Modeling and Solving
Code Generation for Real

Christian Schulte
KTH Royal Institute of Technology & SICS (Swedish Institute of Computer Science)

joint work with: Mats Carlsson SICS
Roberto Castafieda Lozano SICS + KTH
Frej Drejhammar SICS
Gabriel Hjort Blindell KTH + SICS
funded by: Ericsson AB

Swedish Research Council (VR 621-2011-6229)

SWEDISH

ICT PR

KTH Information and

----- T

Who Am 1?

Professor of Computer Science at KTH Royal Institute of
Technology, Stockholm, Sweden

Expert Researcher at SICS (Swedish Institute of Computer
Science), Stockholm, Sweden

Education
diploma in computer science, Karlsruhe, Germany, 1992
doctoral degree in engineering, Saarbriicken, Germany, 2001
docent in computer systems, KTH, Sweden, 2009

Research interests
constraint programming
programming languages
systems-based research (Gecode, for example)

Sep 10, 2015

[}
=
>
e
(®]
(%)
©
[}
o
—
o
[l
c
S
-
©
—
()
c
(&}
O
[}
©
o
O

Compilation

source assembly

. o back-end
B ogram front-end optimizer s orogram

Sep 10, 2015

* Front-end: depends on source programming language

changes infrequently (well...)

* Optimizer: independent optimizations
changes infrequently (well...)

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

* Back-end: depends on processor architecture

changes often: new process, new architectures, new features, ...

Generating Code: Unison

source back-end assembly
program (code generator) program

Unison

* Infrequent changes: front-end & optimizer

reuse state-of-the-art: LLVM, for example

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

* Frequent changes: back-end

use flexible approach: Unison

—
D
—

State of the Art

instruction

selection

X=V+z; ‘

add ro rl1 r2
mv $a6fo ro

* Code generation organized into stages

instruction selection,

Sep 10, 2015

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

State of the Art

register

allocation

Sep 10, 2015

X — register rO
X=V+2z; ‘ y = memory (spill to stack)

* Code generation organized into stages

instruction selection, register allocation,

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

State of the Art

instruction

scheduling 3
X=Yy+z u=v-—-w,
u=v-w, X=y+z

* Code generation organized into stages
instruction selection, register allocation, instruction scheduling

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

State of the Art

instruction register instruction

selection allocation scheduling

Sep 10, 2015

* Code generation organized into stages

stages are interdependent: no optimal order possible

]
=
=
e
O
(%)
‘©
(U]
oc
—
@]
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

State of the Art

instruction instruction register

selection scheduling allocation

Sep 10, 2015

* Code generation organized into stages

stages are interdependent: no optimal order possible

* Example: instruction scheduling 5 register allocation
increased delay between instructions can increase throughput
— registers used over longer time-spans

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

— more registers needed

State of the Art

instruction register instruction

selection allocation scheduling

Sep 10, 2015

* Code generation organized into stages

stages are interdependent: no optimal order possible

* Example: instruction scheduling 5 register allocation
put variables into fewer registers
— more dependencies among instructions

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

— less opportunity for reordering instructions

[
o

State of the Art

instruction instruction register

selection scheduling allocation

Sep 10, 2015

* Code generation organized into stages

stages are interdependent: no optimal order possible

 Stages use heuristic algorithms
for hard combinatorial problems (NP hard)
assumption: optimal solutions not possible anyway

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

difficult to take advantage of processor features
error-prone when adapting to change

[HY
[

State of the Art

instruction instruction register

selection scheduling allocation

Sep 10, 2015

* Code generation organized into stages

stages are interdependent: no optimal order possible

]
=
=
e
O
(%)
‘©
)
oc
—
o
(St
c
o
=)
©
=
]
c
]
O
]
©
o
O

error-prone when ada

[HY
N

Rethinking: Unison Idea

* No more staging and complex heuristic algorithms!

many assumptions are decades old...

Sep 10, 2015

* Use state-of-the-art technology for solving combinatorial
optimization problems: constraint programming

tremendous progress in last two decades...

* Generate and solve single model
captures all code generation tasks in unison
high-level of abstraction: based on processor description

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

flexible: ideally, just change processor description
potentially optimal: tradeoff between decisions accurately reflected

=
w

Unison Approach

instruction

selection

constraints
instruction

scheduling

register
allocation

constraints

Sep 10, 2015

constraints

* Generate constraint model
based on input program and processor description

]
=
=
e
O
(%)
‘©
(U]
oc
—
@]
(St
c
o
=)
©
=
()
c
Q
O
Qv
©
(@]
O

constraints for all code generation tasks

[N
o

generate but not solve: simpler and more expressive

Unison Approach

instruction
selection

off-the-shelf

instruction constraint
scheduling solver

Sep 10, 2015

[[constraints

register
allocation

* Off-the-shelf constraint solver solves constraint model
solution is assembly program

]
=
=
e
O
(%)
‘©
)
oc
—
o
(St
c
o
=)
©
=
()
c
Q
O
Qv
©
(@]
O

optimization takes inter-dependencies into account

[HY
U

Talk Overview

Constraint programming in a nutshell

Register Allocation & Instruction Scheduling
Basic Register Allocation
Instruction Scheduling
Advanced Register Allocation
Global Register Allocation
Discussion

Sep 10, 2015

Instruction Selection [if time allows]
Graph-based Instruction Selection
Universal Instruction Selection
Discussion

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

=
()]

* Summary

Source Material

* Register Allocation & Instruction Scheduling

Constraint-based Regqister Allocation and Instruction Scheduling,
Roberto Castaneda Lozano, Mats Carlsson, Frej Drejhammar,
Christian Schulte. CP 2012.

Combinatorial Spill Code Optimization and Ultimate Coalescing,
Roberto Castaneda Lozano, Mats Carlsson, Gabriel Hjort Blindell,
Christian Schulte. LCTES 2014.

Sep 10, 2015

* |nstruction Selection

Modeling Universal Instruction Selection, Gabriel Hjort Blindell,
Roberto Castaneda Lozano, Mats Carlsson, Christian Schulte.
CP 2015.

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

=
~

http://www.gecode.org/~schulte/paper.html?id=CastanedaCarlssonEa:CP:2012
http://www.sics.se/~rcas/
http://www.sics.se/~matsc/
http://www.sics.se/~frej/
http://www.gecode.org/~schulte/
http://www.gecode.org/~schulte/paper.html?id=CastanedaCarlssonEa:LCTES:2014
http://www.sics.se/~rcas/
http://www.sics.se/~matsc/
http://web.ict.kth.se/~ghb/
http://www.gecode.org/~schulte/
http://www.gecode.org/~schulte/paper.html?id=HjortBlindellCastanedaEa:CP:2015
http://web.ict.kth.se/~ghb/
http://www.sics.se/~rcas/
http://www.sics.se/~matsc/
http://www.gecode.org/~schulte/

Source Material

* Surveys

Survey on Combinatorial Reqister Allocation and Instruction
Scheduling, Roberto Castaneda Lozano, Christian Schulte. CoRR entry,
2014. Revised version to be submitted.

Sep 10, 2015

Instruction Selection: Principles, Techniques and Applications. Gabriel
Hjort Blindell, Springer, 2015. To appear.

* Additional Material

Integrated Register Allocation and Instruction Scheduling with
Constraint Programming, Roberto Castaneda Lozano. KTH Royal
Institute of Technology, Sweden, Licentiate thesis, 2014.

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

Constraint-based Code Generation. Roberto Castaneda Lozano,
Gabriel Hjort Blindell, Mats Carlsson, Frej Drejhammar, Christian
Schulte. M-SCOPES 2013.

=
(00}

http://www.gecode.org/~schulte/paper.html?id=CastanedaSchulte:CCoR:2014
http://www.sics.se/~rcas/
http://www.gecode.org/~schulte/
http://web.ict.kth.se/~ghb/
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154599
http://www.sics.se/~rcas/
https://www.sics.se/~rcas/publications/CastanedaHjortEa_MSCOPES_2013.pdf
http://www.sics.se/~rcas/
http://web.ict.kth.se/~ghb/
http://www.sics.se/~matsc/
http://www.sics.se/~frej/
http://www.gecode.org/~schulte/

LN
—
©)
(@]
O\
—
(o),
(<}
(%}
[}
=
>
e
(®]
(%)
©
[}
o
—
o
[l
c
S
-
©
—
()
c

CONSTRAINT PROGRAMMING
IN ANUTSHELL

Constraint Programming

Model and solve combinatorial (optimization) problems

Modeling
variables
constraints
branching heuristics
(cost function)

Solving
constraint propagation
heuristic search

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

Of course simplified...
...array of modeling and solving techniques

N
o

Problem: Send More Money

* Find distinct digits for letters such that

Sep 10, 2015

]
=
>
e
(®]
(%)
©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q

Constraint Model

* Variables:

S,E,N,D,M,0,R,Y e {0,..,9}

* Constraints:
distinct(S,E,N,D,M,0,R,Y)

1000xS+100%XE+10%XN+D
-+ 1000xM+100*x0+10%XR+E
= 10000xXM+1000%X0+100%XN+10%XE+Y

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

S+#0 M+0

N
N

Constraints

* State relations between variables

legal combinations of values for variables

* Examples
all variables pair wise distinct: distinct(x, ..., x,)
arithmetic constraints: X+2xy=2z

domain-specific:

* Success story:
modeling:
solving:

cumulative(ty, ..., t,)
nooverlap(ry, ..., r,)

constraints

capture recurring problem structures
enable strong reasoning
constraint-specific methods

Sep 10, 2015

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

N
w

Solving: Variables and Values

[xe{1,2,3,4} ye{1,2,3,4} z€{1,2,3,4} }

LN
i
o
~
s
i
o
(o]
n
(0]
=
=
<
O
n
‘©
Q
o
—
9
[l
c
.0
)
©
S
)
c

* Record values for variables
solution: single value left
failure: no values left

Constraint Propagation

distinct(x, y, z) X+y=3

‘\/

[xe{1,2,3,4} ye{1,2,3,4} z€{1,2,3,4} }

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

* Prune values that are in conflict with constraint

N
93]

Constraint Propagation

distinct(x, y, z) X+y=3
[xe{l,2} ye{l,2} ze{1,2,3,4} }

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

* Prune values that are in conflict with constraint

N
(@)

Constraint Propagation

distinct(x, y, 2) X+y=73

‘\/

[xe{1,2} ye{1,2} ze{3,4} }

* Prune values that are in conflict with constraint
propagation is often smart if not perfect!

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

N
~

Heuristic Search

distinct(x, y, 2) x+y=3

\/

[xe{1,2} ye{1,2} ze{3,4}]

Sep 10, 2015

distinct(x, y, z) x+y=3

\/

{ xe{l} ye{2} z€{3,4}]

distinct(x, y, z) x+y=3

\/

{ xe{2} ye{1} ze{3,4}]

* Propagation not sufficient
decompose into simpler sub-problems
search needed
* Create subproblems with additional constraints
enables further propagation
defines
uses problem specific heuristic

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

N
(00]

What Makes It Work?

Essential: avoid search...
...as it always suffers from combinatorial explosion

Constraint propagation drastically reduces search space

Efficient and powerful methods for propagation available

When using search, use a clever heuristic

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

Array of modeling techniques available that reduce search

N
(\o)

Hybrid methods (together with LP, SAT, stochastic, ...)

Register Allocation &
Instruction Scheduling

Unit and Scope

* Function is unit of compilation

generate code for one function at a time

Sep 10, 2015

* Scope
local generate code for each basic block in isolation
global generate code for whole function

» Basic block: instructions that are always executed together

execute at start
execute all instructions

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

leave execution at end
that is: no control flow within basic block (in or out)

w
[HEN

LN
i
o
~
s
i
o
(o]
n
(0]
=
=
<
O
n
‘©
Q
o
—
9
[l
c
.0
)
©
S
)
c

Local (and slightly naive) register allocation

BASIC REGISTER ALLOCATION

Local Register Allocation

Y
;

mul t,, 2
sub t,, 2
add t,, t;

£ SF
T1

Sep 10, 2015

mul t,, t,
jr ts

u_If"l-
1

1

* Instruction selection has already been performed

* Temporaries
defined or def-occurence (lhs) t; in t, +~ sub t;, 2
used or use-occurence (rhs) t, in t; < sub t,, 2
* Basic blocks are in SSA (single static assignment) form

each temporary is defined once
standard state-of-the-art approach

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

W
w

Liveness & Interference

Y
;

mul t,,
sub t,,
add t,,

£ SF
T1

mul t,,
jr ts

U_If"l-
1

1

t, t, t; t, t
A
v I

live ranges

|

* Temporary is live from def to last use, defining its live range
live ranges are linear (basic block + SSA)

* Temporaries interfere if their live ranges overlap

* Non-interfering temporaries can be assigned to same register

Sep 10, 2015

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

w
NS

Spilling

If not enough registers available: spill

Spilling moves temporary to memory (stack)
store in memory after defined
load from memory before used
memory access typically considerably more expensive
decision on spilling crucial for performance

Sep 10, 2015

Architectures might have more than one register bank
some instructions only capable of addressing a particular bank
“spilling” from one register bank to another

Unified register array
limited number of registers for each register file
memory is just another “register” file
unlimited number of memory “registers”

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

w
92}

Coalescing

* Temporaries d (“destination”) and s (“source”) are move-
related if

des

d and s should be coalesced (assigned to same register)

Sep 10, 2015

coalescing saves move instructions and registers

* Coalescing is important due to
how registers are managed (calling convention)
how our model deals with global register allocation (more later)

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

w
(@)

Copy Operations

* Copy operations replicate a temporary t to a temporary t’

o {iy, iy i}t

copy is implemented by one of the alternative instructions iy, i, ..., i,

Sep 10, 2015

instruction depends on where t and t’ are stored
similar to [Appel & George, 2001]

* Example MIPS32
t < {move, sw, nop}t

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

t’ memory and t register: sw spill
t’ register and t register: move move-related
t’ and t same register: nop coalescing

MIPS32: instructions can only be performed on registers

w
~

Model Variables

* Decision variables

reg(t) € N register to which temporary tis assigned n

(@]
instr(o) € N instruction that implements operation o ;
cycle(o) e N issue cycle for operation o g

active(o) € {0,1} whether operation o is active

* Derived variables

start(t) start of live range of temporary t
= cycle(o) where o defines t
end(t) end of live range of temporary t

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

= max { cycle(o) | o uses t }

W
(00]

Sanity Constraints

* Copy operation o is active <> no coalescing
active(o) = 1 < reg(s) # reg(d)

s is source of move, d is destination of move operation o

Sep 10, 2015

* Operations implemented by suitable instructions

single possible instruction for non-copy operations

* Miscellaneous

some registers are pre-assigned

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

some instructions can only address certain registers (or memory)

w
(\o)

Geometrical Interpretation

registers memory registers
SRET Mg Mo My
o
o
(@)
Q
(@]
<
S
D
M unified register array temporary t

* Temporary tis rectangle
width is 1 (occupies one register)
top = start(t) issue cycle of def
bottom =end(t) last issue cycle of any use

* Consequence of linear live range (basic block + SSA)

Sep 10, 2015

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

S
(@]

Register Assignment

registers memory registers

o T Mg Mo My X
o S
O =}
N :
(@) v
<
S
D

M unified register array temporary t

* Register assignment = geometric packing problem

find horizontal coordinates for all temporaries

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

such that no two rectangles for temporaries overlap

D
—_

* For block B
nooverlap({{reg(t),reg(t)+1,start(t),end(t)) | teB})

Register Packing

Sep 10, 2015

* Temporaries might have different width width(t)
many processors support access to register parts
still modeled as geometrical packing problem [Pereira & Palsberg, 2008]

(0]
=
=
<
(®]
n
©
9]
o
—
Ke)
c
o
=]
©
—
]
c
(]
(U]
()
§e)
o
O

I
N

Register Packing

AX BX CX width(t,)=1
AH AL BH BL CH CL

o width(t)=2
3 =
~ N\
2 =
(@ o
o | width(t;)=1 &
width(t,)=2
* Temporaries might have different width width(t)

many processors support access to register parts
still modeled as geometrical packing problem [Pereira & Palsberg, 2008]

* Example: Intel x86
assign two 8 bit temporaries (width = 1) to 16 bit register (width = 2)
register parts: AH, AL, BH, BL, CH, CL
possible for 8 bit: AH, AL, BH, BL, CH, CL
possible for 16 bit: AH, BH, CH

Code Generation for Real, Schulte

I
w

Register Packing

AX BX CX - start(t,)=0 end(t,)=1 width(t,)=1
AH AL BH BL CH CL

o start(t,)=0 end(t,)=2 width(t;)=2

o LN

(@) tz 8

~ N\

2 :

o | t, start(t3)=0 end(t;)=1 width(t;)=1 &
- start(t,)=1 end(t,)=2 width(t,)=2

* Temporaries might have different width width(t)

many processors support access to register parts
still modeled as geometrical packing problem [Pereira & Palsberg, 2008]

* Example: Intel x86
assign two 8 bit temporaries (width = 1) to 16 bit register (width = 2)
register parts: AH, AL, BH, BL, CH, CL
possible for 8 bit: AH, AL, BH, BL, CH, CL
possible for 16 bit: AH, BH, CH

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

I
IS

Register Packing

AX BX CX start(t,)=0 end(t,)=1
AH AL BH BL CH CL
o start(t,)=0 end(t,)=2
: t|
~ 2
3
o | start(t;)=0 end(t;)=1
start(t,)=1 end(t,)=2
* Temporaries might have different width width(t)

many processors support access to register parts

width(t;)=1

width(t;)=2

width(t;)=1

width(t,)=2

still modeled as geometrical packing problem [Pereira & Palsberg, 2008]

* Example: Intel x86

assign two 8 bit temporaries (width = 1) to 16 bit register (width = 2)

register parts: AH, AL, BH, BL, CH, CL
possible for 8 bit: AH, AL, BH, BL, CH, CL
possible for 16 bit: AH, BH, CH

Sep 10, 2015

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

I
0]

Modeling Register Packing

* Take width of temporaries into account (for block B)
nooverlap({{reg(t),reg(t)+width(t),start(t),end(t)) | teB})

* Exclude sub-registers depending on width(t)

simple domain constraint on reg(t)

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

I
(@)

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

Local instruction scheduling (standard)

INSTRUCTION SCHEDULING

I
~

Dependencies

1i-n SR
tye-1i N A
t,—slti t, 1(ty) i~ st
bne t, 1(ty) LS)
1(t5) bne
..........
out

* Data and control dependencies
data, control, artificial (for making in and out first/last)

* If operation o, depends on o;:
active(o,) A active(o,) —
cycle(o,) = cycle(o,) + latency(instr(o,))

Sep 10, 2015

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

S
00

Processor Resources

* Processor resources: functional units, data buses, ...

also: instruction bundle width for VLIW processors (how many n
instructions can be issued simultaneously) i
* Classical cumulative scheduling problem functional
units
processor resource has capacity #units
instructions occupy parts of resource 1 unit

resource consumption can never exceed capacity

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

* Modeling for block B
cumulative({{cycle(o),dur(o,r),active(o)xuse(o,r)) | oeB})

S
(o]

Ultimate Coalescing & Spill Code Optimization

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

using alternative temporaries

ADVANCED REGISTER ALLOCATION

U
o

Interference Too Naive!

t, 4
t, & .. 4
t, « mv t,; @ t, and t, interfere
- ..t v
- ..t v

* Move-related temporaries might interfere...
...but contain the same value!

* Ultimate notion of interference =

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

temporaries interfere < their live ranges overlap and
they have different values

9
[N

[Chaitin ea, 1981]

Spilling Too Naive!

t, o~ ..
t, -~ t, <« st t,

t, — 1dt 2
~ ot S et =
~ -t t, « 1dt,

‘_ -t4

* Known as spill-everywhere model

reload from memory before every use of original temporary

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

* Example: t; should be used rather than reloading t,

t, allocated in memory!

9
N

Alternative Temporaries

Used to track which temporaries are equal

Representation is augmented by operands
act as def and use ports in operations
temporaries hold values transferred among operations by connecting to

operands
* Example
operation t, < abs t;
transformed to p,:t, < abs p;:t; (p1, p, operands)

if £, and t; hold same value then transformed to
p,:t, < abs p,:{t,t;}
where either t, or t; can be connected to p,

* Model: whether a temporary is live (it is being used)

Sep 10, 2015

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

Ul
w

LN
—
©)
(@]
O\
—
(o),
(<}
(%}
[}
=
>
e
(®]
(%)
©
[}
o
—
o
[l
c
S
-
©
—
()
c

Register allocation for entire functions

GLOBAL REGISTER ALLOCATION

Entire Functions

int fac(int n) { t,+1i
int £ = 1; t,—slti ¢, !}
while (n > 9) { bne t; tg—mul t.,t,
f=F*n; n--; > ty—subiu t,
} bgtz t,
return f; *
} [Jr tie

* Use control flow graph (CFG) and turn it into LSSA form

edges = control flow

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

nodes = basic blocks (no control flow)

» LSSA = linear SSA = SSA for basic blocks plus... to be explained

U1
92}

Linear SSA (LSSA)

t,=t.
t,=t,

\ 4

tge—mul t.,t,
tye—subiu t,
bgtz t,

t=ty
t=tg

* Linear live range of a temporary cannot span block boundaries

* Liveness across blocks defined by temporary congruence =

t=tt & represent same original temporary

Sep 10, 2015

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

U1
(@)

Linear SSA (LSSA)

t,=t.

. t =t

t,<1i 20
t,eslti ¢, ~ Y [)
bne t4 tg‘_mU]. t7_,t6 tGEtQ §
° O\
t1=t19 t9<—SUb1U t6 t7Et8 5_
t3=t11 bgtz t9 o

[jr tie

* Linear live range of a temporary cannot span block boundaries
* Liveness across blocks defined by temporary congruence =
t=tt & represent same original temporary

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

* Example: t;, t,, tg, t,, are congruent

correspond to the program variable f (factorial result)

U1
~

not discussed: t, return address, t, first argument, t,, return value

Linear SSA (LSSA)

t,=t.
t,=t,

\ 4

tge—mul t.,t,
tye—subiu t,
bgtz t,

t=ty
t=tg

* Linear live range of a temporary cannot span block boundaries

* Liveness across blocks defined by temporary congruence =

t=tt & represent same original temporary

* Advantage

simple modeling for linear live ranges (geometrical interpretation)

enables problem decomposition for solving

Sep 10, 2015

[}
=
>
e
(®]
(%)
©
[}
o
—
o
[l
c
S
-
©
—
()
c
(&}
O
[}
©
o
O

Ul
00

Global Register Allocation

* Try to coalesce congruent temporaries
this is why coalescing is (even more) crucial in this model

Sep 10, 2015

* Introduces natural problem decomposition
master problem (function) coalesce congruent temporaries
slave problems (basic blocks) register allocation & instruction scheduling

* What is happening
if register pressure is low...
no copy instruction needed (nop)
= coalescing
if register pressure is high...
copy operation might be implemented by a move
= no coalescing
copy operation might be implemented by a load/store
= spill

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

U1
(\o)

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

DISCUSSION

o))
o

Solving

* Approach

use master-slave decomposition
use naive (very) portfolio of heuristics for basic blocks

Sep 10, 2015

use some pre-solving (symmetry, no-goods, dominance)
not very advanced (future work)

* Benchmark setup
selection of medium-sized functions (25 to 1000 instructions)
comparison to LLVM 3.3 for Qualcomm’s Hexagon V4 using -03

run for ten iterations where each iteration is given more time

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

using Gecode 4.2.1
full details in [Castafieda ea, LCTES 2014]

o))}
[N

Experiments Summary

* Code quality (estimated)
7% mean improvement over LLVM
provably optimal for 29% of functions

* Quadratic average (roughly) complexity up to 1000
instructions

* Can be easily changed to optimize for code size

1% mean improvement over LLVM

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

()]
N

Related Approaches

ldea and motivation in Unison for combinatorial optimization is
absolutely not new!

starting in the early 1990s

[Castaneda & Schulte, CoRR 2014]

Sep 10, 2015

Approaches differ
which code generation tasks covered
which technology used (ILP, CP, SAT, Genetic Algorithms, ...)

Common to most approaches
compilation unit is basic block, or
just a single task covered, or
very poor scalability

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

(@)
~

Challenge: integration, robustness, and scalability

Unique to Unison Approach

* First global approach for register allocation (function as compilation
unit)

* Constraint programming using global constraints
sweet spot: cumulative and nooverlap

Sep 10, 2015

* Full register allocation with ultimate coalescing, packing, spilling,
and spill code optimization

key property of model: spilling is internalized

* Robust at the expense of optimality
problem decomposition

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

o))
(00}

* But: instruction selection not yet there!

Instruction Selection

[Based on slides from Gabriel Hjort Blindell]

Graph-based
Instruction Selection

int f(int a) {
int b = a * 2;
int ¢ = a * 4;
return b + c;

}

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

* Represent program as graph program graph

~J
o

Graph-based
Instruction Selection

mac

"o

int f(int a) {
int b = a * 2;
int ¢ = a * 4;
return b + c;

S
}

8

:

g
* Represent program as graph program graph S
* Represent instructions as graph instruction graph

~
=

Graph-based
Instruction Selection

mac
int f(int a) {

int b = a * 2;
int c = a * 4;
return b + c;

S
}

8

:

g
* Represent program as graph program graph S
* Represent instructions as graph instruction graph

~
[\

* Select matches such that program graph is covered

Graph-based
Instruction Selection

mac
int f(int a) {

int b = a * 2;
int c = a * 4;
return b + c;

S
}

8

:

g
* Represent program as graph program graph S
* Represent instructions as graph instruction graph

~
w

* Select matches such that program graph is covered

State of the Art

Local instruction selection

Program graphs per block

Sep 10, 2015

Graphs restricted to data flow
cannot handle control flow such as branching instructions

Greedy heuristics

For example, maximal munch

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

~
S

Instruction Examples

- satadd i=0
Y z
if 1 < N i
:
('tl =1 *4 A 2
t2 = A+ tl; t3 =B + tl £
* Exists in many DSPs a = 103dbt2: b = load t3 3
* Incorporates control flow \;:_-F_M:X-I-(c) g
* Extends across basic blocks /\ §
)
c = MAX t4 = C + t1 3
store t4, c

i=1+1

~
Ul

Instruction Examples

- satadd i=0
° repeat ’ 2
if i < N S
!
('tl SHE T A g
t2 = A+ t1; t3 =B + tl £
« Exists in many processors a = 1°adbt23 b = load t3 3
) c = a+ 5
for example Intel’s x86 \if MAX < c y E
* Incorporates control flow /\ 5
* Extends across basic blocks i
c = MAX t4 = C + t1 3
store t4, c
i=1+1

~
(@)

Instruction Examples

* satadd i=0
* repeat v o
- add4 if 1¢< N [;
('tl SHE T A g
. _ t2 = A+ tl; t3 =B + t1 B
* SIMD-style instruction a = load t2; b = load t3 “
very common c=a+b E
* Requires global code motion 7 LS Y, §
move computations across /\ 2
blocks i
* Depending on hardware may ¢ = MAX tfc‘ = Ctz t1 0
H H store C
require copyin .
d Pying i=1i+1

~
~

different register file

Universal Instruction Selection

Global instruction selection

Program graphs for entire functions

Instruction graphs capture both data and control flow
handles broad range of instructions found in today’s processors

Integrates global code motion

Takes data-copying overhead into account

Presupposes an expressive approach such as CP

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

~
(00]

Program Graph (Example)

block |bb1]- -+

operation @

.To SSA graph

definition edge

B+

.................

N iz 4 | datum \

bb2 > *+) operation
A ty B
@ F end + +
T
bba t! t3
ld ld
c.br T o] R e AR M
. b
0 ") [MAX
MAX] [C
bbs SELLLI TN
< w +
3 L4
control-flow graph

Sep 10, 2015

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

~
(\o)

Instruction Graph (satadd)

entry §\
+ A
T T S 3
c.br if 5
MAX X1 MAX g
F

. 0 v

2 end 3

processor instruction graphs

matches

matcher

program

Sep 10, 2015

* Before: create instruction graphs

* Code generation
create program graph
compute possible matches (standard algorithm VF2 [Cordella ea, 2004])
generate model in MiniZinc
solve model with CPX 1.0.2

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

o
_

Model Summary

* Decision variables
which match is selected?
in which block are selected matches placed?
in which block is data made available?

* Constraints (selection)
operations must be covered by exactly one match
control flow cannot be moved
data must be defined before used
definition edges must be enforced
blocks must be ordered (respect fall-through branching if possible)
implied and dominance constraints

* Objective functions
minimize estimated execution time
minimize code size

Sep 10, 2015

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

(00]
[\

Experiments

* Benchmarks
16 functions from MediaBench
program graphs have 34-203 nodes
all models solved to optimality with CPX 1.0.2

* For Simple MIPS32

simple RISC architecture: worst-case scenario
surprise: 1.4% mean speedup over LLVM 3.4

better: global code motion; worse: constant reloading
runtimes: 0.3-83.2 seconds, median 10.5 seconds

* For Funky MIPS32 (made up)

MIPS32 + common SIMD instructions: good case

3% mean speedup over Simple MIPS32

surprise: sometimes SIMD-style is not really that good!
runtimes: 0.3-146.8% seconds, median 10.5 seconds

Sep 10, 2015

[}
=
>
e
(®]
(%)
©
[}
o
—
o
[l
c
S
-
©
—
()
c
(&}
O
[}
©
o
O

(00)
w

Discussion

* Overcomes many restrictions of state-of-the-art approaches
control flow
global code motion

Sep 10, 2015

sophisticated instructions

* Model and representation designed together

expressive representation requires expressive models

* Limitations
constant reloading

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

if-conversion (predication), well: no approach can do this anyway!

(0.0]
S

—

STOZ ‘0T daS 93|NYds ‘|eay 404 UONEBIBUID SPOD =
—

>
e
<C
=,
=
—
N

The Only Important Slide

* Are you interested in combinatorial optimization for
compilation?

* Do you want to do a postdoc in one of the most beautiful and
dynamic cities in the world?

Then talk to me!

Open position at KTH for one year, might be prolonged to two
years
salary and benefits are good

LN
—
©)
N
O\
—
o
v
(%}
]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

o
(o))}

deadline is end of October

Now and Then...

* Status

instruction scheduling: local, standard
register allocation: global, unique

Sep 10, 2015

instruction selection: global, unique
not fully integrated
solving pretty naive

* Future
instruction scheduling: superblocks, if-conversion (predication)

register allocation: rematerialization

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

more sophisticated solving
integration!!!

0¢]
~N

Project & Goals

Unison has a considerable engineering part
processor descriptions (separate large project)
robust and maintainable tool chain

Sep 10, 2015

testing and transfer

A production-quality tool that will be deployed

industrial strength re-implementation started

An open-source contribution to LLVM
legal process started, but need to convince LLVM developers...

]
=
>
e
(®]
(%)
‘©
()
oc
—
o
(St
c
o
=)
©
—
()
c
Q
O
Qv
©
(@]
O

Real significance

(0]
(00]

simplicity even for today’s freak processors

