
Performance Validation and
Auto-method Test Management

E l e n a d e C a s t r o D í a z - P l a z a

Master of Science Thesis
Stockholm, Sweden 2006

ICT/ECS-2006-44

Performance Validation and
Auto-method Test Management

E l e n a d e C a s t r o D í a z - P l a z a

E x a m i n e r
D r . C h r i s t i a n S c h u l t e

Master of Science Thesis
Stockholm, Sweden 2006

ICT/ECS-2006-44

Background

Automated tests methodologies applied to test applications are based on scripts that emulate
one user activity or multiple at the same time depending on whether the application accepts
multiple users or not.

There are different types of tools to help with the script creation depending on the type of
application tested and the goal pursued. For example, there are different tools to test an
interface or to generate a huge load of activity for an application.

Besides, due to the increasing complexity of today's applications and the competitive
pressures and costs of application failure, the demand for powerful test management is even
greater. Since one has to handle with many projects, the best approach is adopting a good test
management methodology that helps to centralize, organize, prioritize and document the tests
to ensure coverage of the requirements, consistency and reusability of the tests campaigns

Abstract

The work described in this thesis was carried out at the Amadeus Development Site, Nice,
France. The work encompasses the completion of two separate projects.

SPRING project

SPRING project studies the possibility of using Microsoft Project Server 2003 (MPS 2003)
at Amadeus.
Prior to the completion of the SPRING project, Amadeus used a set of logically separate
applications to perform project management duties and manage available resources.

The Microsoft Project Server 2003 application provides planning and resource management
under a collaboration model. An evaluation has shown that the tool reaches an acceptable
level of functionality and capacity, to cope with the requirements of Amadeus.

The SPRING project will investigate the performance, reliability and scalability of the MPS
2003 in the following context:

 Scenarios exercising “time reporting” and “project plan management” activities
 Production infrastructure (application and database servers) hosted in Nice
 Two different client access types: from LAN workstations and from a Terminal server

machine

The analysis of the test results provide evidence that there is no risk in terms of performance
and capacity by deploying the SPRING project. However, a database management problem
was detected due to the higher load, resulting in a greatly increased response time.

TestDirector migration, feasibility study and customisation

The Internet and Front Office Quality team (IFQ team) in Amadeus needed to update the
platform used for testing management.

The project performed a feasibility study of the migration to a new test management
platform. The study took into account the old platform features and the team requirements
which permitted customisation to the specific needs of the team.

Upon completion of the feasibility study, the test management tool selected was
TestDirector. The latest version includes many new customisation possibilities which have
made many companies choose this product. The project explored all of the customisation
possibilities and matched against the requirements of the IFQ team to decide if migration
was possible.

The project concludes that the migration is possible and all the features have been
implemented in the test management platform. TestDirector will be used by the IFQ team
and its use is likely to be extended to many other teams within Amadeus.

 4/79

Table of contents

BACKGROUND ... 3

ABSTRACT... 4

1) INTRODUCTION... 7

2) AMADEUS .. 7

3) RELATED WORK ... 7

4) WHY MERCURY PRODUCTS.. 9

4.1) TESTDIRECTOR... 9
4.2) LOADRUNNER.. 14
4.3) WINRUNNER... 15

5) SPRING PROJECT.. 16

5.1) INTRODUCTION... 16

5.2) TESTING GOALS.. 16

5.3) TESTING SOFTWARE INTEGRATION: .. 17

5.4) TEST BED ... 18

5.5) TEST SCRIPT... 19
5.5.1) Business process .. 19
5.5.2) Script design .. 20
5.6) MEASUREMENTS .. 21
5.6.1) Performance .. 22
5.6.2) Scalability... 22
5.6.3) Robustness ... 23
5.7) TEST RESULTS ... 23
5.7.1) Scenario with 1 Virtual user... 24
5.7.2) Scenario with 3 Virtual users ... 26
5.8) CONCLUSION: .. 27

6) TESTDIRECTOR MIGRATION, FEASIBILITY STUDY AND CUSTOMISATION................. 28

6.1) INTRODUCTION... 28
6.2) MIGRATION SPECIFICATION ... 28
6.3) SOLUTIONS ... 29

6.4) CONCLUSIONS ... 36

7) GENERAL CONCLUSIONS... 37

8) ACKNOWLEDGMENTS .. 37

 5/79

9) BIBLIOGRAPHY... 38

10) APPENDIX.. 39

10.1) SPRING PROJECT.. 39

10.2) DEV-SPL-TEC-TES DEPARTMENT.. 40

10.3) SPRING PROJECT TESTS CODE.. 40

10.4) IFQ TEAM .. 48

10.5) TESTDIRECTOR CUSTOMISATION CODE ... 48

10.6) OTA EXAMPLES: ... 57
10.6.1) I. Rules of Thumb.. 59
10.6.2) 1. Error Handling.. 59
10.6.3) 2. Code Optimization .. 60
10.6.4) 3. Using TestDirector API (OTA) in Scripts... 60
10.6.5) 4. Workflow Objects ... 61
10.6.6) II. Code Templates.. 63
1. Error Handling ... 63
2. Working with the Fields ... 63
3. Working with TestDirector API (OTA).. 71

 6/79

1) Introduction

This thesis is about auto test methods and new test management solutions. To start, it gives
an overview of the technologies developed by the most important companies in the testing
market and an introduction of the selected tools to test interfaces, server responsiveness,
generation of virtual users and test management.

This thesis is performed in Amadeus Global Distributed System Corporation and it is
focused in solving two specific problems but both within the testing field. That is why first, it
tries to get the reader familiar with the environment and afterwards, it refers to the two
projects: “SPRING project” and “TestDirector migration, feasibility study and
customisation”. It ends with some general conclusions, acknowledgments, bibliography and
an appendix for further information in technical details.

2) Amadeus

Amadeus is a global distribution system (GDS) and technology provider focused on the
marketing, sales and distribution needs of the world’s travel and tourism industries. Amadeus
technology is used by airlines not only for distribution, but also for bookings at the airline's
airport ticket offices (ATOs) and city ticket offices (CTOs). In addition, Amadeus provides
essential sales tools for travel agents and also allows business travelers to book arrangements
from their computer.

Through the Amadeus GDS, travel agencies and airline offices can book the 95 per cent of
the world's scheduled airline seats. The rapid expansion of this business has made Amadeus
becoming the fastest growing and most widely used global distribution system.
.

3) Related work

Depending on the author one can find many kinds of testing. Here an introduction on the
basics of testing will be explained so that it helps to the comprehension of the rest of the
dissertation.

Automated tests methodologies applied to test applications are based on scripts that emulate
one user activity or multiple at the same time depending on whether the application accepts
multiple users or not.

There are different types of tools to help with the script creation depending on the type of
application tested and the goal pursued. For example, there are different tools to test an
interface or to generate a huge load of activity for an application

Steps for automated testing:
♦ Define the testing goals
♦ Define the business process
♦ Define what kind of testing to apply :

o Functional Tests validate the system’s logical and business functions. It applies
inputs to a program that matches its specifications and studies the corresponding
outputs independently of the internal logic of the program.

 7/79

o Performance Tests evaluate if a system or software match some specific
performance requirements, such as response time, resource utilization and
transaction rates.

o Load Tests evaluate systems load capacity under various operating conditions. It
checks the system limits in terms of number of users.

♦ Define the Test Platform.
♦ Choose the right tool to generate the scripts
♦ Generate the scripts.
♦ Perform the testing
♦ Measure the results.

An example of the above procedure can be found in the specification of the SPRING project
that goes afterwards.

Besides, due to the increasing complexity of today’s applications and the competitive
pressures and costs of application failure, the demand for powerful test management is even
greater. Since one has to handle with many projects, the best approach is adopting a good test
management methodology that helps to centralize, organize, prioritize and document the tests
to ensure coverage of the requirements, consistency and reusability of the tests campaigns.

A good test management methodology will help to track all the tests scripts generated in a
department, to know at any moment what tests have been generated, what tests have been
accomplished all right, what errors were found and if they have been solved…etc.

The test planning should start as soon as the project requirements have been stated. This
parallelism with development ensures that the knowledge put into the design application is
not lost in designing the testing strategy.

This is how both of the projects that will be explained below relate with each other. For the
first project was necessary to generate an automated script which tested Microsoft Office
Project Server 2003 interfaces (the web-access interface and the client interface). This part
was made with a test tool for interfaces called WinRunner. Afterwards, another application
called LoadRunner was used to launch the script on different machines at the same time, to
simulate the load of multiple users working at the same time with Microsoft Office Project
Server 2003. Afterwards, the resulting parameters were studied.
The second project was performed for a department that carried out with the regression of
some of the software products developed by Amadeus. This implied hundreds and hundreds
of tests that had to verify the software products every week to ensure that new modifications
on this software did not affect to the functionalities that previously worked. In this
department, it was urgent to improve their management methodology. Therefore, the project
bases on a study about the possibility that TestDirector Management Tool from Mercury was
capable to fulfil their requirements. For that, many customisations of the product were
required with visual basic script programming.

Testing is gaining percentage of time into software development processes. Besides, it is
becoming more and more important the achievement of error-free products and therefore
many companies develop software with this goal. But it is also fundamental to find the right
tool to do it because it can save a lot of time and as a consequence a lot of money. There is a

 8/79

web that assists people in selecting the right tool for testing:
http://www.testtoolevaluation.com/

Regarding related work achieved I have evidence that in the company were I was working,
my department was pioneer in customising the last version of TestDirector Management
Tool and therefore, I had to present my work to other departments interested on that.
Besides, Opodo, an online travel company owned by Amadeus, was interested in the
customisation too, and we helped them out with it.
Both projects were achieved having a close relation with Mercury Support to ask for licenses
and to get in contact with other people working in the same field. Each day, there are many
companies looking forward to give more importance to their software testing processes and
to do it efficiently. Regarding this, I have found many papers were professionals from
different companies express their interest regarding tests methodologies. Here there are few
of them:

“At Iron Mountain, our current mix of Mercury products includes over 500 scripts in Mercury WinRunner and Mercury
LoadRunner. We use these to manage regression testing for our Oracle e-Business Suite, including financials, HR,
iLearning, and property management modules. With an average of two Oracle upgrades a year, these scripts save us at least
a month’s manual regression test time.”

“Punky McLemore is a quality assurance (QA) testing manager at Hewlett-Packard. Prior to working at HP, McLemore was
a QA testing manager at a large U.S. financial institution, where she was responsible for testing all new applications for this
multi-billion-dollar enterprise. The institution’s QA staff employed up to 80 testing specialists and the number of Mercury
TestDirector® users reached 120. McLemore has 16 years of experience in QA testing and has been a Mercury
customer/user for seven years.”

“In commercial software development organizations, increased complexity of products, shortened development
cycles, and higher customer expectations of quality have placed a major responsibility on the areas of software
debugging, testing, and verification. “Brent Hailpern and Brent Hailpern , IBM Research Division. “

4) Why Mercury products

Mercury is number one in testing products. But there are two other companies (IBM Rational
and Segue) that together with Mercury share almost the whole testing software market.
Amadeus have been working with Mercury for about six years already. Looking to the
products of these three companies the features are very similar, only for very specific tests
would be better to choose one instead of another.

The thesis will be performed with Mercury products due to it is the one that Amadeus
purchased few years ago. The reason why Amadeus started using Mercury products was to
test one of Amadeus products (Vista) which uses scriplet objects. At that moment, Mercury
was the only company to develop special features to support this.

There are basically three Mercury products that were used in this thesis. TestDirector which
is a Test Management tool, LoadRunner which allows server side load testing and
WinRunner to test interfaces. And the three of them matched the project requirements.

TestDirector 4.1)

TestDirector is Mercury Interactive Web-based test management tool. TestDirector helps to
organize and manage all phases of the application testing process, including specifying
testing requirements, planning tests, executing tests, and tracking defects.

4.1.1 The TestDirector Testing Process
 9/79

http://www.testtoolevaluation.com/

TestDirector offers an organized framework for testing applications before they are
deployed. Since test LANs evolve with new or modified application requirements, you need
a central data repository for organizing and managing the testing process. TestDirector
guides you through the requirements specification, test planning, test execution, and defect
tracking phases of the testing process.

The TestDirector testing process includes four phases:

Specifying Requirements
In this phase the tester should:

• Define testing scope: determine the test goals, objectives and strategies.
• Create requirements
• Detail requirements
• Analyze requirements specification: generate reports and graphs to assist in analyzing

the testing requirements. Review the requirements to ensure they meet the testing
scope defined.

Planning Tests
In this phase the tester should create a test plan based on the testing requirements. These are
the steps to follow:

• Define testing strategy
• Define test subjects: divide the application to test into subjects or functions to be

tested. Build a test plan tree to hierarchically divide the application into testing units or
subjects.

• Define tests: determine the type of test it is needed for each subject.
• Create requirements coverage: link each test with a testing requirement.
• Design test steps: Develop manual tests by adding steps to the tests in the test plan tree

and decide what tests should be automated
• Automate tests: create the corresponding tests scripts.
• Analyze test plan: generate reports and graphs and review the tests to determine their

suitability to the testing goals.

Running Tests
After building a test plan tree, it is necessary to run the tests to locate defects and assess
quality. In this phase the following tasks should be performed:

• Create test sets: determine which test to include in each test set
• Schedule runs: schedule tests execution and assign tests to testers
• Run tests
• Analyze test results: generate reports and graphs to analyze the results and to determine

if there is any defect detected.

Tracking defects
Locating and repairing application defects efficiently is essential to the testing process.
Defects can be detected and added during all stages of the testing process. In this phase,
perform the following tasks:

 10/79

• Add defects: report the new defects detected
• Review new defects and determine which ones should be fixed
• Repair open defects
• Test new build: test the application until defects are repaired.
• Analyze defect data: generate graphs and reports to assist in analyzing the progress of

defects repaired and to determine when to release the application.

4.1.2 TestDirector access

TestDirector does not need to be installed in the users local PC. TestDirector is installed in
the company web server and it is accessible through web server.
The first time that TestDirector is run in a local computer, the application is downloaded.
Then, each time TestDirector opens, it automatically carries out a version check. If
TestDirector detects a newer version, it downloads the latest version to the local machine.
This makes it easier for the users to work with it and it is more flexible since it can be
accessed from different operating systems or from home. Besides, new releases of the
product will only need to be updated in the server machine.

 11/79

4.1.3 TestDirector customisation possibilities:

TestDirector gives the opportunity to customise any specific requisite. This is facilitated
through OTA (Open Test Architecture) and the workflow.

4.1.3.1 The OTA:

Using TestDirector’s Open Test Architecture, it is possible to integrate specific requirements
and configuration management tools, defect tracking tools, third-party and custom tools, and
modeling applications. Execute tests remotely on multiple hosts across a network, and
analyze the test results from within the TestDirector environment. Besides, TestDirector
COM-based API enables an application to create, retrieve, and update TestDirector project
data.

 12/79

4.1.3.2 The workflow

As a TestDirector administrator, it is possible to create Visual Basic scripts that control the
workflow in a TestDirector project and restrict and dynamically change the fields and
values that are available in each TestDirector module.
For example, it is possible to create a button that launches windiff for the files attached to the
selected test in TestLab. (How to do this is better explained in task number 1). Another
example would be to send an email before the run of a test campaign is executed.
The script editor in TestDirector has different functions that will be executed in case that an
event happens. For example: a button is clicked or a field changes its value. The
administrator can write there a VBScript code that will be executed when that event happens.
There are also some context variables available in the workflow. These variables contain
information about the object for which the current event works. This allows the programmer
to know what are the value of the fields when the event happens and the function is called.

 13/79

4.2) LoadRunner

LoadRunner is a load testing tool which allows server side load testing. It can connect to
TestDirector, so scripts, scenarios and test campaigns results can be stored to assess
application performance evolution.
The architecture of LoadRunner is a Windows server (called Controller), connected to
“injector” machines also called “load generators” (see picture below)

 14/79

4.3) WinRunner

WinRunner is a functional testing tool for User Interface with strong integration in
TestDirector. It can be used, as a “load generator” in combination with LoadRunner.
WinRunner helps to automate the testing process. It is meant to create adaptable and reusable
test scripts that challenge the functionality of the applications.
WinRunner facilitates test creation by recording how the user works on the application.
When the user points and clicks GUI (Graphical User Interface) objects in the application,
WinRunner generates a test script in the C-like Test Script Language (TSL).
The difficulty in WinRunner is to ensure that the GUI map recognizes all the objects
properly and to parameterize and synchronize the code in order to make it reusable and able
to adapt to different speeds of events depending on the circumstances.

 This is how WinRunner and the GUI map look like:

 15/79

5) Spring project

5.1)

5.2)

Introduction

Amadeus' top management requires a better management of the project portfolio of the
company. Amongst practical actions that can be endeavored, a more thorough management
of the human resources is a key for success as it would allow clear visibility on how many
and when the human resources are allocated to projects.

Today the data used to manage work and resources is spread amongst a number of software
tools that harshly communicate with each other.

Microsoft Project Server 2003 (MSP 2003) provides planning and resource management
under a collaboration model. An evaluation has shown that the tool has reached an
acceptable level of functionality and capacity, to cope with Amadeus requirements.

All these topics are addressed by the SPRING project.

The SPRING project will investigate the performance, reliability and scalability of MSP
2003 in the following context:

 scenarios exercising “time reporting” and “project plan management” activities
 two different client access types: from LAN workstations and from a Terminal server

machine
 production infrastructure (application and database servers) hosted in Nice

Thanks to the infrastructure dedicated to the tests, reproducible tests have been made
possible and workloads are exhibiting a very low variance from one run to another.

The following chapters describe the aspects that have been covered by the testing which
gives evidence about that there is no risk in terms of performance and capacity by deploying
the SPRING project. However, a database management problem was detected due to the
higher load, resulting in a greatly increased response time.

Testing goals

MSP 2003 deployment in Amadeus is part of the SPRING project; therefore the
responsiveness and scalability of MSP 2003, on the selected production platform, must be
verified.

MSP 2003 is a three-tiered application, as depicted below:

 16/79

Project 2003 Server
Application server

PDS calls
(HTTP)

SQL Server
Database server

ODBC

MSP2003
Web interface

ODBC

MSP2003
Client interface

PDS calls
(HTTP)

Client tiers:
• Microsoft Project Web Access 2003 (web interface)
• Microsoft Office Project Professional 2003 (client interface)
Application tier:
• Microsoft Office Project Server 2003 (application server)
Database tier:
• SQL server 2003 (database server)

The objectives of the performance tests may be split into several parts:

 How does the system respond to great number of users using MSP Web Access?
 How does the system respond to great number of users using the MSP client?
 How does the system respond to a peak activity?
 How does the system behave over time under a steady traffic?

In any cases we would measure:

 The response time of the system, from a end-user perspective
 The system resources consumption on both MSP Server and the SQL Server

5.3) Testing software integration:

The picture below shows the tools integration:

TestDirector
Test Management

Performance tests Functional tests

(LoadRunner) (WinRunner)

Controller

Load generators

SQL Server database

 17/79

In the beginning, it was planned to use WinRunner to simulate the end-user interaction with
MSP2003 client and LoadRunner for MSP2003 Web access part. However, the data obtained
by LoadRunner when recording the interactions with Project2003 server was completely
illegible. These data came in cipher, so it was impossible to understand it and parameterize
the script in order to automate it for different users.
Consequently, all scripts were recorded with WinRunner but LoadRunner controller tool was
required as well to launch them and coordinate in several computers.

The number of users that execute the scripts was limited to five which is the number of
LoadRunner licenses for running concurrent WinRunner scripts. This was a bit of
disappointment, since LoadRunner license allows for running up to 350 concurrent
LoadRunner scripts.

Nevertheless it was the first time that WinRunner scripts were used as GUI Virtual users in
LoadRunner: this is a nice feature when the client software must be included in the test. It
allows validating also the client performance and robustness.

5.4) Test Bed

The test platform must allow for two different testing configurations:
• The first one with the users connected on the LAN
• The second one for Amadeus users accessing the application from a remote location (i.e.

MIAMI). To reduce the bandwidth usage on the WAN, users will connect through
Terminal Services (see figure below)

In a case, WinRunner scripts are executed concurrently, either on separate workstations or in
distinct sessions on the Terminal Server machine.
Running WinRunner in a Terminal Service session requires the installation of a license
server and specific settings on the Controller (Annex A).

All tests have been run on the SPRING production infrastructure during dedicated time slots
where all traffic was stopped: SPRING pilot users were prevented from using MSP2003 (no
access granted).

A production-like test database is used: 50 plans with about 500 tasks and 30 resources
assigned.

 18/79

Before each test sessions, we:
 backup the database prior testing
 restrict access to “test” users only
 run the tests
 Restore the database after testing
 Restore access to SPRING pilot users

The full test platform is depicted below:

Performance testing
framework

Database Server
"Project 2003 database"

(SQL2000)

Test
Data

Server
LoadRunner Controller

(client sessions)

Terminal Server
Load generator

(terminal sessions)

Application server
"Project 2003 server"

Workstation
Performance test monitoring

and analysis
(Browser access)

ncesetec1

ncetsproj

nceprojspring

ncesqlspring

Workstations
Load Generators

SPRING application
under test

monitoring

5.5)

Test script

5.5.1) Business process

The script will reproduce the way in which Amadeus is going to use MSP2003. Therefore,
scripts will simulate the work that the managers and reporters will perform.

A manager can create and follow-up several projects and he will assign tasks to team
members. These team members (also called “reporters”) will report the time spent on each
tasks, on a daily or weekly basis.

Consequently, there are three functional stages defined in the automated script:
• The manager creates a plan by opening a project template and saving it with a different

name. Afterwards, the plan is republished and Microsoft Office Project is closed.
• The reporters that got the tasks assigned, log into Microsoft Project Web Access 2003 and

insert notes and report time on the tasks, update all the changes and then log off.

 19/79

Reporter
SPRING-x-9

Manager
SPRING-x1

[0..7]
Start MS

Office
Project

Open Project
template (read

only mode)

save file as

Republished
assignments

Message box:
OK

Exit MS Office
Project

Message box:
Yes (save changes)

End

Begin

<SPRING-x1>

<SPRINGx1-TEST-n>

Begin

Log Off
MSP Web

Access

Insert notesSelect task
(highlight)

View new
task(click on "

tasks")

Message box:
OK

Log on MS
Office Web

Access

End

enter comment
+ OK

<SPRING-x1-y>

Scripts workflow

enter work
(0.5d) Insert notes

Update all

Manager
SPRING-x1

Start MS
Office
Project

Open Project
(read write

mode)

Update Project
progress

Accept All

Message box:
OK

Exit MS Office
Project

Message box:
OK

End

Begin

<SPRING-x1>

Update

Message box:
OK

Manager
SPRING-x

Reporter
SPRING-x-0

Reporter
SPRING-x-1

Reporter
SPRING-x1-y

Message box:
Yes (save changes)

<SPRINGx1-TEST-cont>

n times

<SPRINGx1-TEST-cont>

• Once that all the reporters have completed their tasks, the manager edit the project plan
(read/write mode), accept and update all the changes made by the reporters. Then
Microsoft Project is closed.

They are depicted more precisely below:

This script is implemented as a WinRunner script. It must be reproducible, since several
iterations of the scripts must be performed during a test.

5.5.2) Script design

The structure of a script is the following:

 20/79

Init section will establish the socket connection with the server and perform the
travel agent login.

The set of actions must let the ACE application in such a state that a new
iteration can be performed

End section will close the main menu window and perform a logout.

To generate the script in WinRunner, the first step is to record what the script should do.
Then, it is necessary to parameterize it so that it can work for different users. It has also to
be synchronized due to depending on the workload, the events will happen sooner or later:
this is the trickiest part.
Events have to be waiting for the previous ones and sometimes it is not easy to synchronize
them. It is possible to be waiting for a window to appear, or for a button in an object or for a
text on window frame.
Sometimes, there are windows that appear depending on the server circumstances so it is
necessary to take this into account and wait for it only in the case that it appears in a limited
time out.
Then, the test has to be designed so that it is reproducible and repeatable, so the state at the
beginning and at the end of the script should be the same.

5.6) Measurements

For each scenario, we are measuring:
• Application responsiveness (end-to-end) from the WinRunner script
• System resource usage on the different application tiers (application and database

servers)

Transaction name Transaction description
Login Time to login from Web Access logon page
OpenPlan Time to open the project template plan.
OpenPlan2 Time to re-open the plan
PublishAllInformation Time to publish the new plan information (it is a background

task)
SaveAs Time to save the project template as a new plan
TaskDisplay Time to display the task assigned to the “Reporter” (Web Access)
UpdateAll Time to update the task assigned to the “Reporter”, after changes

(Web Access)
UpdateMP Time to Update, after acceptation, the plan with the “reporters”

updates
UpdatePProgress Time to get the “Progress” from the plan updated by the

“reporters”

 21/79

5.6.1) Performance

These are pure performance figures, obtained from end-user perspective for one user
workload. There is no other traffic flowing to the application and database server.

All Web interface transaction response times are below 2 sec.
All Client interface transaction response times are below 10 sec, except for “Update”
(Accepted task changes in Project) which is 20 sec.

It must be noticed that “Publish All information” transaction cannot be measured, since it
runs in background on the server.

However, significant and fast performance degradation was detected for the “Update”
transaction (up to 60 sec.), during long runs. This could be a database server tuning issue,
so it must be carefully investigated by specialists.

5.6.2) Scalability

Since we had to run WinRunner scripts as GUI virtual users in LoadRunner, we were limited
to five virtual users (license limitation).

In fact we didn’t manage to run more than three virtual users concurrently without
application fault or script error (due to application behavior change).
However, three virtual users were running without think time between the transactions, so
they generate a load equivalent to a much higher number of real users.

The table below shows the highest system resource consumptions we could reach for three
virtual users:

Application Tier Total user
transactions per
minute

%CPU
utilization
Average

%CPU
utilization Max

Application server 10 50
Database server 25 80
Terminal server

15

5 40

We didn’t manage to reach 100% CPU utilization on any Tier of the application.

We must put these figures side by side with the production traffic which is extrapolated to
be one transaction per minute, based on the following assumptions:

 450 reporters reporting time, via the Web interface, once every week
 160 managers working with the client interface to:

• update up to five project plans once a week
• update/accept progresses of ten projects once a week

 22/79

So, assuming that the transaction mix of our scripts represents approximately the production
traffic, the capacity of the system is very much sufficient to cope with the estimated traffic.
The bottleneck, if any, will likely be the database server.

Nevertheless, we noticed that two transactions are seriously affected by the database log
growth: “Open” and “Update” projects. Thus, as the scenario creates new projects in the
database, the response times increases rapidly: from 10 sec. to 70 sec. (for an “open” project
transaction). This behaviour must be carefully analyzed and explained.

5.6.3) Robustness

Microsoft Project Server 2003 appeared to be robust: it never crashed during the tests and no
system resource leaks were detected.

However, application errors happened in a situation of transaction concurrency: hot fixes has
been provided by Microsoft support that solved the problems (two times).

Fair enough, these application errors never lead to data corruption. Nevertheless we believe
that concurrent access to MS plan (from the MSP client interface) is not well managed for a
high level of transaction concurrency. This is probably a consequence of MSP 2003 being a
reengineering and adaptation of the original MSP standalone version rather than a full
redesign.

In any case, this not seen this as a serious problem in the context of SPRING: there will be
few people accessing the plans (managers) and modifying it should not happen very
frequently (compared to the transaction duration).

5.7) Test results

The tests didn’t run flawlessly.

The main problems arising were:

 The synchronization between the different steps of the script has to be reworked
 Errors/Exceptions messages have been raised by MS Project. They have been addressed

to Microsoft support which provided hot-fixes
 We were not able to successfully run the script with more than three concurrent virtual

users, the limitation coming from the application behaviour rather than from the system
resources.

All scenarios have been run several times to assess reproducibility of the results. Therefore
only selected Analysis reports are presented in the following sub-chapters.

 23/79

5.7.1) Scenario with 1 Virtual user

This scenario generates a constant load on the application. However, the size of the database
growths since a new plan is created for each script iteration.

The graphs below shows an abnormal response time increase for the transaction
“UpdateMP”: it increases with the number of script iterations, so with the number of plan
created in the database.

The Windows Resources graphs doesn’t show any increase of application server resources,
when SQL server graphs shows a log file size constant increase (blue line).

The system resource consumption is mainly on SQL server machine: a ratio of Two (2)
between application and database server.

 24/79

 25/79

5.7.2) Scenario with 3 Virtual users

This scenario brings out evidence that there is something wrong with the database
management: the higher load shows a drastic response time increase for the transactions
opening a plan (OpenPlan, OpenPlan2) and UpdateMP.

Like for the previous scenario, the response time “recovers” at 01:00:00 and 01:30:00, then it
increases again.
Strange enough, it doesn’t correspond to a database check-point (00:35:00) when a lot of
disk access happened.

Repeating the scenario will show exactly the same graphs shape.

 26/79

5.8) Conclusion:

The study reveals that there is no risk in terms of performance and capacity deploying the
SPRING project. However there are some items worthy of further testing and analyzing to
avoid performance degradation with the database growth.

 27/79

6) TestDirector migration, feasibility study and
customisation

6.1)

6.2)

Introduction

This second project is about finding a solution to the need of updating the test management
platform in the Internet and Front Office Quality team (IFQ team) in Amadeus. The previous
used platform is Lotus Notes which is more a database than a test management platform and
the specific features that had been implemented on Lotus Notes are not easily upgraded. This
section will perform a feasibility study of the migration to a new test management platform
having into account the features in the old platform and the team requirements in order to
customise it to the team needs. It will involve understanding of the functionalities required,
self-learning of the new platform, contacting other engineers developing similar jobs, and
discussions with the technical support to ask for bug’s patches and for technical details.
Test Director is the test management tool selected because it is highly customisable which
allows to be well adjusted to the specific needs but on the other hand, a customisation is
required in order to be able to get benefits of the complexity of the product. The last version
of the product includes many new customisation possibilities which has made that many
companies go for this product but however, all the customisation possibilities have not been
explored yet and therefore all the IFQ needs had to be studied in order to see if the migration
was possible.

In the following chapters, the thesis describes the specification of the migration, the steps
followed in order to achieve them, alternatives solutions and why it was done in one way
instead of another.

Migration specification

TestDirector is a test management tool and therefore it facilitates common test management
features but there are some specific ones that IFQ team needs for their concrete work. This
was why in the beginning there was some incertitude about the possibility of the migration.
Here are the requirements that needed to be filled in order to make feasible the migration to
TestDirector. Later on it will be explained how they were achieved.

Step Bypass possible Mandatory Priority
1 Button in the ‘Test Lab’ section to call Windiff

Bypass: Not applicable
Yes 1

2 Retrieve the focused script in the ‘Test Lab’ section.
Bypass: Not applicable

Yes 1

3 Call an external tool in the ‘Test Plan – Test Script’ section for a
VAPI-XP test script
Bypass: Not applicable

Yes 1

4 Find a specific file within the attachments of a VAPI-XP test
script
Bypass: Not applicable

No 2

5 Pass some results of a script to the general report.
Bypass: Possibility to set manually the general report

No 3

6 Re-use some parts of VAPI-XP scripts code (generic code,
templates, dll…).
Bypass: Not applicable

Yes 1

 28/79

7 Automatically attach some result files in the attachment part of
the ‘run test’ in the ‘Test Lab’
Bypass: Not applicable

No 1

8 Create a general report with all the mandatory data
Bypass: Possibility to manage the general report manually and
send to IFQ.

No 2

9 Generate a Web page with the same data present in the general
report
Bypass: Possibility to create manually the Web page

No 3

10 Send the general report by mail
Bypass: Manual action possible

No 3

11 Verify if it is necessary to have SourceSafe in a local PC to
extract a file in SourceSafe
Bypass: Depends on task number 4.

No 3

6.3) Solutions

This part is really important because it shows the status of the different studies performed,
how they were achieved, what problems I met, other possible ways to achieve it and the
explanation about why I did it one way instead of another.

1. Add button in the ‘Test Lab’ section to call Windiff
Status: Done
Performance: In the TestLab part of the workflow in TestDirector, a new function that call
Windiff tool with the reference and result files that are attached to the script has been
implemented. So, it is possible to call it after any of the events that TestDirector handles.
Now, it is called when a user click in the “launch Windiff with atts” button in the TestLab.
Alternatives solutions:

a) One possibility was to get the path of the files in the TestDirector server machine
and launch windiff with those paths. However, this could bring future problems since it is
supposed that all applications should communicate through the OTA instead of directly with
the server machine itself. For this reason, the files are downloaded to the local machine and
afterwards, windiff is called with the new paths in the local machine.

b) It is important to mention that there is a bug in the function that is made to

download the attachments, and the bug consist in that the function ignores the location
specified and downloads the file into a temporal folder:

att.Load True, "C:\"

So, to call windiff with the attachment it is fine if the files are in a temporary folder, and this
function has been used. However, to download the attachments into a specific folder, it is
necessary to use this work around:

 Set ext = att.AttachmentStorage
 filename = att.DirectLink
 ext.Load filename, True
 Set fso = CreateObject("Scripting.FileSystemObject")
 'File = name with which the file is stored in the specified location
 fso.CopyFile ext.ClientPath & "\" & filename, "D:\Documents\" & File
 MsgBox "The file has been downloaded successfully"

 29/79

 msgbox att.FileName

2. Retrieve the focused script in the ‘Test Lab’ section
Status: Done. This point is included in the previous part
Performance: In the workflow of the customisation part of TestDirector, there are some
variables that allow the user to access to TestDirector fields.

Use {Object}_Fields(“{Field_Name}”) to access field by name.
Use loop on {Object}_Fields.FieldById(i) to access all fields in the collection.

Both methods allow working with the fields of the “current object.” The current object can
be defined in the following way:
Current object type: The object type for which the current event works. Almost each event
points to the object type for which the fields can be retrieved. For example, in
Defects_Bug_... events, only Bug_Fields can be retrieved; in TestPlan_DesignStep_...
events, only DesignStep_Fields can be retrieved.
Focused item: From all objects of the collection defined by event, only the fields of the
currently focused object can be retrieved. For example, the test on which the cursor is placed
or the current run in manual runner.
To retrieve the fields of other objects of the same/other object type, use TD API (OTA).
The first statement {Object}_Fields(“{Field_Name}”) can be used to retrieve any particular
field by name.
The second statement {Object}_Fields.FieldById(i) is needed to go over all fields of the
current object. For example, to reset the fields order

3. Call an external tool in the ‘Test Plan – Test Script’ part for a VAPI-XP test script.

Status: Done.
Performance: From VAPI-XP test scripts is possible to call another tools.

 30/79

Solution:
a) res = XTools.run("windiff.exe", parameter, -1, TRUE)
b) Set WshShell = CreateObject("Wscript.Shell")
intReturn = WshShell.Run("windiff " & parameter, 1, True)

Note: The first solution seems to be better for the VAPI-XP since it is a method included in

the SRunner library that is directly added by TestDirector for these tests. The other solution
is needed when programming in the workflow of TestDirector

4. Find a specific file within the attachments of a VAPI-XP test script

The objective of this part is to find a file “.scr” within the attachments of a script. To solve it,
a template script has been implemented. It checks if the file that has called it, has a concrete
.scr file in the attachments.

5. Pass some results of a script to the general report. For example adding into the
general report the versions of different components when these ones are verified.

Status: Done.
Performance: Four extra custom fields have been added, one for each product version. So,
now the TestSet properties include as well APIV2 proxy version, APIV2 gateway version,
APIV2 CornCore version and FareQuote database version. Once in the APIV2-XP tests the
values for these variables are obtained, it is just necessary to set that value to the
corresponding TestSet property in TestDirector.
For example:
 Var1 = “APIV2 proxy version: 4”
 CurrentTestSet.Field("CY_USER_06")= Var1
 CurrentTestSet.Post()

This code should be included in the Test_Main function of the VAPI-XP. It is important to
know the following data:

Field Label Field Identification
APIV2 proxy version CY_USER_06
APIV2 gateway version CY_USER_10
APIV2 CornCore version CY_USER_11
FareQuote database version CY_USER_12

Problems found: The current general report is a customisation of a predefined TestDirector
reports. In order to visualize any new field that might be added it is necessary to add them
into the fields to visualize in the customisation part for the reports.

6. Re-use some parts of VAPI-XP scripts code (generic code, templates, dll…).

Status: Done
Performance: TestSet fields are used to share parameters and the scripts will be called
through the run function of the TDHelper (object for the VAPI-XP scripts)

 31/79

Alternative solutions: In the next version of TestDirector new features to allow library
creation with VAPI-XP will be added. But now, the TestSet fields and the run function of the
TDHelper object can be used as a work around solution.

Note: Mercury response: “Adding a library in VAPI-XP is not available in TD right now. This is a
known issue and ER with ID 14025 has already been raised in our system that will be reviewed by
our R&D department. This will be fixed for future release of TD as it is not implemented yet. You may
use this ID to follow up on the ER with us in the future” However, for WinRunner automated tests, it
is possible to create compiled modules (library) and save them in TD.

7. Automatically attach some result files in the attachment part of the ‘run test’ in the
‘Test Lab’.

Status: Done.
Performance:
a) It is necessary to execute the code after the execution of the test cause in the workflow

there is no part of code that is executed immediately after a test execution.
b) Since it would be a waste of time to write the same code at the end of all scripts and it

is not possible to create libraries for VAPI-XP scripts, as Mercury Support confirmed,
the solution found consist in:
 Save the context variables needed in TestSet fields
 Call a template code
 Read the context variables of the caller from the TestSet fields.
 Execute the code with the context variables of the caller test

8. Create a general report with all the mandatory data (similar to the general report in
Lotus Notes).

Status: Done.
Performance: The first was to study all the different reports that TestDirector generates in
each step: Requirements, TestPlan, TestLab and Defects. Afterwards, it was necessary a
customisation to get with a similar format than the general report created in Lotus Notes. To
customise: Configure report and subreport > Select Cros-TestSet Execution Report > Select
the required fields in Custom Field Layout.

 32/79

Alternatives solutions:

a) With OTA (Open Test Arquitecture) in TestDirector is possible to recollect the
necessary data and to generate a webpage, but it is better to use TestDirector features than
add extra customisation that might bring problem for next TestDirector versions.

b) Another possibility would be to make changes in the report’s XML document to create a
totally customised report. However, Mercury says that it is not recommended nor supported
to make any modification in those templates. Anyway, the template location is the following:

 Local drive --> Inetpub --> <virtual directory> TDBIN --> Reports

c) It is also possible to buy TestDirector Advanced Reports add-in which enables the
customisation and design reports according to specific needs. However, the report already
obtained is good enough and it doesn’t seem to be cost-effective to purchase this add-in.

9. Generate a Web page with the same data present in the general report.

Status: Done.
Performance: TestDirector allow saving a report in html.

 33/79

10. Send the general report by mail.

Status: Done.
Performance: A button has been created in the TestLab and it will send an e-mail to the
specified persons with a link to the website where the project report is posted.

Alternative solution:
a) It is possible to program in the workflow a function that after a concrete event sends an
email to specific users and with specific information. The problem here is that the
information sent should be an OTA object and the general report is not. For more
information about how to send a mail from the workflow look to the OTA examples file
included in the appendix.
b) Use the settings in the TestSetProperties of the Test Lab

 34/79

TestLab > Test Set Properties > Notifications. It is possible to send an email for the events
of:

a) Any test in the execution dialog box finishes with status “failed”
b) Environment failure (network problems, hardware failure, etc…)
c) All tests in the execution dialog box have finished their runs

The mail contains a small report of what happened and a direct link to the test itself in
TestDirector.

11. Verify if it is mandatory to have SourceSafe in a local PC to extract a file (in
SourceSafe).

It is not necessary to have SourceSafe installed in the client machine due to it is possible to
add a version control in TestDirector. It enables to keep track of the changes made to the
testing information in a TestDirector project. It allows the check in and check out of the tests,
displays a history of versions, and get a previous version of a test.

To integrate version control with TestDirector, a third party version control tool has to be
installed, as well as the TestDirector Version Control add-in.

Version Control Add-ins:

• Microsoft Visual SourceSafe Version Control Add-in
Enables TestDirector to work with Microsoft Visual SourceSafe, allowing the version
control on TestDirector tests. The Microsoft Visual SourceSafe Version Control Add-in
enables version control project in TestDirector. It is possible to update and revise
WinRunner, QuickTest Professional, Astra QuickTest, or VAPI-XP tests, while maintaining
previous versions of each test. This allows keeping track of the changes made to each test in
a TestDirector project, see how and when a test was modified, or return to a previous version
of the test.

 35/79

http://updates.merc-int.com/testdirector/td80/version_control/VSS_vc/index.html

Installation Instructions:

1. Install Microsoft Visual SourceSafe server on the TestDirector server machine.

2. Uninstall any previous versions of this add-in. To uninstall, choose Start > Settings >
Control Panel > Add/Remove Programs and follow the instructions on the screen.

3. Click Download Add-in to download and install this add-in to the TestDirector server
machine. Note that to install this add-in, it is necessary to log in with administrator
privileges.

• Rational ClearCase Version Control Add-in
Enables TestDirector to work with Rational ClearCase, allowing the version control on the
TestDirector tests.

• TestDirector Version Control Third Party Prep Add-in
Prepares TestDirector before a third party version control tool is installed.

6.4) Conclusions

It has been demonstrated that the migration is possible and all the features have been
implemented in the test management platform. This is going to be used for IFQ team and
probably extended to many other teams in Amadeus

It has been a very stimulating project because it was a big responsibility to decide whether it
is possible for a team to use a tool or not. There were no similar works done in the company
so that I could take some hints and therefore everything had to be done by reading carefully
the tools manuals and the Mercury support webpage to take ideas about how to solve specific
customisation requirements.

It has been also interesting that one has to understand first what the customer need and then
find alternatives to solve it.

 36/79

http://updates.merc-int.com/testdirector/td80/version_control/RCC_vc/index.html
http://updates.merc-int.com/testdirector/td80/version_control/vc_prep/index.html

7) General conclusions

I have enjoyed doing both projects because it was a new field for me and it was quite
challenging that there was uncertainty about whether Microsoft Project Server 2003 was
enable to handle all Amadeus employees’ use and whether the migration from Lotus Notes to
TestDirector was possible or not.

It has been very interesting to get to know the latest test methodologies, the newest tools
(WinRunner, LoadRunner and TestDirector), new programming languages (VBScript, TSL)
and a new architecture (OTA) in relatively short period of time.

The whole project has involved not only programming or development but also I had to be in
contact with the clients in order to be sure that the tests checked everything requested and
that the new implementation matched with their expectations. It has been a valuable
experience to realize how these things work in the real world. It is necessary to understand
what the client wants and find a technically possible way to solve it. I also found it
interesting to be in contact with the developers of the products I was using (Mercury support)
and be able to discuss with them about customisation possibilities.

In general it has been a good professional experience and I have appreciated the two teams’
environment, within which I have also learned a lot.

8) Acknowledgments

I want to give special thanks to Philippe Bernard for helping me and guiding me always that
I needed to look for information or had some troubles in the development of both projects.

I have to mention my gratitude to the IFQ team, Isabel Alexandre, Alain Ballester and
Federic Assante di Capillo for explaining me how the department works and give me advises
in how to approach the project.

Thanks to my professor in KTH, Christian Schulte for being in contact with me even though
I was abroad and guiding me in a proper writing of my thesis.

 37/79

9

) Bibliography

9.1) TestDirector 8.0 Books On Line [online] Available from:
http://ncesetec2/TDBIN/Help/Books/onlinedoc.htm [Accessed March 2005]

9.2) Knowledge base database and user forums in the Mercury Support website [online]
Available from: http://support.mercury.com/ [Accessed March 2005]

9.3) MSDN, Visual Basic Scripting [online] Available from:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/vtoriVBScript.asp [Accessed March 2005]

9.4) VBS Tutorial [online] Available from:
http://www.freenetpages.co.uk/hp/alan.gauld/tutcont.htm [Accessed March 2005]

9.5) Funcionamiento de una DLL [online] Available from:
http://www.zator.com/Cpp/E1_4_4b0.htm [Accessed March 2005]

9.6)

9.7)

Information resource for software testers [online] Available from:

http://www.testingfaqs.org/ [Accessed March 2005]

9.8) Software Testing Tools [online] Available from:
http://66.102.9.104/search?q=cache:IHnDesxcN34J:www.cs.uku.fi/research/Teho/SoftwareT
estingTools.pdf+thesis+winrunner+loadrunner+testdirector&hl=es [Accessed March 2005]

9.9) Testing Term Definitions [online] Available from:
http://www.olenick.com/html/glossary.html [Accessed November 2005]

9.10) Methodologies for Automated Testing [online] Available from: http://www.sqa-
test.com/method.html [Accessed November 2005]

 38/79

http://ncesetec2/TDBIN/Help/Books/onlinedoc.htm
http://support.mercury.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/vtoriVBScript.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/vtoriVBScript.asp
http://www.freenetpages.co.uk/hp/alan.gauld/tutcont.htm
http://www.zator.com/Cpp/E1_4_4b0.htm
http://www.testingfaqs.org/
http://66.102.9.104/search?q=cache:IHnDesxcN34J:www.cs.uku.fi/research/Teho/SoftwareTestingTools.pdf+thesis+winrunner+loadrunner+testdirector&hl=es
http://66.102.9.104/search?q=cache:IHnDesxcN34J:www.cs.uku.fi/research/Teho/SoftwareTestingTools.pdf+thesis+winrunner+loadrunner+testdirector&hl=es
http://www.olenick.com/html/glossary.html
http://www.olenick.com/html/glossary.html
http://www.sqa-test.com/method.html

10) Appendix

10.1) Spring project

Machine Software configuration
Terminal
server

Terminal service
MS Project 2003 (“Always show full menus” checked)
LoadRunner Load Generator (“Enable Terminal Services”
checked)
WinRunner (WebTest add-on + GUI map file per test) + patched
files:
mmalloc_logic.dll
mosifs32.dll
thrdutil.dll
windde32.dll
wnrpc32.dll
xdr.dll
wrun.ini (configuration file)

Workstation MS Project 2003 (“Always show full menus” checked)
WinRunner (WebTest add-on + GUI map file per test) + patched
files:
mmalloc_logic.dll
mosifs32.dll
thrdutil.dll
windde32.dll
wnrpc32.dll
xdr.dll
wrun.ini (configuration file)
LoadRunner Load Generator

Controller LoadRunner Controller
Terminal service client (one must open one more terminal
session client than Vusers! This is for the mdrv process)

Access to the WinRunner license server:

SQL Database

 Load the MSP “template” plans
 Backup the database prior testing
 restrict access to “test” users only
 run the tests
 Restore the database after testing

 39/79

 Plans loaded into the database for the performance tests:
o 10 of them are about 500 tasks with 30 resources assigned to these tasks
o 50 of them are about 200 tasks with about 8 resources assigned

10.2)

10.3)

 DEV-SPL-TEC-TES Department

The Technical Study department mission is to provide information and make
recommendations in response to requested studies and to find synergy and reuse of existing
solutions between different parties within the company. Basically:

- Provides support for studies (mainly technical) that are requested by Amadeus

management.
- Acts as an interface between Marketing, Development and Data Processing
- Coordinates new technical initiatives and architecture proposals
- Contributes to technical design of new products / products architectures / general

technical architecture
- Follows up the implementation of the architectures to obtain the practical view

 Spring project tests code

##

####### first script
##

############## START
start_transaction ("UpdatePProgress");
end_transaction ("UpdatePProgress", LR_AUTO);
############## END
 wait (30);
 for(i=0;i<999;i++);

Transactions declaration

 declare_transaction ("OpenPlan");
 declare_transaction ("SaveAs");
 declare_transaction ("PublishAllInformation");
 declare_transaction ("Login");
 declare_transaction ("TaskDisplay");
 declare_transaction ("UpdateAll");
 declare_transaction ("OpenPlan2");
 declare_transaction ("UpdatePProgress");
 declare_transaction ("UpdateMP");

Vuser

 lr_whoami (group, scenario, vuser);
 output_message ("Virtual User: " & vuser);
 Num = vuser;
 if (Num == -1)
 {
 srand (get_time ());
 Num = int (rand()*6);
 Num = 1;
 }
 else
 {

 40/79

 Num = Num-1;
 }

 cont2 = 99;#this counter should go decreasing so that the last
project plan created
 # is displayed the first in the web access tool.
 var = 100 - cont2;
 num_iterations_big_loop = 2;

########
######## Big loop
########
 while (var <= num_iterations_big_loop)
 {

Press "Start"
 set_window ("Shell_TrayWnd", 500);
 button_press ("Start");

Launch MProject for SPRING-Num through a command in "Run"
 set_window ("BaseBar", 500);
 toolbar_select_item ("ToolbarWindow32_1", "Run...");
 set_window ("Run", 500);
 edit_set ("Open:_1", sprintf("Winproj.exe /s
\"http://nceprojspring.nce.amadeus.net/projectserver\" /u \"SPRING-%i\" /p
\"\" ",Num));
 button_press ("OK");

Select bar menu in MProject
 win_wait_info ("Microsoft Project - Project1","enabled",1,500);
 set_window ("Microsoft Project - Project1", 500);
 obj_mouse_click ("Menu Bar", 47, 9, LEFT);

Select File
 win_wait_info ("File_1","displayed",1,500);
 win_mouse_click ("File_1", 13, 31);

Open from Microsoft Office Project Server
 win_wait_info ("Open from Microsoft Office Project
Server","displayed",1,500);
 set_window ("Open from Microsoft Office Project Server", 44);
 obj_click_on_text ("JWinproj-GridClass",sprintf("AAASPRING%i-TEST-
0",Num),LEFT);
 win_mouse_click ("Open from Microsoft Office Project Server", 236,
383);
 win_mouse_click ("Open from Microsoft Office Project Server", 400,
396);

############## START
 start_transaction ("OpenPlan");

################################
Save as with different name
################################

Microsoft Project - SPRING-TEST.Published [Read-Only]
 i = 0;
 while (win_wait_info ("Microsoft Project - SPRINGX-TEST-n.Published
[Read-Only]","displayed",1,1000)==E_NOT_FOUND && i<6)
 { i++;
 }
 end_transaction ("OpenPlan", LR_PASS);
############## END

 41/79

 set_window ("Microsoft Project - SPRINGX-TEST-n.Published [Read-
Only]", 500);
 obj_mouse_click ("Menu Bar", 46, 8, LEFT);

File_1
 i = 0;
 while (win_wait_info ("File_1","displayed",1,1000)==E_NOT_FOUND &&
i<6)
 { i++;
 }
 win_mouse_click ("File_1", 63, 126);

Save to Project Server
 win_wait_info ("Save to Project Server","displayed",1,500);
 set_window ("Save to Project Server", 500);
 obj_exists ("JWinproj-Edit",500);
 # The plan created will be called: SPRINGX-TEST-X
 obj_type ("JWinproj-Edit","<kDel_E>");
wait(2);
 obj_type ("JWinproj-Edit",sprintf("<kDel_E>AAASPRING%i\-TEST\-
%i<kDel_E>",Num,cont2));
 win_mouse_click ("Save to Project Server", 339, 273);

############## START
 start_transaction ("SaveAs");

Microsoft Project - SPRING-TEST-.Published
 i = 0;
 while (win_wait_info("Microsoft Project - SPRINGX-TEST-
n.Published","enabled",1,500)==E_NOT_FOUND && i<20)
 { i++;
 }

 end_transaction ("SaveAs", LR_PASS);
############## END

 set_window ("Microsoft Project - SPRINGX-TEST-n.Published", 500);
 obj_wait_info("Menu Bar","enabled",1,500);
 obj_mouse_click ("Menu Bar", 358, 12, LEFT);

 win_wait_info ("Collaborate_1","enabled",1,600);
 win_click_on_text ("Collaborate_1","Publish",FALSE,LEFT);
 win_wait_info ("Publish_0","enabled",1,600);
 win_click_on_text ("Publish_0","Republish",FALSE,LEFT);

Microsoft Office Project

 if (win_exists ("Microsoft Office Project",10) == 0)
 {
 set_window ("Microsoft Office Project", 500);
 button_press ("OK");
 }

Republish Assignments
 win_mouse_click ("Republish Assignments", 406, 364);

 wait (4);

############## START
 start_transaction ("PublishAllInformation");

 42/79

###############################
Close MProject
##############################

Microsoft Project - SPRING-TEST-23-10.Published
 i = 0;
 while ((win_wait_info("Microsoft Project - SPRINGX-TEST-
n.Published","enabled",1,500) == E_NOT_FOUND) && i<20)
 { i++;
 }

 end_transaction ("PublishAllInformation", LR_PASS);
############## END

Microsoft Project
 win_wait_info ("Microsoft Project","enabled",1,500);
 set_window ("Microsoft Project");
 win_close ("Microsoft Project");

 win_wait_info ("Microsoft Office Project","enabled",1,500);
 set_window ("Microsoft Office Project", 500);
 button_press ("No");

 win_wait_info ("Microsoft Project","displayed",0,500);
##

####### end first script
##

##

####### second script
##

Variables
 cont = 0;
 num_iterations = 10;

Now the script checks if there are tasks before so it is not
neccessary to wait here
wait (10) ;

 while (cont < num_iterations)
 {
Shell_TrayWnd
 set_window ("Shell_TrayWnd", 500);
 button_press ("Start");

BaseBar
 set_window ("BaseBar", 500);
 toolbar_select_item ("ToolbarWindow32_1", "Programs;Internet
Explorer");

Browser Main Window

 set_window ("Browser Main Window", 500);
 wait (2);
edit_set ("browser_main_edit_location_0", "<kDel_E>");
 obj_type ("browser_main_edit_location_0", "<kDel_E>");
 obj_type ("browser_main_edit_location_0",
"<kDel_E>http://nceprojspring.nce.amadeus.net/projectserver/lgnps.asp");
edit_set ("browser_main_edit_location_0",

 43/79

"<kDel_E>http://nceprojspring.nce.amadeus.net/projectserver/lgnps.asp");
 edit_set_selection ("browser_main_edit_location_0", 0, 0, 0, 45);
 obj_type ("browser_main_edit_location_0","<kReturn>");

##############
Log in
##############
Microsoft Office Project Web Access 2003 Logon - nceprojspring.nce.ama
 set_window("Microsoft Office Project Web Access 2003 Logon -
nceprojspring.nce.ama",500);
 edit_set("userName",sprintf("spring-%i-%i",Num,cont));
 button_press("Go");
############## START
 start_transaction ("Login");

Microsoft Office Project Web Access 2003 - nceprojspring.nce.amadeus
 win_wait_info ("Microsoft Office Project Web Access 2003 -
nceprojspring.nce.amadeus","enabled",1,500);

 end_transaction ("Login", LR_PASS);
############## END
 set_window ("Microsoft Office Project Web Access 2003 -
nceprojspring.nce.amadeus", 500);
 while (win_click_on_text ("Microsoft Office Project Web Access 2003
- nceprojspring.nce.amadeus","no",FALSE,LEFT)==0)
 {
 # There are no new tasks assigned
 web_link_click("Home");
 wait (3);
 }

Microsoft Office Project Web Access 2003 - nceprojspring.nce.amadeus
 win_wait_info ("Microsoft Office Project Web Access 2003 -
nceprojspring.nce.amadeus","enabled",1,500);
 set_window("Microsoft Office Project Web Access 2003 -
nceprojspring.nce.amadeus",500);
 web_link_click("Tasks");

############## START
 start_transaction ("TaskDisplay");

 set_window ("Microsoft Office Project Web Access 2003 -
nceprojspring.nce.amadeus", 500);

 end_transaction ("TaskDisplay", LR_PASS);
############## END

##################################
Insert notes and time report
##################################
 set_window("Microsoft Office Project Web Access 2003 -
nceprojspring.nce.amadeus",500);
 # Waiting for the grid to be displayed
 obj_exists ("Insert Notes",500);
wait (2);

 obj_mouse_click ("JWinproj-GridClass_0", 169, 95, LEFT);
 web_sync(8);
 button_press("Insert Notes");

Project Web Access Assignment Notes
 set_window("Project Web Access Assignment Notes",500);

 44/79

 edit_set("idNoteCurrent",sprintf("[SPRING-%i-%i]try\r\n",Num,cont));
 button_press("OK");

html_frame
 set_window ("html_frame", 500);
 obj_mouse_click ("JWinproj-GridClass_1", 111, 93, LEFT);
 type ("22");
 obj_mouse_click ("JWinproj-GridClass_1", 159, 94, LEFT);

Microsoft Office Project Web Access 2003 - nceprojspring.nce.amadeus
 set_window("Microsoft Office Project Web Access 2003 -
nceprojspring.nce.amadeus",500);
 button_press("Insert Notes");

Project Web Access Assignment Notes
 set_window("Project Web Access Assignment Notes",500);
 edit_set("idNoteCurrent",sprintf("[SPRING-%i-%i]try2\r\n[SPRING-%i-
%i]try",Num,cont,Num,cont));
 button_press("OK");

Microsoft Office Project Web Access 2003 - nceprojspring.nce.amadeus
 set_window("Microsoft Office Project Web Access 2003 -
nceprojspring.nce.amadeus",500);
 button_press("Update All");
############## START
 start_transaction ("UpdateAll");

Project Web Access
 win_wait_info("Project Web Access","enabled",1,500);

 end_transaction ("UpdateAll", LR_PASS);
############## END
 set_window("Project Web Access",500);
 button_press("OK");

##############
Log off
##############

Microsoft Office Project Web Access 2003 - nceprojspring.nce.amadeus
 win_wait_info("Microsoft Office Project Web Access 2003 -
nceprojspring.nce.amadeus","enabled",1,500);
 set_window("Microsoft Office Project Web Access 2003 -
nceprojspring.nce.amadeus",500);
 web_link_click("Log Off");

Browser Main Window
 win_close ("Browser Main Window");

 cont = cont + 1;
 }#end loop
##

####### end second script
##

##

####### third script
##

The file has been saved in web test mode so it doesn´t need to load

 45/79

GUI files
but to run it, it should have winrunner in web test mode and GUI file
per test mode.

#######################################
Open MProject with a concrete user
#######################################

 # Microsoft Project
 set_window ("Shell_TrayWnd", 500);
 button_press ("Start");

BaseBar
 set_window ("BaseBar", 500);
 toolbar_select_item ("ToolbarWindow32_1", "Run...");
 set_window ("Run", 500);
 edit_set ("Open:_1", sprintf("Winproj.exe /s
\"http://nceprojspring.nce.amadeus.net/projectserver\" /u \"SPRING-%i\" /p
\"\" ",Num));
 button_press ("OK");

Microsoft Project
 win_wait_info ("Microsoft Project - Project1","enabled",1,500);
 set_window("Microsoft Project - Project1");
 obj_mouse_click ("Menu Bar", 40, 11, LEFT);

File_1
 win_mouse_click ("File_1", 20, 37);

Open from Microsoft Office Project Server
 win_wait_info ("Open from Microsoft Office Project
Server","enabled",1,500);
 set_window ("Open from Microsoft Office Project Server", 500);
 obj_click_on_text ("JWinproj-GridClass",sprintf("AAASPRING%i-TEST-
%i",Num,cont2),LEFT);
 win_mouse_click ("Open from Microsoft Office Project Server", 406,
395);
############## START
 start_transaction ("OpenPlan2");

Microsoft Project - SPRING-TEST2.Published
 win_wait_info ("Microsoft Project - SPRINGX-TEST-
n.Published","enabled",1,800);

 end_transaction ("OpenPlan2", LR_PASS);
############## END

 set_window ("Microsoft Project - SPRINGX-TEST-n.Published", 500);
 obj_mouse_click ("Menu Bar", 357, 4, LEFT);

Collaborate_1
 win_wait_info ("Collaborate_1","enabled",1,900);
 win_mouse_click ("Collaborate_1", 46, 59);

############## START
 start_transaction ("UpdatePProgress");

 set_window ("Shell DocObject View_3", 500);
 while (win_click_on_text ("Shell DocObject
View_3","all",TRUE,LEFT)!=0)
 {
 # There are no new tasks assigned

 46/79

 wait (2);
 }

 end_transaction ("UpdatePProgress", LR_PASS);
############## END

 wait (1);
 set_window ("Shell DocObject View_3", 500);
 button_press ("Accept_all");

 win_wait_info ("Microsoft Project - SPRINGX-TEST-
n.Published","enabled",1,500);
 set_window ("Microsoft Project - SPRINGX-TEST-n.Published", 500);
 button_press ("Update");

 set_window ("Shell DocObject View_3", 500);
 button_press ("UpdateC");

############## START
 start_transaction ("UpdateMP");

Microsoft Office Project
 win_wait_info ("Microsoft Office Project","enabled",1,900);

 end_transaction ("UpdateMP", LR_PASS);
############## END

 set_window ("Microsoft Office Project", 500);
 button_press ("OK");

Project Web Access -- Web Page Dialog
 win_wait_info ("Project Web Access -- Web Page
Dialog","enabled",1,900);
 set_window ("Project Web Access -- Web Page Dialog", 500);
 obj_mouse_click ("Internet Explorer_Server", 252, 101, LEFT);

Microsoft Project - SPRING-TEST2.Published
 win_wait_info ("Microsoft Project - SPRINGX-TEST-
n.Published","enabled",1,999);
 win_close ("Microsoft Project - SPRINGX-TEST-n.Published");
 wait (1);

##

####### End third script
##

 cont2 = cont2 - 1;
 var = 100 - cont2;
} # End big loop
########
######## End Big loop
########

 47/79

10.4)

10.5)

IFQ Team

Within the Product Quality Control department, the Internet and Front Office Quality team is
in charge of:
• Implementation and operation of Quality Regression Test platforms for Amadeus

Central System components and Client Products (e.g. Vista, Cruise, Tempo, APIs...)
• Develop and maintain internal tools and processes to help the automation of tasks for all

the teams of the Product Quality Control department
• Study, suggest and help implement QRT infrastructure for new Amadeus products.

 TestDirector customisation code

These are the files that have been implemented into the customisation section:
The .vbs files are templates and example of templates to be used in the Test Lab module.
These files are defined in TestDirector as VAPI-XP scripts.

1) The following files: attachAtt2.vbs, FindAtt2.vbs and script_name2 are templates.

2) The following files: CallAttachAtt.vbs, CallFindAtt.vbs and script_name2 are only
examples of how the templates should be called and what parameters have to be sent.

3) attachAtt.vbs, attdownload.vbs and FindAtt.vbs contain the code itself before having been
converted into templates or buttons.

4) Test Lab Module script is the code corresponding to the workflow in that part. In this part
the buttons are implemented.

The code of attachAtt2 and CallAttachAtt is enclosed as a example of how templates work.
Below, the code of the Test Lab Module in the workflow is listed to give a better
understanding of the context variables and how does it looks like.

attachAtt2.vbs

' attachAtt2 [VBScript]
' Created by TestDirector
' 17/02/2005 17:32:42
' ==

' --
' Main Test Function
' Debug - Boolean. Equals to false if running in [Test Mode] : reporting
to TestDirector
' CurrentTestSet - [OTA COM Library].TestSet.
' CurrentTest - [OTA COM Library].TSTest.
' CurrentRun - [OTA COM Library].Run.
' --
Sub Test_Main(Debug, CurrentTestSet, CurrentTest, CurrentRun)
 ' *** VBScript Limitation ! ***
 ' "On Error Resume Next" statement suppresses run-time script errors.
 ' To handle run-time error in a right way, you need to put "If
Err.Number <> 0 Then"
 ' after each line of code that can cause such a run-time error.

 48/79

 On Error Resume Next

 ' clear output window
 TDOutput.Clear

 'Similar to attachAtt but this one is implemented to be a template and
 ' being executed through CallAttachAtt
 Dim testname, testid, objTSTest, objLastRun
 'Get the file name stored in CY_USER_01
 testName = CurrentTestSet.Field("CY_USER_01")
 msgbox "Get value of Parameter1: " & CurrentTestSet.Field("CY_USER_01")

 'Get the file name stored in CY_USER_01
 testId = CurrentTestSet.Field("CY_USER_13")
 msgbox "Get value of Parameter2: " & CurrentTestSet.Field("CY_USER_13")

 Set objTSTest = CurrentTestSet.TSTestFactory.Item(testId)
 Set objLastRun = objTSTest.LastRun
 msgbox "testName " & testName

 Dim attAddresstref, attNametref, faddresstref, fpathtref
 Dim attAddresstres, attNametres, faddresstres, fpathtres

 If objLastRun.Field("RN_ATTACHMENT") <> "Y" Then

 msgbox "adding tref attachment"

 dim attfact 'attachment factory
 dim att 'attachment

 set attfact = objLastRun.Attachments

 set att = attfact.AddItem(NULL)

 fpathtref = "\\nce-tstntq-d3\APIv2Tests\V_GW21P055\TRANSREF"
 faddresstref = fpathtref & "\" & testName & ".tref"

 att.FileName = faddresstref
 att.Type = 1
 att.Post

 'getting path for the tref attachment
 attNametref = att.DirectLink
 attAddresstref = "\\ncesetec2\TD_Dir\PQCIFQ\IFQ0\attach\" &
attNametref

 msgbox "adding tres attachment"

 set att = attfact.AddItem(NULL)

 fpathtres = "\\nce-tstntq-d3\APIv2Tests\V_GW21P055\TRANSRESULT"
 faddresstres = fpathtres & "\" & testName & ".tres"

 att.FileName = faddresstres
 att.Type = 1
 att.Post

 'getting path for tres attachment
 attNametres = att.DirectLink
 attAddresstres = "\\ncesetec2\TD_Dir\PQCIFQ\IFQ0\attach\" &
attNametres

 49/79

 'Launching windiff with the att
 'msgbox "Launching windiff with tres and tref"
 'Set WshShell = CreateObject("Wscript.Shell")
 'intReturn = WshShell.Run("windiff " & attAddresstref & " " &
attAddresstres, 1, True)

 End If
 set attfact=nothing
 set att = nothing

 If Not Debug Then
 End If
 ' handle run-time errors
 If Err.Number <> 0 Then
 TDOutput.Print "Run-time error [" & Err.Number & "] : " &
Err.Description
 ' update execution status in "Test" mode
 If Not Debug Then
 CurrentRun.Status = "Failed"
 CurrentTest.Status = "Failed"
 End If
 End If
End Sub

CallAttachAtt

' CallAttachAtt [VBScript]
' Created by TestDirector
' 17/02/2005 17:30:03
' ==

' --
' Main Test Function
' Debug - Boolean. Equals to false if running in [Test Mode] : reporting
to TestDirector
' CurrentTestSet - [OTA COM Library].TestSet.
' CurrentTest - [OTA COM Library].TSTest.
' CurrentRun - [OTA COM Library].Run.
' --
Sub Test_Main(Debug, CurrentTestSet, CurrentTest, CurrentRun)
 ' *** VBScript Limitation ! ***
 ' "On Error Resume Next" statement suppresses run-time script errors.
 ' To handle run-time error in a right way, you need to put "If
Err.Number <> 0 Then"
 ' after each line of code that can cause such a run-time error.
 On Error Resume Next

 ' clear output window
 TDOutput.Clear

 'The name of the script is stored in CY_USER_01 to be able to be checked
 ' by all the tests within this TestSet
 CurrentTestSet.Field("CY_USER_01")= CurrentTest.testname
 CurrentTestSet.Post()
 msgbox "new value of Parameter1: " & CurrentTestSet.Field("CY_USER_01")

 'XXX
 'ANOTHER PARAMETER AND CALL TO attachAtt

 'The id of the script is stored in CY_USER_13 to be able to be checked

 50/79

 ' by all the tests within this TestSet
 CurrentTestSet.Field("CY_USER_13")= CurrentTest.id
 CurrentTestSet.Post()
 msgbox "new value of Parameter2: " & CurrentTestSet.Field("CY_USER_13")
 ' TODO: put your code here

 ' ejecutar script_name2 desde este script que es script_name
 msgbox "call attachAtt"
 res = TDHelper.RunTest ("attachAtt2", 1, "test")

 If Not Debug Then
 End If
 ' handle run-time errors
 If Err.Number <> 0 Then
 TDOutput.Print "Run-time error [" & Err.Number & "] : " &
Err.Description
 ' update execution status in "Test" mode
 If Not Debug Then
 CurrentRun.Status = "Failed"
 CurrentTest.Status = "Failed"
 End If
 End If
End Sub

TestLab Module in the workflow

Sub SendLinkToGeneralReport()
On Error Resume Next

 TDConnection.SendMail "edecastrodiazplaza@amadeus.net",
"edecastrodiazplaza@amadeus.net", "Information sent from TestDirector", "Find the general
report: http://pqc/IFQ/ETVTestResults/ETVTestResultsByDate.htm ", NULL, "HTML"
 'SendMail "from","to","Subject","Message",array_of_att,"HTML"/"Text"
 MsgBox "Mail Sent"

 On Error GoTo 0
End Sub

'This function sends the test object selected and any attachments that
' had been added to it in the TestPlan part.
'The 3rd argument of the Mail function can have the following values:
' TDMAIL_ATTACHMENT [1]
' TDMAIL_HISTORY [2]
' TDMAIL_TEXT [4]
' TDMAIL_DES_STEP [8]
' TDMAIL_COVER_TEST [16]
' TDMAIL_SINGLEMAIL [32]
' TDMAIL_COMMENT_AS_BODY [64]
Sub SendTest (iObjectId, strTo, strCc, strSubject, strComment)
'This function is not in use now but it is an example about
' how to send an object by email.
On Error Resume Next
 Dim objTestFactory, objTest
 Set objTestFactory = TDConnection.TestFactory
 Set objTest = objTestFactory.Item (iObjectId)

 51/79

 objTest.Mail strTo, strCc, 1, strSubject, strComment
 Set objTest = nothing
 Set objTestFactory = nothing
 PrintError "SendTest"
 On Error GoTo 0
End Sub

Sub AddAttsAfterEachRun()
On Error Resume Next
Dim iTestSetId, iTSTestId, objTestSet, objTSTest, objLastRun
Dim testName
Dim attAddresstref, attNametref, faddresstref, fpathtref
Dim attAddresstres, attNametres, faddresstres, fpathtres

 iTestSetId = TestSetTest_Fields("TC_CYCLE_ID").Value
 iTSTestID = TestSetTest_Fields("TC_TEST_ID").Value
 Set objTestSet = TDConnection.TestSetFactory.Item(iTestSetId)
 Set objTSTest = objTestSet.TSTestFactory.Item(iTSTestID)
 Set objLastRun = objTSTest.LastRun
 testName = objTSTest.TestName
 msgbox "testName " & testName

 If objLastRun.Field("RN_ATTACHMENT") <> "Y" Then

 msgbox "adding tref attachment"

 dim attfact 'attachment factory
 dim att 'attachment

 set attfact = objLastRun.Attachments

 set att = attfact.AddItem(NULL)

 fpathtref = "\\nce-tstntq-d3\APIv2Tests\V_GW21P055\TRANSREF"
 faddresstref = fpathtref & "\" & testName & ".tref"

 att.FileName = faddresstref
 att.Type = 1
 att.Post

 'getting path for the tref attachment
 attNametref = att.DirectLink
 attAddresstref = "\\ncesetec2\TD_Dir\PQCIFQ\IFQ0\attach\" & attNametref

 msgbox "adding tres attachment"

 set att = attfact.AddItem(NULL)

 fpathtres = "\\nce-tstntq-d3\APIv2Tests\V_GW21P055\TRANSRESULT"
 faddresstres = fpathtres & "\" & testName & ".tres"

 52/79

 att.FileName = faddresstres
 att.Type = 1
 att.Post

 'getting path for tres attachment
 attNametres = att.DirectLink
 attAddresstres = "\\ncesetec2\TD_Dir\PQCIFQ\IFQ0\attach\" & attNametres

 'Launching windiff with the att
 msgbox "Launching windiff with tres and tref"
 Set WshShell = CreateObject("Wscript.Shell")
 intReturn = WshShell.Run("windiff " & attAddresstref & " " & attAddresstres, 1, True)

 End If
 set attfact=nothing
 set att = nothing

 Set objTestSet = Nothing
 Set objTSTest = Nothing
 Set objLastRun = Nothing
PrintError "AddAttsAfterEachRun"
On Error GoTo 0
End Sub

Sub LaunchWindiffWithAtts()
On Error Resume Next
Dim iTestSetId, iTSTestId, objTestSet, objTSTest, objLastRun
Dim testName
Dim attAddresstref, attNametref, faddresstref, fpathtref
Dim attAddresstres, attNametres, faddresstres, fpathtres

 iTestSetId = TestSetTest_Fields("TC_CYCLE_ID").Value
 iTSTestID = TestSetTest_Fields("TC_TEST_ID").Value
 Set objTestSet = TDConnection.TestSetFactory.Item(iTestSetId)
 Set objTSTest = objTestSet.TSTestFactory.Item(iTSTestID)
 Set objLastRun = objTSTest.LastRun
 testName = objTSTest.TestName
 'msgbox "testName " & testName

 msgbox "Launching windiff with tres and tref"
 If objLastRun.Field("RN_ATTACHMENT") = "Y" Then

 'msgbox "adding tref attachment"

 Dim attfact 'attachment factory
 Dim att 'attachment
 set attfact = objLastRun.Attachments

 Dim alist
 Set alist = attfact.NewList("")
 MsgBox "The test " & testName & " has " & alist.Count & " attachments"

 53/79

 'msgbox "id " & objLastRun.id

 Dim vartres, vartref, foundtres, foundtref
 foundtres = false
 foundtref = false
 vartres = "RUN_" & objLastRun.id & "_" & testName & ".tres"
 vartref = "RUN_" & objLastRun.id & "_" & testName & ".tref"

 'attAddresstref = alist.Item(alist.Count).FileName

 For each att IN alist
 if att.Name = vartres then
 'load function has a bug and downloads the file to a temp folder
 ' but that is ok for this function. That path is retrieved to
 ' attAddresstref
 att.Load True, "C:\"
 attAddresstref = att.FileName
 msgbox att.Name & " found"
 foundtref = True
 end if
 if att.Name = vartref then
 att.Load True, "C:\"
 attAddresstres = att.FileName
 msgbox att.Name & " found"
 foundtres = True
 end if
 Next

 if foundtref and foundtres then
 'Launching windiff with the att tres y tref
 Set WshShell = CreateObject("Wscript.Shell")
 intReturn = WshShell.Run("windiff " & attAddresstref & " " & attAddresstres, 1,
True)
 else
 msgbox "tres and/or tref are not attached to the last run of the file"
 end if
 else
 msgbox "There are no attachments"

 End If
 set attfact=nothing
 set att = nothing

 Set objTestSet = Nothing
 Set objTSTest = Nothing
 Set objLastRun = Nothing
 Set WshShell = Nothing
PrintError "LaunchWindiffWithAtts"
On Error GoTo 0
End Sub

 54/79

Function TestLab_ActionCanExecute(ActionName)

 'On Error Resume Next
 dim WshShell
 dim iObjectId, strTo, strCc, strSubject, strComment
 TestLab_ActionCanExecute = Project_DefaultRes
 TestLab_ActionCanExecute= true

 if ActionName = "SendMail" then
 '1st way to do it
 SendLinkToGeneralReport

 '2nd way
 'iObjectId = TestSetTest_Fields.Field("TC_TEST_ID").Value
 'strTo = "edecastrodiazplaza@amadeus.net"
 'strCc = ""
 'strSubject = "Information sent test"
 'strComment = "Find the general report:
http://pqc/IFQ/ETVTestResults/ETVTestResultsByDate.htm "
 'SendTest iObjectId, strTo, strCc, strSubject, strComment
 'msgbox "the 3rd e-mail to: " & strTo & " has been sent"
 end if

 If ActionName = "launch_windiff_with_atts" Then
 LaunchWindiffWithAtts
 End IF

 On Error GoTo 0
End Function

Sub TestLab_Attachment_New(Attachment)
 On Error Resume Next
 'msgbox "Sub TestLab_Attachment_New(Attachment)"
 On Error GoTo 0
End Sub

Sub TestLab_RunTestSet(Tests)
 On Error Resume Next

 On Error GoTo 0
End Sub

Sub TestLab_TestSet_MoveTo
 On Error Resume Next

 On Error GoTo 0
End Sub

Function TestLab_InitNewTask(Items, NewTask)

 55/79

 On Error Resume Next

 TestLab_InitNewTask = Project_DefaultRes
 On Error GoTo 0
End Function

Sub TestLab_TestSetTests_FieldChange(FieldName)
 On Error Resume Next

 On Error GoTo 0
End Sub

Sub TestLab_TestSet_FieldChange(FieldName)
 On Error Resume Next

 On Error GoTo 0
End Sub

Sub TestLab_TestSetTests_MoveTo
 On Error Resume Next
 'msgbox "Sub TestLab_TestSetTests_MoveTo"
 On Error GoTo 0
End Sub

Function TestLab_TestSetTests_FieldCanChange(FieldName, NewValue)
 On Error Resume Next

 TestLab_TestSetTests_FieldCanChange = Project_DefaultRes
 On Error GoTo 0
End Function

Sub TestLab_RunTests(Tests)
 On Error Resume Next
 'msgbox "Sub TestLab_RunTests(Tests)"
 On Error GoTo 0
End Sub

Sub TestLab_TestSet_AfterPost
 On Error Resume Next
 'msgbox "Sub TestLab_TestSet_AfterPost"
 On Error GoTo 0
End Sub

Function TestLab_TestSet_CanPost
 On Error Resume Next
 'msgbox "Function TestLab_TestSet_CanPost"
 TestLab_TestSet_CanPost = Project_DefaultRes
 On Error GoTo 0
End Function

Function TestLab_Attachment_CanPost(Attachment)
 On Error Resume Next

 56/79

 'msgbox "Function TestLab_Attachment_CanPost(Attachment)"
 TestLab_Attachment_CanPost = Project_DefaultRes
 On Error GoTo 0
End Function

Sub TestLab_DialogBox(DialogBoxName, IsOpen)
 On Error Resume Next

 On Error GoTo 0
End Sub

Sub TestLab_ExitModule
 On Error Resume Next

 On Error GoTo 0
End Sub

Sub TestLab_EnterModule
 On Error Resume Next

 On Error GoTo 0
End Sub

10.6) OTA Examples:

4.2) LoadRunner... 14
5.5.1) Business process .. 19
5.5.2) Script design .. 20
5.6.1) Performance .. 22
5.6.2) Scalability... 22
5.6.3) Robustness ... 23
5.7.1) Scenario with 1 Virtual user... 24
5.7.2) Scenario with 3 Virtual users ... 26
6.2) Migration specification ... 28
9.1) TestDirector 8.0 Books On Line [online] Available from:
http://ncesetec2/TDBIN/Help/Books/onlinedoc.htm [Accessed March 2005].. 38
9.2) Knowledge base database and user forums in the Mercury Support website [online]
Available from: http://support.mercury.com/ [Accessed March 2005].. 38
9.3) MSDN, Visual Basic Scripting [online] Available from:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/vtoriVBScript.asp
[Accessed March 2005] ... 38
9.4) VBS Tutorial [online] Available from:
http://www.freenetpages.co.uk/hp/alan.gauld/tutcont.htm [Accessed March 2005]................................... 38
9.5) Funcionamiento de una DLL [online] Available from:
http://www.zator.com/Cpp/E1_4_4b0.htm [Accessed March 2005]... 38
9.6) Information resource for software testers [online] Available from:... 38
9.7) http://www.testingfaqs.org/ [Accessed March 2005].. 38
9.8) Software Testing Tools [online] Available from:
http://66.102.9.104/search?q=cache:IHnDesxcN34J:www.cs.uku.fi/research/Teho/SoftwareTestingTools.
pdf+thesis+winrunner+loadrunner+testdirector&hl=es [Accessed March 2005]....................................... 38
9.9) Testing Term Definitions [online] Available from:
http://www.olenick.com/html/glossary.html [Accessed November 2005]... 38
9.10) Methodologies for Automated Testing [online] Available from: http://www.sqa-
test.com/method.html [Accessed November 2005] ... 38

 57/79

10.6.1) I. Rules of Thumb.. 59
10.6.2) 1. Error Handling.. 59
10.6.3) 2. Code Optimization .. 60
10.6.4) 3. Using TestDirector API (OTA) in Scripts... 60
10.6.5) 4. Workflow Objects ... 61
10.6.6) II. Code Templates.. 63
1. Error Handling ... 63

1.1 Show the Standard Error to the User... 63
1.2 Error Handling in Procedures and Functions .. 63

2. Working with the Fields ... 63
2.1 Setting Field Properties... 63
2.2 Resetting Properties of All Fields ... 65
2.3 Setting Field Layout on Form ... 66
2.4 Setting List Dependencies... 66
2.5 Ensuring That User Updates Some Field When Another Field Is Changed.. 67
2.6 Check That the Object Is Not Yet Submitted to the Project (“new object”) ... 69
2.7 Revert the Field to the Old Value On Update ... 69
2.8 Implementing “By Owner Only” by Multiple Fields .. 70

3. Working with TestDirector API (OTA).. 71
3.1 Getting the current connection (current session)... 71
3.2 Getting current session properties... 71
3.3 Finding to which groups the current user belongs .. 72
3.4 Keeping last used value in fields... 73
3.5 Sending an E-Mail from the Workflow .. 75
3.6 Obtaining Defect Statistics for the User.. 76
3.7 Setting the Last Item in List As a Default Value of the Field ... 77
3.8 Copy Last Run Value to Test in Test Set .. 78

 58/79

10.6.1) I. Rules of Thumb

Use Error Handling in all procedures and functions.

 See: Error Handling
Optimize your code and minimize its size.

 Use all the features VBScript provides.
 See: Code Optimization

Use TestDirector API whenever possible instead of external objects, files, registry.
 See: Using TestDirector API (OTA) in scripts

Explicitly initialize the values for all field properties for all fields.
 See: Workflow Objects

10.6.2) 1. Error Handling

Use “On Error Resume Next” statement at the beginning of each procedure and function.
Use “On Error GoTo 0” at the end of each procedure or function
Show errors to the user in some standard message box

Compare the following code fragments:

If Bug_Fields(“BG_SEVERITY”).Value = “4-
Urgent” Then
 Bug_Fields(“BG_PRIORITY”).Value = “4-
Urgent”
End If

On Error Resume Next
...
If Bug_Fields(“BG_SEVERITY”).Value = “4-
Urgent” Then
 Bug_Fields(“BG_PRIORITY”).Value = “4-
Urgent”
End If
...
PrintError “SomeSub”
On Error GoTo 0

The both code fragments will work the same way when no problems arise during the code execution. But what
happens if, for example, the user has no permissions to modify BG_PRIORITY field? The left fragment will
not update the field and will cause the browser crash. The second will not update the field, but it will show the
correct error to the user and the browser will not crash.

See: Code Templates -> Error Handling

 59/79

10.6.3) 2. Code Optimization

Use procedures and functions instead of the redundant code
Use Switch statement instead of repetitive ElseIf statements
Combine all values that require the same code to be executed to the same Case statement

• Use procedures and functions instead of the redundant code
The following common tasks are an example of a good subject for separate function/procedure:

- Setting field properties;
- Setting up fields on the form;
- Setting list dependencies;
- Any procedure that works with TD API (like: send mail)

• Use Switch statement instead of repetitive ElseIf statements
The rule of thumb here can be: if there are 2 or more ElseIf conditions, use Switch statement.

• Combine all values that require the same code to be executed to the same Case statement
VBScript allows you to put several values into one Case statement. Example:
In the following example the same code [Code A] should be executed when the {Variable} value is X or Y.
Instead of creating 2 cases (code on the left side), you can put X and Y into 1 case (code on the right side).

Select Case {Variable}
Case X
 [Code A]
Case Y
 [Code A]
Case Z
 [Code B]
End Select

Select Case {Variable}
Case X, Y
 [Code A]
Case Z
 [Code B]
End Select

10.6.4) 3. Using TestDirector API (OTA) in Scripts

Use a predefined TDConnection object to get the current session.
Use standard OTA Interfaces. Avoid use of the Command interface.
Use TestDirector favorites to store user and group-related data or data common for all

users.
Use mailing methods available in OTA to send the custom mails to the users.

• Use a predefined TDConnection object to get the current session.
When you use OTA from some external tool (like VB), the first step for any application that uses OTA is to
create the instance of the TDConnection object, initialize the connection to the server, and connect to the
database.
But in the Workflow there is the predefined TDConnection object (in this case TDConnection is not only class
name, but also the name of the global variable that contains the instance of TDConnection), which points the
same session in which the current user works.
This means that access to all TestDirector collections and objects is always available from any place in the
Workflow.

See: Code Templates -> Working With TestDirector API -> Getting the current connection (current session)

 60/79

• Use standard OTA Interfaces. Avoid use of the Command interface.
The Command object allows execution of any query directly against the database (using the QueryExecute
method). This seems easy solution, but it has two major disadvantages:

1. It avoids the whole TestDirector logic (permissions, verification of data integrity, etc.), and
2. It works directly against database, avoiding TestDirector optimizations, which reduces the

performance.
This refers to the usage of QueryExecute for SELECT statements. But an even more dangerous situation is
when the Workflow updates or deletes records from tables using the QueryExecute method. This may lead to
database corruption, unexpected errors, etc.
From the other side, it is always possible to avoid the use of the Command interface and to use standard
TestDirector interfaces instead (enough to say that even TestDirector R&D does not use the QueryExecute
method).

See: Code Templates -> Working With TestDirector API

• Use TestDirector favorites to store user and group-related data or data common for all users.
TestDirector favorites are the universal place for storage of any user or group-related information, as well as the
information common for all users.
The following are the examples when TestDirector favorites can be used:

- Store the last used values for the fields per user.
- Store the up-to-date defaults (like “current version” or “current build”) for fields for all users.

The advantages of the settings usage over the external files/registry are
- The TestDirector settings are not dependant on the machine from which the user connects to

TestDirector.
- They use all TestDirector optimizations.
- They are “native” to TestDirector, and do not need any additional objects, DLLs, etc.

The OTA has two classes that allow access to the favorites:
- The CommonSettings class allows access/modification of the TestDirector Public Favorites.
- The UserSettings class allows access/modification of the TestDirector Private Favorites.
Both classes can be retrieved from the TDConnection object.

See: Code Templates -> Working With TestDirector API -> Keeping Last Used Value In Fields

• Use mailing methods available in OTA to send the custom mails to the users.
OTA allows access to TestDirector mailing, which allows you to:
- Create custom conditions that cannot be implemented using the automatic notification system of

TestDirector.
- Change the Subject or the text of the e-mail.
- Send an e-mail to the specific TestDirector groups or TestDirector users.
- Send the e-mail from the specific user, rather then “admin” as automatic mail notification does.
The mailing methods are available from any TestDirector object (like Defect, Test, etc.) or directly from the
TDConnection object. Using the Mail method from the TestDirector object you can send the e-mail that
contains that object and your custom subject/text. Using the Mail method from the TDConnection object allows
you to send any custom mail.

See: Code Templates -> Working With TestDirector API -> Sending an E-Mail from the Workflow

10.6.5) 4. Workflow Objects

 61/79

Use {Object}_Fields(“{Field_Name}”) to access field by name.

Use loop on {Object}_Fields.FieldById(i) to access all fields in the collection.
Set the IsVisible property before setting the IsRequired or IsReadOnly property of the field.
Reset the layout for all fields before setting the fields layout (PageNo and ViewOrder).

• Use {Object}_Fields(“{Field_Name}”) to access field by name.
Use loop on {Object}_Fields.FieldById(i) to access all fields in the collection.
Both methods allow you to work with the fields of the “current object.”
The current object can be defined in the following way:
- Current object type: The object type for which the current event works. Almost each event points to the
object type for which the fields can be retreived. For example, in Defects_Bug_... events, only Bug_Fields can
be retreived; in TestPlan_DesignStep_... events, only DesignStep_Fields can be retrieved.
- Focused item: From all objects of the collection defined by event, only the fields of the currently focused
object can be retrieved. For example, the test on which the cursor is placed or the current run in manual runner.
To retrieve the fields of other objects of the same/other object type, use TD API (OTA).
The first statement {Object}_Fields(“{Field_Name}”) can be used to retrieve any particular field by name.
The second statement {Object}_Fields.FieldById(i) is needed to go over all fields of the current object. For
example, to reset the fields order.

See: Code Templates -> Working With the Fields

• Set the IsVisible property before setting the IsRequired or IsReadOnly property of the field.
Setting the IsRequired or IsReadOnly property for the field not visible in the UI is meaningless and is ignored
by TestDirector. So it is important to ensure that the field is visible before setting any of these properties.

See: Code Templates -> Working With the Fields -> Setting Field Properties

• Reset the layout for all fields before setting the fields’ layout (PageNo and ViewOrder).
Since the fields have some default predefined order, it is important to reset this order before defining the new,
custom one.
Consider the following example:

Bug_Fields(“BG_SEVERITY”).ViewOrder = 1
Bug_Fields(“BG_PRIORITY”).ViewOrder = 2
For i=0 To Bug_Fields.Count
 Bug_Fields.FieldById(i).ViewOrder = 100
Next
Bug_Fields(“BG_SEVERITY”).ViewOrder = 1
Bug_Fields(“BG_ PRIORITY”).ViewOrder = 2

In the first example, the ViewOrder is set only for BG_SEVERITY and BG_PRIORITY fields. The ViewOrder
of other fields is unknown (what if ViewOrder of some other field is 1 as well? In this case, BG_ PRIORITY
will be third and not the second field on the form), so you do not actually know how the fields will appear on
the form. In the second example, the ViewOrder of all the fields is reset to some big value, which ensures that
BG_SEVERITY and BG_PRIORITY fields will be indeed the first on the form.

See: Code Templates -> Working With the Fields -> Resetting Properties of All Fields

 62/79

10.6.6) II. Code Templates

1. Error Handling

1.1 Show the Standard Error to the User

Purpose: The following procedure shows the standard error to the user.
Code Location: The code should be added once to each Workflow script (Defects, Test Plan, etc.).
Templates Used: None
Arguments:
strFunctionName - The name of the function or procedure in which the error have happened
Return Value: None

Code Template:

Sub PrintError(strFunctionName)

If Err.Number <> 0 Then
 MsgBox “Error #” & Err.Number & “: “ & Err.Description, _
 vbOKOnly+vbCritical, _
 “Workflow Error in Function “ & strFunctionName
 End If
End Sub
 Template 1.1

Usage Example: See the template in 2.1.

1.2 Error Handling in Procedures and Functions

Purpose: The following code ensures the correct error handling in procedures and functions.
Code Location: The code should be added to each function and procedure.
Templates Used: Template 1.1
Arguments: Not relevant
Return Value: Not relevant

Code Template:

Function|Sub {Function|Sub_Name}()

On Error Resume Next
[Your code here]
PrintError “{Function|Sub_Name}”
On Error GoTo 0

End Function|Sub
Template 1.2

Usage Example: See the templates below.

2. Working with the Fields

2.1 Setting Field Properties

Solution 1: Setting all field properties
Purpose: The code below allows the setting of all field properties.
Code Location: The code should be added to the code of each Workflow script (Defects, Test Plan, etc.) for
each object (for example, in Test Plan script the separate procedures for Test and Design Steps should be
added). The {Object} should be replaced with the name of the object (i.e., Bug, Test, etc.)

 63/79

Templates Used: Template 1.1 and 1.2
Arguments:
strFieldName - The name of the field for which the properties should be set
blnIsVisible - The value of the IsVisible property of the field to be set
blnIsReadOnly - The value of the IsReadOnly property of the field to be set
blnIsRequired - The value of the IsRequired property of the field to be set
intPageNo – The value of the PageNo property of the field to be set
intViewOrder – The value of the ViewOrder property of the field to be set
Return Value: None

Code Template:

Sub {Object}_SetFieldProp(strFieldName,
blnIsVisible, blnIsReadOnly, blnIsRequired,

intPageNo, intViewOrder)
On Error Resume Next

With {Object}_Fields(strFieldName)
.IsVisible = blnIsVisible
.IsReadOnly = blnIsReadOnly
.IsRequired = blnIsRequired
.PageNo = intPageNo
.ViewOrder = intViewOrder
End With
PrintError “{Object}_SetFieldProp”

On Error GoTo 0
End Sub
Template 2.1.1

Usage Example: For example, if you have created the procedure Sub Bug_SetFieldProp using this template,
you can use it anywhere in the script like:

 Bug_SetFieldProp “BG_USER_01”, True, False, False, 2, 1

Solution 2: Setting field flags and view properties separately
Purpose: Sometimes it is more convenient to separate the field flags (IsVisible, IsRequired, IsReadOnly) and
field view properties (PageNo and ViewOrder). The code below allows for setting the field flags and view
properties separately.
Code Location: The code should be added to the code of each Workflow script (Defects, Test Plan, etc.) for
each object (for example in Test Plan script the separate procedures for Test and Design Steps should be
added). The {Object} should be replaced with the name of the object (i.e., Bug, Test, etc.)
Templates Used: Template 1.1 and 1.2
Arguments:
strFieldName - The name of the field for which the properties should be set
blnIsVisible - The value of the IsVisible property of the field to be set
blnIsReadOnly - The value of the IsReadOnly property of the field to be set
blnIsRequired - The value of the IsRequired property of the field to be set
intPageNo – The value of the PageNo property of the field to be set
intViewOrder – The value of the ViewOrder property of the field to be set
Return Value: None

Code Template:

Sub {Object}_SetFieldFlags(strFieldName,
blnIsVisible, blnIsReadOnly, blnIsRequired)
On Error Resume Next

With {Object}_Fields(strFieldName)
.IsVisible = blnIsVisible
.IsReadOnly = blnIsReadOnly
.IsRequired = blnIsRequired
End With
PrintError “{Object}_ SetFieldFlags”

On Error GoTo 0
End Sub
Template 2.1.2

 64/79

Sub {Object}_SetFieldView(strFieldName,

intPageNo, intViewOrder)
On Error Resume Next

With {Object}_Fields(strFieldName)
.PageNo = intPageNo
.ViewOrder = intViewOrder
End With
PrintError “{Object}_ SetFieldView”

On Error GoTo 0
End Sub

Template 2.1.3

Usage Example: See the examples for templates 2.1.1 and 2.2.

2.2 Resetting Properties of All Fields

Solution 1: Resetting field properties in loop
Purpose: Before setting the field flags or layout properties, it’s recommended to reset the properties of all
fields in the collection to ensure that all the properties are set to correct values (See: Workflow Objects in Rules
of Thumb section). The code below shows how to reset properties of all fields in the collection.
Code Location: The code should be added in each relevant procedure or function (when the reset of field
properties is needed). Alternatively, it can be put to the separate procedure. In this case the separate procedures
are needed for different object types (for example in Test Plan script the separate procedures for Test and
Design Steps should be added).
The {Object} should be replaced with the name of the object (ie: Bug, Test, etc.), {Property} should be
replaced with the name of field property (ie: IsRequired, PageNo, etc) and the {Value} should be replaced with
property value.
Templates Used: None
Arguments: Not relevant
Return Value: Not relevant

Code Template:

For i=0 To {Object}_Fields.Count

{Object}_Fields.FieldById(i).{Property} = {Value}
Next

Template 2.2.1

Usage Example: in the following example, the IsVisible property of all defect fields is reset:

 For i=0 To Bug_Fields.Count
 Bug_Fields.FieldById(i).IsVisible = False
 Next

Solution 2: Calling function that resets field properties in loop
Purpose: Same as above. In this case the template procedures will be used to reset the field properties (the
{Procedure} should be replaced with the name of the procedure used to reset the fields. The name of the field
can be retrieved using
Code Location: Same as above.
Templates Used: templates 2.1.1, 2.1.2, 2.1.3
Arguments: Not relevant
Return Value: Not relevant

Code Template:

For i=0 To {Object}_Fields.Count

{Procedure} {Object}_Fields.FieldById(i).FieldName[, ...]
Next

Template 2.2.2

Usage Example: in the following example, the procedure Bug_SetFieldView was created from template 2.1.3.
The procedure is used to reset the layout of all fields:

 65/79

 For i=0 To Bug_Fields.Count
 Bug_SetFieldView Bug_Fields.FieldById(i).FieldName, 100, 100
 Next

2.3 Setting Field Layout on Form

Purpose: Organize fields order on forms and define pages. Using the template, you can specify the names of
the field just in the same way as you want the fields to appear on page. To define several pages, call the
procedure with different arrays.
Code Location: The code should be added to the code of each workflow script (Defects, Test Plan, etc.), for
each object (for example in Test Plan script the separate procedures for Test and Design Steps should be
added). The {Object} should be replace with the name of the object (ie: Bug, Test, etc.). The {Form} should be
replace with the name of the form (ie: Add Defect, Defect Details, etc.)
Templates Used: Template 1.1, 1.2, 2.1.3
Arguments:
strFieldArray - the name of the field for which the properties should be set.
intPageNo – the value of the PageNo property of the field to be set.
Return Value: None
Note: It’s recommended to reset the layout of all the fields before setting the new layout (ie: to set PageNo and
ViewOrder properties to some big values, like 100, and to set IsVisible, IsRequired and IsReadOnly properties
of all fields to False. See: Workflow Objects in Rules of Thumb section and 2.2 code template)

Code Template:

Sub {Form}_SetPageFieldsOrder(strFieldArray, intPageNo)
On Error Resume Next

For i=0 To Ubound(strFieldArray)
{Object}_SetFieldView strFieldArray(i), intPageNo, i + 1
Next

PrintError "{Form}_SetPageFieldsOrder"
On Error GoTo 0
End Sub

Template 2.3

Usage Example: for example you want to organize the fields on the Add Defect form, so that all relevant
system fields would be on first page, and all other fields would be on the second page, the
AddDefect_SetPageFieldsOrder procedure created by template can be used in the following way:

 Dim strFieldArray1, strFieldArray2
 ‘ First page
 strFieldArray1 = Array(“BG_DETECTED_BY”, “BG_DETECTION_DATE”, _

 “BG_STATUS”, “BG_SEVERITY”, _
 “BG_PROJECT”, “BG_DETECTION_VERSION”, _
 “BG_SUBJECT”, “BG_REPRODUCIBLE”)

 AddDefect_SetPageFieldsOrder strFieldArray1, 1
 ‘ Second page
 strFieldArray2 = Array(“BG_USER_01”, “BG_USER_02”, _

 “BG_USER_03”, “BG_USER_04”)
 AddDefect_SetPageFieldsOrder strFieldArray2, 2

2.4 Setting List Dependencies

Purpose: The code below allows to set up the value for some field (ie: Dependant Field) according to the value
of the other field (ie: Master Field).
Code Location: It should be added to the code of each workflow script (Defects, Test Plan, etc.). Also the
different procedures should be created for all pairs of field that have different logic. The {Object} should be
replace with the name of the object (ie: Bug, Test, etc.)

Templates Used: templates 2.1.1, 2.1.2
Arguments:

 66/79

strMasterField - the name of the field which defines the list for the dependant field
strDepenadantField – the name of the field for which the list is set according to master field.
Return Value: None

Code Template:

Sub {Object}_SetList(strMasterField, strDependantField)
On Error Resume Next

Select Case {Object}_Fields(strMasterField).Value
Case “{Value1}”
 {Object}_Fields(strDependantField).List = Lists(“{List1}”)
...
Case Else
 {Object}_Fields(strDependantField).List = Lists(“{ListN}”)

 End Select
PrintError “{Object}_SetList”
On Error GoTo 0
End Sub

Template 2.4

Usage Example: For example if you’ve created the procedure Sub Bug_SetList using this template, and you
want to set the list for BG_CLOSING_VERSION, BG_DETECTION_VERSION,
BG_PLANNED_CLOSING_VER fields according to the value of the BG_PROJECT field, you can use the
following code anywhere in the script:

 Bug_SetList “BG_PROJECT”, “BG_CLOSING_VERSION”
 Bug_SetList “BG_PROJECT”, “BG_ DETECTION _VERSION”
 Bug_SetList “BG_PROJECT”, “BG_PLANNED_CLOSING_VER”

2.5 Ensuring That User Updates Some Field When Another Field Is Changed

Purpose: The code below allows to ensure that some field (“dependant field”) is updated when another field
(“master field”) is changed to some value. For example: when the Status (aka “master field”) field is changed to
“Fixed”, we want to ensure that the user updates R&D Comments (aka “dependant field”).
Code Location: It should be added to the code of each workflow script (Defects, Test Plan, etc.), separately for
each object. The {Mode} should be replaced with the name of the mode (TestPLan, TestLab, etc.); the {Object}
should be replaced with object name (Bug, Test, etc.). {MasterField} should be replaced with the name of the
“master field” (or with field label for flag names); {DependantField} should be replaced with the name of the
“dependant field” (or with field label for flag names). See the example below for correct template usage.
Templates Used: None
Arguments: None
Return Value: None
Note: Since the template is only a part of the code, and doesn’t represent a separate function or procedure, the
error handling is not shown in template.
Steps:
1. Create 2 global boolean flags that will be False by default; one of them will become True when the

“master field” is changed to desired value; the second will become true when the “dependant field” will be
changed.

2. Update flags to False in MoveTo event
3. In FieldChange event, update the first flag to True when the “master field” is changed to desired value;

update the second flag to True when the dependant field is changed
4. In CanPost event, if the “master field” was changed (ie: the first flag is True), and the second field was not

changed (ie: the second flag is False), do not allow item posting.

Code Template:

 Dim b{MasterField}Changed, b{DependantField}Changed

Sub {Mode}_{Object}_MoveTo()
…
b{MasterField}Changed = False
b{DependantField}Changed = False
…
End Sub

 67/79

Sub {Mode}_{Object}_FieldChange(FieldName)
…
Select Case FieldName
…
Case “{MasterField}”
 If {Object}_Fields(“{MasterField}”).Value = {Value} Then
b{MasterField}Changed = True
 End If
Case “{DependantField}”
b{DependantField}Changed = True
…
End Select
…
End Sub

Function {Mode}_{Object}_CanPost()
…
If b{MasterField}Changed And _

 Not b{DependantField}Changed Then
MsgBox “Please update <” & _
 {Object}_Fields(“{DependantField}”).FieldLabel & _
 “> field.”, vbCritical + vbOKOnly, _
 “Workflow - Field Change Verification”
{Mode}_{Object}_CanPost = False

Else
{Mode}_{Object}_CanPost = True

End If
…
End Function
Template 2.5

Usage Example: In the following example, when the Status field is changed to “Fixed”, the scripts ensures that
R&D Comments field was updated as well.

 Dim bStatusChanged, bRDCommentsChanged

 Sub Defects_Bug_MoveTo()
 bStatusChanged = False
 bRDCommentsChanged = False
 End Sub

 Sub Defects_Bug_FieldChange(FieldName)
 Select Case FieldName
 Case “BG_STATUS”
 If Bug_Fields(“BG_STATUS”).Value = “Fixed” Then
 bStatusChanged = True
 End If
 Case “BG_DEV_COMMENTS”
 bRDCommentsChanged = True
 End Select
 End Sub

 Function Defects_Bug_CanPost()
 If bStatusChanged And Not bRDCommentsChanged Then
 MsgBox “Please update <“ & _
 Bug_Fields(“BG_DEV_COMMENTS”).FieldLabel & _
 “> field.”, vbCritical + vbOKOnly, _
 “Workflow – Field Change Verification”
 Defects_Bug_CanPost = False
 Else
 Defects_Bug_CanPost = True
 End If
 End Function

 68/79

2.6 Check That the Object Is Not Yet Submitted to the Project (“new object”)

Purpose: In many cases you need to verify if the object was not yet submitted to the project. The following
code allows to perform such verification. For example: you want to verify that the new defect is always
submitted with the status ‘New’; on test creation you want to fill some user-defined field; etc.
Code Location: The code should be added in each relevant procedure or function (when such verification is
needed). {Object} should be changed with the name of the object for which the verification is needed (for
example: Bug, Test, etc.); the {Object ID Field} should be changed to the name of the field stores the ID of the
object (for example: BG_BUG_ID, TS_TEST_ID, etc.).
Templates Used: None
Arguments: Not relevant
Return Value: Not relevant

Code Template: Check that the object ID field is empty

 If {Object}_Fields(“{Object ID Field}”).Value = “” Then

Template 2.6

Usage Example: The example below checks if the defect is “new object”, and doesn’t allow to post such defect
id its status is not “New”:

 Sub Defects_Bug_CanPost()
 On Error Resume Next
 …
 If Bug_Fields(“BG_BUG_ID”).Value = “” And _
 Bug_Fields(“BG_STATUS”).Value <> “New” Then
 MsgBox “The <Status> of the new bug should be ‘New’.”
 Defects_Bug_CanPost = False
 End If
 …
PrintError “Defects_Bug_CanPost”
On Error GoTo 0
 End Sub

2.7 Revert the Field to the Old Value On Update

Purpose: The code below allows to revert the value of the field to the old value, when some condition is not
satisfied. For example: the Status of the bug cannot be set to Closed if Closed In Version field was not filled.
Code Location: There are 3 parts of relevant code. The first part defines the global variable that will store the
original value of the field. For each field the separate variable should be defined. The second part of code
should be added MoveTo event (this part preserves the original value of the field, before it was changed). The
third part of code should be added to the CanPost event (it checks the condition and reverts the field value to the
original value if the condition is not satisfied). All 3 parts of code should be added to each module, separately
for each field and condition when the old value retrieval mechanism is required.
Templates Used: None
Arguments: Not relevant
Return Value: Not relevant

Code Template:

 Dim s{FieldLabel}OrigValue

…
 Sub {Mode}_{Object}_MoveTo()

 …
 s{FieldLabel}OrigValue = {Object}_Fields(“{FieldName}”). Value

 …
End Sub
…
Function {Mode}_{Object}_CanPost()
 …
 If {Condition} Then
 {Object}_Fields(“{FieldName}”). Value = s{FieldLabel}OrigValue
 End If

 69/79

 …
End Sub
Template 2.7

Usage Example: In the example below when the user sets the status of the defect to Closed, and doesn’t fill the
Closed In Version field, the value of the Status field is changed back to the original value:

Dim sStatusOrigValue
…
Sub Defects_Bug_MoveTo()
 …

 sStatusOrigValue = Bug_Fields(“BG_STATUS”).Value
 …
End Sub
…
Function Defects_Bug_CanPost()
 …
 If Bug_Fields(“BG_CLOSING_VERSION”).Value = “” Then
 MsgBox “The Closed In Version value was not specified.”, vbCritical
 Bug_Fields(“BG_STATUS”).Value = sStatusOrigValue
 End If
 …
End Function

2.8 Implementing “By Owner Only” by Multiple Fields

Purpose: While TestDirector allows one user to be the owner of the object, sometimes it’s reasonable to have
several owners of the object. For example if you want that only the user sho submitted the defect (“Detected
By”, BG_DETECTED_BY field), or the user who is responsible for the defect (“Assigned To”,
BG_RESPONSIBLE field) will be able to change its Priority and Severity. Other users can change other fields.
If you will set “By Owner Only” flag for Priority and Severity fields in group permissions, only “Assigned To”
user will be able to change Priority and Severity (since by default in TestDirector the owner of the defects is
(“Assigned To” user). If “By Owner Only” flag for Priority and Severity fields will not be set in group
permissions, all users will be able to change these fields.
The code below allows to work with multiple owners of the object.
Code Location: The function should be added to the code of each workflow script (Defects, Test Plan, etc.),
for each object (for example in Test Plan script the separate procedures for Test and Design Steps should be
added). The {Object} should be replace with the name of the object (ie: Bug, Test, etc.). The function should be
called from {Mode}_{Object}_FieldChange or {Mode}_{Object}_CanChange events, as shown in the
example.
Templates Used: Template 1.1 and 1.2
Arguments:
strFieldNames - the names of the fields that define the owner of the object. The system and user-defined fields
that have the User list attached can be specified. The format of the string should be:
“FIELD_NAME1;FIELD_NAME2;…”
Return Value: Boolean: True if the current user is the owner of the object; False if the current user is not the
owner of the object.

Code Template:

Function Check{Object}Owner(strFieldNames)
On Error Resume Next
Dim strFieldArr
CheckObjectOwner = False
strFieldArr = Split(strFieldNames, “;”)
For i = 0 To Ubound(strFieldArr)
If {Object}_Fields(strFieldArr(i)).Value = User.UserName Then
CheckObjectOwner = True
End If
Next
PrintError “Check{Object}Owner”

 70/79

On Error GoTo 0
End Sub

Template 2.8

Usage Example: In the example below 3 fields define the owner of the defect: BG_DETECTED_BY,
BG_RESPONSIBLE and BG_USER_01 (user-defined field with the User list attached). When the user tries to
change defect’s Priority (BG_PRIORITY) or Severity (BG_SEVERITY), workflow checks if the user is the
owner of the defect (ie: the name of current user appears in one of 3 specified fields). If the user is not the
owner of the object, the field value is reverted to the original value. Note that template 2.7 is used in this
example.

Dim sPriorityOrigValue
Dim sSeverityOrigValue

Sub Defects_Bug_MoveTo
…
 sPriorityOrigValue = Bug_Fields(“BG_PRIORITY”).Value
sSeverityOrigValue = Bug_Fields(“BG_SEVERITY”).Value

 …
End Sub

Sub Bug_FieldChange(FieldName)
Dim strOwnerFields
strOwnerFields = “BG_DETECTED_BY;BG_RESPONSIBLE;BG_USER_01”
…
 Select Case FieldName
 Case “BG_SEVERITY”, “BG_PRIORITY”
 If Not CheckBugOwner(strOwnerFields) Then
 MsgBox “Only owners can change defect Severity and Priority”
 Bug_Fields(“BG_PRIORITY”).Value = sPriorityOrigValue
Bug_Fields(“BG_SEVERITY”).Value = sSeverityOrigValue
 End If
 End Select
…
End Sub

3. Working with TestDirector API (OTA)

3.1 Getting the current connection (current session)

Purpose: The code below shows how to receive the current session context in workflow (the same session in
which the user will work during script execution).
Code Location: The code should be added in each relevant procedure or function (when the access to OTA is
required).
Templates Used: None
Arguments: Not relevant
Return Value: Not relevant

Code Template: Just refer to the TDConnection object

Usage Example: In the example below server time (TDConnection class property) is shown in message box:

 MsgBox “Current time on server is: ” & TDConnection.ServerTime

3.2 Getting current session properties

Purpose: The code below allows getting the properties of the current session (server URL, server time, domain
name, project name, project type, user name, and password). Any other TDConnection property can be obtained

 71/79

using the alike code. For the list of TDConnection properties, please see the help for TDConnection object in
OTA Guide.
Code Location: code should be added to the appropriate function or procedure where any of these properties is
needed (the properties do not depend on each other, meaning that any of the properties can be received
separately).
Templates Used: None
Arguments: Not relevant
Return Value: Not relevant

Code Template:

 Dim varRes

‘ Returns the current server URL
varRes = TDConnection.ServerName
‘ Returns the current server time (Date type)
varRes = TDConnection.ServerTime
‘ Returns the current domain name
varRes = TDConnection.DomainName
‘ Returns the current project name
varRes = TDConnection.ProjectName
‘ Returns the current project type (Access, Oracle, MS SQL, Sybase)
varRes = TDConnection.ProjectType

‘ Returns the current user name (no need to use TDConnection here – ‘ the workflow has the predefined object
called User)

varRes = User.UserName
‘ Returns the current user password
varRes = TDConnection.Password
Template 3.2

Usage Example: In the example below, the server name is used to verify whether the user connected to the
server using HTTP or HTTPS:

 If Left(UCase(TDConnection.ServerName), 5) = “HTTPS” Then

MsgBox “You are currently connected to the server using SSL”
 Else
 MsgBox “You are not using SSL”
 End If

3.3 Finding to which groups the current user belongs

Solution 1: Checking if the user belongs to some particular group
Purpose: The code below allows checking if the current user belongs to a given group.
Code Location: code should be added to the appropriate function or procedure where it’s needed to check if
the user belongs to any particular group.
Templates Used: None
Arguments: Not relevant
Return Value: Not relevant

Code Template: Just refer to the User.IsInGroup(“Group_Name”) property

Usage Example: The example below checks if the user belongs to TDAdmin group

If User.IsInGroup(“TDAdmin”) Then
 MsgBox “You are the member of TDAdmin group”
Else
 MsgBox “You are not the member of TDAdmin group”
End If

Solution 2: Receiving the list of all the groups to which the current user belongs
Purpose: The code below allows getting the list of all groups to which the current user belongs.
Code Location: code should be added to the code of each workflow script (Defects, Test Plan, etc.).
Templates Used: templates 2.1.1, 2.1.2

 72/79

Arguments: None
Return Value: string that contains the names of the groups to which the user belongs. The names of the
groups are separated by semicolon.

Code Template:

Function GetUserGroups()
Dim objCustomization, objUsers, objUser, objGroup
Dim strGroupList
On Error Resume Next

Set objCustomization = TDConnection.Customization
Set objUsers = objCustomization.Users
Set objUser = objUsers.User(User.UserName)
strGroupList = “”
For Each objGroup In objUser.GroupsList
strGroupList = strGroupList & “;” & objGroup.Name
Next
GetUserGroups = Left(strGroupList, Len(strGroupList)-1)
Set objCustomization = Nothing
Set objUsers = Nothing
Set objUser = Nothing

PrintError "GetUserGroups"
On Error GoTo 0
End Function

Template 3.3

Note: You can use Split function in order to convert the string returned by this function into array:

 Dim strGroupArray
 strGroupArray = Split(GetUserGroups, “;”)

Usage Example: in the following example the list of the groups is received using the template above; the user
role is later defined according to the groups. For example if the user is the member of “QA Tester” team, the
user role is defined as “QA”; if the user is the member of “Managers” and “Developers” groups, then user role
is defined as “R&D Manager” etc.

 Dim strGroups, strRole
 strGroups = UCase(GetUserGroups)
 If InStr(strGroups, “DEVELOPER”) > 0 Then strRole = “R&D “
 If InStr(strGroups, “QA”) > 0 Then strRole = strRole & “QA “
 If InStr(strGroups, “MANAGER”) > 0 Then strRole = strRole & “Manager “
 strRole = Left(strRole, Len(strRole) – 1)

3.4 Keeping last used value in fields

Purpose: The following code template allows preserving the value of the field, and to fill the field
automatically next time the field needs to be filled (even after the closure of the browser, or from different
client machine). The template uses TestDirector private favorites to store the settings (which allow using the
saved fields’ settings even if the user connects from different machine). The template is especially useful for
Add Defect form and the Manual Runner, but can be used for any other object as well.
Code Location: code should be added to the code of each workflow script (Defects, Test Plan, etc.). Separate
procedures should be created for each object for which this functionality is needed. The {Object} statement
should be replaced with the name of the object for which the template is used (for example: Bug, Test, etc.).
Templates Used: templates 2.1.1, 2.1.2
Arguments:
strAction - Accepts the values “GET” and “SET”. When “GET” is specified for strAction argument, the values
of the fields previously saved are retrieved (the value for the field is set only if the field is empty). When “SET”
is specified for strAction argument, the values of the specified fields are stored (the second argument specifies
which fields need to be saved).
strFieldArray – Relevant only when “SET” is specified as the strAction argument: the array that contains the
names of the fields for which the values should be saved. The empty string can be specified for “GET” action.
Note: The second argument of the function (strFieldArray) can be defined as follows before function call:

 73/79

 Dim strFieldArray
 strFieldArray = Array(“{Field Name1}”, “{Field Name2}”, …)

See also the usage example below.

Return Value: None

Code Template:

Sub KeepLastValue(strAction, strFieldArray) ‘ strAction = {“GET”|”SET”}
On Error Resume Next
Dim strValues, objUserSettings, strFields, strField

If strAction = "SET" Then
strValues = ""
For i=0 To UBound(strFieldArray)
If strValues <> "" Then strValues = strValues & ";"
strValues = strValues & strFieldArray(i) & "=" & _
 {Object}_Fields(strFieldArray(i)).Value
Next
End If
Set objUserSettings = TDConnection.UserSettings
If strAction = "SET" Then
objUserSettings.Open ("KeepLastValue")
objUserSettings.Value("{Object}_KeepLastValue") = strValues
objUserSettings.Close
End If
If strAction = "GET" Then
objUserSettings.Open ("KeepLastValue")
strValues = objUserSettings.Value("{Object}_KeepLastValue")
If strValues <> "" Then
strFields = Split(strValues, ";")
For i = 0 To UBound(strFields)
strField = Split(strFields(i), "=")
If UBound(strField) = 1 And {Object}_Fields(strField(0)).Value = "" Then
{Object}_Fields(strField(0)).Value = strField(1)
End If
Next
End If
End If
objUserSettings.Close
Set objUserSettings = Nothing

PrintError “KeepLastValue(“ & strAction & “)”
On Error GoTo 0
End Sub
Template 3.4

Usage Example: in the following example the values of Detected in Version field
(BG_DETECTION_VERSION) and Project field (BG_PROJECT) are saved when the user submits the new
bug. The saved values are retrieved the next time the user opens Add Defect form.

 Sub Defects_Bug_New
On Error Resume Next
…

‘ Retrieve the values of the fields on opening of new bug
KeepLastValue "GET", ""

 …
 PrintError “Defects_Bug_ New”
On Error GoTo 0
End Sub

Function Defects_Bug_CanPost
On Error Resume Next
Dim strFieldArray
…
 ‘ Save the values of the fields on submit of new bug

strFieldArray = Array(“BG_DETECTION_VERSION”, "BG_PROJECT")

 74/79

If Bug_Fields("BG_BUG_ID").Value = "" Then
KeepLastValue "SET", strFieldArray

 End If
…
PrintError “Defects_Bug_CanPost”
On Error GoTo 0

End Function

3.5 Sending an E-Mail from the Workflow

Purpose: The following code template allows sending any object in TestDirector (Defect, Test, etc.) by e-mail.
The code can be used to extend the automatic mail notifications with custom conditions, not available for Send
All Qualified. The template uses TestDirector mailing functions.
Code Location: The code for the each object should be placed in the script of the corresponding module. For
example: SendDefect function should be placed in Defects module.
Templates Used: templates 2.1.1, 2.1.2
Arguments:
iObjectId – The ID of the object that should be sent (see the note below on how to obtain the object ID).
strTo – The TestDirector names or e-mails of the people that will appear in To field of the e-mail (the names
and e-mails should be separated by semicolon. For example: “user@domain.com;admin;alice_td”).
strCc – The TestDirector names or e-mails of the people that will appear in Cc field of the e-mail (the names
and e-mails should be separated by semicolon. For example: “user@domain.com;admin;alice_td”). Specify an
empty string (“”) to omit this parameter.
strSubject – The e-mail Subject. Specify an empty string (“”) to omit this parameter.
strComment – The e-mail comment (will appear at the top of the e-mail). Specify an empty string (“”) to omit
this parameter.
Notes:
1. The object ID value can always be retrieved using the {Object}_Fields collection, by retrieving the Value
property of the ID field. The example below shows how to retrieve the Ids of Defect, Test and Requirement:

 ’ Defect ID – for SendDefect
 Bug_Fields(“BG_BUG_ID”).Value
 ’ Test ID – for SendTest
 Test_Fields(“TS_TEST_ID”).Value
 ’ Requirement ID – for SendReq
 Req_Fields(“RQ_REQ_ID”).Value
2. The templates for Defect, Test and Requirement are provided. However the function may be used to work
with any object that has Mail function.
3. The third parameter in Mail function allows specifying e-mail options. In the templates below this parameter
is hard-coded (its value 2 means that the object History will be sent). However you can change this value to any
of the values of TDMAIL_FLAGS. You can use sum to combine the mail properties. For example: 1 – means
“send attachments”; 2 – means “send history”. In order to send the mail with attachments and history, specify 3
for this argument.

Return Value: None

Code Template:

Sub SendDefect (iObjectId, strTo, strCc,
 strSubject, strComment)
On Error Resume Next
Dim objBugFactory, objBug
Set objBugFactory = TDConnection.BugFactory
Set objBug = objBugFactory.Item(iObjectId)
objBug.Mail strTo, strCc, 2, strSubject, strComment
Set objBug = Nothing
Set objBugFactory = Nothing

PrintError “SendDefect”
On Error GoTo 0

End Sub
Template 3.5.a

Sub SendTest (iObjectId, strTo, strCc,

 75/79

 strSubject, strComment)
On Error Resume Next
Dim objTestFactory, objTest
Set objTestFactory = TDConnection. TestFactory
Set objTest = objTestFactory.Item(iObjectId)
objTest.Mail strTo, strCc, 2, strSubject, strComment
Set objTest = Nothing
Set objTestFactory = Nothing

PrintError “SendTest”
On Error GoTo 0

End Sub
Template 3.5.b

Sub SendRequirement (iObjectId, strTo, strCc,
 strSubject, strComment)
On Error Resume Next
Dim objReqFactory, objReq
Set objReqFactory = TDConnection.ReqFactory
Set objReq = objReqFactory.Item(iObjectId)
objReq.Mail strTo, strCc, 2, strSubject, strComment
Set objReq = Nothing
Set objReqFactory = Nothing

PrintError “SendRequirement”
On Error GoTo 0

End Sub
Template 3.5.c

Usage Example: In the following example when the test status is changed, the e-mail notification is sent to the
designer of the test, cc to all the members of the [QA Testers] group.

 Sub TestPlan_Test_FieldChange(FieldName)

On Error Resume Next
Dim strSubject, strComment
If FieldName = "TS_STATUS" Then
 strSubject = “Test Change Notification” & _
 “ for project “ & TDConnection.ProjectName & _
 “ in domain “ & TDConnection.DomainName
 strComment = “The user “ & User.FullName & _
 “ changed the status of the test ” & _
 Test_Fields(“TS_NAME”).Value & _
 “ to “ & Test_Fields(“TS_ STATUS”).Value

 SendTest Test_Fields("TS_TEST_ID").Value, _
 Test_Fields(“TS_RESPONSIBLE”).Value, “[QA Testers]”, _
 strSubject, StrComment
 End If

On Error GoTo 0
End Sub

3.6 Obtaining Defect Statistics for the User

Purpose: The template allows obtaining statistics for the user, for example: how many defects are assigned to
current user. The template may be used to create the button that shows this statistics whenever user clicks on it.
Another way to use this template is to create the conditions that allow the team leader to decide on tasks. For
example: the team leader doesn’t want to allow more then 5 defects with priority Urgent and with status Open
or Reopen to be assigned to one person.
Note: The template below is for the Defects. However such function can be created for any object in
TestDirector.
Code Location: The code for the each object should be placed in the script of the corresponding module. Each
logical set should be placed in separate function as well.
Templates Used: templates 2.1.1, 2.1.2
Arguments:
strFilterConditions – The conditions for which the number of objects should be found. Should be specified in
the format
“FILTER_FIELD2=FilterCondition1; FILTER_FIELD2=FilterCondition2;”

 76/79

While filter conditions format is the same as the format that is used in OTAClient for filters.
For example: if you want to get the number of defects assigned to the user “alex_td”, that have status “Open” or
“Reopen” and the priority “4-Urgent”, the following string should be specified:
“BG_RESPONSIBLE=alex_td;BG_STATUS=Open Or Reopen;BG_PRIORITY=4-Urgent”
Return Value: Returns the number of objects for given condition

Code Template:

Function GetDefectStatistics(strFilterConditions)
On Error Resume Next
Dim strFilterConditionArr, strCondition
Dim objBugFactory, objFilter, objList
Set objBugFactory = TDConnection.BugFactory
Set objFilter = objBugFactory.Filter
strFilterConditionArr = Split(strFilterConditions, “;”)
For i = 0 To Ubound(strFilterConditionArr)
 strCondition = Split(strFilterConditionArr(i), “=”)
If Ubound(strCondition) = 1 Then

objFilter.Filter(strCondition(0)) = strCondition(1)
End If
Next
Set objList = objFilter.NewList
GetDefectStatistics = objList.Count
Set objList = Nothing
Set objBugFactory = Nothing
Set objFilter = Nothing

PrintError “GetDefectStatistics”
On Error GoTo 0
End Function

Template 3.6

Usage Example: In the following example when the defect with priority “4-Urgent” is assigned to some user,
workflow checks how many defects with the same priority and the status “Open” or “Reopen” are already
assigned to the same user. If the number of defects is 5 or more, the workflow will show warning.

Sub Defects_Bug_FieldChange(FieldName)
On Error Resume Next
Dim strConditions, iNumberOfBugs
If FieldName = "BG_RESPONSIBLE" Then
 strConditions = “BG_RESPONSIBLE=” & _
 Bug_Fields(“BG_RESPONSIBLE”).Value & _
 “;BG_STATUS=Open Or Reopen” & _
 “;BG_PRIORITY=4-Urgent”
 iNumberOfBugs = Cint(GetDefectStatistics(strConditions))
 If iNumberOfBugs >= 5 Then
 MsgBox “” & iNumberOfBugs & “ defects” & _
 “ with Priority=<4-Urgent> and “ & _
 “ Status=<Open> or <Reopen>” & _
 “ are already assigned to the user “ & _
 Bug_Fields(“BG_RESPONSIBLE”).Value
 End If
End If
On Error GoTo 0

 End Sub

3.7 Setting the Last Item in List As a Default Value of the Field

Purpose: The template allows to select the last item from the list, and to set it as a default value for some field.
This is useful for the fields where the last value is most commonly used. For example: the field Detected In
Version has a list of versions attached. Most of the users will select the current version for the defects they
submit, which is the last in the list. So this value can be a default for this field.

 77/79

Code Location: code should be added to the code of each workflow script (Defects, Test Plan, etc.). Separate
procedures should be created for each object for which this functionality is needed. The {Object} statement
should be replaced with the name of the object for which the template is used (for example: Bug, Test, etc.).
Templates Used: templates 2.1.1, 2.1.2
Arguments:
strFieldName – The name of the field for which the default value should be set.
strListName – The name of the list from which the default value should be selected. This list should be attached
to the field specified by strFieldName.
Return Value: None

Code Template:

Sub SetDefaultValue(strFieldName, strListName)
On Error Resume Next

Dim objCustomization, objLists, objList, objNode, objChildren
Dim iChildrenCount
Set objCustomization = TDConnection.Customization
objCustomization.Load
Set objLists = objCustomization.Lists
Set objList= objLists.List(strListName)
Set objNode = objList.RootNode
iChildrenCount = objNode.ChildrenCount
Set objChildren = objNode.Children
{Object}_Fields(strFieldName).Value = objChildren(iChildrenCount).Name
objCustomization.Commit
Set objCustomization = Nothing
Set objLists = Nothing
Set objList= Nothing
Set objNode = Nothing
PrintError “SetDefaultValue”

On Error GoTo 0
End Sub

Template 3.7

Usage Example: In the following example when the New Defect form is opened, the script assigns “Versions”
list to Detected in Version (BG_DETECTION VERSION) field. Then the value of the Detected In Version
field is set to the last item in Versions list.

Sub Defects_Bug_New()
On Error Resume Next
 Bug_Fields(“BG_DETECTION_VERSION”).List = Lists(“Versions”)
 SetDefaultValue(“BG_DETECTION_VERSION”, “Versions”)
On Error GoTo 0

 End Sub

3.8 Copy Last Run Value to Test in Test Set

Purpose: The template allows copying the value from last test run to test in test set. For example: each time the
test is executed, the user wants the value of Duration field of the run to be copied to the Expected Duration
user-defined field of test in test set.
Code Location: code should be added to the code of Test Lab workflow script
Templates Used: templates 2.1.1, 2.1.2
Arguments:
strSrcRunField – The name of the Run field from which the value should be copied.
strTrgTSTestField – The name of the Test in Test Set field to which the value should be copied.
Return Value: None

Code Template:

Sub CopyLastRunValue(strSrcRunField, strTrgTSTestField)
On Error Resume Next

Dim iTestSetId, iTSTestId, objTestSet, objTSTest, objLastRun
 iTestSetId = TestSetTest_Fields("TC_CYCLE_ID").Value

 78/79

 iTSTestID = TestSetTest_Fields("TC_TEST_ID").Value
 Set objTestSet = TDConnection.TestSetFactory.Item(iTestSetId)

 Set objTSTest = objTestSet.TSTestFactory.Item(iTSTestID)
 Set objLastRun = objTSTest.LastRun

 If objLastRun.Field(strSrcRunField) <> TestSetTest_Fields(strTrgTSTestField).Value Then
TestSetTest_Fields(strTrgTSTestField).Value = LastRunObject.Field(strSrcRunField)
 End If

 Set objTestSet = Nothing
 Set objTSTest = Nothing
 Set objLastRun = Nothing
PrintError “CopyLastRunValue”

On Error GoTo 0
End Sub

Template 3.8

Usage Example: In the following example the user has Expected Duration field for Test in Test Set
(TC_USER_01). The value of this field is updated any time the value of Duration field (RN_DURATION) of
the last run differs from Expected Duration of the test.

Sub TestLab_TestSetTests_MoveTo
On Error Resume Next
 CopyLastRunValue "TC_USER_01", "RN_DURATION"
On Error GoTo 0
End Sub

 79/79

	Background
	Automated tests methodologies applied to test applications a
	There are different types of tools to help with the script c
	Besides, due to the increasing complexity of today's applica
	Abstract
	Introduction
	Amadeus
	Related work
	Why Mercury products
	TestDirector
	LoadRunner

	WinRunner
	WinRunner is a functional testing tool for User Interface wi
	Spring project
	Introduction
	Testing goals
	Testing software integration:
	Test Bed
	Test script
	Business process
	Script design

	Measurements
	Performance
	Scalability
	Robustness

	Test results
	Scenario with 1 Virtual user
	Scenario with 3 Virtual users

	Conclusion:
	TestDirector migration, feasibility study and customisation
	Introduction
	Migration specification

	Solutions
	Conclusions
	General conclusions
	Acknowledgments
	Bibliography
	
	Appendix
	Spring project
	DEV-SPL-TEC-TES Department
	Spring project tests code
	IFQ Team
	TestDirector customisation code
	OTA Examples:
	I. Rules of Thumb
	1. Error Handling
	2. Code Optimization
	3. Using TestDirector API (OTA) in Scripts
	4. Workflow Objects
	II. Code Templates
	1. Error Handling
	1.1 Show the Standard Error to the User
	1.2 Error Handling in Procedures and Functions

	2. Working with the Fields
	2.1 Setting Field Properties
	2.2 Resetting Properties of All Fields
	2.3 Setting Field Layout on Form
	2.4 Setting List Dependencies
	2.5 Ensuring That User Updates Some Field When Another Field
	2.6 Check That the Object Is Not Yet Submitted to the Projec
	2.7 Revert the Field to the Old Value On Update
	2.8 Implementing “By Owner Only” by Multiple Fields

	3. Working with TestDirector API (OTA)
	3.1 Getting the current connection (current session)
	3.2 Getting current session properties
	3.3 Finding to which groups the current user belongs
	3.4 Keeping last used value in fields
	3.5 Sending an E-Mail from the Workflow
	3.6 Obtaining Defect Statistics for the User
	3.7 Setting the Last Item in List As a Default Value of the
	3.8 Copy Last Run Value to Test in Test Set

