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Abstract

Constraint programming is an area of computer science whichhas developed rapidly
over the last years. Constraint programming offers the tools needed to solve larger
combinatorial problems with sufficient speed. The key to thesuccess of constraint
programmings success in combinatorial problem-solving over conventional search are
clever algorithms and resource management. Today, computers with multiple proces-
sors working on shared memory are increasingly common. It istherefor natural to
provide tools to use multiple processors for solving combinatorial problems with con-
straint programming. GECODE is a constraint programming library which introduces
new and faster algorithms for finding solutions and using resources. GECODE how-
ever lacks support for using multiple processors. This thesis describes the work done
too produce an adaptible system for using GECODE to do parallel search in a shared
memory environment.

This thesis handles the design and implementation of the tools needed for GECODE to
transparently take advantage of multiple processors in a shared memory environment.
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Chapter 1

Introduction

1.1 Acknowledgments

I would like to thank Christian Schulte for offering me the oppertunity for writing this
master thesis, as well as guiding me through my work with it. Iwould also like to
thank Guido Tack and Didier Le Botlan for their paper: Compositional Abstractions
for Search Factories which inspired me in how to implement the parallel search-engine.
I would also like to thank Fredrik Liljeblad for helping me set up a test-environment.

1.2 Related work

This system is a part of the Gecode constraint programming system. A system intro-
ducing some novel ideas in the area of constraint propagation and propagator construc-
tion. Other constraint programming systems exist with the capability of doing parallel
search such as: Mozart, ILOG[3] and Eclipse.

Though not constraint programming systems the ALPS[12] andSYMPHONY[2] sys-
tems are systems for handling integer programming, capableof doing parallel search
in trees.

1.3 Plan of the Paper

This paper will start by giving a short explanation of the basic concepts in constraint
programming, after which the concepts of search are examined. The focus will then
turn to parallel search, for which the rest of the paper will be about. First the concept of
parallel search is presented, followed by an examination ofdifferent ways to implement
it. Lastly the implementation is presented along with motives as to why its designed as
it is.
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1.4 Short Introduction to Constraint Programming

Constraint programming provides a generic way to solve a wide variety of problems.
The problems are modeled as discrete variables which are assigned a range of values,
in which a solution should lie, as well as constraints for thevalues of the variables.
These three components, the variables, their values and theconstraints, are kept in an
object called a store.

Store

Variables Values Constraints

X
Y

{1, 2, 3, 4}
{2, 3, 4, 5}

Y<X

Figure 1.1: An abstract representation of a store with its variables, values and con-
straints.

Through a process called propagation the values which does not hold for the con-
straints, are removed from the possible values of the variables. The constraints in the
store are actually functions called propagators which implement the constraints on the
store, propagators can only remove values for which they areabsolutely sure that they
cannot be a part of a solution. The goal of propagation is to reduce the ranges to either
achieve a solved or a failed store. However in most cases propagation is not enough to
solve the problem. For example propagation on the store represented in Figure 1.1 will
result in a store whereX |= {3,4} andY |= {2,3} which is still not a solution for the
problem.

A store can have three possible states. Failed, one or more ofthe variables has no
values left in its range; solved, each variable has exactly one value to choose from; and
distributable which are all store which are neither solved nor failed. The propagated
store mentioned earlier is thus a distributable store.

To further reduce a distributable store, branching is used.Branching is a way to reduce
the store without losing accuracy by removing solutions. Branching takes a copy of
the store and adds the constraintβ to it, it also takes another copy of the store and adds
the constraint¬β. An example of the constraintβ could beX = 3 which would then
reduce the store to a solved store. The branching forms a binary tree where each store
is a node in the tree. Every leaf node in the tree is either a failed or solved store, while
the body of the tree consists of distributable stores.

This tree is explored through the process of exploration or search. Exploration is done
through a search-engine, which can explore the tree in various ways, for example:
depth first or breadth first. As propagation can take a long time the tree is not con-
structed before the search is started. Instead the tree is lazily constructed while the
search-engine is exploring the tree. Meaning each node is constructed on demand
rather than in advance. Sequential search-engines will be covered in greater detail in
Section 2.

To conclude this section lets consider how a search-engine would explore a search-tree
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Figure 1.2: An example of a search tree. The round nodes are distributable, the trian-
gular are failed and the diamond are solved.

using the example store in Figure 1.1. First the initial store is propagated to yield a
distributable store. The search-engine then resorts to branching too further reduce the
store. The store is copied and the constraintX = 3 is added too one of the stores.
Propagation is done again on the specialized store which would show that the store
is now a solution and the search is stopped. This example has many solutions and it
might be the case that all solutions need too be found, in which case the search-engine
continues its search.

5



Chapter 2

Sequential search

This chapter will go deeper into the details of searching. First the concept of branching
will be briefly described. The paper will then shortly explain how a search-engine
works and then continue with different aspects of searching.

2.1 Short overview of branching

How the constraints of the branching are defined affects whatthe search tree will look
like. There are some common techniques for branching, such as: first-fail and naive.
The goal when selecting which technique too use is to try to move the solutions closer
to a part of the search tree which will be explored early in theexecution. Since it is
tradition that most depth first searches move towards the bottom left part of the tree,
the selected technique should place solutions close to the bottom left of the tree. For
this reason, selecting which technique to use is often done when modeling the problem
to solve.

Naive branching selects a variable and binds a value to it as aconstraintβ. The second
constraint¬β is of course the constraint where the variable does not have this value.
First-fail selects the variable with the smallest set of possible values. In order to quickly
reduce the size of the variables value ranges.

2.2 Backtracking

When a depth first search based search-engine explores the tree it will in most cases
come too a point where it has reached a failed node. If so, thenthe search-engine will
have to go back to a previous node and try a different path. This is called backtracking,
and it is essential for the search-engine to explore the entire tree.

Backtracking is often done using a stack as illustrated in Figure 2.1. For each node the
search-engine passes it pushes a copy of it onto the stack. The search-engine continues
down a specific path of the tree until the current node fails. If a node fails the search-
engine pops the previous node from the stack and explores theunexplored path from
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root

Stack

top

bottomroot

�

Search-tree

Figure 2.1: An illustration of how a stack is used to keep track of passed nodes in a
search-tree for backtracking purposes.

it. If the node the search-engine just popped has no unexplored path it is treated as a
failed node and is discarded. Again a new node is popped from the stack. When the
stack is empty, the search-engine has examined the entire search tree.

As problems grow in complexity, the size of their search trees grows as well. Thus
keeping information about each node in the search-tree can lead to memory consump-
tion problems. Keeping all the copies of all the nodes in the stack is referred to as copy-
ing. There are other techniques to handle the backtracking which reduce the memory
consumption.

Trailing is a technique where the system keeps record of all the changes to the store,
in order to be able to undo the changes in case backtracking isneeded. By using this
technique only one store needs to be kept in memory at all times, however information
about every change on that store also needs to be kept. In the case of major changes to
the store the information about the changes can at times consume more memory than
if copying had been used instead [7].

Another technique is called re-computation. By using re-computation the search-
engine keeps the initial node at all times. All other nodes can then be recomputed
as long as the system keeps a record of the track taken in the search-tree to come to a
specific node. It is said that the root node contains a workingcopy of the spaces, the
same as the current node. A working copy is just like a full copy. The other nodes
except for the one being examined are reduced to save memory.

If all the nodes in a tree need to be recomputed from the root ofthe tree, then all re-
computations will take longer and longer as the tree gets deeper and deeper. To speed-
up the re-computation a working copy can be kept deeper in thetree. Having several
working copies in the search-tree is illustrated in Figure 2.2. Usually if this is the case
then the distance between a working copy and the working copyabove it is called the
copy distance. As at specific distances from the top a copy of the non-reduced space is
maintained.

Both trailing and re-computation are efficient techniques to reduce the memory con-
sumption of a search-tree. However both techniques have drawbacks when it comes
parallel search. These issues will be covered in Section 4.
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working copy

root

copy depth

Figure 2.2: An illustration of a tree using fixed re-computation. The darker nodes
contain a working copy while the lighter shaded nodes are reduced and needs to be
re-computed. The triangle node is failed and thus naturallynot kept at all.

2.3 Search-engine

The exploration of the search-tree is done by the search-engine. The search-engine
is a central part of a constraint programming service. Defining how a search-engine
should explore the tree often requires an understanding of the entire system and the
search-engines are often very complex and monolithic[10].

In GECODE a sequential search-engine mostly consists of twoparts. The first part is
a stack on which it keeps track of nodes it has to go back to in case it has to backtrack.
The second part is a search-loop which describes how the search-engine should handle
each node of the tree as it works down a path in the search-tree. In general the search-
engine starts by doing propagation on a node, and then if the node is distributable it
commits to one of its alternatives. If the node is failed the search-engine discards it and
uses the stack to go back to the previous node and down the second alternative. If the
node is a solution that solution is returned to the calling process.

2.4 Best solution search

In some problems it is the optimal solution which is desired.A common technique
for achieving this with sufficient speed is through the branch and bound paradigm. A
branch and bound search-engine first explores the tree to finda solution. It then restarts
the search but with an additional constraint that the next solution it finds will be a better
solution than the previous one, and searches the search-tree again. This is repeated until
no solution is found, and thus the previously found solutionis the best solution for the
problem.

2.5 Controlling search

When a search-engine explores a tree it has to choose between one of two paths. There
is no way of knowing what each path will lead to other than the limited control of
selecting a branch heuristic. Selecting the wrong path can lead to the search-engine
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going down a branch which does not lead to any solutions and ineffect is a waste of
effort. Therefor it would be prudent to try to control the search so that the search-
engine tries to avoid such situations. Several methods are available to reduce the risk
of getting stuck in a fruitless subtree, for example: to allow the search-engine to make
jumps in the search tree[3] or to limit the depth to which the search-engine searches
and then increment the depth if no solutions are found [3, 1].
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Chapter 3

Search in GECODE

Section 1.4 and Section 2 describes the workings of sequential search. This section
aims to build on Section 2 with how search is done in GECODE. First the section will
describe basic data structures in GECODE, and then it will continue by describing how
search-engines are implemented.

The GECODE system has several kinds of search-engines implemented. To cover all
these however is somewhat out of the scope of this thesis. Instead I will describe only
two of these search-engines, the two of which I have constructed parallel versions of.

3.1 Space

The store described in 1.4 is a fundamental construct for doing constraint programming.
In GECODE the store is implemented in a construct called a Space. A space is the
working space for propagators, in GECODE a problem is modeled as a Space with
added propagators and variable ranges. The propagators of the space are defined as
the space is first constructed; in practice this mean that propagators are defined in the
C++ constructor of the space, creating a model of the problem. The space then has the
additional functionality to be handled efficiently in a search-engine.

A space has the ability toclone itself. Cloning is used in backtracking, a clone of
the space is put on the stack so the search-engine can come back to it later. How the
stack works will be explained in Section 3.2. A space also hasfunctionality to test its
status, to see if it is failed, solved or distributable. Thepropagatefunction forces the
space to do propagation. The last function a space has is thecommitfunction. The
commit function adds the branching propagators for one of the subbranches for the
store which the space represents. It is thus used for selecting which branch to explore
next. Committing to alternative 1 is the same as committing the the left branch of
a search-tree and committing to alternative 2 is the same as committing to the right
branch.
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commit(n)

clone()status()

propagate()

Figure 3.1: Illustration of the functions in a space object.The circles represent a Space
and the functions the arrows. The clone and commit functionsreturn a new space,
illustrated by the arrow leading to a new space. While the propagate function updates
the space by doing propagation.

3.2 Stack

In the GECODE system the functionality for backtracking is handled by the stack. The
stack keeps track of which nodes the search-engine has previously been to as described
in Section 2.2. In GECODE the responsibility of doing re-computation is also man-
aged by the stack. By keeping the backtracking and re-computation in the stack, the
complexity of the search-engine is reduced.

The stacks in the GECODE system are derived from a basic stackwith memory han-
dling functions. The two different stacks extends this basic class of stack. One of the
two more specialized stacks in GECODE is for backtracking using re-computation,
while the other stack is used in copying based backtracking.The different stacks will
be explained in greater detail in later sections, one for each type. Each type of stack dif-
fers somewhat which functions interface to it, so search-engines need to be constructed
to use either re-computation or copying.

Nodes

In order to do re-computation and keeping track of which subtrees have already been
explored in the search-tree, a special object is needed. In GECODE the stack makes
use of a node object, which keeps the information needed for doing re-computation and
backtracking. The node objects can contain spaces, but theycan also forget the spaces;
keeping only the information needed to do re-computation ofthe space when it is later
requested by the search-engine. The node object is quite generic, it keeps track of the
the amount of subbranches there is at the specific space and also which of them what
already been explored by the search engine. This information is kept as integer values.

It is important to note that the search-engines in GECODE only worry about Spaces.
Therefor the node objects are only used by the stack.
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Re-computation

Re-computation in GECODE is handled by the stack. The search-engine calls the stack
to receive the next space which it needs. The stack then does re-computation if needed
to provide the search-engine with a new workspace. The stackkeeps track of the spaces
which the search-engine passes. When doing re-computation the information stored in
the node object on the stack is which branch was followed by the search-engine when
it passed this space. This information is then used when doing re-computation of a
particular space, as the stack can follow all the commits done by the search-engine to
get to that space.

Copying

The version of the stack which handles copying based backtracking is quite simple
compared to its re-computation based cousin. The stack maintains nodes which the
search-engine needs to return to at a later point in time. This means that the stack holds
the right branches of the nodes passed in the search-tree. When a search-engine asks
for a new space this version of the stack simply returns the top of the stack. The stack
contains clones of the passed spaces so all which is needed tobe done is to commit to
the alternative which has not yet been explored.

3.3 Search-engine

The GECODE system offers many different search-engines. These search-engines are
available in versions supporting both re-computation and copying.

All search-engines in GECODE work through a stack. The workings of this data struc-
ture and how it is implemented in GECODE is described in Section 3.2. Each search-
engine is implemented in two parts. The first part is a templated version which handles
the specialized Space in which the problem is specified, the second part is a more gen-
eral part handling search for any Space object. The templated part call functions in
the more general version of the search-engine. This genericpart of the search-engine
is dependent on the arguments which were specified as the search-engine is instanced.
These arguments decide, for example; if the general part of the search-engine should
use re-computation or copying.

DFS
Example:Space

re-computation

copying copying stack

re-computation stack

Stack Node

Figure 3.2: An illustration of how the search-engine is connected with the other com-
ponents for doing search in GECODE.
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Depth first search

The depth first search engine in GECODE is perhaps the simplest of the search-engines
in the system. It consists as mentioned earlier of a templated version which then starts
a more generic search-engine which uses either re-computation or copying. Figure 3.2,
which describes how search-engines are connected with the components for search, is
illustrated using the depth first search search-engine as a model.

Branch and bound

The implementation of the branch and bound search-engine inGECODE is somewhat
more complex than the implementation of the depth first search. This is because of
the way problems are modeled using the GECODE constraint programming library.
As mentioned earlier models of problems are specified in the constructor of a space.
While this is true a problem is also a specialized case of a space meaning that a problem
is implemented as an extended object from the space class. Thus it is only in the this
specialized form that the a search-engine has access to problem specific functions, such
as theconstrainfunction. Theconstrainfunction is used to constrain a problem to be
better than the solution which is specified through the argument. Therefor when the
branch and bound search-engine needs to constrain a space itneeds to be done in the
templated part of the search-engine which has access to the special function.

When a new solution is found, the search-engine continues to try to prove that it is
either the best solution or that there is a better one. Therefor the entries which are on the
stack when a solution is found need to be constrained. To keeptrack of which entries
on the stack that have already been constrained since the last solution was found the
search-engine maintains a mark. The mark is set to the numberof entries on the stack
when a new solution is found. Each entire below that mark thenneeds to be constrained
before any further work is done on that space. Naturally as nodes are popped from the
stack the mark is decreased so that spaces wont be constrained in vain.
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Chapter 4

Parallel Search

This section begins by describing some of the benefits of parallel search. It continues by
addressing some of the issues with parallel search and last it covers different suggested
frameworks for constructing parallel search engines. The focus of this paper is parallel
search in a shared memory environment, not distributed search over several computers.
While there are similarities in the issues and benefits, distributed search needs to cover
issues which are out of scope for this thesis.

4.1 Benefits of parallel search

Parallel search has several benefits from sequential search. In the case of multiple
processors the parallel search can take advantage of all theprocessors in the system,
where sequential search only uses one. This gives parallel search the advantage of
additional computational power. This extra power makes exploration fast, however
the speedup is not necessarily linear to how many CPUs used inthe search[11]. Nor
does this added power allow parallel search to solve problems sequential search cannot
solve[4]. In a time where hardware with multiple CPUs is increasingly available it
seems wasteful not to have a search-engine which can take advantage of the additional
resources.

Parallel search has other advantages over sequential search, for example: A sequential
search engine using depth first search can, as mentioned in Section 2.5, wander down
a branch in which no solutions are available, thus resultingin an entire subtree of the
tree is fully explored before the search engine returns to a point where it can explore
the other parts of the tree. A parallel search engine can explore several branches at the
same time, reducing the risk of the search getting stuck in a branch where no solutions
are found.

4.1.1 Super-linear speedup

Due to the non-deterministic nature of a parallel search-engine the search time for a
solution can at time be significantly better than that of a sequential search-engine. This
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depends on the order of the exploration; a sequential search-engine always follow a
specific route while a parallel search-engine can differ from this static path, since it can
explore spaces in parallel. Should a solution be found faster in one of the paths taken
by a parallel thread which is not in the sequential path a speedup is obtained. This
speedup is called super-liner speedup. This is when N threads explore a search-tree a
speedup greater than N is obtained[6]. Super-linear speedup is however not predictable
and at most times the speedup obtained by a well implemented parallel search-engine
is slightly less than N.

4.2 Issues with parallel search

This section will discuss issues with parallel search-engines. Therefor the focus of this
section will not handle problems with general parallel programming, but rather try to
describe the pitfalls of parallel search.

While parallel search offers speedup and better resource utilization it also suffers from
some issues. Doing search in parallel gives an overhead in runtime for handling threads
and synchronization. However, the efficient use of several processors can often com-
pensate for some of the overhead compared to sequential search engines.

There are several sources of inefficiency in a parallel search engine, which are not
present in sequential search engines. It is important to manage these sources to in-
crease the performance of the parallel search engine. The most common sources of
inefficiency are:

• Communication Overhead, referring to the overhead resulting from communica-
tion between threads.

• Idle Time, it is inefficient to maintain a thread which does nowork. A thread
which has no work will also in most implementations of parallel search-engines
result in an increased communication overhead. This is because the system will
try to contact the other threads to collect work for the idle thread.

• Redundant work. Parallel search can produce more work than asequential search
engine would have before finding a solution. If this work is not directed towards
finding the solution, then that work is redundant and thus inefficient.

In most systems there is a period at the start and sometimes atthe end of an explo-
ration where most threads are idle[12]. A sort of warm-up period before the system is
stable, followed by a cool-down period at the end of the exploration. At the start this
is because most systems start an exploration by giving a space to one of the threads.
This thread then shares work with the other workers. As the workers complete the
exploration of the search-tree the amount of work availableis significantly less than at
the beginning, thus not all workers will be able to receive work. The cool-down period
is only significant if a complete exploration of the search-tree is done. The effect is
caused by the lack of work as the search-tree is being explored.
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Coordination

In certain types of parallel search engines the parallel searches need to coordinate their
progress with each other. For example the branch and bound search needs to keep
information about the previously found solution. When searching in parallel this infor-
mation needs to be shared between all the threads. To do this acommunication layer is
required. Different paradigms for sending information between threads are available.

• Message passing, where each thread has a mailbox and to communicate threads
send mail to each other. Message passing provides an abstract way of handling
communication and several search engines use message passing for communication[9,
10].

• Data flow, where threads communicate through mutexes actingas traffic lights,
as well as shared variables.

Both of these approaches requires extra checks in the system. Either to verify that no
other thread is currently in a critical section of the code, or to check for new messages
at certain time periods. As mentioned earlier these checks lead to runtime overheads,
compared to a sequential search-engine.

4.2.1 Load balancing

An issue with doing parallel search is to always make sure that the different threads
always have work to do. When a thread has nothing to work on it has to find work
in order to continue. To look for work takes time and often locks other threads from
working. Therefore it is not a good idea to look for work too often. To further com-
plicate things each thread also needs to have a fruitful partof the search tree to work
on[12].

The decision to share work with another worker should consider giving a fertile part of
the tree to the worker without sacrificing its own work to do so. Giving a fertile part
such as the lowest left-most part might lead to starvation ifthere is too little work in
the shared part. While giving a huge chunk of the rightmost part of the search tree will
keep the thread with work, the thread will most likely not findmany solutions.

Effective load balancing can reduce the amount of redundantwork done by the parallel
search engine[12]. As an example: consider the case where there are two threads, one
with work and one looking for work. The branching algorithm has been chosen so the
solutions are in the leftmost part of the tree. If the one withwork available decides to
give a huge chunk of its rightmost unexplored tree then both workers will most likely
have work until the solution is found. However giving a part of the leftmost part of the
tree might make the other worker run out of work quicker. However it will also have a
greater chance of finding a solution and thus ending the search faster.

There are other aspects of load balancing as well such as: should load balancing be
initiated by a thread which has no work, or should it be initiated by another thread that
notices that a thread has no work? If the idle thread looks forwork which working
thread should it contact? Should it contact a supervisor which then finds work for the
thread? There are a number of solutions too how load balancing can be handled [11],
therefor I will briefly describe two techniques. One where a request for work is issued
by the idle thread and one where the sharer initiates the worktransfer.
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• Global round robin, every-time a thread is idle it looks for work at other threads
in a round-robin fashion. The system needs to keep a global variable to keep
track of which thread was contacted last.

• A supervising thread keeps a record of which threads currently have work, when
it notice that a thread is idle it requests work from one of theworking threads
and assigns it to the idle thread.

4.2.2 Backtracking

As covered in Section 2.2, backtracking is an important partof search. The information
needed for doing backtracking consumes memory, which leadsto memory consump-
tion problems. Problem which are solved either by re-computation or trailing. When it
comes to a parallel setting however, these techniques have drawbacks.

Re-computation sufferers issues when it comes to parallel settings. While re-computation
is more expressive in the sense that any node can be made available at any time. The
node needs to be recomputed, which will lock both the sharingthread and the receiving
thread from doing any work during that time.

Trailing also sufferers from lack of expressiveness. Thereis only a single node avail-
able to the search-engine during search. This property of trailing makes it harder to
share nodes with other workers, as they require nodes which the current thread is not
working on [7].

A copying approach consumes more memory than both of the previous alternatives,
but has the advantage that all the nodes are available for sharing without the need for
re-computation.

4.2.3 Nondeterminism

Exploring the tree in parallel may lead to a solution being found in a path which would
have been explored after a different solution had been found, had it been a sequential
search engine exploring the tree. Issues of scheduling may also affect which solution
is found next. This gives parallel search an issue of non-determinism. It is there-
for not possible to be sure which solution is found next. Thisis sometimes called
Or-Parallelism[5]. However this nondeterminism also has benefits, and is rather a con-
sequence of the parallel search.

4.2.4 Shared stack or individual stack

As mentioned in Section 2.2 the search engine keeps a stack ofthe nodes it has passed
during search. When doing a search in parallel this stack can be unique for each thread
or it can be shared between them. Sharing the stack with all other threads may lead
to a lot of synchronization on the stack. Since the stack is a critical section of data
only one thread can have access to it at the time. This forces the other threads to wait
for their push and pop operations on the stack, operations which occur often in each
thread. This makes the shared stack a source of contention [1, 12, 2].
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An individual stack on the other hand does not force the thread to wait for other threads
when doing its push and pop operations. However, each threadhas to find work when
its stack is empty, and termination detection is somewhat harder when each thread has
its own stack. Several implementations of parallel search-engines use individual stacks
for each thread [3, 6, 8].

4.2.5 Termination detection

To detect that a search is done in a sequential search is easy.The search engine knows
that the search is done when the stack is empty. However, in a parallel search-engine
there can be several stacks to keep track of, as well as the possibility of a node being
shared to keep the system balanced. Implementations of parallel search-engines which
use a shared stack to keep track of the nodes in the tree are basically the same as a
sequential search-engine in this regard.

4.3 Possible frameworks

In this section concepts which are more implementation specific is covered and benefits
and drawbacks of different approaches are described.

4.3.1 Search loop in parallel

A relatively easy way to implement parallel search is to takea search engine and make
its search loop run in parallel in different threads. All theloops would use the same
stack to pick unexplored nodes from. The implementation hasto add control to the
stack as its access functions are the critical sections of the parallel code. These extra
controls however force the different search-loops to wait for each other when accessing
the stack, which could increase the execution time to the point where it is equivalent
to running a sequential search-engine. This kind of framework would also lack ba-
sic functions for controlling search, and exploration of the search tree would be non-
deterministic.

4.3.2 Manager-Worker architecture

Another architecture which can also used for doing distributed search over networks,
could be used for doing parallel search as well[9]. This architecture can be used in
both a distributed environment as well as in a parallel shared memory environment.
The architecture suggests using a Manager object along withseveral Worker objects as
autonomous agents communicating by message passing. The benefits of this architec-
ture is that it can be implemented to be used over a network since the different agents
of the system use message passing as communication. The solution is not restricted to
one agent on each machine so the architecture can support parallel search on a single
multi-processor machine.

The Manager handles initialization, load balancing and termination detection. It does
so by keeping track of which workers are working and which arenot. When a worker is
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Figure 4.1: Illustration of running several threads with the same search-loop.
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Figure 4.2: A rough outline of the Manager-Worker Architecture

idle the Manager tries too find work for the Worker by asking the ones who have work
to share. Termination is detected by the Manager when it receives a solution from one
of the Workers; or the Manager notice that there is no work left.

The Workers each have their own stack to work on to which work is assigned by the
Manager. As long as the Manager does not tell the Workers to either share work or
stop, the workers keep exploring their part of the search-tree.
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Chapter 5

Architecture

In this section the architecture which I chose to implement parallel search with is de-
scribed. It starts by giving an overview of the architectureand then it describes the two
main components in the architecture, namely the worker and manager components.
The architecture was first presented in Section 4.3.2.

5.1 Overview

A brief overview of the architecture was giving in Section 4.3.2. This overview is
somewhat more detailed, but also presents some of the reasons to why I selected this
architecture for my implementation.

The architecture was first presented to do distributed search, using several networked
computers. But this architecture can just as easily be used in a parallel shared memory
environment [9]. I have however made some changes to the architecture as certain
overheads such as communication overheads are much smallerin a parallel shared
memory environment than in a distributed environment.

The manager is the main part of this architecture. It is the manager who is first initial-
ized and through which the workers then are initialized. Thehierarchical structure of
the manager and worker is presented in Figure 4.2 in the previous section of this thesis.

The manager and workers in this architecture communicate through messages. The
manager has four messages which it can send to the worker;stop, explore, statusand
share. The purpose of these messages are primarily to enable the manager to control
search. The worker on the other hand only have two messages tosend to the manager
process;find andcollect.

5.2 Worker

Each worker corresponds to a search-engine exploring a subtree of the complete search-
tree. The worker keeps exploring as long as it has worker or until it receives a stop
message from the manager.
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Initially the workers are created by the manager. When they are created they are paused,
waiting for the manager to send theexploremessage, so that they can start working.

The workers are supposed to take certain actions as their receive messages from the
manager and as their state changes. A worker which is idle sends afind message to the
manager to receive work. A worker which is busy will continueto work on the work it
has until one of three things happen.

• The worker runs out of work, and thus becomes idle again or it finds a solution
which it then sends to the manager using acollectmessage.

• The worker receives astopmessage from the manager, in which case it stops all
work it is doing and wait for anexploremessage from the manager.

• The worker receives asharemessage from the manager, in which case the worker
pauses its exploration of the search-tree to check if it has work which it can share.

A reason why I chose this architecture is that it is not forcedto run the same kind of
search-engine on each worker[10]. As long as the worker maintains the same set of
messages and each response for each message hold correct format, the workers can
explore using any kind of exploration technique it wishes. In GECODE search-engine
work using the Space object which was described in Section 3.1. As workers share
work and return solutions between them they are actually exchange Spaces between
each other. Thus allowing the meshing of several exploration techniques in a paral-
lel environment. While this is not the goal of my thesis, I found this property to be
intriguing.

5.3 Manager

The manager is the over all coordinator of the search process. It keeps track of several
workers which it delegates work to. The manager is thus responsible for handling
load balancing, termination detection and maintaining control so the exploration can
be stopped.

When the search is first initialized the manager is the first object to be started. The
manager in turn starts the specified amount of workers and give the initial root space
to the first worker. The manager then starts the exploration of the search-tree with the
exploremessage.

As the search progresses the manager has to take care of workers which are idle, find-
ing and providing them with work. The worker is thus sendingfind messages to the
manager which in turn tries to find work for the worker. Finding work is done by us-
ing thesharemessage, which encourages the receiver of the message to share of its
workload; to provide others with work as well.

There are two situations which the manager has to take care of. Termination detection
and solution collection. The manager has to figure out when the workers have no more
work and thus the search is done with no solution found. The manager also has to take
care of solutions which the managers find, and in the case of single-solution search the
manager should stop the workers when a solution is found.
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A manager receives a solution from a worker as it is found via thecollectmessage. As
the message is received the manager stops all workers and returns the solution to the
one who requested the search. Stopping the search is done through thestopmessage.
If the search is stopped due to a solution being found, the solution is sendt with thestop
message.

Termination detection is more difficult then solution collection. There are no messages
sent to the manager as the workers run out of work, instead themanager has to check
if all the workers are out of work. If so then the manager should tell all workers to stop
and inform the one who requested the search that no solution was found.
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Chapter 6

Implementation

In this section I will describe the implementation of the parallel search-engine for the
GECODE system. The section starts by giving an overview of major design decisions
taken and the developed framework. Then it continues with a more detailed view of
each component.

6.1 Implementation decisions

One of the key features of the GECODE system is it’s portability. The GECODE
constraint programming system can run on several architectures including 64-bit ar-
chitectures. When implementing my parallel search architecture I tried to keep this in
mind. Therefor when deciding which technique to use for parallelization I settled for
PThreads. The reason for this is that PThreads is available on many different architec-
tures. Often there is no need to install extra packages for using it. PThreads is also
ideal for parallelization on shared memory machines.

The downside of using PThreads is that it does not support message passing. Pthread
programs work in a data-flow manner, using synchronization primitives to protect criti-
cal sections of code if several threads need to access it at the same time. This presented
the challenge of reworking the architecture to use data-flowmechanisms instead of
message passing.

The solution was to have each message represented as a function, each function pro-
tected by synchronization primitives depending on how sensitive the function was for
changing data. For example asking for a workers status does not affect search in any-
way, so checking status is does not need extra protection. Compared with for example
thesharefunction which directly affects the stack. Thus thesharefunction has to wait
for the search to be in a state which it does not risk to destroythe sensitive memory
structure of the stack or otherwise affect the search negatively. The conclusion is that
running a function on a worker is the same as sending a messageto that worker, and
the same goes for the manager.

Using data-flow instead of message passing the manager classno longer have to run its
own thread, since all the functions it would be performing might as well be performed
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in the functions called by the workers as they want to communicate. Therefor the
manager is no longer managing the workers, but acts more as a control layer. Therefor
in the implementation I renamed the manager class to controller.

As mentioned in Section 5.2, the possibility of running different search techniques
intrigued me. As a result I wanted my implementation to be able to support this. The
result was to template the search-technique on the workers.To allow the system which
initialized the search to select which search technique to use. Abstracting away all
synchronization from the actual search also made it easy to implement different kinds
of parallel search-engines, as the synchronization with other workers was taken care of
by the worker class. How the worker does search is thus controlled through a templated
object called a search-script. This make the system easy to expand and enables code
reuse.

Additionally I made an effort to allow the developers who would use the system to
specify how sharing should be done between the workers in thesystem. This is im-
plemented as an object, called search strategy, which the developer can pass to the
search-engine to do changes in the basic rules of when and what to share.

6.2 Framework

As mentioned the different parts of the parallel search-engine is thus communicating
with each other through functions. Though still acting likea message passing version
this change on the architecture is quite significant. The other change is that workers
are prepared so they are not required to do search in the same way. The platform
still requires some extra code to make this work, but it is prepared for supporting this
feature.

A coarse grained overview of the framework is given in Figure6.1. Which illustrates
most of the major changes to the architecture. The function-calls between the objects
can still be abstractly viewed as messages, though they differ slightly.

Search
Script

Controller Worker

Search
Script

explore

collect

Figure 6.1: A coarse grained overview of how the controller,worker and search script
objects cooperating; along with the important collect and explore function calls.

In the architecture described in Section 5 the manager checks for termination detection
by checking to see if the workers are idle or not. With the implementation using data-
flow the functionality of the manager can just as easily be done in the find and collect
functions. Reducing, as mentioned earlier, the manager to acontrolling communication
layer, thus named controller instead of manager. This change allows a parallel shared
memory machine to use all the processors of the machine to conduct search. Compared
to having an additional thread which checks for terminationdetection. This solution
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should reduce the overhead of thread handling and communication somewhat, as well
as reducing the complexity of the controller object.

6.2.1 Controller

The controller object acts as the communication layer for the workers. The functions
in the controller class handles sharing, termination detection and result collection sim-
ilar to the Manager class described in Section 5.3. The controller however does no
computation in its own thread while the system is searching.

The responsibilities of the manager still needs to be taken care of. In the controller
these responsibilities are distributed between specialized functions which take care of
the specific problem. The functions which the controller interacts with the workers
in an abstraction of message-passing using the functions onboth the controller and
worker objects.

The responsibilities of the controller along with the functions which take care of them
are the following:

• Provide a framework for workers to contact each other is search of work, this is
provided to the system through thefind function in the controller.

• Detect termination, which is detected as thefind function notices that all workers
are looking for work.

• Provide methods for starting and stopping threads when a solution is found or
termination is detected. Thecollect function is used for stopping threads when
a solution is found, while thefind function can stop threads as termination is
detected.

• In the case of search-engines where each worker needs to knowthe current so-
lution, such as branch and bound. The controller is responsible for making sure
that the workers are informed of the current solution. Thecollectfunction makes
sure that each worker receives a copy of the new solution, butsending it as an
argument to the workersstopfunction.

When the controller is constructed it initiates all the workers. These workers then
eagerly wait for the signal to start exploring the search-tree.

The controller has three major functionnext, find and collect. The next function is
a simple function. All it does is to block the calling thread and wait for one of the
workers to report a solution using thecollect function, or termination is detected. The
find andcollect function will be explained in greater detail below.

Due to the data flow approach of the implementation the controller is protected by two
mutex locks. One is used to make sure that only one worker is currently checking for
work or reporting found solutions. The second is used in thenextfunction to pause the
starting call of the search until either a solution is found or a termination is detected.
That way the application using the system can benefit from thefull power of the parallel
search but only needs to call a single function, just as with the sequential search-engines
it is thenextfunction. This make the system easy to use, compared to usinga sequential
search-engine in GECODE only one extra variable is requiredto run a parallel search-
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engine. The extra variable is to tell the parallel search-engine which search-script to
use.

When a worker is looking for work it calls thefind function in the controller. What
this function does is to check each worker for work in a round-robin fashion. The
system thus uses a variation of the global round-robin scheme described earlier, for
load balancing. While checking for work another check is doneas well. The second
check is to see if all the workers are out of work. In that case then the system is done
and termination is detected. The function then signals the mutex which is waiting for
the solution, which return null to the calling application.

Thecollect function receives the solutions of the workers. It is protected through mu-
texes making sure that there is only one worker calling the function. This mutex check
is however non-blocking, so if the mutex fails to lock because of another calling thread
then the function returns false. This informs the worker that another thread just re-
ported a solution and thus it makes sure the solution is preserved in case subsequent
searches will be made. When a solution is collected it is stored in a variable in the con-
troller and the mutex waiting for the solution is signaled. The solution is also passed
to all the workers, in case they need to keep a copy of it for example in the case of
branch-and-bound search.

6.2.2 Worker

The worker class is the communicating wrapper class for the actual search-engine,
also called the search-script. Each worker has its own thread, which is created upon
instantiation of the worker object. The worker has functions for stopping, exploring
and checking to see if it has work to share. The worker starts exploring when a call to
the worker’sexplorefunction is made, through the controller. Initially the worker will
be paused until an explore call has been made. When the search-tree is explored the
worker thread spins in a loop, which communicates with the search script and the other
workers. The loop does the following:

• if we have work, do a search step and check for pause.

– if a solution is found, call the collect function in the controller.

• if we don’t have work, check for work and then check for pause.

– if work is found give it to the search-script for exploration.

The pause check is used with thestopfunction, if the worker’s search loop should stop
it will do so when it checks for pause. A paused worker will resume exploration at the
same place it stopped, if the search is started again later. This makes sure that the work
already done in a search will be preserved in the case of subsequent searches.

The workers always maintain their threads when instanced. To completely stop a thread
the worker object needs to be destroyed. This makes subsequent calls for search faster
as the workers don’t have to start new threads, but rather runthe ones already available.
So maintaining a pool of worker is similar as to maintain a pool of threads.
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6.2.3 Search Script

The search script handles the actual exploration. It describes how to explore the search
tree, how to share and receive work, etc. The goal is to be ableto construct new search
scripts which take advantage of the parallel engine withouthaving to deal with thread
synchronization and creation. The search script has a few functions, most important are
the functionsnewRoot, searchStepandshare. ThenewRootfunction is to set the root
of an empty search script so the search script receives work.ThesearchStepfunction
does one step of the exploration of the subtree this search script has. Note that the
worker class iteratively calls thesearchStepfunction to ensure that the search moves
forward. Thesharefunction is responsible for finding work to share with other search
scripts.

The search-scripts are in turn implemented in a similar way as the sequential search-
engines in the GECODE system, Section 3.3 describes how search-engines are con-
structed in GECODE. So in a similar fashion the different search-scripts implemented
consists of several parts. The first part is a wrapper which starts the rest of the script
depending on if re-computation should be used or copying, aswell as setting other
initialization variables.

The search-scripts can be seen as a sequential search-engine, but instead of doing the
search in a loop it does only one step of what a sequential search-engine would do. This
and the functions for handling sharing of spaces are the two main differences between
a search-script and a sequential search engine in GECODE.

The search-script even reuse parts of the code which was originally designed for the
sequential search-engines. Apart from the code for spaces the search-script also use the
same stacks as the sequential search-engines. Using these stacks benefit re-computation
based backtracking far more than it benefits copying-based backtracking.

As described in Section 3.2 the re-computation based stack maintains more informa-
tion in the nodes of the stack, compared to what the copying-based stack does. The
copying based stack just maintains stacks which it should explore next, which the re-
computation based stack maintains all nodes the search has passed so far.

The nodes in the re-computation stack describe the path which has been passed by the
search. This is so that spaces easily can be recomputed. To maintain this information
each nodes holds two numerical values, the number of the previous path which the
search used when it passed this node and the paths available from this node to lower
parts of the tree. These values are ordered so that the leftmost branch of the node has
the value 1 and the rightmost value is equal to the total amount of branches available.

This information proved to be quite useful when it comes to sharing work between
workers. To cut off a subtree of the search-tree all that is needed is to decrement the
maximum number of paths on the node you which to share from. This prevents the
re-computation based search-engine to explore down that path, but the path can still be
explored by another worker.

This is how sharing is done in the re-computation based search-scripts. The value of
the right-most path is sent to the worker requesting work (sharee) along with a copy
of the space. The sharee then commits to the right-most alternative on its side. On
the sharers side however the maximum number of paths available from the node which
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the space was shared from is decreased by one, which preventsdual exploration of the
same subtree.

6.2.4 Sharing strategy

The Sharing strategy is an optional object which contain rules for the search-engine.
The rules describe how and when to share work with other workers. If this object is
not passed to the Controller the search-engine is designed to use some default values
defined in the search scripts. The sharing strategy providesthe option of defining how
large a stack should be before the worker will share, where the worker will start looking
for work in the stack and in which direction it will look. For example, a worker can
look for a node to share at the bottom of the stack and then moveup. or it can look
from the top and then move down. Both have their respective benefits and drawbacks.
If a sharing strategy is not set during worker initialization then the default values for
sharing in the search scripts will be used. Currently the default for the search-scripts
doing re-computation is to share from the top of the stack, and for the copying search-
scripts sharing can only done from the top.

In fact the copying based search-script does not check the sharing strategy at all. This is
because the re-computation search scripts needs to keep allpassed nodes on the stack.
It is thus easy to reserve paths from nodes which have not yet been examined, making
re-computation easier for defining different methods of where and how to search for
work. How this is done was described in the end of the last section. The search-scripts
for copying however only keeps the nodes yet to examine on thestack. The copying
based stack is not prepared for removing elements from the middle of the stack. Thus
sharing a node which is not on the top of the stack will requirerestructuring the stack.
While this can be implemented, it is costly. Due to time constraints during the end
of the development the search scripts for doing copying do not reconstruct the stack.
Instead the copying search-scripts only pops the top of the stack and shares the top
node with the worker looking for work.

6.3 Implemented Search Scripts

The search scripts mentioned in this section are the search scripts which have been
implemented for the search-engine. However, it should be easy to implement other
search scripts and I hope that these implemented search scripts will assist anyone who
wishes to do so.

6.3.1 Depth First Search

The depth first search script is the most basic search method and it was the first to
be implemented in the system. It is implemented both too use re-computation and
copying. Where the re-computation based search-script is the more expressive search-
script.
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6.3.2 Branch and Bound Search

There is a branch-and-bound search script implemented for the system for doing best
solution search. The branch-and-bound search-script is similar to the depth first search
script in many ways, except for the actual search. The branch-and-bound search script
is also a bit more complex than the depth first engine. This is because of the need to
constrain store when sharing solutions, and when new solutions have been found. To
handle this the branch-and-bound search script records howmany entries are on the
stack each time a solution is received. When a space is taken from the stack which
results in a lower number of entries than the mark then the mark is decremented by one
and the space which has just been popped from the stack is to beconstrained. When
work is received from a search then the injected space is automatically constrained to
the current best solution. This requires the newRoot functions of the search-script to
make extra checks on the received space, and may result in thespace turning out to be
failed to begin with.

In the GECODE system the spaces do not contain any general function for constraining.
Instead the constrain function is implemented in a more specialized form of space. The
space where the problem is modeled. Since the search scriptsuse standard spaces, they
cannot constrain the spaces in the search script. This is instead done in search script
which wraps the actual search scripts, just as in the normal sequential search-engine
in GECODE. Which is described in Section 3.3. This search script use the specialized
version of the spaces and can thus access the constrain functions.

6.4 Possible expansions

As I have mentioned at several points in this section, the implemented architecture
is highly adaptive and offers the ability to implement parallel search-engines without
forcing the developer to pay too much attention to issues of synchronization and com-
munication of the workers. A natural expansion of this architecture would be to make
it distributable. It would be relatively easy to make a new controller class which han-
dles message passing and cross-network communication between other search-engines.
This would make a search-engine which can take advantage of all implemented search
script for shared-memory environment, and such a search-engine would also take full
advantage of the resources should there be shared memory multiprocessor computers
in the network.

Using this platform for constructing parallel search-engine one could create search-
engine in which different workers use different search-scripts. Where the search-scripts
explore the system in different ways but they can still communicate and take advantage
of the work available in the different workers. It would be interesting examine the
benefits and drawbacks of this in greater detail.
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Chapter 7

Analysis

To prove the functionality of the implemented system a analysis is needed. This section
analysis the performance and the functionality of the platform in regard to four different
aspects. These are: Correctness, Portability, Overhead and Runtime.

The correctness part aims to show that the platform producesthe correct results, the
portability subsection is a short discussion of how portable the platform is and which
design decisions affect this. The overhead subsection describes the runtime overhead
imposed by running search in parallel on the platform, the section tries to show how
much overhead can be expected as well as where the sources of overhead are in the
system. The last subsection of this section aims to show the speedup obtained from
running parallel search using the implemented platform.

7.1 Correctness

One of the most important properties of the implemented system is its correctness. For
this reason it must be examined. To see if my implemented platform for parallel search
produces the correct results, runs of the search-scripts have been made and examined.
These runs examined different things depending on which search-script was currently
being examined.

For the Branch and bound search-script the results were compared to the sequential
engine. This to see if the search-script produced the same result, that is found the same
optimal solution.

For the depth first search search-script runs were made to findall the solutions for the
problems. The amount was then compared if the same test was done on the normal
sequential execution. Also on some test the solutions were examined to see if they
were the same. The problem is that the parallel depth first search engine produces the
same results, but in a different order. But examining the test runs to see if the parallel
search produced the same result and found all the solutions showed that the platform
and search-script indeed gives the correct result.

Note that in this correctness analysis the tests were compared to the sequential search-
engines of GECODE. So if these engines turn out to give the wrong result then so does
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my parallel platform. Should the normal sequential search-engines prove to give the
wrong result, then most likely is it because of a problem withone or more propagators.
Propagators which are also used in my parallel platform and thus my platform produces
the same result.

7.2 Portability

One of the main reasons for using PThreads was to make the system more portable.
The PThread library is available in any POSIX standard OS, where other available
methods need extra libraries for implementing parallelism. While the PThread library
can differ in its implementation on different operativsystem the functions used for im-
plementing the platform are simple synchronization primitives which even though the
implementation differs still produce the same result.

However the platform makes use of a barrier primitive which is implemented in some
implementations, while not in others. This is simple to workaround, but it would still
require some porting of the code to make the system work on some systems. These sys-
tems are, on the other side, not supported by GECODE. Therefor the selection of the
PThread library should make the implemented system available on any POSIX stan-
dard OS which has implemented barriers and is otherwise supported by the GECODE
system.

7.3 Test cases and test environment

In order to examine the performance of the parallel search-engines different test cases
are needed. The test cases consists of classical problems for which the solutions are
know. In the following two sections; Overhead and Runtime, the problems stated in
this section are used.

• magic-square

• golomb

• hamming-codes

• packing

• partition

Each problem is tested using both the re-computation based search-script and the re-
computation based search-script. Which gives a total of 8 tests.

The tests are run on a 4 processor machine where each processor has a clock-speed of
900 MHz. The machine has 16 GB of memory available. However, the machine is not
dedicated for running the tests, so it is a loaded system.
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7.4 Overhead

It would be interesting to know how much overhead the parallel search-engines have
compared to a sequential search-engine. Naturally a parallel search-engine needs to
do synchronization checks, so knowing it is interesting to know how much overhead is
added for these extra checks, compared to running a sequential search-engine.
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Figure 7.1: A graph illustrating the overhead caused by running the parallel system
with one thread compared to running search sequentially

To compare the overhead added by the system the parallel search-engines are run with
one thread. To achieve a good estimate of how the system will perform the tests are
run several times to gather an average of the runtime. These tests are then compared
to similar runs, using the sequential search-engines in GECODE. By comparing the
results of the tests we can get an estimate of how much overhead the system gets just
from doing the synchronizations and extra controls.

As can be seen in Figure 7.1, the overhead caused by the systemdue to extra synchro-
nization checks is quite small. In the case where the search-scripts and search-engines
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use a copying based approach for backtracking the overhead is on average less than
half a second of the execution time. When comparing how much ofthe overhead is
of the execution time then the overhead is around 1% of the execution time for all the
testcases.

Since the tests are run on a loaded system there are some caseswhere the test-cases
does not show any overhead. However since the tests were run several times and an
average was computed these fluctuations in execution time can be ignored.

The small overhead seems reasonable since the system does not have to wait for other
threads. By using a data-flow approach instead of a message passing approach the
synchronization is quickly done if no other threads are there to interrupt. As more
threads are used in the system the overhead for synchronization is bound to go up. But
the 1% of can be seen as a minimum overhead caused by the designof the platform.

7.5 Runtime

The main reason for running search in parallel is to achieve lower runtime for problem
search. This section will examine how much the runtime of thetest problems are
decreased as a search is run with more and more degrees of concurrency. To gather the
necessary run-times each test-case was run 100 times with 1,2, 4, 8 and respectively
16 threads. From the runtime of the test runs the average runtime is calculated, as well
as the standard deviation of the runtime.

The results of these calculations can be seen in Table 7.1 andTable 7.2. Each table is
the calculated data for the runs where Table 7.1 contains theresults for when the tests
are run with re-computation based backtracking, and Table 7.2 contains the results from
using copying based backtracking. The average runtime for the tests can also be seen
in graph from in Figure 7.2.

As can be seen in both the tables and in Figure 7.2, running theparallel system results
in longer average runtime for all the depth first search problems. There are two possible
explanations for this.

• The extra parallel threads are assigned parts of the tree which contain no so-
lutions. Thus the platform only enforces extra synchronization and contention,
but the first started thread find the first solution. The solution which happens
to be the same solution as the one a sequential search-enginewould find. The
Magic-squares problem however do sometimes find another solution and finds it
faster than a sequential search-engine would do. This can beseen in the tables
since the magic-squares problem have a higher standard deviation than the other
problems.

• The platform suffers from racing conditions, where the threads are competing
for exclusive access to the one source from where they initially can get work
form. Unfortunately this source is the first threads stack, the first thread wont
share any information until it has produced enough nodes to actually share. This
racing condition produces a small overhead as the number of threads are low, but
as the number of threads increase this overhead increases with it. The overhead
increases faster as the number of threads surpass the numberof processors. When
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Figure 7.2: A graph illustrating the average speedup when running several threads. The
graph is based on the data in Table 7.1 and 7.2.

this happens not only is the first thread competing for accessto its own stack, but
also for a processor to work on.

It is my belief that the poor results are from a combination ofthese two explanations.
There is a racing condition in the system, and the search-trees for the problems which
are tested are very narrow.

The re-computation based Golomb ruler results show exactlythe kind of speedup that
is available for doing parallel search. The runtime is reduced as more threads are used
in the search. In the beginning the speedup is high, but as more and more threads are
being run the performance gain from each thread is reduced. The main reason for this
is that there are only 4 processors available in the system. Adding more threads only
allows the system to make jumps between different subtrees,which can help find better
solutions faster.

The Golomb ruler tests are not as sensitive to the problem with a racing condition.
The reason for this is that the platform needs to test for optimality. Meaning it has to
examine each and every node in the search-tree, to guaranteethat there are no better
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Threads 1 2 4 8 16
mean std mean std mean std mean std mean std

Golomb 61352.8 99. 36039.0 2503.0 22049.9 2944.9 14145.7 5317.5 12004.0 3936.7
Hamming 16221.4 230.6 18195.8 405.4 20086.5 344.0 46798.7 1357.8 109280.0 2995.0
Packing 1298.1 45.4 1493.2 255.3 2242.2 427.9 4141.2 1117.3 8801.5 3396.9
Magic-square 19770.6 40.6 24614.3 6689.6 27564.2 10060.2 22158.6 772.3 50978.9 2512.3
Partition 20248.8 17.7 22448.0 2127.2 26657.1 9579.9 39789.2 18271.4 93509.1 34716.1

Table 7.1: Average runtime and standard deviation for parallel search using re-
computation for backtracking

solutions. The racing condition is most apparent in the beginning of the execution.
Since as the system has found the first solution and the work offinding a better one
starts all threads already have nodes to work on. At the end the racing condition comes
into play again. However since at the end of a branch and boundsearch the search-
engine mostly discards spaces, the racing condition doesn’t affect search in the same
degree as in the beginning. Discarding spaces is much cheaper than calculating new
ones.

Threads 1 2 4 8 16
mean std mean std mean std mean std mean std

Golomb 49485.4 36.5 56465.7 555.3 37244.4 527.7 94455.4 13684.8 184885.5 18439.1
Hamming 15766.3 72.0 18408.0 477.5 21387.4 323.5 51368.0 1363.5 125744.7 3174.0
Packing 1043.7 44.9 1243.5 91.3 1344.6 155.1 2903.9 1362.0 6032.5 2070.4
Magic-square 17665.0 19.6 29433.3 7382.6 35549.3 11914.82 34444.8 18151.5 61065.3 3936.7
Partition 17313.7 283.3 16767.3 3044.1 23802.4 9268.3 40462.4 14693.9 83345.1 28048.8

Table 7.2: Average runtime and standard deviation for parallel search using copying
for backtracking

In contrast to the re-computation based Golomb ruler test, for the copying based test
the runtime increased in all steps except for one. From figure7.2 and table 7.2 we
can also see that the speedup benefit is not a linear function.This is alarming as the
average runtime should be linear to the amount of threads. A possible theory for the
sudden speed increase when running 4 threads, could be that running a search with 4
threads on this search-tree gives a good chance to discover the optimal solution early
on. This however should also be the case for when running morethreads than 4. As
can be seen in both the graph and the table, the runtime for running more than 4 threads
increases greatly. Both comparing to running 2 and 4 threadson the same test. Another
explanation could be the bugs in the GECODE system prior to version 1.0. Apparently
prior to version 1.0 of the GECODE system, there were some errors in the functions for
doing copying-based search. These tests were run using a earlier version of GECODE
and due to the parallel execution the effects of these bugs could have a great effect on
this particular test.

Finally this analysis section ends with with a table showingthe speed-up for all the
tests compared to the original sequential runtime. These figures can be seen in Table
7.3

7.6 Improvements

The above sections state that there is still room for improvement in the parallel plat-
form. By re-compiling and adjusting the platform to use the latest version of GECODE,
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Speedup Sequential 1 2 4 8 16
Packing Recomputation 1.0 0.96 1.10 1.66 3.06 6.50
Packing Copying 1.0 0.99 1.18 1.27 2.75 5.70
Hamming Recomputation 1.0 0.98 1.09 1.21 2.82 6.58
Hamming Copying 1.0 1.01 1.18 1.37 3.30 8.07
Magic-square Recomputation 1.0 1.08 1.35 1.51 1.21 2.79
Magic-square Copying 1.0 1.07 1.78 2.15 2.08 3.69
Golomb Recomputation 1.0 1.02 0.60 0.37 0.24 0.20
Golomb Copying 1.0 1.01 1.15 0.76 1.92 3.76
Partition Re-computation 1.0 1.00 0.97 1.39 2.36 4.86
Partition Copying 1.0 1.01 1.12 1.33 1.98 4.66

Table 7.3: The speedup for all of the tests

I believe that the problems with the non-linear runtime of the copying based tests could
be solved.

The runtime could be significantly improved if the racing condition could be removed.
There are several possible solutions for removing the racing condition:

• Checking if a worker has work to share is in fact a read-only operation on the
workers stack. As it is implemented in the system this is donein the sharing
function. That is the worker locks the mutex which controls the stack just to
check for more data. By moving this check out into its own function and only
lock the mutex if there truly is data to share, the overhead caused by the racing
condition could be severely reduced.

• Currently the function for finding work goes in a strict orderover the worker
when looking for work. It first starts to check with worker number 1, then 2,
etc. This strict order places a high load on worker number 1, especially in the
start of the search, when it is the only worker who actually has work to share.
By changing the find-function to check with all the workers, but in a random
order. The amount of threads disturbing worker number 1 is reduced, and thus
the overhead could be reduced as well.

• A solution which is a bit more advanced is to divide the stack of each worker into
two parts. One from which data can be shared without locking access to the other
part of the stack, and one from which data is shared only in worst case scenarios.
Such a splitting of the search stack has been done using a cut-off depth[6]. This
cut-off depth is a depth in the stack where the owner cannot goabove without
locking the stack, and the thread looking for work cannot go below. A similar
order could be introduced to the platform to reduce the overhead caused by the
racing condition.

• In the current implementation the controller checks all theworkers for work,
instead of doing this the platform could be modified so that the workers report to
the controller when they have work to share. The controller would then keep an
array of workers which have work to share. This would improvethe performance
of the find-function as well as ensuring that the workers are not disturbed when
they do not have enough work to share. Implementing this requires allot of
reworking of the platform. It also requires the developer ofa parallel search-
script to keep track of when there is work to share, and to report this to the worker
from the search-script. While this solution could improve the performance of the
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system, I believe that it cannot be implemented in a way whichwould keep the
separation between the search-scripts and workers in the way I have tried to
achieve.

I believe that by implementing the first three possible solutions for the racing-condition,
the performance of the system will increase tremendously.
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Chapter 8

Conclusion

This thesis has covered the concepts of implementing a parallel search-engine for a
constraint programming system. It should be apparent to thereader that the imple-
mentation of a parallel search-engine is somewhat of a balance act. There are alot of
decisions which need to be made about the nature of how threads communicate and
distribute work.

I’ve developed a platform for parallel search on which different search-engines easily
could be built. I have also implemented two types of search-engines on this platform;
depth-first search and branch and bound. Each with differentmemory handling tech-
niques; re-computation and copying. These search-enginescan act as examples of how
to implement other search-engines using the same platform for thread handling and
sharing.

I aimed at making the platform as generic as possible. The goal was to allow several
types of search-engines to use the same structure. However this platform cannot ac-
commodate for more specialized search techniques, such as using optimistic branch
and bound for example. In some cases the problem could be how GECODE handles
the models of problems, in other cases more specialized communication was required.
This platform however should allow the vast majority the different types of search-
engines to use the parallel capacity offered.

The results from the analysis of the platform I have implemented show poor perfor-
mance for all but one test. This test however shows promisingspeedup and it is my
belief that the platform can be modified to perform to a degreewhere it is beneficial to
use it.

Given the poor results of this platform I am still confident that its performance numbers
can be improved. Even though this implementation does not perform well it proves that
creating a generic platform for doing parallel search is possible, and an implementation
like this can achieve speedup. As the tests show; the branch-and-bound engine using
re-computation for backtracking reduced the runtime to 20 percent of the original se-
quential runtime when running 16 threads for the computation.
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