Rethinking
Code Generation in
Compilers

Christian Schulte

SCALE
KTH Royal Institute of Technology & SICS (Swedish Institute of Computer Science)

joint work with:

Mats Carlsson SICS
Roberto Castafieda Lozano SICS + KTH
Frej Drejhammar SICS
Gabriel Hjort Blindell KTH

SWEDISH

ICT PR

Compilation

back-end assembly
(code generator) program

source
program

front-end optimizer

Sep 5, 2013

* Front-end: depends on source programming language

changes infrequently

w
-
<
O
n
o
=
=)
<
O
n

* Optimizer: independent optimizations

changes infrequently

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oTo]
=
—
=
B
4+
()
oc

* Back-end: depends on processor architecture

changes often: new architectures, new features, ...

—
N
—

Building a Compiler

assembly
program

source
program

front-end optimizer

Sep 5, 2013

LLVM

w
-
<
O
n
o
=
=)
<
O
n

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oTo]
=
—
=
B
4+
()
oc

* Infrequent changes: front-end & optimizer

reuse state-of-the-art: LLVM, for example

—
w
—

Building a Compiler

source back-end assembly
program (code generator) program

Sep 5, 2013

Unison

w
-
<
O
n
o
=
=)
<
O
n

=
o
)
©
S
()
c
()
()
[}
©
(@)
o
oo
=
-z
=
=5
+
[}
o

* Infrequent changes: front-end & optimizer
reuse state-of-the-art: LLVM, for example

* Frequent changes: back-end
use flexible approach: Unison (project this talk is based on)

—
S
-

State-of-the-art

instruction

selection

X=Vy+z; ‘

add ro rl r2
mv $a6fo ro

* Code generation organized into stages

instruction selection,

Sep 5, 2013

w
-
<
O
n
o
=
=)
<
O
n

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oTo]
=
—
=
B
4+
()
oc

—
(92
—

State-of-the-art

register

allocation

Sep 5, 2013

X — register rO
X=Yy+2z ‘ y = memory (spill to stack)

w
-
<
O
n
o
=
=)
<
O
n

* Code generation organized into stages

instruction selection, register allocation,

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oTo]
=
—
=
B
4+
()
oc

—
(@)}
—

State-of-the-art

instruction
scheduling o
X=y+z Uu=v-—-w, &
=) :
Uu=v-—w; X=Vy+z;)

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oTo]
=
—
=
B
4+
()
oc

* Code generation organized into stages
instruction selection, register allocation, instruction scheduling

—
~N
—

State-of-the-art

instruction register instruction

selection allocation scheduling

Sep 5, 2013

* Code generation organized into stages
stages are interdependent: no optimal order possible

(NN]
|
<<
O
n
o
o=
=)
<
O
n

c
2
o+
©
| .
5}
c
[}
O
[}
gl
o
o
%)
1=
-z
=
<
)
Q
[

—
(00]
—

State-of-the-art

instruction instruction register

selection scheduling allocation

Sep 5, 2013

* Code generation organized into stages
stages are interdependent: no optimal order possible

w
-
<
O
n
o
=
=)
<
O
n

* Example: instruction scheduling 5 register allocation
increased delay between instructions can increase throughput

c
o
F=
©
=
]
c
Q
O
]
©
®)
O
oTo]
=
—
=
B
4+
()
oc

— registers used over longer time-spans
— more registers needed

—
(o}
—

State-of-the-art

instruction register instruction

selection allocation scheduling

Sep 5, 2013

* Code generation organized into stages
stages are interdependent: no optimal order possible

w
-
<
O
n
o
=
=)
<
O
n

* Example: instruction scheduling 5 register allocation

put variables into fewer registers

c
o
F=
©
=
]
c
Q
O
]
©
®)
O
oTo]
=
—
=
B
4+
()
oc

— more dependencies among instructions
— less opportunity for reordering instructions

 \
=
o

—

State-of-the-art

instruction instruction register

selection scheduling allocation

Sep 5, 2013

* Code generation organized into stages
stages are interdependent: no optimal order possible

w
-
<
O
n
o
=
=)
<
O
n

* Stages use heuristic algorithms
for hard combinatorial problems (NP hard)

c
(]
F=
©
=
(V)
c
Q
O
(V)
©
o
O
oTo]
=
—
=
B
4+
()
oc

assumption: optimal solutions not possible anyway
difficult to take advantage of processor features

error-prone when adapting to change

—
[HEY
[HEY

—

State-of-the-art

instruction instruction register

selection scheduling allocation

Sep 5, 2013

* Code generation organized into stages
stages are interdependent: no optimal order possible

o

@

* Stages use heuristic algor
for hard combinatorial

(NN]
-
<
O
(7]
o
o=
S
=
(&}
wn

c
2
o+
©
| .
5}
c
[}
O
[}
gl
o
o
%)
1=
-z
=
<
)
Q
[

assumption: optim
difficult to take adva
error-prone when ada

 \
=
N

—

Rethinking: Unison Idea

* No more staging and heuristic algorithms!

many assumptions are decades old...

Sep 5, 2013

* Use state-of-the-art technology for solving combinatorial
optimization problems: constraint programming

tremendous progress in last two decades...

L
-
<
O
n
o
=
=)
<
O
n

* Generate and solve single model
captures all code generation tasks in unison
high-level of abstraction: based on processor description
flexible: ideally, just change processor description
potentially optimal: tradeoff between decisions accurately reflected

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
=
(98]

—

Unison Approach

instruction

selection

constraints
instruction

scheduling

register
allocation

constraints

Sep 5, 2013

constraints

(NN]
|
<<
O
n
o
o=
=)
<
O
n

c
2
o+
©
| .
5}
c
[}
O
[}
gl
o
o
%)
1=
-z
=
<
)
Q
[

* Generate constraint model
based on input program and processor description

constraints for all code generation tasks

 \
=
IS

—

generate but not solve: simpler and more expressive

Unison Approach

instruction
selection

off-the-shelf

constraint

instruction
solver

scheduling

Sep 5, 2013

/[/ constraints

register
allocation

(NN]
|
<<
O
n
o
o=
=)
<
O
n

c
2
o+
©
| .
5}
c
[}
O
[}
gl
o
o
%)
1=
-z
=
<
)
Q
[

* Off-the-shelf constraint solver solves constraint model

solution is assembly program
optimization takes inter-dependencies into account

 \
=
(92}

—

Overview

* Constraint programming in a nutshell

* Constraint-based Register Allocation and Instruction
Scheduling [Castafeda Lozano, Carlsson, ea; CP 2012]

representing programs

Sep 5, 2013

register allocation

L
-
<
O
n
o
=
=)
<
O
n

instruction scheduling and bundling

solving the model

(=
@)
)
©
S
(]
=
(]
O
(]
©
(@)
o
(eT0]
1=
-z
=
{5
=
(O]
o

discussion

* Project progress and context

—
=
(0))]

—

Sep 5, 2013

w
-
<
O
n
o
=
=)
<
O
n

c
)
o+
©
S
]
c
(3]
O
(0]
o
o
o
Qo
=
-z
=
<
)
9]
[

CONSTRAINT PROGRAMMING
IN ANUTSHELL

—
=
~

—

Constraint Programming

Model and solve combinatorial (optimization) problems

Modeling
variables
constraints
branching heuristics
(cost function)

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

Solving
constraint propagation
heuristic search

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

Of course simplified...
array of modeling techniques

—
=
(0¢]

—

Problem: Send More Money

* Find distinct digits for letters such that

Sep 5, 2013

t
SCALE

Schulte,

c
o
©
S
[
c
[

(U
()

§S;
o

O
an

=

—
c

Rethi

—
=
(o)

—

Constraint Model

* Variables:

S,E,N,D,M,0,R,Y e {0,..,9}

Sep 5, 2013

* Constraints:
distinct(S,E,N,D,M,0,R,Y)

L
-
<
O
n
o
=
=)
<
O
n

1000%xS+100%XE+10%xN+D
-+ 1000xM+100%0+10%xR+E
= 10000xM+1000x0+100%XN+10%XE+Y

(=
@)
)
©
S
(]
=
(]
O
(]
©
(@)
o
(eT0]
1=
-z
=
{5
=
(O]
o

S+#0 M=0

—
N
o

—

Constraints

* State relations between variables
legal combinations of values for variables

* Examples
all variables pair wise distinct: distinct(x, ..., x,)
arithmetic constraints: X+2Xy=2z

domain-specific:

* Success story:
modeling:
solving:

cumulative(t,, ..., t,)
nooverlap(ry, ..., r,)

constraints

capture recurring problem structures
enable strong reasoning
constraint-specific methods

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

(=
@)
)
©
S
(]
=
(]
O
(]
©
(@)
o
(eT0]
1=
-z
=
{5
=
(O]
o

—
N
=

—

Solving: Variables and Values

Sep 5, 2013

t
SCALE

Schulte,

[xe{1,2,3,4} ye{1,2,3,4} z€{1,2,3,4} J

c
o
©
S
[
c
[}

(U
()

§S;
o

O
an

=

—
c

Rethi

* Record values for variables
solution: single value left
failure: no values left

—
NI
N

—

Constraint Propagation

Sep 5, 2013

distinct(x, y, z) x+y=3

\/’

[xe{1,2,3,4} ye{1,2,3,4} z€{1,2,3,4} J

L
-
<
O
n
o
=
=)
<
O
n

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

* Prune values that are in conflict with constraint

—
NI
w

—

Constraint Propagation

Sep 5, 2013

distinct(x, y, 2) X+y=3
[xe{l,2} ye{l,2} ze€{1,2,3,4} J

* Prune values that are in conflict with constraint

[2¢)

Constraint Propagation

Sep 5, 2013

distinct(x, y, 2) X+y=73

‘\/’

[xe{l,2} ye{l,2} ze{3,4} }

L
-
<
O
n
o
=
=)
<
O
n

(=
@)
)
©
S
(]
=
(]
O
(]
©
(@)
o
(eT0]
1=
-z
=
{5
=
(O]
o

* Prune values that are in conflict with constraint
propagation is often smart if not perfect!

—
N
U

—

Heuristic Search

distinct(x, y, 2) xX+y=3

\/

[xe{1,2} ye{1,2} ze{3,4} }

Sep 5, 2013

distinct(x, y, 2) X+y=3

\/

[xe{2} ye{l1} ze{3,4} }

distinct(x, y, 2) x+y=3

\/

[xe{1} ye{2} ze{3,4} }

L
-
<
O
n
o
=
=)
<
O
n

* Propagation not sufficient
decompose into simpler sub-problems
search needed
* Create subproblems with additional constraints
enables further propagation
defines
uses problem specific heuristic

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
N
(@)}

—

What Makes It Work?

Essential: avoid search...
...as it always suffers from combinatorial explosion

Sep 5, 2013

Constraint propagation drastically reduces search space

Efficient and powerful methods for propagation available

L
-
<
O
n
o
=
=)
<
O
n

When using search, use a clever heuristic

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

Array of modeling techniques available that reduce search

Hybrid methods (together with LP, SAT, stochastic, ...)

—
N
~N

—

Sep 5, 2013

w
-
<
O
n
o
=
=)
<
O
n

(=
o
-
©
S
(]
=
(]
O
(]
©
(@]
©)
(eT0]
£
-z
<
{5
ol
(O]
o

REPRESENTING PROGRAMS

—
N
(00]

—

Getting Started...

int fac(int n) { t,<1i
int f = 1; t,—slti t,]
while (n > @) { bne t, tg—mul t,,t, «
f=Ff * n; n--; > ty—subiu t, §
} bgtz t, 3
return f; .
} [Jr to

L
-
<
O
n
o
=
=)
<
O
n

* Function is unit of compilation
generate code for one function at a time

* Instruction selection has already been performed
some instructions might depend on register allocation [later]
* Use control flow graph (CFG) and turn it into LSSA form

edges = control flow
nodes = basic blocks (no control flow)

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
N
(o}

—

Register Allocation

t, < mul t,, 2
t; < sub t,, 2
t, < add t,, t
return t,

r2z < mul ri, 2
r3 < sub ri, 2
r4 + add r2, r3
return r4

rz < mul ri, 2
ri < sub ri, 2
rl < add r2, ri
return ri

* Assign registers to program temporaries

infinite number of temporaries
finite number of registers

* Naive strategy: each temporary assigned a different register
will never work, way too few registers!

* Assign the same register to several temporaries

when is this safe?

what if there are not enough registers?

interference
spilling

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
w
o

—

Static Single Assignment (SSA)

t,+1i
t,—slti t, |
bne t, tg—mul t.,,t, %
ty—subiu t, o
l bgtz t, &
[Jr to ;

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

* SSA: each temporary is defined (t < ...) once
* SSA simplifies many optimizations
* Instead of using ¢-functions we use ¢-congruences and LSSA

¢-functions disambiguate definitions of temporaries

—
(98]
=

—

Liveness and Ir}terference

— R

B

* Temporary is live when it might be still used
from its defintion to use

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

* Temporaries interfere if they are live simultaneously

this definition is naive [more later]

* Non-interfering temporaries can be assigned same register

—
W
N

—

Linear SSA (LSSA)

1_

t,—slti t,

bne ¢,

t=tp l
ty=t,

[jr ti

ty—subiu t,
bgtz t,

te=1y
t=1s

* Linear live range of a temporary cannot span block boundaries
* Liveness across blocks defined by temporary congruence =
t=t! <& represent same original temporary

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
w
w

—

Linear SSA (LSSA)

1_

t,-1i £t
t,eslti t, ==t |
bne ¢, tge—mul t,,t, t=t,
t=t,, bgtz t,
[Jr to

* Linear live range of a temporary cannot span block boundaries
* Liveness across blocks defined by temporary congruence =
t=t! <& represent same original temporary

* Example: t;, t,, tg, t,; are congruent
correspond to the program variable f (factorial result)
not discussed: t, return address, t, first argument, t,, return value

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
w
g

-

Linear SSA (LSSA)

1_

t,+1i
t,—slti t,]
bne ¢, tg—mul t.,,t, t=t, %
t,=ty, ty—subiu t, t=t, %
t,=t,, bgtz t, %
[Jr to §\

* Linear live range of a temporary cannot span block boundaries
* Liveness across blocks defined by temporary congruence =
t=t! <& represent same original temporary

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

* Advantage
simple modeling for linear live ranges

—
w
U

—

enables problem decomposition for solving

Spilling
* If not enough registers available: spill

* Spilling moves temporary to memory (stack)

store in memory after defined

Sep 5, 2013

load from memory before used
memory access typically considerably more expensive

L
-
<
O
n
o
=
=)
<
O
n

decision on spilling crucial for performance

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

* Architectures might have more than one register file
some instructions only capable of addressing a particular file
“spilling” from one register bank to another

—
w
(@)}

—

Coalescing

* Temporaries d (“destination”) and s (“source”) are move-
related if
des
d and s should be coalesced (assigned to same register)

Sep 5, 2013

coalescing saves move instructions and registers

L
-
<
O
n
o
=
=)
<
O
n

* Coalescing is important
due to how registers are managed (calling convention, callee-save)
due to using LSSA for our model (congruence)

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
w
~N

—

Copy Instructions

* Copy instruction replicates a temporary t to a temporary t’

t «~{o0, 0, .., 0,1}t
copy is implemented by one of the operations o,, 0,, ..., 0,

Sep 5, 2013

operation depends on where t and t’ are stored

similar to [Appel & George, 2001]

L
-
<
O
n
o
=
=)
<
O
n

* Example MIPS32
t' < {move, sw, nop}t

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

t’ memory and t register: sw spill
t’ register and t register: move move-related
t’ and t same register: nop coalescing

MIPS32: operations can only be performed on registers

—
w
(00]

—

Copy Instructions

['L'3‘—li) t,=t,
t4‘_Slti tz tSEtS 2

bne t 2
4 4 J t,=mul t, ,t,, te=t,. z

_ t..+subiu t
tl:t16 t=t 13 1 o=t § <
6=T17 t,,=t; § %
bgtz t o
L T n g
jr t :%D

* Possibly save after definition and copy back before use
* Example: MIPS32

()

nop has been left out

Copy Instructions

['L'3‘—li) t,=t,

t4‘_Slti tz tSEtS 4
t.—{move,sw} t, t=t, / \ -~
t,—{move,sw} t, S
__bne ¢, J t,emul t,,t, oy &

_ t,;+subiu t

t, =t t=t,, 13‘_ 10 to=ty, S 2
GEtl7 t145t17 t14 {move_’ SW} tlz g bj)\
t,c—{move,sw} t,; E
bgtz t v 5
L, L R g
Jr tie £

* Possibly save after definition and copy back before use
* Example: MIPS32

after definition add ty—{move,sw} t,

0]

nop has been left out

Copy Instructions

('L'3‘—li N t=t;
t,—slti t, ts=tg v
ty—{move,sw} t, tts (ti—{move,lu} t;) -
tg—{move,sw} t, t,;—{move, 1w} t, p
k bne t4 j tlz‘_mu:l. tll-’ tl@ tSEtl5 ‘;’-
_ .
t =t t=t, t13 subiu tl@ t=ta, -Eg
=t _ ti,—{move,sw} t;, o
6 17 t14=t17)
t;s—{move,sw} t,; g<
[tlgq—{move,]_W} t17 \ bth tg / % §
. O
Ir Ty <

* Possibly save after definition and copy back before use
* Example: MIPS32

after definition add ty—{move,sw} t,
before use add ty—{move, 1w} t,
nop has been left out

[41)

Representation Summary

CFG in LSSA

[]
Sep 5, 2013

Linear live ranges local to basic blocks

Congruence defines liveness across basic blocks

L
-
<
O
n
o
=
=)
<
O
n

Coalescing and spilling internalized

expressed by copy instructions

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

supports several register files or memory spaces

—
I
N

-

Sep 5, 2013

w
-
<
O
n
o
=
=)
<
O
n

(=
o
-
©
S
(]
=
(]
O
(]
©
(@]
©)
(eT0]
<
-z
<
{5
ol
(O]
o

MODELING REGISTER ALLOCATION

—
I
w

-

Approach

* Local register allocation
perform register allocation per block
possible as temporaries are not shared among blocks

Sep 5, 2013

* Local register assignment as geometrical packing problem

take width of temporaries into account

L
-
<
O
n
o
=
=)
<
O
n

also known as “register packing”

* Global register allocation
force temporaries into same registers across blocks

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
I
I

-

Unified Register Array

registers memory registers

»
P <

-
«

ro rl r., m0 ml

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

unified register array

* Unified register array
limited number of registers for each register file

(=
@)
)
©
S
(]
=
(]
O
(]
©
(@)
o
(eT0]
1=
-z
=
{5
=
(O]
o

memory is just another “register” file
unlimited number of memory “registers”

—
I
ul

-

Geometrical Interpretation

registers memory registers
ro rl r., m0 ml :
o g
o L
5 g
<
o =
D <
a
i
M unified register array temporary t 2
(V5]

* Temporary t is rectangle
width is 1 (occupies one register)
top = issue cycle of defining instruction (t < ...)

=
o
)
©
S
()
c
()
()
[}
©
(@)
o
oo
=
-z
=
=5
+
[}
o<

bottom = last issue cycle of using instructions (... < t)

—
I
(@)

-

Register Assignment

registers memory registers
ro rl r., m0 ml
o
o
(@]
Q
(@]
<
o
D
M unified register array temporary t

* Register assignment = geometric packing problem
find horizontal coordinates for all temporaries
such that no two rectangles for temporaries overlap

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
I
~

-

Register Packing

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

* Temporaries might have different width width(t)

many processors support access to register parts

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

still modeled as geometrical packing problem [Pereira & Palsberg, 2008]

—
I
[o%)

-

Register Packing

AX BX CX width(t,)=1
AH AL BH BL CH CL

o width(t,)=2
o ™
(@) —
~ 2
2 o
(@] Q
o | width(t,)=1 G
width(t,)=2 g
* Temporaries might have different width width(t) &

many processors support access to register parts

Rethinking Code Generation

still modeled as geometrical packing problem [Pereira & Palsberg, 2008]

* Example: Intel x86
assign two 8 bit temporaries (width = 1) to 16 bit register (width = 2)
register parts: AH, AL, BH, BL, CH, CL
possible for 8 bit: AH, AL, BH, BL, CH, CL
possible for 16 bit: AH, BH, CH

—
I
(o]

-

Register Packing

AX BX CX - start(t,)=0 end(t,)=1 width(t,)=1
AH AL BH BL CH CL

start(t,)=0 end(t,)=2 width(t5)=2

o
3 t, =
3 2
® | t3 start(t;)=0 end(t;)=1 width(t;)=1 &
- start(t,)=1 end(t,)=2 width(t,)=2 §

* Temporaries might have different width width(t) 3

many processors support access to register parts
still modeled as geometrical packing problem [Pereira & Palsberg, 2008]

Rethinking Code Generation

* Example: Intel x86
assign two 8 bit temporaries (width = 1) to 16 bit register (width = 2)
register parts: AH, AL, BH, BL, CH, CL
possible for 8 bit: AH, AL, BH, BL, CH, CL
possible for 16 bit: AH, BH, CH

—
U
o

—

Register Packing

AX BX CX start(t,)=0 end(t,)=1 width(t,)=1
AH AL BH BL CH CL
o start(t,)=0 end(t,)=2 width(t5)=2
O t3 ™M
(@) —
~ 2 8
(@] S
S =
® | start(t;)=0 end(t;)=1 width(t;)=1 &
start(t,)=1 end(t,)=2 width(t,)=2 I
* Temporaries might have different width width(t) 3

many processors support access to register parts
still modeled as geometrical packing problem [Pereira & Palsberg, 2008]

(=
@)
)
©
S
(]
=
(]
O
(]
©
(@)
o
(eT0]
1=
-z
=
{5
=
(O]
o

* Example: Intel x86
assign two 8 bit temporaries (width = 1) to 16 bit register (width = 2)
register parts: AH, AL, BH, BL, CH, CL
possible for 8 bit: AH, AL, BH, BL, CH, CL
possible for 16 bit: AH, BH, CH

—
9
=

—

Global Register Allocation

* Enforce that congruent temporaries are assigned to same
register

Sep 5, 2013

* If register pressure is low...
copy instructions might disappear (nop)
= coalescing

L
-
<
O
n
o
=
=)
<
O
n

* If register pressure is high...
copy instructions might be implemented by a move (move)
= no coalescing
copy instructions might be implemented by a load/store (1w, sw)

(=
@)
)
©
S
(]
=
(]
O
(]
©
(@)
o
(eT0]
1=
-z
=
{5
=
(O]
o

= spill

—
U
N

—

Model Variables

* For each temporary t
reg(t) € {0,1,...} register parts to which temporary t is assigned

[encoded as positive integers]
start(t) € {0,1,...} live range start issue cycle
end(t) € {0,1,...} live range end issue cycle

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

* For each instruction i
issue(i) € {0,1,...} issue cycle of instruction i
active(i) € {0,1} whether instruction i is active

[active(i)=1 < instruction i is active]
op(i) € {0,1,...} operation which implements instruction i

[encoded as positive integers]

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
192
w

—

Model Constraints

* Relate instruction issue cycles to temporary live ranges
start(t) = issue(/) instruction j defines t (t < ...)
end(t) = max {issue(i,), ..., issue(i,)}

instructions iy, ..., i, use t (... < t)

* All non-copy instructions i must be active
active(i) =1 instruction i is not a copy instruction

* Restrict copy instructions to suitable operations
op(i) € {oy, ..., 04, NOP} 04, ..., 0, are operations that can
implement instruction i

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

(=
@)
)
©
S
(]
=
(]
O
(]
©
(@)
o
(eT0]
1=
-z
=
{5
=
(O]
o

—
Ul
S

-

Local Register Allocation
Constraints

Rectangles for temporaries in basic block do not overlap

nooverlap({{reg(t), reg(t)+width(t), start(t), end(t))
|t is temporary used or defined in block})

nooverlap is global constraint (modeling!, propagation!)

Rectangles cover only legal register parts
reg(t)e{ry, ..., 1} ry, ..., r, are allowed register parts for t
based on width(t)

Operations must use compatible registers
op(i)=0 — reg(t)e{ry, ..., r,} {ry, ..., r,} registers compatible with o

Iff there is coalescing, copy instruction must be inactive
reg(s)=reg(d) <> active(/)=0 for move instructioni=d < s

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
u
U

—

Global Register Allocation

Constraints
* Congruent temporaries must be assigned to the same register
reg(t) = reg(t’) ift=t

Sep 5, 2013

t
SCALE

Schulte,

c
o
©
S
[
c
[}

(U
()

§S;
o

O
an

=

—
c

Rethi

—
(92
(@)}

—

Sep 5, 2013

w
-
<
O
n
o
=
=)
<
O
n

c
)
o+
©
S
]
c
(3]
O
(0]
o
o
o
Qo
=
-z
=
<
)
9]
[

INSTRUCTION SCHEDULING AND
BUNDLING

—
(92
~N

—

Local Instruction Scheduling

in

1(t,)
1 :
t,e1i *.\‘1.(5)
t,—slti ¢, 1(t,) i~ sltd .
bne t, 1(t) L <]) ;
1(t3) bne o
.......... 2
out

L
-
<
O
n
o
=
=)
<
O
n

* Data and control dependencies
data, control, artificial (for making in and out first/last)
again ignored: t, return address, t, first argument

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

* If instruction i depends on
issue distance of operation for i

—
(9]
(00]

—

must be at least latency of operation for

Limited Processor Resources

* Processor resources

functional units

data buses]
* Classical cumulative scheduling problem functional 54
w U
units E g
o2
processor resource has capacity #units g3
o
instructions occupy parts of resource 1 unit g
resource consumption can never exceed capacity %

* Also modeled as resources
instruction bundle width for VLIW processor
how many instructions can be issued simultaneously

—
193
(o}

—

Scheduling Constraints

* Active instructions must respect dependencies
active(i)=1 A active(j)=1 — issue(i) + latency(op(/)) < issue())
if instruction j depends on instruction J

Sep 5, 2013

 Capacity of processor resources cannot be exceeded
cumulative({{issue(i), dur(op(i),r), active(i)xuse(op(i),r))
| i instructions of basic block}, cap(r))

L
-
<
O
n
o
=
=)
<
O
n

for all processor resources r
whole point: one global constraint per basic block

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
(o))
o

—

Sep 5, 2013

w
-
<
O
n
o
=
=)
<
O
n

c
o
-
©
S
[
c
[
(U
()
§S;
o
O
an
=
—
=
<
L
)
o

SOLVING THE MODEL

—
(©))]
=

—

Problem Decomposition

* Decompose solving into
master problem coalesce congruent temporaries

slave problem assign registers
schedule instructions

* Decomposition increases robustness
potential not fully realized [later]

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
(o))}
N

—

Proof of Concept

86 functions from bzip2 (SPECint 2006 suite)

largest number of basic blocks 61
maximal number of instructions per block 269

MIPS32 as example architecture
regular and simple architecture
bad case for our approach (baseline argument)

Using Gecode 3.7.3 as constraint solver
not solving to optimiality but based on timeout

Comparison to LLVM 3.0

[full details: see paper]

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

—
(o)}
w

—

Cycle Count

I I T T I I T T T

10° |-

10% |-

10"

10° .

10° |- .

Sep 5, 2013

10* - P i

estimated cycles (code generator)

L
-
<
O
n
o
=
=)
<
O
n

100 | | | | | | | 1 |
102 10" 10® 10
estimated cycles (LLVM)

9 10

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

* Cycle count is a static estimate

static estimate of how often each basic block is executed

—
(@)
B

-

* Roughly on par

Solving Time

Il|'| T T T fllll'l
10" b E
6
"g 107 = Q
o S
E 0} 5 w
=] o
c
E A
@ 10 | =
o] C w
o © =
o = <
& 403 © A
10° | E =5
cC Q
o =
O >
2 o =
10" = -8 8
O
1 &
| | 1 ——
10 3 2 3 4 =
10 10 10 10 =
i . =
instructions 0
o2

* Reasonably robust behavior
sub-quadratic runtime in number of instructions per function
robustness is consequence of not solving to optimality

—
(o)}
U

—

€102 ‘s das uolleJauan apo) SuuIylay

—
31vOS ‘@nyds 5
(o)

|

DISCUSSION

Related Approaches

* Idea and motivation in Unison for combinatorial optimization
is absolutely not new!
starting in the early 1990s
overview: see paper

Sep 5, 2013

* Common to all approaches: compilation unit is basic block

L
-
<
O
n
o
=
=)
<
O
n

Approaches differ
which code generation tasks covered
which technology used (ILP, CLP, SAT, Stochastic Optimization, ...)

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

In particular: Optimist, Kessler & al, Linkoping!

—
(@)}
~N

—

Common challenge: robustness and scalability

Unique to Unison Approach

First global approach (function as compilation unit)

Constraint programming using global constraints
sweet spot: cumulative and nooverlap are state-of-the-art!

Sep 5, 2013

L
-
<
O
n
o
=
=)
<
O
n

Full register allocation with coalescing, packing, and spilling

spilling is internalized

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

Robust at the expense of optimality

problem decomposition

—
(o))
(00]

—

But: instruction selection not yet there!

Sep 5, 2013

w
-
<
O
n
o
=
=)
<
O
n

(=
(@)
=
©
—
()
=
()
()
[}
©
(@]
©)
oo
=
=z
=
{5
+
(¥}
o

PROJECT PROGRESS AND CONTEXT

—
(o))
(o}

—

Ongoing Work

* Non-naive definition of interference

first combinatorial model with definition that takes move-relatedness
into account [Chaitin & ea, 1981]

also captures spill code optimization (spill everywhere problem)

Sep 5, 2013

Using Qualcomm’s Hexagon (DSP) as example target
benchmark suite: DSP applications in MediaBench
compared to LLVM 3.2
best improvement -20%, worst +50%, geometric mean +4% ®

L
-
<
O
n
o
=
=)
<
(9}
n

(=
o
)

©

—

()

=

()
O

[}
©

o
O

oo
=
=z
=
{5

s}

(¥}
o

Constraint programming modeling techniques
derive implied constraints to reduce search
constraint programming is absolutely no black box technique

—
~
o

—

Integrate instruction selection

Future Work

* Improved solving (our sweet spot)
array of standard modeling techniques: symmetry breaking, ...
good search heuristics (inspired by today’s heuristic algorithms)
improved search techniques: stochastic, restarts, no-goods, ...
multi-objective optimization

Sep 5, 2013

* Model extensions
software pipelining
rematerialization

L
-
<
O
n
o
=
=)
<
O
n

c
(]
F=
©
—
(V)
c
Q
O
(V)
©
o
O
oY)
=
—
=
B
4+
()
oc

* Hybrid solving techniques
MIP
Bender’s decomposition

—
~
=

—

