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How Many Tries Do You Have? 

• Have to get it right first time potential user downloads 

• Decisions for Gecode 1.0.0: 
• sufficiently   many  constraints 

• sufficiently  high speed 

• sufficiently   few  bugs 

• release as open source  on time 

• accessible   to experts 
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Gecode 1.0.0 
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This Talk 
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Which Constraints? 

• A propagator for 

  min(x1, …, xn)=y 

 as well as 

  max(x1, …, xn)=y ? 

• A propagator for 

  a1x1 + … + anxn=c   (ai, c integers) 

 as well as 

  x1 + … + xn=c ? 

• A propagator for 

  (x1 + … + xn=c)  y   (c integer) 

 as well as 

  (x1 + … + xn≠c)  y  ?   (c integer) 
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Decompose Constraints? No! 

• Decompose 

  max(x1, …, xn)=y 

 into 

  min(z1, …, zn)=u  x1= – z1  …  xn= – zn  y= – u 
• no way: clashes with speed and fast kernel 

 

• Decompose 

  a1x1 + … + anxn=c   (ai, c integers) 

 into 

  y1 + … + yn=c  y1= ax1  …  yn= axn     
• absolutely no way: yields less propagation 
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Implement Propagators? No! 

• Tremendous effort to implement propagator variants 
• Gecode: just three people 

• research interest is not implementing constraints 

 

• Additional effort for 
• documentation 

• testing 

• maintenance 

 

• Effort potentially prohibitive 
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Derive Propagators? Yes! 

• Derive propagators using variable views 
 

• Using systematic derivation techniques 

 

• View idea 
• folded into propagator 

• bi-directional mapping of values 

 

• Derived propagators are perfect 
• correctness 

• propagation strength: bounds and domain consistency 

• implementation aspects: fixpoints and subsumption 

• little overhead (often none) 
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HOW AND WHY VIEWS WORK 
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Propagating max with Views 

• Propagator  
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min( . , . )= .   

x{1,3,4} y{1,2,5} z{0,1,4} 

propagator 

views (minus views) 

variables 



Propagating max with Views 

• Propagator  
1. reads values through views 
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min( . , . )= .   

x{1,3,4} y{1,2,5} z{0,1,4} 

propagator 

views (minus views) 

variables 

{-4,-3,-1} {-5,-2,-1} {-4,-1,0} 



Propagating max with Views 

• Propagator  
1. reads values through views 

2. performs propagation wrt values read 
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min( . , . )= .   

x{1,3,4} y{1,2,5} z{0,1,4} 

propagator 

views (minus views) 

variables 

{-4,-1} {-1} {-4,-1} 



Propagating max with Views 

• Propagator  
1. reads values through views 

2. performs propagation wrt values read 

3. writes values through inverse of views 
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Model for Views 

• Variable view for a variable x 

  x : V  V’ 

 injective function from values V to values V’ 
• different value sets matter 

 

• View  is a family of variable views x for all variables x  

 

• Possible to define inverse view - 

 

• Propagator derived from propagator p 

  -  p   

 

• Also define derived constraint, … 
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Facts 

• Derived propagator  
• is in fact a propagator (preserves contraction and monotonicity) 

• implements the “right” constraint (constraint composed with views) 

• preserves fixpoints and subsumption 

• inherits domain-consistency 

 

• With additional (natural) requirements inherits 
• bounds(Z)-consistency 

• bounds(D)-consistency 

• depends on whether hull operator commutes with view 
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Limitations 

• Views are injective 
• generalization might make propagators non contracting 

• studied in [1,2] 

 

• Views map values for single variable 
• generalization might make propagators non contracting 

• studied in [1] 

 

• Propagator invariants might be violated (rare) 
• propagators typically rely on variable domain invariants 

• example 
• adjusting lower bound of set variable does not change upper bound 

• might be violated by view 

 
[1] Correia, Barahona. View-based propagation of decomposable constraints, Constraints, 2013. 

[2] Van Hentenryck, Michel. Domain views for constraint programming, CP 2014. 
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Not a Limitation 

• Approach works for any propagator 

   

• No restriction to bounds consistency 

 

Se
p

 2
0

1
4

 
V

ie
w

-b
as

ed
 P

ro
p

ag
at

o
r 

D
er

iv
at

io
n

 

19 



USING VIEWS 

Techniques: transformation, generalization, 
specialization, type conversion, enforcing invariants 
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Transformation: Boolean 

• Use negation views defined as 

  x(v) = 1 – v 

  to derive 
• x = y  from x = y (on x) 

• x  y = z  from x  y = z (on x, y, z) 

• x  y = z  from x  y = z (on x) 

• x  y = z  from x  y = z (on z) 

 

• x1  …  xn  y1  …  yn = z  

   from x1  …  xn  y1  …  yn = z (on all) 

 

• x1  …  xn  y1  …  yn =  0  

   from x1  …  xn  y1  …  yn = 1 (on all) 
• optimized implementation with watched literals re-used!  
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Transformation: Boolean 

• Use negation views to derive 
• x1 + … + xn  c from  x1 + … + xn  c  (c integer) 

  as x1 + … + xn  c     x1 + … + xn  n – c 

 

• (x1 + … + xn≠c)  y   (c integer) 

  from (x1 + … + xn=c)  y  
• same idea for many reified constraints  
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Transformation: Set 

• Complement view: analogous to negation view 

 

• Intersection from union, set difference from union, … 
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Transformation: Integer 

• Use minus views defined as 

  x(v) = – v 

  to derive 
• min(x, y) = z from max(x, y) = z  (on x, y, z) 

• bounds-consistent propagator (bounds(Z)) 

• domain-consistent propagator 

• min(x1, …, xn) = y from max(x1, …, xn) = y (on x1, …, xn, y) 
• bounds-consistent propagator (bounds(Z)) 

• domain-consistent propagator 
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Transformation: Scheduling 

• Scheduling propagators implemented in terms of 
est(t)  earliest start time ect(t)  earliest completion time 

lst(t)  latest start time lct(t)  latest completion time 

• Two variants needed 
• primary:  t is not first   adjust est(t) 

• dual:  t is not last   adjust lct(t) 

• Dual can be derived with minus views (mirror at 0-origin) 
est(t’) = –lct(t), ect(t’) = –lst(t),  lst(t’) = –ect(t), lct(t’) = –est(t) 

• Can reuse complex data structures, for example -trees 
[Vilím. O(n log n) filtering algorithms for unary resource constraints, CP AI OR 2004]  
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Generalization 

• Use scale view for integer a defined as 

  x(v) = av 

  to derive 

  a1x1 + … + anxn = c 

 from 

  x1 + … + xn = c 

 

• Use offset view for integer o defined as 

  x(v) = v + o 

  to derive 

  alldifferent(x1 + c1, …, xn + cn) 

 from 

  alldifferent(x1, …, xn) 
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Specialization 

• Constant view behaves like an assigned variable 
• less memory 

• more efficient code if constant known at compile time 

 

• Derive 
• x + y  c  from x + y + z  c   (use 0 for z) 

• (x = c)  b from (x = y)  b   (use c for y) 

• |{ i | xi = c}| = z and |{ i | xi = y}| = c 

   from |{ i | xi = y}| = z  (use c for y or z)  

• disjoint(x,y) from x  y = z   (use  for z) 
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Type Conversion 

• Integer view wraps Boolean 0/1 variable as an integer variable 
• 0/1 variables might have a more efficient implementation 

• all integer propagators can now be on 0/1 variables 

• some propagators should be still specific to 0/1 variables (linear 
inequalities due to watched literals, …) 

 

• Singleton view wraps integer variable as a set variable 
• derive x  y from x  y  
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Enforcing Invariants 

• Assume bounds(Z)-consistent propagator for x  y = z 
• propagation depends on whether 0 in x, 0 in y, or 0 in z 

 

• Direct implementation: convoluted and inefficient 
 

• Rewriting: replace propagator if 0 excluded 
• x > 0  y > 0  z > 0, or 

• x > 0  y > 0, or 

• z > 0 

 requires three different propagators 

 

• Derivation: derive all from single propagator with minus views  
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Enforcing Invariants 

• Implementation of 

  binpacking(l1, …, lm, b1, …, bn, s1, …, sn) 

 with 
• load variables: lj is the load of bin j  

• bin variables: item i with size si is packed into bin bi 

 [Shaw. A constraint for bin packing, CP 2004] 

 

• Enforce that all items are not yet packed 
• use offset views lj + cj for load variables 

• when item i is packed into bin j (bin variable bi assigned to j): 

  subtract size si from load offset cj     

  eliminate item i from b and s 

• simplifies implementation and saves memory 
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IMPLEMENTATION IDEA 
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Integer Variable 

class IntVar { 

  private: int _min, _max; 

  public:  int min(void) { return _min; } 

           int max(void) { return _max; }               

           void adjmin(int n) { 

             if (n > _min) _min = n; 

           }            

           void adjmax(int n) { … } 

}; 

 

• Object-oriented model (ILOG Solver, Choco, Gecode, …) 
• variables are objects 

• propagators are objects 

 [Puget.  A C++ Implementation of CLP, SPICIS 1994] 
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class MinusView { 

protected: IntVar* x; 

public:    MinusView(IntVar* x0) 

             : x(x0) {} 

           int min(void) { return -x->max(); } 

           int max(void) { return –x->min(); } 

           void adjmin(int n) {  

             x->adjmax(-n);  

           } 

           void adjmax(int n) { … } 

}; 

 

• Implements exactly same interface 

 

Minus View 
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Propagator 

template<class VX, class VY> 

class LessThan : public Propagator { 

protected: VX* x; VY* y; 

public:    LessThan(VX* x0, VY* y0) : x(x0), y(y0) { … } 

           virtual void propagate(void) { 

             x->adjmax(y->max()-1);  

             y->adjmin(x->min()+1); 

           } 

}; 

 

• Propagators are parametric with respect to their views 

• Creation of x < y: 

  new LessThan<IntVar,IntVar>(x,y); 

• Creation of x > y: 

  new LessThan<MinusView,MinusView>(new MinusView(x), 

                                    new MinusView(y)); 
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Choice of  Parametricity 

• Two variants available 
• parametric polymorphism (templates in C++, higher-order functions 

in Haskell, …)  more efficient 

• dynamic binding (virtual functions in C++, methods in Java) 

    more expressive 

 

• Gecode uses templates in C++ 
• polymorphism resolved at compile time 

• some views optimized away entirely 
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Domain Operations 

• Operations that adjust the whole domain 

 

• Efficient architecture based on range iterators 
• each range (interval) can be obtained in sequential order, one at a time 

• no data structures required 

• operations for views easily defined per range 

 

• Details and evaluation in paper 
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COST AND BENEFITS 
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Return on Investment 

• Propagator implementations:    40 000 lines of code 
        21 000 lines of documentation 
• Views save :    120 000 lines of code 
        60 000 lines of documentation 
• View implementations:       8 000 lines of code and doc 
• Return on investment:   1 500 % 
 
[Gecode 3.7.2] 
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variable type implemented derived ratio 

integer   93 377 4.05 

Boolean 0/1   30   93 3.10 

integer set   31 146 4.71 

overall 154 616 4.00 



Evaluation Summary 

• Decomposition always worse than views 
• integer benchmarks  126% more time  (14% … 485%) 

    101% more memory (2% … 267%) 

• set benchmarks  46% more time   (12% … 131%) 

    31% more memory  (2% … 144%) 

 

• Minus and negation views for free 
• often optimized away by compiler 

• benchmarks using minus views on alldifferent confirm 

 

•  Complement view for sets not for free 
• 32% overhead compared to handwritten propagators 
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Evaluation Summary 

• Virtual methods worse than templates 
• integer benchmarks 34% more time (5% … 118%) 

• set benchmarks  18% more time (9% … 126%) 

 

• template  = compile-time polymorphism 

• virtual method  = run-time polymorphism 
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SUMMARY 
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Related Approaches 

• Indexicals and ILOG expressions 
• indexicals: uni-directional, more expressive  

• expressions: bi-directional, more expressive, no guarantees on 
update 

 

• SAT literals use negation views (for example MiniSat) 

 

• Views in other systems 
• Minion, CaSPER, Objective CP 

• useful for lazy clause generation 

 

[References and extensive discussion in paper] 
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Take Home 

• Views = useful compromise 

  efficiency  expressiveness 

 

• Systematic derivation techniques 

 

• Can be build on top of any system 
• needs some form of parametricity 

 

• Gecode without views would have been… 

  slow  or impossible  
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Integer Variable 

class IntVar { 

  private: int _min, _max; 

  public:  int min(void) { return _min; } 

           int max(void) { return _max; }               

           void adjmin(int n) { 

             if (n > _min) _min = n; 

           }            

           void adjmax(int n) { … } 

           void subscribe(EventSet e) { … }  

}; 

 

• Object-oriented model (ILOG Solver, Choco, Gecode, …) 
• variables are objects 

• propagators are objects 

 [Puget.  A C++ Implementation of CLP, SPICIS 1994] 
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Offset View 

class OffsetView { 

protected: IntVar* x; int c; 

public:    OffsetView(IntVar* x0, int c0) 

             : x(x0), c(c0) {} 

           int min(void) { return x->min()+c; } 

           int max(void) { return x->max()+c; } 

           void adjmin(int n) {  

             x->adjmin(n-c);  

           } 

           void adjmax(int n) { … } 

           void subscribe(EventSet e) { 

              x->subscribe(e); 

           } 

}; 

 

• Implements same interface as variable 
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Minus View 

class MinusView { 

protected: IntVar* x; 

public:    MinusView(IntVar* x0) 

             : x(x0) {} 

           int min(void) { return -x->max(); } 

           int max(void) { return –x->min(); } 

           void adjmin(int n) {  

             x->adjmax(-n);  

           } 

           void adjmax(int n) { … } 

           void subscribe(EventSet e) { 

              x->subscribe(negate(e)); 

           } 

}; 
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Constant View 
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class ConstView { 

protected: int c; 

public:    ConstView(int c0) 

             : c(c0) {} 

           int min(void) { return c; } 

           int max(void) { return c; } 

           void adjmin(int n) { 

             if (n > c) fail(); 

           } 

           void adjmax(int n) { … } 

           void subscribe(EventSet e) { 

             schedule(); 

           } 

}; 

 



Propagator 

template<class VX, class VY> 

class LessThan : public Propagator { 

protected: VX* x; VY* y; 

public:    LessThan(VX* x0, VY* y0) : x(x0), y(y0) { 

             x->subscribe(LOWER_BOUND); y->subscribe(UPPER_BOUND); 

           } 

           virtual void propagate(void) { 

             x->adjmax(y->max()-1); y->adjmin(x->min()+1); 

           } 

}; 

 

• Propagators are parametric with respect to their views 

• Creation of x < y: 

  new LessThan<IntVar,IntVar>(x,y); 

• Creation of x > y: 

  new LessThan<MinusView,MinusView>(new MinusView(x), 

                                    new MinusView(y)); 
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