
View-based Propagator
Derivation

Christian Schulte
SCALE, KTH & SICS, Sweden

joint work with:

Guido Tack
NICTA & Monash University, Australia

Based on: View-based Propagator Derivation. Christian Schulte, Guido Tack. Constraints
18(1), pages 75-107. Springer-Verlag, January, 2013. DOI 10.1007/s10601-012-9133-z.

Building a CP System

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

2

many variable types

many constraints

parallel search

complete reference documentation

interfaces

restart-based search

no-goods

graphical tools

advanced search heuristics

many examples

extensive tutorial documentation

fast, simple, and generic kernel
comprehensive tests

How Many Tries Do You Have?

• Have to get it right first time potential user downloads

• Decisions for Gecode 1.0.0:
• sufficiently many constraints

• sufficiently high speed

• sufficiently few bugs

• release as open source on time

• accessible to experts

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

3

Gecode 1.0.0

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

4

many variable types

many constraints

parallel search

complete reference documentation

interfaces

restart-based search

no-goods

graphical tools

advanced search heuristics

many examples

extensive tutorial documentation

fast, simple, and generic kernel
comprehensive tests

This Talk

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

5

many variable types

many constraints

parallel search

complete reference documentation

interfaces

restart-based search

no-goods

graphical tools

advanced search heuristics

many examples

extensive tutorial documentation

fast, simple, and generic kernel
comprehensive tests

Which Constraints?

• A propagator for

 min(x1, …, xn)=y

 as well as

 max(x1, …, xn)=y ?

• A propagator for

 a1x1 + … + anxn=c (ai, c integers)

 as well as

 x1 + … + xn=c ?

• A propagator for

 (x1 + … + xn=c)  y (c integer)

 as well as

 (x1 + … + xn≠c)  y ? (c integer)

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

6

Decompose Constraints? No!

• Decompose

 max(x1, …, xn)=y

 into

 min(z1, …, zn)=u  x1= – z1  …  xn= – zn  y= – u
• no way: clashes with speed and fast kernel

• Decompose

 a1x1 + … + anxn=c (ai, c integers)

 into

 y1 + … + yn=c  y1= ax1  …  yn= axn
• absolutely no way: yields less propagation

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

7

Implement Propagators? No!

• Tremendous effort to implement propagator variants
• Gecode: just three people

• research interest is not implementing constraints

• Additional effort for
• documentation

• testing

• maintenance

• Effort potentially prohibitive

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

8

Derive Propagators? Yes!

• Derive propagators using variable views

• Using systematic derivation techniques

• View idea
• folded into propagator

• bi-directional mapping of values

• Derived propagators are perfect
• correctness

• propagation strength: bounds and domain consistency

• implementation aspects: fixpoints and subsumption

• little overhead (often none)

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

9

HOW AND WHY VIEWS WORK

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

11

Propagating max with Views

• Propagator

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

12

min(. , .)= .

x{1,3,4} y{1,2,5} z{0,1,4}

propagator

views (minus views)

variables

Propagating max with Views

• Propagator
1. reads values through views

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

13

min(. , .)= .

x{1,3,4} y{1,2,5} z{0,1,4}

propagator

views (minus views)

variables

{-4,-3,-1} {-5,-2,-1} {-4,-1,0}

Propagating max with Views

• Propagator
1. reads values through views

2. performs propagation wrt values read

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

14

min(. , .)= .

x{1,3,4} y{1,2,5} z{0,1,4}

propagator

views (minus views)

variables

{-4,-1} {-1} {-4,-1}

Propagating max with Views

• Propagator
1. reads values through views

2. performs propagation wrt values read

3. writes values through inverse of views

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

15

min(. , .)= .

x{1,4} y{1} z{1,4}

propagator

views (minus views)

variables

Model for Views

• Variable view for a variable x

 x : V  V’

 injective function from values V to values V’
• different value sets matter

• View  is a family of variable views x for all variables x

• Possible to define inverse view -

• Propagator derived from propagator p

 -  p  

• Also define derived constraint, …

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

16

Facts

• Derived propagator
• is in fact a propagator (preserves contraction and monotonicity)

• implements the “right” constraint (constraint composed with views)

• preserves fixpoints and subsumption

• inherits domain-consistency

• With additional (natural) requirements inherits
• bounds(Z)-consistency

• bounds(D)-consistency

• depends on whether hull operator commutes with view

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

17

Limitations

• Views are injective
• generalization might make propagators non contracting

• studied in [1,2]

• Views map values for single variable
• generalization might make propagators non contracting

• studied in [1]

• Propagator invariants might be violated (rare)
• propagators typically rely on variable domain invariants

• example
• adjusting lower bound of set variable does not change upper bound

• might be violated by view

[1] Correia, Barahona. View-based propagation of decomposable constraints, Constraints, 2013.

[2] Van Hentenryck, Michel. Domain views for constraint programming, CP 2014.

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

18

Not a Limitation

• Approach works for any propagator

• No restriction to bounds consistency

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

19

USING VIEWS

Techniques: transformation, generalization,
specialization, type conversion, enforcing invariants

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

20

Transformation: Boolean

• Use negation views defined as

 x(v) = 1 – v

 to derive
• x = y from x = y (on x)

• x  y = z from x  y = z (on x, y, z)

• x  y = z from x  y = z (on x)

• x  y = z from x  y = z (on z)

• x1  …  xn  y1  …  yn = z

 from x1  …  xn  y1  …  yn = z (on all)

• x1  …  xn  y1  …  yn = 0

 from x1  …  xn  y1  …  yn = 1 (on all)
• optimized implementation with watched literals re-used!

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

21

Transformation: Boolean

• Use negation views to derive
• x1 + … + xn  c from x1 + … + xn  c (c integer)

 as x1 + … + xn  c  x1 + … + xn  n – c

• (x1 + … + xn≠c)  y (c integer)

 from (x1 + … + xn=c)  y
• same idea for many reified constraints

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

22

Transformation: Set

• Complement view: analogous to negation view

• Intersection from union, set difference from union, …

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

23

Transformation: Integer

• Use minus views defined as

 x(v) = – v

 to derive
• min(x, y) = z from max(x, y) = z (on x, y, z)

• bounds-consistent propagator (bounds(Z))

• domain-consistent propagator

• min(x1, …, xn) = y from max(x1, …, xn) = y (on x1, …, xn, y)
• bounds-consistent propagator (bounds(Z))

• domain-consistent propagator

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

24

Transformation: Scheduling

• Scheduling propagators implemented in terms of
est(t)  earliest start time ect(t)  earliest completion time

lst(t)  latest start time lct(t)  latest completion time

• Two variants needed
• primary: t is not first  adjust est(t)

• dual: t is not last  adjust lct(t)

• Dual can be derived with minus views (mirror at 0-origin)
est(t’) = –lct(t), ect(t’) = –lst(t), lst(t’) = –ect(t), lct(t’) = –est(t)

• Can reuse complex data structures, for example -trees
[Vilím. O(n log n) filtering algorithms for unary resource constraints, CP AI OR 2004]

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

25

–11
est(t’)

–8
ect(t’)

–5
lst(t’)

–2
lct(t’)

0 2
est(t)

5
ect(t)

8
lst(t)

11
lct(t)

t’ t

Generalization

• Use scale view for integer a defined as

 x(v) = av

 to derive

 a1x1 + … + anxn = c

 from

 x1 + … + xn = c

• Use offset view for integer o defined as

 x(v) = v + o

 to derive

 alldifferent(x1 + c1, …, xn + cn)

 from

 alldifferent(x1, …, xn)

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

26

Specialization

• Constant view behaves like an assigned variable
• less memory

• more efficient code if constant known at compile time

• Derive
• x + y  c from x + y + z  c (use 0 for z)

• (x = c)  b from (x = y)  b (use c for y)

• |{ i | xi = c}| = z and |{ i | xi = y}| = c

 from |{ i | xi = y}| = z (use c for y or z)

• disjoint(x,y) from x  y = z (use  for z)

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

27

Type Conversion

• Integer view wraps Boolean 0/1 variable as an integer variable
• 0/1 variables might have a more efficient implementation

• all integer propagators can now be on 0/1 variables

• some propagators should be still specific to 0/1 variables (linear
inequalities due to watched literals, …)

• Singleton view wraps integer variable as a set variable
• derive x  y from x  y

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

28

Enforcing Invariants

• Assume bounds(Z)-consistent propagator for x  y = z
• propagation depends on whether 0 in x, 0 in y, or 0 in z

• Direct implementation: convoluted and inefficient

• Rewriting: replace propagator if 0 excluded
• x > 0  y > 0  z > 0, or

• x > 0  y > 0, or

• z > 0

 requires three different propagators

• Derivation: derive all from single propagator with minus views

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

29

Enforcing Invariants

• Implementation of

 binpacking(l1, …, lm, b1, …, bn, s1, …, sn)

 with
• load variables: lj is the load of bin j

• bin variables: item i with size si is packed into bin bi

 [Shaw. A constraint for bin packing, CP 2004]

• Enforce that all items are not yet packed
• use offset views lj + cj for load variables

• when item i is packed into bin j (bin variable bi assigned to j):

 subtract size si from load offset cj

 eliminate item i from b and s

• simplifies implementation and saves memory

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

30

IMPLEMENTATION IDEA

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

31

Integer Variable

class IntVar {

 private: int _min, _max;

 public: int min(void) { return _min; }

 int max(void) { return _max; }

 void adjmin(int n) {

 if (n > _min) _min = n;

 }

 void adjmax(int n) { … }

};

• Object-oriented model (ILOG Solver, Choco, Gecode, …)
• variables are objects

• propagators are objects

 [Puget. A C++ Implementation of CLP, SPICIS 1994]

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

32

class MinusView {

protected: IntVar* x;

public: MinusView(IntVar* x0)

 : x(x0) {}

 int min(void) { return -x->max(); }

 int max(void) { return –x->min(); }

 void adjmin(int n) {

 x->adjmax(-n);

 }

 void adjmax(int n) { … }

};

• Implements exactly same interface

Minus View

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

33

Propagator

template<class VX, class VY>

class LessThan : public Propagator {

protected: VX* x; VY* y;

public: LessThan(VX* x0, VY* y0) : x(x0), y(y0) { … }

 virtual void propagate(void) {

 x->adjmax(y->max()-1);

 y->adjmin(x->min()+1);

 }

};

• Propagators are parametric with respect to their views

• Creation of x < y:

 new LessThan<IntVar,IntVar>(x,y);

• Creation of x > y:

 new LessThan<MinusView,MinusView>(new MinusView(x),

 new MinusView(y));

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

34

Choice of Parametricity

• Two variants available
• parametric polymorphism (templates in C++, higher-order functions

in Haskell, …) more efficient

• dynamic binding (virtual functions in C++, methods in Java)

 more expressive

• Gecode uses templates in C++
• polymorphism resolved at compile time

• some views optimized away entirely

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

35

Domain Operations

• Operations that adjust the whole domain

• Efficient architecture based on range iterators
• each range (interval) can be obtained in sequential order, one at a time

• no data structures required

• operations for views easily defined per range

• Details and evaluation in paper

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

36

COST AND BENEFITS

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

37

Return on Investment

• Propagator implementations:  40 000 lines of code
  21 000 lines of documentation
• Views save :  120 000 lines of code
  60 000 lines of documentation
• View implementations:  8 000 lines of code and doc
• Return on investment:  1 500 %

[Gecode 3.7.2]

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

38

variable type implemented derived ratio

integer 93 377 4.05

Boolean 0/1 30 93 3.10

integer set 31 146 4.71

overall 154 616 4.00

Evaluation Summary

• Decomposition always worse than views
• integer benchmarks 126% more time (14% … 485%)

 101% more memory (2% … 267%)

• set benchmarks 46% more time (12% … 131%)

 31% more memory (2% … 144%)

• Minus and negation views for free
• often optimized away by compiler

• benchmarks using minus views on alldifferent confirm

• Complement view for sets not for free
• 32% overhead compared to handwritten propagators

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

39

Evaluation Summary

• Virtual methods worse than templates
• integer benchmarks 34% more time (5% … 118%)

• set benchmarks 18% more time (9% … 126%)

• template = compile-time polymorphism

• virtual method = run-time polymorphism

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

40

SUMMARY

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

41

Related Approaches

• Indexicals and ILOG expressions
• indexicals: uni-directional, more expressive

• expressions: bi-directional, more expressive, no guarantees on
update

• SAT literals use negation views (for example MiniSat)

• Views in other systems
• Minion, CaSPER, Objective CP

• useful for lazy clause generation

[References and extensive discussion in paper]

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

42

Take Home

• Views = useful compromise

 efficiency  expressiveness

• Systematic derivation techniques

• Can be build on top of any system
• needs some form of parametricity

• Gecode without views would have been…

 slow or impossible

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

43

Integer Variable

class IntVar {

 private: int _min, _max;

 public: int min(void) { return _min; }

 int max(void) { return _max; }

 void adjmin(int n) {

 if (n > _min) _min = n;

 }

 void adjmax(int n) { … }

 void subscribe(EventSet e) { … }

};

• Object-oriented model (ILOG Solver, Choco, Gecode, …)
• variables are objects

• propagators are objects

 [Puget. A C++ Implementation of CLP, SPICIS 1994]

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

44

Offset View

class OffsetView {

protected: IntVar* x; int c;

public: OffsetView(IntVar* x0, int c0)

 : x(x0), c(c0) {}

 int min(void) { return x->min()+c; }

 int max(void) { return x->max()+c; }

 void adjmin(int n) {

 x->adjmin(n-c);

 }

 void adjmax(int n) { … }

 void subscribe(EventSet e) {

 x->subscribe(e);

 }

};

• Implements same interface as variable

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

45

Minus View

class MinusView {

protected: IntVar* x;

public: MinusView(IntVar* x0)

 : x(x0) {}

 int min(void) { return -x->max(); }

 int max(void) { return –x->min(); }

 void adjmin(int n) {

 x->adjmax(-n);

 }

 void adjmax(int n) { … }

 void subscribe(EventSet e) {

 x->subscribe(negate(e));

 }

};

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

46

Constant View

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

47

class ConstView {

protected: int c;

public: ConstView(int c0)

 : c(c0) {}

 int min(void) { return c; }

 int max(void) { return c; }

 void adjmin(int n) {

 if (n > c) fail();

 }

 void adjmax(int n) { … }

 void subscribe(EventSet e) {

 schedule();

 }

};

Propagator

template<class VX, class VY>

class LessThan : public Propagator {

protected: VX* x; VY* y;

public: LessThan(VX* x0, VY* y0) : x(x0), y(y0) {

 x->subscribe(LOWER_BOUND); y->subscribe(UPPER_BOUND);

 }

 virtual void propagate(void) {

 x->adjmax(y->max()-1); y->adjmin(x->min()+1);

 }

};

• Propagators are parametric with respect to their views

• Creation of x < y:

 new LessThan<IntVar,IntVar>(x,y);

• Creation of x > y:

 new LessThan<MinusView,MinusView>(new MinusView(x),

 new MinusView(y));

Se
p

 2
0

1
4

V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r

D
er

iv
at

io
n

48

