, c) = {x ∈ dom(X) | x[i] 6= c}
≤ cle(dom(X), i, c) = {x ∈ dom(X) | x[i] ≤ c}
> cgr(dom(X), i, c) = {x ∈ dom(X) | x[i] > c}
intersection cin(dom(X), i, C) = {x ∈ dom(X) | x[i] ∈ C}
subtraction cmi(dom(X), i, C) = {x ∈ dom(X) | x[i] /∈ C}

greater than (>) and non-strict less than (≤) operations have been chosen for
each category based solely on the complementarity of the operations; the pairs
could just as well have been < and ≥, < and >, or ≤ and ≥.

Table 1 omits restriction operations of length disequality, intersection, and
subtraction, as these would be incorrect here. For example, a length disequality
operation that attempts to remove an interior value from the set of candidate
lengths will result in no change to the domain. As sets of candidate characters are
assumed to be explicitly represented, the character disequality and intersection
operations are included.

Some of the restriction operations in Table 1 can be rewritten using the
other operations. For example, the character intersection and subtraction oper-
ations are equivalent to a series of character disequality operations. In practice,
an implementation using these decompositions may be inefficient; however, for
the purpose of defining the restriction operations for domains represented by
bounded-length sequences, a set of four required operations is sufficient: lle,
lgr, ceq, and cnq, allowing a propagator to increase the lower bound of the
string length (lgr), decrease the upper bound of the string length (lle), fix the
character at an index i (ceq), or forbid a character at index i (cnq).

Restriction Operations as Update Rules Table 2 defines, for string variable do-
mains represented by a b-length sequence, the four chosen restriction operations.
They are given as a series of update rules on the components of the affected b-
length sequence; for each restriction operation, only those components of the res-
ulting b-length sequence 〈A ′b,N ′〉 that differ from the corresponding component
of the initial b-length sequence are defined; all other components are unchanged.

Representation Invariant All of the restriction operations in Table 2 are designed
to respect the representation invariant of the b-length sequence representation
(see Section 3), which enforces the relationship between empty sets of candidate
characters and the upper bound of the set of candidate lengths. Hence, the
restriction operation lle(〈A b,N 〉, `), which reduces the upper bound of N ,

Table 2. Restriction operations for a string variable with a domain represented by a
b-length sequence, expressed as update rules. Primed set identifiers (A′[i] and N ′) in-
dicate changed component values in the b-length sequence resulting from the restric-
tion operation; all other components in the resulting b-length sequence are identical
to the corresponding component in the original b-length sequence.

restriction operation update rule

lle(〈A b,N 〉, `) forall k∈ [`+ 1, b] : A′[k] := ∅; N ′ := N ∩ [0, `]

lgr(〈A b,N 〉, `) N ′ := N ∩ [`+ 1, b]

ceq(〈A b,N 〉, i, c) A′[i] := A[i] ∩ {c}; N ′ := N ∩ [i, b]

cnq(〈A b,N 〉, i, c) A′[i] := A[i] \ {c};if A′[i] = ∅ then

(N ′ := N ∩ [0, i− 1]; forall k ∈ [i, b] : A′[k] := ∅)

also updates all sets of candidate characters at indices greater than ` to be the
empty set. The restriction operation lgr(〈A b,N 〉, `) requires no corresponding
update on sets of candidate characters with indices less than or equal to `: if
there existed an empty set A[i] = ∅ of candidate characters such that i was less
than or equal to `, then the upper bound of N would already be at most i; hence
N ∩ [`+ 1, b] would also be the empty set, and the domain would be failed.

Equality Semantics ceq and cnq have very different effects on the considered
set of candidate lengths: after ceq the set N ′ only contains lengths that are
at least i; but if A′[i] is not empty after cnq, then the set N ′ may contain
lengths greater than or equal to i. This appears to run counter to the intuition
that equality and disequality should be complementary operations. However, a
restriction operation is a function on the domain of a variable, not a function
on a component of that domain; the operations ceq and cnq are complementary
in that together they always define a partition of a string variable domain:

dom
(
ceq

(〈
A b,N

〉
, i, c

))
∪ dom

(
cnq

(〈
A b,N

〉
, i, c

))
= dom

(〈
A b,N

〉)
(5)

dom
(
ceq

(〈
A b,N

〉
, i, c

))
∩ dom

(
cnq

(〈
A b,N

〉
, i, c

))
= ∅ (6)

For full details on the equality semantics, see [22].

6 Propagation Events

As seen in Section 2, information about a domain restriction is communicated
to a propagator via a propagation event [19]. In practice, a propagation event
should be useful to some propagator; that is, the propagation event should dis-
tinguish between a change to the domain that leaves the propagator at fixpoint,
versus one that does not. The set of propagation events exposed by a variable
implementation is called a propagation event system. Larger propagation event
systems come with a commensurate cost to efficiency; see [20] for a detailed
analysis of event-based propagation.

val

lval

lmin lmax

cval

cdom

(a)

val

lval

lmin lmax

cval

cdom

(b)

Figure 4. Implications in a minimal string variable event system (omitting transitive
implications). If the changes to the set of candidate lengths and the sets of candidate
characters are viewed independently (a), then the resulting propagation event system
is not monotonic. The corrected propagation event system (b) is monotonic.

A minimal event system for a string variable X with a domain represented
by a b-length sequence 〈A b,N 〉 is shown in Figure 4. The val propagation event
indicates that the string variable domain has been reduced to a single string. The
next three propagation events indicate changes to the setN of candidate lengths:
either the lower bound has increased (lmin), or the upper bound has decreased
(lmax), or the set has become a singleton (lval). The remaining propagation
events indicate changes to a set A[i] of candidate characters: either some symbol
has been removed (cdom) or the symbol of the character at index i has become
known (cval). Note that cval indicates that the character at some index i is a
symbol c ∈ Σ, and not that the set of candidate characters at i is a singleton. If i
is a mandatory index, then the two conditions are equivalent: for every string x
in the domain of X, the character x[i] is c. However, when an optional set of
candidate characters A[i] is a singleton, then there are additionally strings in
the domain for which the character at index i is undefined.

Some propagation events are implied by others. Figure 4(a) shows an event
system in which length and character propagation events are isolated, making
it possible to report changes to the set of candidate lengths and changes to sets
of candidate characters independently. Unfortunately, this design violates one of
the properties required of propagation events [24]: the set of propagation events
generated by a sequence of restriction operations must be monotonic, that is, it
must not depend on the order of the restriction operations.

In a non-monotonic propagation event system, the set of events generated by
a series of restriction operations is dependent on their order, as shown now:

Example 2. Let X be a string variable with a domain represented by the b-length
sequence 〈A 4,N 〉 = 〈〈{1, 2}, {1, 2}, {5, 6},∅〉, [1, 3]〉, where b = 4. The following
sequence of restriction operations restricts first the set of candidate characters
at index 3, and then the set of candidate lengths:

〈A ′4,N ′〉 := lle
(
cnq

(〈
A b,N

〉
, 3, 6

)
, 2
)

:= lle (〈〈{1, 2}, {1, 2}, {5, 6} \ {6},∅〉, [1, 3]〉, 2)

:= lle (〈〈{1, 2}, {1, 2}, {5},∅〉, [1, 3]〉, 2)

:= 〈〈{1,2},{1,2},{5} ∩∅,∅〉,[1, 3] ∩ [0, 2]〉=〈〈{1,2},{1,2},∅,∅〉,[1, 2]〉

The resulting set of propagation events is {cdom, lmax}: the set of candidate
characters at index 3 was restricted, followed by the set of candidate lengths. If
the order of the two restriction operations is reversed, then the resulting domain
representation is the same:

〈A ′′4,N ′′〉 := cnq
(
lle

(〈
A b,N

〉
, 2
)
, 3, 6

)
:= cnq (〈〈{1, 2}, {1, 2}, {5, 6} ∩∅,∅〉, [1, 3] ∩ [0, 2]〉, 3, 6)

:= cnq (〈〈{1, 2}, {1, 2},∅,∅〉, [1, 2]〉, 3, 6)

:= 〈〈{1, 2}, {1, 2},∅ \ {6},∅〉, [1, 2]〉 = 〈〈{1, 2}, {1, 2},∅,∅〉, [1, 2]〉

but the set of propagation events generated by this sequence of restriction opera-
tions is different, namely only {lmax}: no cdom propagation event is generated,
because the cnq restriction operation did not change the domain. ut

The monotonicity of event systems is important because propagation events
are used in the fixpoint algorithm to schedule propagators for execution. A
non-monotonic event system makes propagator scheduling non-monotonic in the
sense that executing propagators in different orders can generate different prop-
agation events possibly resulting in different amounts of pruning; see [21,24] for
a complete explanation of event systems and efficient propagator scheduling.

Figure 4(b) shows a monotonic version of our propagation event system, in
which lmax implies cdom. Intuitively, this implication arises from the repre-
sentation invariant: any change to the upper bound of the set N of candidate
lengths must empty at least one set A[i] of candidate characters. A proof of the
monotonicity of this propagation event system is omitted for reasons of space:
see [22] for further discussion.

7 Experimental Evaluation

Experimental Methodology Experiments were carried out on a VirtualBox 4.3.10
virtual client with 1,024 MB of RAM, running Xubuntu 14.04. The host machine
was a 2.66 GHz Intel Core 2 Duo with 4 GB of RAM, running OpenSUSE 13.1.
Code for implemented propagators was written in C++ for the Gecode 4.4.0
constraint solving library, using 64-bit bitsets, and compiled with gcc 4.8.4.

For each problem including strings of unknown length, the same initial max-
imum length b was used for every string variable, and the experiments were run
for several possible values of b when possible. Timeout always was at 10 minutes.

Models and Implementations BLS variables are compared with two other bounded-
length string representations for finite-domain CP solvers.

The first of these methods, the de facto standard for solving bounded-length
string constraint problems using a CP solver, is the padded-string method [12],
which requires no proper string variable type; instead, each string unknown in a
problem is modeled as a pessimistically large array of integer variables, allowing
multiple occurrences of a null or padding symbol at the end of each string. In

the padded-string method there are no propagators implementing string con-
straints. Instead, each string constraint is modeled as a decomposition consist-
ing of a conjunction of reified constraints over the sequence of integer variables
corresponding to each string in the scope of the constraint, which express the
relationship between the length of the modeled string and the occurrences of the
padding character in the corresponding sequence.

The second method, the aggregate-string method [23], is similar to the pad-
ded-string method, but an integer variable is added for each string unknown,
modeling its set of candidate lengths. Thus, the model of a string unknown in
the aggregate-string method is isomorphic to the bounded-length sequence re-
presentation in Section 3, modulo the inclusion of the padding character. The
aggregate-string method also differs from the padded-string method in that each
string constraint is implemented by a single propagator. This method is imple-
mented with the aid of the indexical compiler [15].

All implementations, as well as the corresponding models for the bench-
marks listed below, can be found at https://bitbucket.org/jossco/gecode-
string. Note that these experiments do not use the machinery of the recent
string extension [2] of the MiniZinc modeling language [17].

Search A serviceable, if not compelling, branching heuristic for string variables
applies a value selection heuristic for integer variables to either a set of candidate
characters or the set of candidate lengths. More interesting branching heuristics
for string variables should be explored; however, a simple heuristic is sufficient
for the purpose of comparing our string variable type with the two alternate
methods described above. We used the following heuristic: at each choice point,
the first unassigned string variable is selected; the sets of candidate characters
at the mandatory indices are evaluated, and the set with the lowest cardinality
is selected; if there exist no mandatory indices, then the minimum of the set of
candidate lengths is increased instead. Character value selections are made by
splitting the selected set at its median element, and taking the lower half first.

Benchmarks The well-known string benchmarks of hampi [9], kaluza [18], and
sushi [8] have previously been shown to be trivial for CP solvers even without
sequence variables, see [12,23] for instance, hence we do not revisit them here.

Word Design for DNA Computing on Surfaces This problem [6], with origins in
bioinformatics and coding theory, is to find the largest set of strings S, each of
length 8 and with alphabet Σ = {A, T, C, G}, such that:

– Each string s ∈ S contains exactly four characters from the set {C, G}.
– For all x, y ∈ S such that x 6= y, x and y differ in at least four positions.
– For all x, y ∈ S (including when x = y), the strings xrev and comp(y) differ

in at least four positions, where comp is the permutation (AT)(CG).

Despite its name, this problem is actually rather a weak candidate for modeling
with bounded-length string variables. Every word in S has the same fixed length,
and most of the constraints are binary constraints on characters; hence, the

https://bitbucket.org/jossco/gecode-string
https://bitbucket.org/jossco/gecode-string

Table 3. Time, in seconds, either to find a solution if one exists, or to prove b-bounded
unsatisfiability otherwise; t indicates that the instance timed out (> 10 minutes).

padded aggregate BLS SAT /
benchmark inst \ b 256 512 1024 256 512 1024 256 512 1024 UNSAT

WordDesign 80 216.0 221.3 25.8 sat
WordDesign 85 290.0 t 32.9 sat
WordDesign 112 t t 92.5 sat

ChunkSplit 16 t t t t t t 0.2 2.0 21.9 sat
ChunkSplit 25 t t t t t t 1.4 15.0 215.2 sat
ChunkSplit 29 t t t 50.8 t t 0.3 2.0 21.7 sat
Levenshtein 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 sat
Levenshtein 37 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 sat
Levenshtein 84 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 sat
anbn 89 2.0 t t 0.2 0.5 1.7 0.1 0.3 2.3 sat
anbn 102 2.0 2.1 2.0 0.1 0.1 0.1 0.5 4.5 50.3 unsat
anbn 154 0.1 0.1 0.4 0.1 0.2 0.5 0.4 3.1 34.0 unsat
StringReplace 20 t t t t t t t t t ---
StringReplace 136 0.9 3.5 t 0.9 3.6 t 0.1 0.2 1.6 unsat
StringReplace 142 21.0 t t 0.1 0.4 1.5 0.1 0.3 1.8 sat
Hamming 389 t t t t t t 0.4 3.9 59.5 unsat
Hamming 1005 8.5 t t 7.9 t t 0.7 5.8 61.8 unsat
Hamming 1168 t t t t t t 0.4 3.7 55.9 unsat

problem is easily modeled as an |S| × 8 matrix of integer variables. In such a
fixed-length string case, a proper string variable type seems to have relatively
little to offer over a fixed-length array of integer variables.

Experimental results for the Word Design problem are shown in Table 3. We
treat each value (shown in the instance column) of the cardinality of S as a sat-
isfaction problem. No implementation times out for |S| ≤ 80, only the aggregate
implementation times out for 80 < |S| ≤ 85, only the BLS implementation does
not time out for 85 < |S| ≤ 112, and all implementations time out for 112 < |S|.
As all strings in the problem are of fixed length, there is nothing to be gained
by varying the maximum string length b for the problem; hence, we report only
one run for b = 8 per cardinality for each implementation.

The model using BLS variables performs comparatively well. As all strings
in the problem are of fixed length, the padded and aggregate methods collapse
into a single method; the propagators provided by the aggregate model for the
purpose of treating fixed-length arrays of variables as bounded-length strings are
unhelpful for true fixed-length strings. In this fixed-length context, the super-
ior performance of BLS variables must be attributed to the choice of a bitset
representation for the alphabet.

Benchmark of Norn A set of approximately 1,000 string constraint problems
were generated for the unbounded -length string solver norn [1]. These instances
do not require Unicode and have regular-language membership constraints, gen-

erated by a model checker, based on counter-example-guided abstraction refine-
ment (CEGAR), for string-manipulating programs, as well as concatenation and
length constraints on string variables, and linear constraints on integer variables.

Instances of the benchmark of norn are written in the cvc4 dialect of the
smtlib2 language [14]. These instances were translated into Gecode models
using the three methods described above. Regular languages in the instances are
specified as regular expressions; these were directly translated into Gecode’s
regular-expression language and modeled by RegularL constraints, with the
exception of expressions of the form X ∈ ε, which were instead modeled by
a constraint Len(X, 0). Approximately three quarters of all instances in the
benchmark include a negated regular expression. As Gecode does not imple-
ment negation for regular expressions, these instances were omitted from the
experiments as a matter of convenience; adding support for taking the comple-
ment of regular languages to Gecode is straightforward (e.g., [13]).

We solve the remaining 255 instances in a bounded -length context; our res-
ults are therefore incomparable with those of an unbounded-length solver such as
norn. For satisfiable instances, norn generates a language of satisfying assign-
ments for each string variable, whereas a CP-based method returns individual
satisfying strings; furthermore, norn can determine that an instance is unsat-
isfiable for strings of any length, whereas CP solvers are limited to determining
b-bounded unsatisfiability, for some practical upper bound b on string length.

Nevertheless, the benchmark of norn remains interesting in a bounded -length
context, as there are several challenging instances to be found. Complete results
for the 255 evaluated instances are omitted for space; for further discussion,
see [22]. Table 3 shows results for three instances in each of the five categories of
the benchmark of norn; these instances were selected as they appear to be the
hardest, in their respective categories, for solving in a bounded-length context.

As shown in Table 3, the BLS variable implementation is either significantly
faster than the aggregate and padding implementations, or tied with them, ex-
cept (for reasons we failed so far to understand) on the unsatisfiable instances of
the anbn benchmark. For large upper bounds on string sizes (b > 256), both of
the decomposition-based implementations are prone to time outs, mostly likely
as the search space is exhausting the available memory.

8 Conclusion

We have designed a new variable type, called bounded-length sequence (BLS)
variables. Implemented for the copying CP solver Gecode, BLS variables ease
the modeling of string constraint problems while simultaneously providing con-
siderable performance improvements over the alternatives. The described exten-
sion is agreed to become official part of Gecode. It would be interesting to see
how our ideas transpose to a trailing CP solver.

Bitsets are less appropriate for large alphabets, say when when full Uni-
code (16 bit) coverage is required: future work includes adapting the choice of

character-set representation based on alphabet size, possibly using BDDs, or a
sparse-bitset representation similar to that of [5].

BLS variables, together with propagators for string constraints [22], are part
of an emerging ecosystem of string solving in CP. The recent string extension [2]
of the MiniZinc modeling language [17] — for which we have extended the
FlatZinc interpreter of Gecode in order to support the BLS variable exten-
sion — can only serve to encourage further development.

Acknowledgements. We thank the anonymous referees for their helpful com-
ments. The authors based at Uppsala University are supported by the Swedish
Research Council (VR) under grant 2015-4910.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y., Hoĺık, L., Rezine, A., Rümmer, P., Stenman,
J.: Norn: An SMT solver for string constraints. In: Kroening, D., Pasareanu, C.S.
(eds.) Computer Aided Verification (CAV 2015). pp. 462–469. No. 9206 in LNCS,
Springer (2015), the benchmark of Norn is available at http://user.it.uu.se/

~jarst116/norn

2. Amadini, R., Flener, P., Pearson, J., Scott, J.D., Stuckey, P.J., Tack, G.: MiniZinc
with strings. In: Hermenegildo, M., López-Garćıa, P. (eds.) Logic-Based Program
Synthesis and Transformation (LOPSTR 2016), Pre-Proceedings. No. 1608.02534
in Computing Research Repository (2016), available at https://arxiv.org/abs/

1608.03650

3. Bisht, P., Hinrichs, T., Skrupsky, N., Venkatakrishnan, V.N.: WAPTEC: White-
box analysis of web applications for parameter tampering exploit construction.
In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) Computer and Communications
Security (CCS 2011). pp. 575–586. ACM (2011)

4. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS 2009). pp. 307–
321. No. 5505 in LNCS, Springer (2009)

5. Demeulenaere, J., Hartert, R., Lecoutre, C., Perez, G., Perron, L., Régin, J.,
Schaus, P.: Compact-table: Efficiently filtering table constraints with reversible
sparse bit-sets. In: Rueher, M. (ed.) Principles and Practice of Constraint Pro-
gramming (CP 2016). LNCS, vol. 9892, pp. 207–223. Springer (2016), http:

//dx.doi.org/10.1007/978-3-319-44953-1_14

6. van Dongen, M.: CSPLib problem 033: Word design for DNA computing on sur-
faces. http://www.csplib.org/Problems/prob033

7. Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation for database ap-
plications. In: Rosenblum, D.S., Elbaum, S.G. (eds.) Software Testing and Analysis
(ISSTA 2007). pp. 151–162. ACM (2007)

8. Fu, X., Powell, M.C., Bantegui, M., Li, C.C.: Simple linear string constraints.
Formal Aspects of Computing 25, 847–891 (November 2013)

9. Ganesh, V., Kieżun, A., Artzi, S., Guo, P., Hooimeijer, P., Ernst, M.: HAMPI: A
string solver for testing, analysis and vulnerability detection. In: Gopalakrishnan,
G., Qadeer, S. (eds.) Computer Aided Verification (CAV 2011). pp. 1–19. No. 6806
in LNCS, Springer (2011)

http://user.it.uu.se/~jarst116/norn
http://user.it.uu.se/~jarst116/norn
https://arxiv.org/abs/1608.03650
https://arxiv.org/abs/1608.03650
http://dx.doi.org/10.1007/978-3-319-44953-1_14
http://dx.doi.org/10.1007/978-3-319-44953-1_14
http://www.csplib.org/Problems/prob033

10. Gange, G., Navas, J.A., Stuckey, P.J., Søndergaard, H., Schachte, P.: Unbounded
model-checking with interpolation for regular language constraints. In: Piterman,
N., Smolka, S.A. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2013). pp. 277–291. No. 7795 in LNCS, Springer (2013)

11. Golden, K., Pang, W.: A constraint-based planner applied to data processing do-
mains. In: Wallace, M. (ed.) Principles and Practice of Constraint Programming
(CP 2004). p. 815. No. 3258 in LNCS, Springer (2004)

12. He, J., Flener, P., Pearson, J.: Solving string constraints: The case for constraint
programming. In: Schulte, C. (ed.) Principles and Practice of Constraint Program-
ming (CP 2013). No. 8124 in LNCS, Springer (2013)

13. Hopcroft, J., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, 3rd edn. (2007)

14. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R.
(eds.) Computer Aided Verification (CAV 2014). pp. 646–662. No. 8559 in LNCS,
Springer (2014)

15. Monette, J.N., Flener, P., Pearson, J.: Towards solver-independent propagators. In:
Milano, M. (ed.) Principles and Practice of Constraint Programming (CP 2012).
pp. 544–560. No. 7514 in LNCS, Springer (2012), indexical compiler software avail-
able at http://www.it.uu.se/research/group/astra/software/indexicals

16. Négrevergne, B., Guns, T.: Constraint-based sequence mining using constraint pro-
gramming. In: Michel, L. (ed.) Integration of AI and OR Techniques in Constraint
Programming (CPAIOR 2015). pp. 288–305. No. 9075 in LNCS, Springer (2015)

17. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
Towards a standard CP modelling language. In: Bessière, C. (ed.) Principles and
Practice of Constraint Programming (CP 2007). pp. 529–543. No. 4741 in LNCS,
Springer (2007), the MiniZinc toolchain is available at http://www.minizinc.org

18. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: Security and Privacy (S&P 2010). pp.
513–528. IEEE Computer Society (2010)

19. Schulte, C., Carlsson, M.: Finite domain constraint programming systems. In:
Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming,
chap. 14, pp. 495–526. Elsevier, Amsterdam (2006)

20. Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. Transactions
on Programming Languages and Systems 31(1), 2:1–2:43 (December 2008)

21. Schulte, C., Tack, G.: Implementing efficient propagation control. In: Proceedings
of TRICS: Techniques foR Implementing Constraint programming Systems, a con-
ference workshop of CP 2010. St Andrews, UK (09 2010)

22. Scott, J.: Other Things Besides Number: Abstraction, Constraint Propagation, and
String Variable Types. Ph.D. thesis, Uppsala University, Sweden (2016), available
at http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-273311

23. Scott, J., Flener, P., Pearson, J.: Constraint solving on bounded string variables. In:
Michel, L. (ed.) Integration of AI and OR Techniques in Constraint Programming
(CPAIOR 2015). pp. 375–392. No. 9075 in LNCS, Springer (2015)

24. Tack, G.: Constraint Propagation: Models, Techniques, Implementation. Ph.D.
thesis, Saarland University, Germany (2009)

25. The Gecode Team: Gecode: A generic constraint development environment (2006),
http://www.gecode.org

http://www.it.uu.se/research/group/astra/software/indexicals
http://www.minizinc.org
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-273311
http://www.gecode.org

	Design and Implementation of Bounded-Length Sequence Variables

