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Building a CP System



How Many Tries Do You Have?
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* Have to get it right first time potential user downloads

* Decisions for Gecode 1.0.0:
sufficiently
sufficiently
sufficiently
release as open source
accessible

many constraints

high speed
few bugs
on time

to experts
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Gecode 1.0.0

no-goods

advanced search heuristics

interfaces

many examples

many variable types

graphical tools

parallel search

extensive tutorial documentation

restart-based search

Sep 2014
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This Talk

no-goods

many examples

many variable types

advanced search heuristics

interfaces

complete reference documentation

extensive tutorial documentation

graphical tools

parallel search

restart-based search

fast, simple, and generic kernel

comprehensive tests
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Which Constraints?

* A propagator for
min(xy, ..., X,)=y
as well as
max(xy, ..., X, )=y ?
* A propagator for
a,XX; + ... +0,XX,=C (a;, c integers)
as well as
X, +..+x,=C?
* A propagator for
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(X1 + ..+ Xn=C) Yy (c integer)
as well as
(X1 + ...+ Xn¢C) >y ? (c integer) [ 6 J




Decompose Constraints? No!

* Decompose
max(xy, ..., X,)=y
into

Sep 2014

min(z,, ..., Z,)JFU AX;=—Z AN e AX,=—2Z, AY=—1U
no way: clashes with speed and fast kernel

* Decompose
a,XX; + ... +0,XX,=C (a;, cintegers)

into
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yl ..+ yn=C N\ y1= axxl VANIVAN yn= aXXn
absolutely no way: yields less propagation
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Implement Propagators? No!

* Tremendous effort to implement propagator variants
Gecode: just three people

research interest is not implementing constraints

* Additional effort for
documentation
testing

maintenance
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Derive Propagators? Yes!

Derive propagators using variable views

Using systematic derivation techniques

Sep 2014

View idea
folded into propagator
bi-directional mapping of values

Derived propagators are perfect

correctness
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propagation strength: bounds and domain consistency
implementation aspects: fixpoints and subsumption
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Propagating max with Views

propagator

Sep 2014

views (minus views)

variables

* Propagator
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Propagating max with Views

propagator

Sep 2014

views (minus views)

variables

* Propagator

reads values through views
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Propagating max with Views

xe{1,3,4} || ve{1,2,5} || ze{0,1,4}

* Propagator

reads values through views

propagator

views (minus views)

variables

performs propagation wrt values read
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Propagating max with Views

propagator

views (minus views)

variables

* Propagator
reads values through views
performs propagation wrt values read
writes values through inverse of views
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Model for Views

Variable view for a variable x
o,: Vo>V
injective function from values V to values V’
different value sets matter

View ¢ is a family of variable views ¢, for all variables x

Possible to define inverse view ¢

Propagator derived from propagator p
G epe
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Also define derived constraint, ...




Facts

* Derived propagator
is in fact a propagator (preserves contraction and monotonicity)

implements the “right” constraint (constraint composed with views)

Sep 2014

preserves fixpoints and subsumption
inherits domain-consistency

* With additional (natural) requirements inherits
bounds(Z)-consistency
bounds(D)-consistency
depends on whether hull operator commutes with view
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Limitations

* Views are injective

generalization might make propagators non contracting
studied in [1,2]
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* Views map values for single variable

generalization might make propagators non contracting
studied in [1]

* Propagator invariants might be violated (rare)
propagators typically rely on variable domain invariants

example

adjusting lower bound of set variable does not change upper bound
might be violated by view

c
(]
F=
@©
>
=
V)
()]
—
O
=
()
1Y)
@©
o
(]
—
(a1
©
[
(%]
©
<
=
L
=

=
(0]

[1] Correia, Barahona. View-based propagation of decomposable constraints, Constraints, 2013.
[2] Van Hentenryck, Michel. Domain views for constraint programming, CP 2014.




Not a Limitation

* Approach works for any propagator

* No restriction to bounds consistency
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Techniques: transformation, generalization,
specialization, type conversion, enforcing invariants

USING VIEWS
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Transtformation: Boolean

* Use negation views defined as

o, (v)=1-v :
to derive S

—X=y fromx=y (on x) 2

XAY=2 fromxvy=z (onx,y, 2)

X—>y=1z fromxvy=z (on x)

xXPy=z fromx<>y=z (on 2)

Xl/\.../\Xn/\—lyl/\.../\—|yn=Z

fromx; v..vx,v=y, v..v—y, =z (onall)
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X{ AN e AXy A=Y A e Ay, = 0

N
=

fromx;v..vx,v=y,v..v—ay,=1 (onall)
* optimized implementation with watched literals re-used!




Transtformation: Boolean

* Use negation views to derive
X, +..+x,<c from x; +..+x,2>¢C (c integer)

asx;+..+x,<Cc & X +t..+—X,=2n—C

(X, +..+x2c) >y (cinteger)

from (x; + ... + x,=c) &>y

* same idea for many reified constraints

Sep 2014
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Transformation: Set

* Complement view: analogous to negation view

* |Intersection from union, set difference from union, ...
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Transformation: Integer

* Use minus views defined as

¢Q,(v) ==V .
to derive %
min(x, y) =z from max(x, y) =z (onx,y, 2) °

* bounds-consistent propagator (bounds(Z))
* domain-consistent propagator

min(x, ..., X,) =y from max(x,, ..., x,) =y (on xq, ..., X, ¥)

?» N
* bounds-consistent propagator (bounds(Z))

* domain-consistent propagator
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Transtormation: Scheduling

______________________________________________________

“TTTTTTTTTTITTITTTITITTITTITITTITD S
=11 -8 =5 =2 0 2 5 8 11 =

est(t)  ect(t) Ist(t’) lct(t”) est(t) ect(t) Ist () let(t) g

* Scheduling propagators implemented in terms of S
est(t) = earliest start time ect(t) = earliest completion time %

Ist(t) = latest start time Ict(t) = latest completion time %

* Two variants needed g
primary: tis not first = adjust est(t) %

dual: tis not last = adjust Ict(t) é

* Dual can be derived with minus views (mirror at 0-origin) =

est(t’) = —lct(t), ect(t’) = —Ist(t), Ist(t’) = —ect(t), Ict(t’) = —est(t)

Can reuse complex data structures, for example Q-trees
[Vilim. O(n log n) filtering algorithms for unary resource constraints, CP Al OR 2004]
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Generalization

* Use scale view for integer a defined as
0,(v) = axv
to derive

Sep 2014

A XXy + .. + 0 XX, = C
from
X, +..+X, =C
* Use offset view for integer o defined as
o, (v)=v+o
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to derive
alldifferent(x, + ¢y, ..., x,, + C,)
from
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alldifferent(x,, ..., x,)




Specialization

* Constant view behaves like an assigned variable

less memory

more efficient code if constant known at compile time %

* Derive E
x+y<c fromx+y+z<c (use O for 2) §
(x=c)<b from(x=y)<b (use c for y) %
[{ilx=cH =zand [{i | x=y} =c 8

from |{i| x;=y}| =2 (use c for y or 2) ks

disjoint(x,y) fromxny=z (use < for z) §
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Type Conversion

* Integer view wraps Boolean 0/1 variable as an integer variable
0/1 variables might have a more efficient implementation
all integer propagators can now be on 0/1 variables

Sep 2014

some propagators should be still specific to 0/1 variables (linear
inequalities due to watched literals, ...)

* Singleton view wraps integer variable as a set variable

derive x e yfromxcCy
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Enforcing Invariants

Assume bounds(Z)-consistent propagator forx x y =z

propagation depends on whetherOinx,0iny,or0Oinz

Direct implementation: convoluted and inefficient

Rewriting: replace propagator if O excluded
x>0Ay>0Az>0,o0r
x>0vy>0,or

z>0

requires three different propagators
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Derivation: derive all from single propagator with minus views
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Enforcing Invariants

* Implementation of
binpacking(/,, ..., ., by, ..., b,, S, ..., S,,)
with

Sep 2014

load variables: /; is the load of bin j
bin variables: item i with size s; is packed into bin b,
[Shaw. A constraint for bin packing, CP 2004]

* Enforce that all items are not yet packed

use offset views /j + for load variables
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when item i is packed into bin j (bin variable b, assigned to j):
subtract size s; from load offset c;
eliminate item i from b and s

w
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simplifies implementation and saves memory
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Integer Variable

class IntVar {
private: int min, _max;
public: int min(void) { return _min; }
int max(void) { return _max; }
void adjmin(int n) {

Sep 2014

if (n > min) min = n;

}
void adjmax(int n) { .. }

s

* Object-oriented model (ILOG Solver, Choco, Gecode, ...)

variables are objects
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propagators are objects
[Puget. A C++ Implementation of CLP, SPICIS 1994]
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Minus View

class MinusView {
protected: IntVar* x;
public: MinusView(IntVar* xo)
: x(x0) {}
int min(void) { return |-x->max()}
int max(void) { return|-x->min()}
void adjmin(int n) {

Sep 2014

-
-

x->adjmax(-n)j

}
void adjmax(int n) { .. }

s
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* Implements exactly same interface
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Propagator

template<class VX, class VY>

class LessThan : public Propagator {

protected: VX* x; VY* y;

public: LessThan(VX* x@, VY* y@) : x(x0), y(yoe) { .. }
virtual void propagate(void) {

Sep 2014

x->adjmax(y->max()-1);
y->adjmin(x->min()+1);

s

* Propagators are parametric with respect to their views
* Creationofx < y:
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new LessThan<IntVar,IntVar>(x,y);
* Creationofx > y:

w
s

new LessThan<MinusView,MinusView>(new MinusView(x),
new MinusView(y));




Choice of Parametricity

* Two variants available

parametric polymorphism (templates in C++, higher-order functions
in Haskell, ...) more efficient

Sep 2014

dynamic binding (virtual functions in C++, methods in Java)
more expressive

* Gecode uses templates in C++
polymorphism resolved at compile time
some views optimized away entirely
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Domain Operations

* Operations that adjust the whole domain

* Efficient architecture based on range iterators

each range (interval) can be obtained in sequential order, one at a time

Sep 2014

no data structures required
operations for views easily defined per range

* Details and evaluation in paper
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COST AND BENEFITS
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Return on Investment
e e Lt | _ied e

integer 4.05
Boolean 0/1 30 93 3.10
integer set 4.71

40 000 lines of code
21 000 lines of documentation

Propagator implementations:

U

U

* Views save : ~ 120 000 lines of code

~ 60 000 lines of documentation
* View implementations: ~ 8000 lines of code and doc
* Return on investment: ~ 1500 %

[Gecode 3.7.2]
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Evaluation Summary

* Decomposition always worse than views

integer benchmarks 126% more time (14% ... 485%)
101% more memory (2% ... 267%) %
set benchmarks 46% more time (12% ... 131%) g
31% more memory (2% ... 144%)

* Minus and negation views for free
often optimized away by compiler
benchmarks using minus views on alldifferent confirm
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* Complement view for sets not for free

32% overhead compared to handwritten propagators
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Evaluation Summary

* Virtual methods worse than templates

integer benchmarks 34% more time (5% ... 118%)

set benchmarks 18% more time (9% ... 126%) =
template = compile-time polymorphism

virtual method  =run-time polymorphism
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Related Approaches

* Indexicals and ILOG expressions
indexicals: uni-directional, more expressive

expressions: bi-directional, more expressive, no guarantees on
update

» SAT literals use negation views (for example MiniSat)

* Views in other systems
Minion, CaSPER, Objective CP
useful for lazy clause generation

[References and extensive discussion in paper]
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Take Home

Views = useful compromise

efficiency s expressiveness

Sep 2014

Systematic derivation techniques

Can be build on top of any system

needs some form of parametricity

Gecode without views would have been...
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Integer Variable

class IntVar {
private: int min, _max;
public: int min(void) { return _min; }
int max(void) { return _max; }

Sep 2014

void adjmin(int n) {
if (n > min) min = n;
}
void adjmax(int n) { .. }
void subscribe(EventSet e) { .. }

s
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* Object-oriented model (ILOG Solver, Choco, Gecode, ...)

variables are objects

I
I

propagators are objects
[Puget. A C++ Implementation of CLP, SPICIS 1994]




Offset View

class OffsetView {
protected: IntVar* x; int c;
public: OffsetView(IntVar* x0, int c9)
: X(x0), c(co) {}
int min(void) { return [x->min()+c;
int max(void) { return [x->max()+c
void adjmin(int n) {

Sep 2014

o
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e

x->adjmin(n-c);

}

void adjmax(int n) { .. }

void subscribe(EventSet e) {
Xx->subscribe(e);
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* Implements same interface as variable




Minus View

class MinusView {
protected: IntVar* x;

public:

s

MinusView(IntVar* xo)

: x(xe) {}

int min(void) { return |-x->max()

A\

int max(void) { return|-x->min()

void adjmin(int n) {

x->adjmax(-n)

}
void adjmax(int n) { .. }
void subscribe(EventSet e) {

x->subscribe(jnegate(e));

-

Sep 2014
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Constant View

class ConstView {

protected: int c;

public: ConstView(int c@)

: c(co) {}

int min(void) { r*etur*n }
int max(void) { r'etur'n }
void adjmin(int n) {

if (n > ¢) fail()

Sep 2014

A )

}
void adjmax(int n) { .. }

void subscribe(EventSet e) {
schedule()}
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Propagator

template<class VX, class VY>
class LessThan : public Propagator {
protected: VX* x; VY* y;
public: LessThan(VX* x@, VY* y0) : x(x0), y(y9) {
X->subscribe(LOWER _BOUND); y->subscribe(UPPER_BOUND);
}
virtual void propagate(void) {
x->adjmax(y->max()-1); y->adjmin(x->min()+1);

Sep 2014

s

* Propagators are parametric with respect to their views
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* Creationofx < y:
new LessThan<IntVar,IntVar>(x,y);
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* Creationofx > y:
new LessThan<MinusView,MinusView>(new MinusView(x),
new MinusView(y));




