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Abstract

Constraint programming is an area of computer science whashdeveloped rapidly
over the last years. Constraint programming offers thestoeleded to solve larger
combinatorial problems with sufficient speed. The key to gshecess of constraint
programmings success in combinatorial problem-solvirgy genventional search are
clever algorithms and resource management. Today, consputtih multiple proces-
sors working on shared memory are increasingly common. thésefor natural to
provide tools to use multiple processors for solving coratwnial problems with con-
straint programming. GECODE is a constraint programmibgaliy which introduces
new and faster algorithms for finding solutions and usingueses. GECODE how-
ever lacks support for using multiple processors. Thisishésscribes the work done
too produce an adaptible system for using GECODE to do ghissghrch in a shared
memory environment.

This thesis handles the design and implementation of tHe te®ded for GECODE to
transparently take advantage of multiple processors imeeshmemory environment.
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Chapter 1

Introduction

1.1 Acknowledgments

I would like to thank Christian Schulte for offering me thepaptunity for writing this
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thank Guido Tack and Didier Le Botlan for their paper: Comfiasal Abstractions
for Search Factories which inspired me in how to implemeapidrallel search-engine.
I would also like to thank Fredrik Liljeblad for helping metsg a test-environment.

1.2 Related work

This system is a part of the Gecode constraint programmistgesy. A system intro-
ducing some novel ideas in the area of constraint propagatid propagator construc-
tion. Other constraint programming systems exist with tygability of doing parallel
search such as: Mozart, ILOG[3] and Eclipse.

Though not constraint programming systems the ALPS[12]SYiMIPHONY[2] sys-
tems are systems for handling integer programming, caphdeing parallel search
in trees.

1.3 Plan of the Paper

This paper will start by giving a short explanation of theibancepts in constraint
programming, after which the concepts of search are examime focus will then
turn to parallel search, for which the rest of the paper vélabout. First the concept of
parallel search is presented, followed by an examinatialiffefrent ways to implement
it. Lastly the implementation is presented along with megias to why its designed as
it is.



1.4 Short Introduction to Constraint Programming

Constraint programming provides a generic way to solve a&watiety of problems.

The problems are modeled as discrete variables which aignadsa range of values,
in which a solution should lie, as well as constraints for ¥hties of the variables.
These three components, the variables, their values arabtistraints, are kept in an
object called a store.

Store

Variables Values Constraints

{1,2,3,4}
{2,3,4,5}

Y<X

Figure 1.1: An abstract representation of a store with itsab¢es, values and con-
straints.

Through a process called propagation the values which doesaid for the con-
straints, are removed from the possible values of the vi@salT he constraints in the
store are actually functions called propagators which ém@nt the constraints on the
store, propagators can only remove values for which theglaselutely sure that they
cannot be a part of a solution. The goal of propagation isdace the ranges to either
achieve a solved or a failed store. However in most casespatipn is not enough to
solve the problem. For example propagation on the storesepted in Figure 1.1 will
result in a store wher¥ |= {3,4} andY |= {2,3} which is still not a solution for the
problem.

A store can have three possible states. Failed, one or mateeofariables has no
values left in its range; solved, each variable has exaci\alue to choose from; and
distributable which are all store which are neither solvedfailed. The propagated
store mentioned earlier is thus a distributable store.

To further reduce a distributable store, branching is uBeanching is a way to reduce
the store without losing accuracy by removing solutionsari@hing takes a copy of
the store and adds the constrgirtb it, it also takes another copy of the store and adds
the constraint-3. An example of the constraift could beX = 3 which would then
reduce the store to a solved store. The branching forms aytiireee where each store
is a node in the tree. Every leaf node in the tree is eithededair solved store, while
the body of the tree consists of distributable stores.

This tree is explored through the process of exploratiorearch. Exploration is done
through a search-engine, which can explore the tree in waneays, for example:
depth first or breadth first. As propagation can take a long tine tree is not con-
structed before the search is started. Instead the treeilg tanstructed while the
search-engine is exploring the tree. Meaning each nodenstrated on demand
rather than in advance. Sequential search-engines wilbbered in greater detail in
Section 2.

To conclude this section lets consider how a search-engigdvexplore a search-tree



Figure 1.2: An example of a search tree. The round nodes stribdtable, the trian-
gular are failed and the diamond are solved.

using the example store in Figure 1.1. First the initial estisr propagated to yield a
distributable store. The search-engine then resorts tochilag too further reduce the
store. The store is copied and the constraint 3 is added too one of the stores.
Propagation is done again on the specialized store whichdwghow that the store
is now a solution and the search is stopped. This example hag solutions and it
might be the case that all solutions need too be found, inlwtése the search-engine
continues its search.



Chapter 2

Sequential search

This chapter will go deeper into the details of searchingstfhe concept of branching
will be briefly described. The paper will then shortly expldiow a search-engine
works and then continue with different aspects of searching

2.1 Short overview of branching

How the constraints of the branching are defined affects tigasearch tree will look
like. There are some common techniques for branching, ssicfirat-fail and naive.

The goal when selecting which technique too use is to try teentbe solutions closer
to a part of the search tree which will be explored early ingkecution. Since it is
tradition that most depth first searches move towards thetdeft part of the tree,

the selected technique should place solutions close todtterb left of the tree. For
this reason, selecting which technique to use is often ddremwnodeling the problem
to solve.

Naive branching selects a variable and binds a value to icasstrainf3. The second
constraint—[3 is of course the constraint where the variable does not Hasevalue.
First-fail selects the variable with the smallest set ofsilale values. In order to quickly
reduce the size of the variables value ranges.

2.2 Backtracking

When a depth first search based search-engine explores ¢hieé wi#l in most cases
come too a point where it has reached a failed node. If so,ttfteesearch-engine will
have to go back to a previous node and try a different patts iStalled backtracking,
and it is essential for the search-engine to explore theecinée.

Backtracking is often done using a stack as illustrated gufé 2.1. For each node the
search-engine passes it pushes a copy of it onto the staelseEnch-engine continues
down a specific path of the tree until the current node fafla. Hode fails the search-
engine pops the previous node from the stack and explorasnéaelored path from



Search-tree Stack

A top

bottom

Figure 2.1: An illustration of how a stack is used to keepkratpassed nodes in a
search-tree for backtracking purposes.

it. If the node the search-engine just popped has no unesgloath it is treated as a
failed node and is discarded. Again a new node is popped frenstick. When the
stack is empty, the search-engine has examined the endirehsteee.

As problems grow in complexity, the size of their searchdrgeows as well. Thus
keeping information about each node in the search-treeszahtb memory consump-
tion problems. Keeping all the copies of all the nodes in thelsis referred to as copy-
ing. There are other techniques to handle the backtrackhighareduce the memory
consumption.

Trailing is a technique where the system keeps record ohalchanges to the store,
in order to be able to undo the changes in case backtrackimgeided. By using this
technique only one store needs to be kept in memory at alktimavever information

about every change on that store also needs to be kept. lasleeo major changes to
the store the information about the changes can at timesioansnore memory than
if copying had been used instead [7].

Another technique is called re-computation. By using reygotation the search-
engine keeps the initial node at all times. All other nodes tteen be recomputed
as long as the system keeps a record of the track taken indhehsigee to come to a
specific node. It is said that the root node contains a workoqy of the spaces, the
same as the current node. A working copy is just like a fulljcophe other nodes
except for the one being examined are reduced to save memory.

If all the nodes in a tree need to be recomputed from the rothieotree, then all re-
computations will take longer and longer as the tree getpetesnd deeper. To speed-
up the re-computation a working copy can be kept deeper itrélee Having several
working copies in the search-tree is illustrated in Figu2 RJsually if this is the case
then the distance between a working copy and the working ebpye it is called the
copy distance. As at specific distances from the top a copyeofion-reduced space is
maintained.

Both trailing and re-computation are efficient techniqueseduce the memory con-
sumption of a search-tree. However both techniques hawebdicks when it comes
parallel search. These issues will be covered in Section 4.



root

copy depth

working copy

Figure 2.2: An illustration of a tree using fixed re-compigtat The darker nodes
contain a working copy while the lighter shaded nodes areaed and needs to be
re-computed. The triangle node is failed and thus naturadtkept at all.

2.3 Search-engine

The exploration of the search-tree is done by the searcimend he search-engine
is a central part of a constraint programming service. Dagjrfiow a search-engine
should explore the tree often requires an understandingeo&ntire system and the
search-engines are often very complex and monolithic[10].

In GECODE a sequential search-engine mostly consists optwts. The first part is
a stack on which it keeps track of nodes it has to go back tosa itdas to backtrack.
The second part is a search-loop which describes how thelseagine should handle
each node of the tree as it works down a path in the searchtirgeneral the search-
engine starts by doing propagation on a node, and then ifdde s distributable it
commits to one of its alternatives. If the node is failed tharsh-engine discards it and
uses the stack to go back to the previous node and down thedsatternative. If the
node is a solution that solution is returned to the calliracpss.

2.4 Best solution search

In some problems it is the optimal solution which is desirddcommon technique
for achieving this with sufficient speed is through the braand bound paradigm. A
branch and bound search-engine first explores the tree ta fintlition. It then restarts
the search but with an additional constraint that the nextism it finds will be a better
solution than the previous one, and searches the seaechgain. This is repeated until
no solution is found, and thus the previously found solutfotihe best solution for the
problem.

2.5 Controlling search

When a search-engine explores a tree it has to choose betweerfitovo paths. There
is no way of knowing what each path will lead to other than thatéd control of
selecting a branch heuristic. Selecting the wrong path ead to the search-engine



going down a branch which does not lead to any solutions aedféct is a waste of
effort. Therefor it would be prudent to try to control the sdaso that the search-
engine tries to avoid such situations. Several methodsvaitble to reduce the risk
of getting stuck in a fruitless subtree, for example: towltbe search-engine to make
jumps in the search tree[3] or to limit the depth to which tearsh-engine searches
and then increment the depth if no solutions are found [3, 1].



Chapter 3

Search in GECODE

Section 1.4 and Section 2 describes the workings of seqlesgarch. This section
aims to build on Section 2 with how search is done in GECODEst Bie section will
describe basic data structures in GECODE, and then it willinae by describing how
search-engines are implemented.

The GECODE system has several kinds of search-enginesrimepted. To cover all
these however is somewhat out of the scope of this thesiteddd will describe only
two of these search-engines, the two of which | have constdyzarallel versions of.

3.1 Space

The store described in 1.4 is a fundamental construct forgdodnstraint programming.
In GECODE the store is implemented in a construct called a&&pé space is the
working space for propagators, in GECODE a problem is madaka Space with
added propagators and variable ranges. The propagatong aptace are defined as
the space is first constructed; in practice this mean thgtggators are defined in the
C++ constructor of the space, creating a model of the probléra space then has the
additional functionality to be handled efficiently in a sgaengine.

A space has the ability toloneitself. Cloning is used in backtracking, a clone of
the space is put on the stack so the search-engine can coméoliatater. How the
stack works will be explained in Section 3.2. A space alsoftiastionality to test its
status to see if it is failed, solved or distributable. Theopagatefunction forces the
space to do propagation. The last function a space has isothenitfunction. The
commitfunction adds the branching propagators for one of the sululwes for the
store which the space represents. It is thus used for sedewtiich branch to explore
next. Committing to alternative 1 is the same as committimg the left branch of
a search-tree and committing to alternative 2 is the same@masnitting to the right
branch.

10



propagate()

status() clone()

commit(n)

Figure 3.1: lllustration of the functions in a space objdédte circles represent a Space
and the functions the arrows. The clone and commit functietisrn a new space,
illustrated by the arrow leading to a new space. While the agage function updates
the space by doing propagation.

3.2 Stack

In the GECODE system the functionality for backtrackingasmtiled by the stack. The
stack keeps track of which nodes the search-engine haspsedybeen to as described
in Section 2.2. In GECODE the responsibility of doing re-guation is also man-
aged by the stack. By keeping the backtracking and re-caatiputin the stack, the
complexity of the search-engine is reduced.

The stacks in the GECODE system are derived from a basic stiélcknemory han-
dling functions. The two different stacks extends this bathss of stack. One of the
two more specialized stacks in GECODE is for backtrackinggise-computation,
while the other stack is used in copying based backtrackiing. different stacks will
be explained in greater detail in later sections, one fonégme. Each type of stack dif-
fers somewhat which functions interface to it, so seardjiress need to be constructed
to use either re-computation or copying.

Nodes

In order to do re-computation and keeping track of which irdst have already been
explored in the search-tree, a special object is needed ERADE the stack makes
use of a node object, which keeps the information needediogde-computation and
backtracking. The node objects can contain spaces, butthreslso forget the spaces;
keeping only the information needed to do re-computatiothefspace when it is later
requested by the search-engine. The node object is quitgigeit keeps track of the
the amount of subbranches there is at the specific space smavhich of them what
already been explored by the search engine. This informiikept as integer values.

It is important to note that the search-engines in GECODE wmrry about Spaces.
Therefor the node objects are only used by the stack.

11



Re-computation

Re-computation in GECODE is handled by the stack. The seamgime calls the stack
to receive the next space which it needs. The stack then dessmnputation if needed
to provide the search-engine with a new workspace. The &esghs track of the spaces
which the search-engine passes. When doing re-computatdnformation stored in
the node object on the stack is which branch was followed bys#arch-engine when
it passed this space. This information is then used whengd@ircomputation of a
particular space, as the stack can follow all the commitsednnthe search-engine to
get to that space.

Copying

The version of the stack which handles copying based baimg is quite simple
compared to its re-computation based cousin. The stacktamaénnodes which the
search-engine needs to return to at a later point in times fhlgans that the stack holds
the right branches of the nodes passed in the search-treen sVéearch-engine asks
for a new space this version of the stack simply returns thefdhe stack. The stack
contains clones of the passed spaces so all which is neeteddmne is to commit to
the alternative which has not yet been explored.

3.3 Search-engine

The GECODE system offers many different search-enginessdkearch-engines are
available in versions supporting both re-computation amying.

All search-engines in GECODE work through a stack. The wagkiof this data struc-
ture and how it is implemented in GECODE is described in $aci2. Each search-
engine is implemented in two parts. The first part is a tereglaersion which handles
the specialized Space in which the problem is specified,gbersl part is a more gen-
eral part handling search for any Space object. The tentplzaet call functions in
the more general version of the search-engine. This gepartof the search-engine
is dependent on the arguments which were specified as thehselagine is instanced.
These arguments decide, for example; if the general paheo$éarch-engine should
use re-computation or copying.

@:44 re-computation I—)I re-computation stack

Stack I—)I Node I

copying stack

Figure 3.2: An illustration of how the search-engine is axtad with the other com-
ponents for doing search in GECODE.
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Depth first search

The depth first search engine in GECODE is perhaps the sitgfld®e search-engines
in the system. It consists as mentioned earlier of a temgplegesion which then starts
a more generic search-engine which uses either re-congutatcopying. Figure 3.2,

which describes how search-engines are connected witlothpanents for search, is
illustrated using the depth first search search-engine asiaim

Branch and bound

The implementation of the branch and bound search-engiG&E@ODE is somewhat
more complex than the implementation of the depth first $eallthis is because of
the way problems are modeled using the GECODE constraimgranuming library.
As mentioned earlier models of problems are specified in timstcuctor of a space.
While this is true a problem is also a specialized case of aesp@aning that a problem
is implemented as an extended object from the space class iffis only in the this
specialized form that the a search-engine has access teprspecific functions, such
as theconstrainfunction. Theconstrainfunction is used to constrain a problem to be
better than the solution which is specified through the aeptmTherefor when the
branch and bound search-engine needs to constrain a speei to be done in the
templated part of the search-engine which has access tpée@sfunction.

When a new solution is found, the search-engine continuey tto tprove that it is
either the best solution or that there is a better one. Tbetle¢ entries which are on the
stack when a solution is found need to be constrained. To tkaek of which entries
on the stack that have already been constrained since theolasion was found the
search-engine maintains a mark. The mark is set to the nuofileetries on the stack
when a new solution is found. Each entire below that mark tiesus to be constrained
before any further work is done on that space. Naturally a&sare popped from the
stack the mark is decreased so that spaces wont be condtiraivedn.

13



Chapter 4

Parallel Search

This section begins by describing some of the benefits oflpbsaarch. It continues by
addressing some of the issues with parallel search and tastdrs different suggested
frameworks for constructing parallel search engines. Blag of this paper is parallel
search in a shared memory environment, not distributealsemer several computers.
While there are similarities in the issues and benefits,idiged search needs to cover
issues which are out of scope for this thesis.

4.1 Benefits of parallel search

Parallel search has several benefits from sequential seéncthe case of multiple
processors the parallel search can take advantage of gifrtisessors in the system,
where sequential search only uses one. This gives parabetls the advantage of
additional computational power. This extra power makedagagon fast, however
the speedup is not necessarily linear to how many CPUs usthe isearch[11]. Nor
does this added power allow parallel search to solve prablaquential search cannot
solve[4]. In a time where hardware with multiple CPUs is @asingly available it
seems wasteful not to have a search-engine which can taketade of the additional
resources.

Parallel search has other advantages over sequentiahséarexample: A sequential
search engine using depth first search can, as mentionedtios2.5, wander down
a branch in which no solutions are available, thus resultiran entire subtree of the
tree is fully explored before the search engine returns toiat pvhere it can explore
the other parts of the tree. A parallel search engine caroexgkveral branches at the
same time, reducing the risk of the search getting stuck irmadh where no solutions
are found.

4.1.1 Super-linear speedup

Due to the non-deterministic nature of a parallel searajirenthe search time for a
solution can at time be significantly better than that of aisetjal search-engine. This

14



depends on the order of the exploration; a sequential seargime always follow a
specific route while a parallel search-engine can diffemfthis static path, since it can
explore spaces in parallel. Should a solution be found fastene of the paths taken
by a parallel thread which is not in the sequential path adygeés obtained. This
speedup is called super-liner speedup. This is when N thregolore a search-tree a
speedup greater than N is obtained[6]. Super-linear spasdwowever not predictable
and at most times the speedup obtained by a well implememtedigl search-engine
is slightly less than N.

4.2 Issues with parallel search

This section will discuss issues with parallel search-eeg)i Therefor the focus of this
section will not handle problems with general parallel pesgming, but rather try to
describe the pitfalls of parallel search.

While parallel search offers speedup and better resourczatitin it also suffers from
some issues. Doing search in parallel gives an overheadiimre for handling threads
and synchronization. However, the efficient use of sevexagssors can often com-
pensate for some of the overhead compared to sequentiahssagines.

There are several sources of inefficiency in a parallel eangine, which are not
present in sequential search engines. It is important toagethese sources to in-
crease the performance of the parallel search engine. Tlsé common sources of
inefficiency are:

e Communication Overhead, referring to the overhead reguftom communica-
tion between threads.

e Idle Time, it is inefficient to maintain a thread which doeswork. A thread
which has no work will also in most implementations of pakdlearch-engines
result in an increased communication overhead. This isusectne system will
try to contact the other threads to collect work for the idtleetad.

e Redundant work. Parallel search can produce more work tekaquential search
engine would have before finding a solution. If this work i divected towards
finding the solution, then that work is redundant and thufiaient.

In most systems there is a period at the start and sometintbe &nd of an explo-
ration where most threads are idle[12]. A sort of warm-upquebefore the system is
stable, followed by a cool-down period at the end of the evgtlon. At the start this
is because most systems start an exploration by giving sedpaane of the threads.
This thread then shares work with the other workers. As thekers complete the
exploration of the search-tree the amount of work availébsggnificantly less than at
the beginning, thus not all workers will be able to receivekvd he cool-down period
is only significant if a complete exploration of the seardetis done. The effect is
caused by the lack of work as the search-tree is being explore

15



Coordination

In certain types of parallel search engines the paralletbea need to coordinate their
progress with each other. For example the branch and bowardhseeeds to keep
information about the previously found solution. When skaug in parallel this infor-
mation needs to be shared between all the threads. To dodbhim@unication layer is
required. Different paradigms for sending informatiorvizetn threads are available.

e Message passing, where each thread has a mailbox and to cocameuthreads
send mail to each other. Message passing provides an d@hs&npof handling
communication and several search engines use messagggfassommunication[9,
10].

e Data flow, where threads communicate through mutexes aatinaffic lights,
as well as shared variables.

Both of these approaches requires extra checks in the sy&ither to verify that no
other thread is currently in a critical section of the codetpacheck for new messages
at certain time periods. As mentioned earlier these chexd fo runtime overheads,
compared to a sequential search-engine.

4.2.1 Load balancing

An issue with doing parallel search is to always make surettiedifferent threads
always have work to do. When a thread has nothing to work onsttbdind work
in order to continue. To look for work takes time and oftenklwother threads from
working. Therefore it is not a good idea to look for work todeof. To further com-
plicate things each thread also needs to have a fruitfulgdatte search tree to work
on[12].

The decision to share work with another worker should cangiiling a fertile part of
the tree to the worker without sacrificing its own work to do §iving a fertile part
such as the lowest left-most part might lead to starvatighéfe is too little work in
the shared part. While giving a huge chunk of the rightmodtqfethe search tree will
keep the thread with work, the thread will most likely not findny solutions.

Effective load balancing can reduce the amount of redundark done by the parallel
search engine[12]. As an example: consider the case where dine two threads, one
with work and one looking for work. The branching algorithiasteen chosen so the
solutions are in the leftmost part of the tree. If the one wititk available decides to
give a huge chunk of its rightmost unexplored tree then battkers will most likely
have work until the solution is found. However giving a pdrthe leftmost part of the
tree might make the other worker run out of work quicker. Heevét will also have a
greater chance of finding a solution and thus ending the lséaster.

There are other aspects of load balancing as well such asidstoad balancing be
initiated by a thread which has no work, or should it be ib@thby another thread that
notices that a thread has no work? If the idle thread looksvank which working
thread should it contact? Should it contact a supervisochwttien finds work for the
thread? There are a number of solutions too how load balgmein be handled [11],
therefor | will briefly describe two techniques. One wherea@uest for work is issued
by the idle thread and one where the sharer initiates the tvanisfer.

16



e Global round robin, every-time a thread is idle it looks fayrwat other threads
in a round-robin fashion. The system needs to keep a globalbla to keep
track of which thread was contacted last.

e A supervising thread keeps a record of which threads cuyrbate work, when
it notice that a thread is idle it requests work from one ofwweking threads
and assigns it to the idle thread.

4.2.2 Backtracking

As covered in Section 2.2, backtracking is an important@issearch. The information
needed for doing backtracking consumes memory, which leEadsemory consump-
tion problems. Problem which are solved either by re-comtr or trailing. When it
comes to a parallel setting however, these techniques lawddcks.

Re-computation sufferers issues when it comes to paralighgs. While re-computation
is more expressive in the sense that any node can be madabdeait any time. The
node needs to be recomputed, which will lock both the shahirend and the receiving
thread from doing any work during that time.

Trailing also sufferers from lack of expressiveness. Thenly a single node avail-
able to the search-engine during search. This propertyadinly makes it harder to
share nodes with other workers, as they require nodes whéhburrent thread is not
working on [7].

A copying approach consumes more memory than both of thequealternatives,
but has the advantage that all the nodes are available fanghaithout the need for
re-computation.

4.2.3 Nondeterminism

Exploring the tree in parallel may lead to a solution beingni@ in a path which would
have been explored after a different solution had been foad it been a sequential
search engine exploring the tree. Issues of scheduling tsaya#ect which solution
is found next. This gives parallel search an issue of noardehism. It is there-
for not possible to be sure which solution is found next. Tikisometimes called
Or-Parallelism[5]. However this nondeterminism also hasdfits, and is rather a con-
sequence of the parallel search.

4.2.4 Shared stack or individual stack

As mentioned in Section 2.2 the search engine keeps a stalok nbdes it has passed
during search. When doing a search in parallel this stack eamigue for each thread
or it can be shared between them. Sharing the stack with ladr dhreads may lead
to a lot of synchronization on the stack. Since the stack igteca section of data
only one thread can have access to it at the time. This foheesther threads to wait
for their push and pop operations on the stack, operationshwdtcur often in each
thread. This makes the shared stack a source of contentia@ [2].
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An individual stack on the other hand does not force the thteavait for other threads
when doing its push and pop operations. However, each thrasatb find work when
its stack is empty, and termination detection is somewhatdravhen each thread has
its own stack. Several implementations of parallel seamines use individual stacks
for each thread [3, 6, 8].

4.2.5 Termination detection

To detect that a search is done in a sequential search isHasgearch engine knows
that the search is done when the stack is empty. However, &mal@ search-engine
there can be several stacks to keep track of, as well as tisgbpidg of a node being
shared to keep the system balanced. Implementations dfghaearch-engines which
use a shared stack to keep track of the nodes in the tree doallyathe same as a
sequential search-engine in this regard.

4.3 Possible frameworks

In this section concepts which are more implementationiSpéxcovered and benefits
and drawbacks of different approaches are described.

4.3.1 Search loop in parallel

A relatively easy way to implement parallel search is to talsearch engine and make
its search loop run in parallel in different threads. All tbeps would use the same
stack to pick unexplored nodes from. The implementationtbasdd control to the
stack as its access functions are the critical sectionseop#inallel code. These extra
controls however force the different search-loops to waiefich other when accessing
the stack, which could increase the execution time to thatpeiere it is equivalent
to running a sequential search-engine. This kind of frannewuld also lack ba-
sic functions for controlling search, and exploration of gearch tree would be non-
deterministic.

4.3.2 Manager-Worker architecture

Another architecture which can also used for doing distebdisearch over networks,
could be used for doing parallel search as well[9]. This ikcture can be used in
both a distributed environment as well as in a parallel sharemory environment.

The architecture suggests using a Manager object alongsaittral Worker objects as
autonomous agents communicating by message passing. meftef this architec-

ture is that it can be implemented to be used over a netwode ghre different agents
of the system use message passing as communication. Thiesdunot restricted to

one agent on each machine so the architecture can suppalfepaearch on a single
multi-processor machine.

The Manager handles initialization, load balancing anthieation detection. It does
so by keeping track of which workers are working and whichremte When a worker is
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Sequential
Search loop

Several loops in parallel

Figure 4.1: lllustration of running several threads wite #ame search-loop.

Manager

o T

Worker e Worker

Figure 4.2: A rough outline of the Manager-Worker Architget

idle the Manager tries too find work for the Worker by asking times who have work
to share. Termination is detected by the Manager when itwega solution from one
of the Workers; or the Manager notice that there is no wortk lef

The Workers each have their own stack to work on to which wer&sisigned by the
Manager. As long as the Manager does not tell the Workersthereshare work or
stop, the workers keep exploring their part of the seareb:-tr
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Chapter 5

Architecture

In this section the architecture which | chose to implememalel search with is de-
scribed. It starts by giving an overview of the architectamd then it describes the two
main components in the architecture, namely the worker aadager components.
The architecture was first presented in Section 4.3.2.

5.1 Overview

A brief overview of the architecture was giving in Sectior3.2. This overview is
somewhat more detailed, but also presents some of the etsorhy | selected this
architecture for my implementation.

The architecture was first presented to do distributed beasing several networked
computers. But this architecture can just as easily be usagbarallel shared memory
environment [9]. | have however made some changes to thétestire as certain
overheads such as communication overheads are much simaleparallel shared
memory environment than in a distributed environment.

The manager is the main part of this architecture. It is theagar who is first initial-
ized and through which the workers then are initialized. Miegarchical structure of
the manager and worker is presented in Figure 4.2 in thequs\gection of this thesis.

The manager and workers in this architecture communicaiteigin messages. The
manager has four messages which it can send to the watiogr;explore statusand
share The purpose of these messages are primarily to enable thagaato control
search. The worker on the other hand only have two messagestbto the manager
processfind andcollect

5.2 Worker

Each worker corresponds to a search-engine exploring eesutitthe complete search-
tree. The worker keeps exploring as long as it has worker o itimeceives a stop
message from the manager.
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Initially the workers are created by the manager. When theg@ated they are paused,
waiting for the manager to send tegploremessage, so that they can start working.

The workers are supposed to take certain actions as theiveemessages from the
manager and as their state changes. A worker which is idissgfind message to the
manager to receive work. A worker which is busy will continaevork on the work it
has until one of three things happen.

e The worker runs out of work, and thus becomes idle again ondisfia solution
which it then sends to the manager usingpectmessage.

e The worker receives stopmessage from the manager, in which case it stops all
work it is doing and wait for amxploremessage from the manager.

e The worker receivessharemessage from the manager, in which case the worker
pauses its exploration of the search-tree to check if it ek which it can share.

A reason why | chose this architecture is that it is not forteedun the same kind of
search-engine on each worker[10]. As long as the worker taias the same set of
messages and each response for each message hold commatt, fitve workers can
explore using any kind of exploration technique it wishesGECODE search-engine
work using the Space object which was described in Sectibn 8s workers share
work and return solutions between them they are actuallhaxge Spaces between
each other. Thus allowing the meshing of several explaragehniques in a paral-
lel environment. While this is not the goal of my thesis, | fduhis property to be
intriguing.

5.3 Manager

The manager is the over all coordinator of the search protteeseps track of several
workers which it delegates work to. The manager is thus resipte for handling
load balancing, termination detection and maintainingtrdrso the exploration can
be stopped.

When the search is first initialized the manager is the firseéatlto be started. The
manager in turn starts the specified amount of workers arelt# initial root space
to the first worker. The manager then starts the exploratidgheosearch-tree with the
exploremessage.

As the search progresses the manager has to take care ofsvathieh are idle, find-
ing and providing them with work. The worker is thus sendiimgl messages to the
manager which in turn tries to find work for the worker. Finglimork is done by us-
ing the sharemessage, which encourages the receiver of the messageréocdlits
workload; to provide others with work as well.

There are two situations which the manager has to take cafenhination detection

and solution collection. The manager has to figure out whemttrkers have no more
work and thus the search is done with no solution found. Theamer also has to take
care of solutions which the managers find, and in the casaglessolution search the
manager should stop the workers when a solution is found.
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A manager receives a solution from a worker as it is foundhaollectmessage. As
the message is received the manager stops all workers amdg¢he solution to the
one who requested the search. Stopping the search is danglththestopmessage.
If the search is stopped due to a solution being found, theisalis sendt with thatop
message.

Termination detection is more difficult then solution cotien. There are no messages
sent to the manager as the workers run out of work, insteachéreager has to check
if all the workers are out of work. If so then the manager stieell all workers to stop
and inform the one who requested the search that no soluisrfaund.
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Chapter 6

Implementation

In this section | will describe the implementation of theadkal search-engine for the
GECODE system. The section starts by giving an overview gbnaesign decisions
taken and the developed framework. Then it continues wittoeerdetailed view of
each component.

6.1 Implementation decisions

One of the key features of the GECODE system is it's portigbiliThe GECODE

constraint programming system can run on several architestincluding 64-bit ar-
chitectures. When implementing my parallel search archited tried to keep this in
mind. Therefor when deciding which technique to use for lielization | settled for

PThreads. The reason for this is that PThreads is availabteany different architec-
tures. Often there is no need to install extra packages fagus PThreads is also
ideal for parallelization on shared memory machines.

The downside of using PThreads is that it does not supporsagespassing. Pthread
programs work in a data-flow manner, using synchronizatronipives to protect criti-
cal sections of code if several threads need to access & aathe time. This presented
the challenge of reworking the architecture to use data-fles¢chanisms instead of
message passing.

The solution was to have each message represented as afiech function pro-
tected by synchronization primitives depending on how itgaghe function was for
changing data. For example asking for a workers status dutesffiect search in any-
way, so checking status is does not need extra protectiomp@cad with for example
thesharefunction which directly affects the stack. Thus gtearefunction has to wait
for the search to be in a state which it does not risk to degtreysensitive memory
structure of the stack or otherwise affect the search neggtiThe conclusion is that
running a function on a worker is the same as sending a messahat worker, and
the same goes for the manager.

Using data-flow instead of message passing the managencéssger have to run its
own thread, since all the functions it would be performingmias well be performed
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in the functions called by the workers as they want to comeatei Therefor the
manager is no longer managing the workers, but acts more@stklayer. Therefor
in the implementation | renamed the manager class to cdentrol

As mentioned in Section 5.2, the possibility of running eiéint search techniques
intrigued me. As a result | wanted my implementation to be ablsupport this. The

result was to template the search-technique on the workerallow the system which

initialized the search to select which search techniquest WAbstracting away all

synchronization from the actual search also made it easyppteiment different kinds

of parallel search-engines, as the synchronization whbkrotvorkers was taken care of
by the worker class. How the worker does search is thus dedriinrough a templated

object called a search-script. This make the system easypand and enables code
reuse.

Additionally | made an effort to allow the developers who ugbuse the system to
specify how sharing should be done between the workers isybEm. This is im-
plemented as an object, called search strategy, which teaer can pass to the
search-engine to do changes in the basic rules of when anctovblaare.

6.2 Framework

As mentioned the different parts of the parallel searchreng thus communicating
with each other through functions. Though still acting likkenessage passing version
this change on the architecture is quite significant. Therothange is that workers
are prepared so they are not required to do search in the saye The platform
still requires some extra code to make this work, but it igppred for supporting this
feature.

A coarse grained overview of the framework is given in Figbre Which illustrates
most of the major changes to the architecture. The funatails-between the objects
can still be abstractly viewed as messages, though thesr giifyhtly.

Controller Worker

Search
Script

explore

Figure 6.1: A coarse grained overview of how the controldarker and search script
objects cooperating; along with the important collect axgl@e function calls.

In the architecture described in Section 5 the manager sHfeckermination detection
by checking to see if the workers are idle or not. With the ienpéntation using data-
flow the functionality of the manager can just as easily beedarthe find and collect
functions. Reducing, as mentioned earlier, the managecdotzolling communication
layer, thus named controller instead of manager. This ahatigws a parallel shared
memory machine to use all the processors of the machine tucbeearch. Compared
to having an additional thread which checks for terminatietection. This solution
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should reduce the overhead of thread handling and comntioricGomewhat, as well
as reducing the complexity of the controller object.

6.2.1 Controller

The controller object acts as the communication layer fernlorkers. The functions
in the controller class handles sharing, termination diete@nd result collection sim-
ilar to the Manager class described in Section 5.3. The obatrhowever does no
computation in its own thread while the system is searching.

The responsibilities of the manager still needs to be talea of. In the controller

these responsibilities are distributed between speeidlianctions which take care of
the specific problem. The functions which the controlleeratts with the workers
in an abstraction of message-passing using the functiortsotinthe controller and

worker objects.

The responsibilities of the controller along with the fuons which take care of them
are the following:

e Provide a framework for workers to contact each other isckeaf work, this is
provided to the system through tfied function in the controller.

e Detect termination, which is detected as fimel function notices that all workers
are looking for work.

e Provide methods for starting and stopping threads whenuwigolis found or
termination is detected. Thellectfunction is used for stopping threads when
a solution is found, while thénd function can stop threads as termination is
detected.

¢ In the case of search-engines where each worker needs totkeasurrent so-
lution, such as branch and bound. The controller is respt&r making sure
that the workers are informed of the current solution. Gbkectfunction makes
sure that each worker receives a copy of the new solutionsdnding it as an
argument to the workergtopfunction.

When the controller is constructed it initiates all the waske These workers then
eagerly wait for the signal to start exploring the searele-tr

The controller has three major functiovext find and collect The nextfunction is

a simple function. All it does is to block the calling threaadawait for one of the
workers to report a solution using tleellectfunction, or termination is detected. The
find andcollectfunction will be explained in greater detail below.

Due to the data flow approach of the implementation the cbetris protected by two
mutex locks. One is used to make sure that only one workerrigmily checking for
work or reporting found solutions. The second is used imtadfunction to pause the
starting call of the search until either a solution is foumcidermination is detected.
That way the application using the system can benefit frorfulhpower of the parallel
search but only needs to call a single function, just as wigtsequential search-engines
it is thenextfunction. This make the system easy to use, compared to asieguential
search-engine in GECODE only one extra variable is requoedn a parallel search-
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engine. The extra variable is to tell the parallel searafirenwhich search-script to
use.

When a worker is looking for work it calls thiénd function in the controller. What
this function does is to check each worker for work in a rowolin fashion. The
system thus uses a variation of the global round-robin sehéescribed earlier, for
load balancing. While checking for work another check is dasevell. The second
check is to see if all the workers are out of work. In that chsmtthe system is done
and termination is detected. The function then signals theexwhich is waiting for
the solution, which return null to the calling application.

Thecollectfunction receives the solutions of the workers. It is prtgddhrough mu-
texes making sure that there is only one worker calling tinetion. This mutex check
is however non-blocking, so if the mutex fails to lock be@abanother calling thread
then the function returns false. This informs the worket tn@other thread just re-
ported a solution and thus it makes sure the solution is preden case subsequent
searches will be made. When a solution is collected it is dtiora variable in the con-
troller and the mutex waiting for the solution is signaledeTsolution is also passed
to all the workers, in case they need to keep a copy of it formpta in the case of
branch-and-bound search.

6.2.2 Worker

The worker class is the communicating wrapper class for tteaa search-engine,
also called the search-script. Each worker has its own dhnehich is created upon
instantiation of the worker object. The worker has functidor stopping, exploring
and checking to see if it has work to share. The worker stapkgng when a call to
the worker’sexplorefunction is made, through the controller. Initially the \er will
be paused until an explore call has been made. When the Seegcis-explored the
worker thread spins in a loop, which communicates with tledescript and the other
workers. The loop does the following:

¢ if we have work, do a search step and check for pause.
— if a solution is found, call the collect function in the caoiter.
¢ if we don't have work, check for work and then check for pause.
— if work is found give it to the search-script for exploration

The pause check is used with thi®pfunction, if the worker’s search loop should stop
it will do so when it checks for pause. A paused worker willuee exploration at the
same place it stopped, if the search is started again lates.nTakes sure that the work
already done in a search will be preserved in the case of gubeesearches.

The workers always maintain their threads when instancedoinpletely stop a thread
the worker object needs to be destroyed. This makes sulbserplks for search faster
as the workers don't have to start new threads, but ratheghrianes already available.
So maintaining a pool of worker is similar as to maintain alpddhreads.
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6.2.3 Search Script

The search script handles the actual exploration. It desstiow to explore the search
tree, how to share and receive work, etc. The goal is to betalzlenstruct new search
scripts which take advantage of the parallel engine witthawring to deal with thread
synchronization and creation. The search script has a feetibns, most important are
the functionsnewRootsearchStemndshare ThenewRooffunction is to set the root
of an empty search script so the search script receives WirisearchStegunction
does one step of the exploration of the subtree this searght as. Note that the
worker class iteratively calls thgearchStefunction to ensure that the search moves
forward. Thesharefunction is responsible for finding work to share with otheaich
scripts.

The search-scripts are in turn implemented in a similar wsathe sequential search-
engines in the GECODE system, Section 3.3 describes howtseagines are con-
structed in GECODE. So in a similar fashion the differenrsleacripts implemented

consists of several parts. The first part is a wrapper whiatissthe rest of the script
depending on if re-computation should be used or copyingyelsas setting other

initialization variables.

The search-scripts can be seen as a sequential searcle;emgfiinstead of doing the
search in aloop it does only one step of what a sequentiattseargine would do. This
and the functions for handling sharing of spaces are the taio differences between
a search-script and a sequential search engine in GECODE.

The search-script even reuse parts of the code which wamaltigdesigned for the
sequential search-engines. Apart from the code for spheeseairch-script also use the
same stacks as the sequential search-engines. Usingthelsetsenefit re-computation
based backtracking far more than it benefits copying-baaektiacking.

As described in Section 3.2 the re-computation based stadhktains more informa-
tion in the nodes of the stack, compared to what the copyawpth stack does. The
copying based stack just maintains stacks which it shoybtbes next, which the re-
computation based stack maintains all nodes the searcrasasgso far.

The nodes in the re-computation stack describe the pathhwiisis been passed by the
search. This is so that spaces easily can be recomputed. iltamahis information
each nodes holds two numerical values, the number of théguepath which the
search used when it passed this node and the paths availaivgHis node to lower
parts of the tree. These values are ordered so that the Eftmanch of the node has
the value 1 and the rightmost value is equal to the total atnaiusranches available.

This information proved to be quite useful when it comes taristy work between
workers. To cut off a subtree of the search-tree all that &led is to decrement the
maximum number of paths on the node you which to share fronis pievents the
re-computation based search-engine to explore down thiatipat the path can still be
explored by another worker.

This is how sharing is done in the re-computation based Besamipts. The value of
the right-most path is sent to the worker requesting worlar@s) along with a copy
of the space. The sharee then commits to the right-mosnatiee on its side. On
the sharers side however the maximum number of paths aleftaln the node which
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the space was shared from is decreased by one, which preleaitexploration of the
same subtree.

6.2.4 Sharing strategy

The Sharing strategy is an optional object which contaiegdibr the search-engine.
The rules describe how and when to share work with other wsrkié this object is
not passed to the Controller the search-engine is designeset some default values
defined in the search scripts. The sharing strategy prowigesption of defining how
large a stack should be before the worker will share, whergvtirker will start looking
for work in the stack and in which direction it will look. Foxample, a worker can
look for a node to share at the bottom of the stack and then mpveor it can look
from the top and then move down. Both have their respectinefite and drawbacks.
If a sharing strategy is not set during worker initializatithen the default values for
sharing in the search scripts will be used. Currently thewdéfor the search-scripts
doing re-computation is to share from the top of the stac#f,fanthe copying search-
scripts sharing can only done from the top.

In fact the copying based search-script does not check trengtstrategy at all. This is
because the re-computation search scripts needs to kgzgsad nodes on the stack.
It is thus easy to reserve paths from nodes which have notaget bxamined, making
re-computation easier for defining different methods of nehend how to search for
work. How this is done was described in the end of the last@ecThe search-scripts
for copying however only keeps the nodes yet to examine ostdek. The copying
based stack is not prepared for removing elements from thdleof the stack. Thus
sharing a node which is not on the top of the stack will reqrésgructuring the stack.
While this can be implemented, it is costly. Due to time caxists during the end
of the development the search scripts for doing copying daewnstruct the stack.
Instead the copying search-scripts only pops the top of tdieksand shares the top
node with the worker looking for work.

6.3 Implemented Search Scripts

The search scripts mentioned in this section are the searigisswhich have been
implemented for the search-engine. However, it should Isg &aimplement other
search scripts and | hope that these implemented searglissaiil assist anyone who
wishes to do so.

6.3.1 Depth First Search

The depth first search script is the most basic search methadt avas the first to
be implemented in the system. It is implemented both too assomputation and
copying. Where the re-computation based search-scripeigtire expressive search-
script.
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6.3.2 Branch and Bound Search

There is a branch-and-bound search script implementedhéosytstem for doing best
solution search. The branch-and-bound search-scripnitasito the depth first search
script in many ways, except for the actual search. The branchbound search script
is also a bit more complex than the depth first engine. Thietabse of the need to
constrain store when sharing solutions, and when new sokitiave been found. To
handle this the branch-and-bound search script recordsnmamy entries are on the
stack each time a solution is received. When a space is takentfre stack which

results in a lower number of entries than the mark then thé& isatecremented by one
and the space which has just been popped from the stack isdoris¢rained. When

work is received from a search then the injected space isratically constrained to

the current best solution. This requires the newRoot fonstiof the search-script to
make extra checks on the received space, and may result épaéoe turning out to be
failed to begin with.

Inthe GECODE system the spaces do not contain any genecdidorfior constraining.
Instead the constrain function is implemented in a moreiafieed form of space. The
space where the problem is modeled. Since the search sesgpttandard spaces, they
cannot constrain the spaces in the search script. Thistsaidgione in search script
which wraps the actual search scripts, just as in the noreglential search-engine
in GECODE. Which is described in Section 3.3. This searclpsude the specialized
version of the spaces and can thus access the constraiiofisict

6.4 Possible expansions

As | have mentioned at several points in this section, thdémpnted architecture
is highly adaptive and offers the ability to implement pkalatearch-engines without
forcing the developer to pay too much attention to issueymélsronization and com-
munication of the workers. A natural expansion of this aextiure would be to make
it distributable. It would be relatively easy to make a newtcoller class which han-
dles message passing and cross-network communicatioed®etther search-engines.
This would make a search-engine which can take advantadkimipgemented search
script for shared-memory environment, and such a seargimemvould also take full
advantage of the resources should there be shared memaipnoegssor computers
in the network.

Using this platform for constructing parallel search-exegone could create search-
engine in which different workers use different searchipssr Where the search-scripts
explore the system in different ways but they can still comivate and take advantage
of the work available in the different workers. It would beeresting examine the
benefits and drawbacks of this in greater detail.
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Chapter 7

Analysis

To prove the functionality of the implemented system a asialig needed. This section
analysis the performance and the functionality of the platfin regard to four different
aspects. These are: Correctness, Portability, OverhehBamtime.

The correctness part aims to show that the platform prodieesorrect results, the
portability subsection is a short discussion of how pogdhbk platform is and which
design decisions affect this. The overhead subsectiorridesahe runtime overhead
imposed by running search in parallel on the platform, thetice tries to show how
much overhead can be expected as well as where the sourcesrbtad are in the
system. The last subsection of this section aims to showpbedup obtained from
running parallel search using the implemented platform.

7.1 Correctness

One of the most important properties of the implementedesyss its correctness. For
this reason it must be examined. To see if my implementedbpiatfor parallel search
produces the correct results, runs of the search-scriptsbeen made and examined.
These runs examined different things depending on whicttkescript was currently
being examined.

For the Branch and bound search-script the results were a@ugo the sequential
engine. This to see if the search-script produced the sasnd,rthat is found the same
optimal solution.

For the depth first search search-script runs were made talffitite solutions for the

problems. The amount was then compared if the same test wasaiothe normal

sequential execution. Also on some test the solutions wemenimed to see if they
were the same. The problem is that the parallel depth firstseangine produces the
same results, but in a different order. But examining thertess to see if the parallel
search produced the same result and found all the solutiwvwesl that the platform

and search-script indeed gives the correct result.

Note that in this correctness analysis the tests were cardgarthe sequential search-
engines of GECODE. So if these engines turn out to give thegvresult then so does
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my parallel platform. Should the normal sequential seamhines prove to give the
wrong result, then most likely is it because of a problem witle or more propagators.
Propagators which are also used in my parallel platform lansitny platform produces
the same result.

7.2 Portability

One of the main reasons for using PThreads was to make thensysbre portable.
The PThread library is available in any POSIX standard OSgrevtother available
methods need extra libraries for implementing paralleligihile the PThread library
can differ in its implementation on different operativerstthe functions used for im-
plementing the platform are simple synchronization ptirag which even though the
implementation differs still produce the same result.

However the platform makes use of a barrier primitive whelmplemented in some
implementations, while not in others. This is simple to vadund, but it would still
require some porting of the code to make the system work oe systems. These sys-
tems are, on the other side, not supported by GECODE. Thettedselection of the
PThread library should make the implemented system availat any POSIX stan-
dard OS which has implemented barriers and is otherwisecstgupby the GECODE
system.

7.3 Test cases and test environment

In order to examine the performance of the parallel seangfires different test cases
are needed. The test cases consists of classical problemsich the solutions are

know. In the following two sections; Overhead and Runtinie, problems stated in

this section are used.

magic-square

golomb

hamming-codes

packing

partition

Each problem is tested using both the re-computation basmdlsscript and the re-
computation based search-script. Which gives a total oft8.tes

The tests are run on a 4 processor machine where each probassoclock-speed of
900 MHz. The machine has 16 GB of memory available. Howelierniachine is not
dedicated for running the tests, so it is a loaded system.
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7.4 Overhead

It would be interesting to know how much overhead the pdra#arch-engines have
compared to a sequential search-engine. Naturally a pheghrch-engine needs to
do synchronization checks, so knowing it is interestingrio how much overhead is
added for these extra checks, compared to running a seglsgdirch-engine.
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Figure 7.1: A graph illustrating the overhead caused by inqithe parallel system
with one thread compared to running search sequentially

To compare the overhead added by the system the parallehseagines are run with
one thread. To achieve a good estimate of how the system eriibpn the tests are
run several times to gather an average of the runtime. Tlesse @re then compared
to similar runs, using the sequential search-engines in @BEE. By comparing the
results of the tests we can get an estimate of how much owittheasystem gets just

from doing the synchronizations and extra controls.

As can be seen in Figure 7.1, the overhead caused by the sgiatetn extra synchro-
nization checks is quite small. In the case where the sesmipts and search-engines
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use a copying based approach for backtracking the overlseand average less than
half a second of the execution time. When comparing how mudheobverhead is
of the execution time then the overhead is around 1% of theugiam time for all the
testcases.

Since the tests are run on a loaded system there are somewdasesthe test-cases
does not show any overhead. However since the tests werevenastimes and an
average was computed these fluctuations in execution timbe#nored.

The small overhead seems reasonable since the system ddewado wait for other
threads. By using a data-flow approach instead of a messagigaapproach the
synchronization is quickly done if no other threads aredherinterrupt. As more
threads are used in the system the overhead for synchriemizeitbound to go up. But
the 1% of can be seen as a minimum overhead caused by the dégigrplatform.

7.5 Runtime

The main reason for running search in parallel is to achiewet runtime for problem
search. This section will examine how much the runtime of tdst problems are
decreased as a search is run with more and more degrees ofi@my. To gather the
necessary run-times each test-case was run 100 times wittd1 8 and respectively
16 threads. From the runtime of the test runs the averagemeind calculated, as well
as the standard deviation of the runtime.

The results of these calculations can be seen in Table 7.Tabid 7.2. Each table is
the calculated data for the runs where Table 7.1 containsethéts for when the tests
are run with re-computation based backtracking, and TaBleahtains the results from
using copying based backtracking. The average runtimehotdsts can also be seen
in graph from in Figure 7.2.

As can be seen in both the tables and in Figure 7.2, runningatedlel system results
in longer average runtime for all the depth first search mwisl. There are two possible
explanations for this.

e The extra parallel threads are assigned parts of the treehwdantain no so-
lutions. Thus the platform only enforces extra synchraiivraand contention,
but the first started thread find the first solution. The sotutivhich happens
to be the same solution as the one a sequential search-emgirie find. The
Magic-squares problem however do sometimes find anotheticoland finds it
faster than a sequential search-engine would do. This caedrein the tables
since the magic-squares problem have a higher standaratidevihan the other
problems.

e The platform suffers from racing conditions, where the dloie are competing
for exclusive access to the one source from where they ligittan get work
form. Unfortunately this source is the first threads stabk, first thread wont
share any information until it has produced enough nodestt@fly share. This
racing condition produces a small overhead as the numbbredds are low, but
as the number of threads increase this overhead increatfes.iihe overhead
increases faster as the number of threads surpass the nofpbecessors. When
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Figure 7.2: A graph illustrating the average speedup whening several threads. The
graph is based on the data in Table 7.1 and 7.2.

this happens not only is the first thread competing for adeei$s own stack, but
also for a processor to work on.

It is my belief that the poor results are from a combinatiorthefse two explanations.
There is a racing condition in the system, and the seares-fi the problems which
are tested are very narrow.

The re-computation based Golomb ruler results show ex#wtlkind of speedup that
is available for doing parallel search. The runtime is redlas more threads are used
in the search. In the beginning the speedup is high, but as arad more threads are
being run the performance gain from each thread is redudeel niain reason for this
is that there are only 4 processors available in the systedaling more threads only
allows the system to make jumps between different subtvagsh can help find better
solutions faster.

The Golomb ruler tests are not as sensitive to the probletn avitacing condition.
The reason for this is that the platform needs to test fomugdity. Meaning it has to
examine each and every node in the search-tree, to guathiatethere are no better
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Threads 1 2 4 8 16

mean std mean std mean std mean std mean std
Golomb 61352.8| 99.| 36039.0| 2503.0| 22049.9| 2944.9| 14145.7| 5317.5| 12004.0| 3936.7
Hamming 16221.4| 230.6 | 18195.8| 405.4 | 20086.5| 344.0| 46798.7| 1357.8| 109280.0| 2995.0
Packing 1298.1| 45.4| 1493.2| 255.3| 22422 427.9| 4141.2| 11173 8801.5| 3396.9
Magic-square| 19770.6| 40.6 | 24614.3| 6689.6 | 27564.2| 10060.2| 22158.6| 772.3| 50978.9| 2512.3
Partition 20248.8| 17.7 | 22448.0| 2127.2| 26657.1| 9579.9| 39789.2| 18271.4| 93509.1| 34716.1

Table 7.1: Average runtime and standard deviation for ferakarch using re-
computation for backtracking

solutions. The racing condition is most apparent in the to@gg of the execution.
Since as the system has found the first solution and the wofikdifhig a better one
starts all threads already have nodes to work on. At the enchitting condition comes
into play again. However since at the end of a branch and beaatth the search-
engine mostly discards spaces, the racing condition dbaffatt search in the same
degree as in the beginning. Discarding spaces is much ch#apecalculating new
ones.

Threads 1 2 4 8 16

mean std mean std mean std mean std mean std
Golomb 49485.4| 36.5| 56465.7| 555.3| 37244.4 527.7 | 94455.4| 13684.8| 184885.5| 18439.1
Hamming 15766.3| 72.0 | 18408.0| 477.5| 21387.4 323.5| 51368.0| 1363.5| 125744.7| 3174.0
Packing 1043.7| 44.9| 12435 91.3| 1344.6 155.1| 2903.9| 1362.0 6032.5| 2070.4
Magic-square| 17665.0| 19.6 | 29433.3| 7382.6 | 35549.3| 11914.82| 34444.8| 18151.5| 61065.3| 3936.7
Partition 17313.7| 283.3| 16767.3| 3044.1| 23802.4 9268.3| 40462.4| 14693.9| 83345.1| 28048.8

Table 7.2: Average runtime and standard deviation for paErakarch using copying
for backtracking

In contrast to the re-computation based Golomb ruler testthfe copying based test
the runtime increased in all steps except for one. From figu2eand table 7.2 we
can also see that the speedup benefit is not a linear funcfiois. is alarming as the
average runtime should be linear to the amount of threadsosaiple theory for the
sudden speed increase when running 4 threads, could bautirabg a search with 4
threads on this search-tree gives a good chance to disdmeptimal solution early
on. This however should also be the case for when running thoeads than 4. As
can be seen in both the graph and the table, the runtime formgmore than 4 threads
increases greatly. Both comparing to running 2 and 4 threadse same test. Another
explanation could be the bugs in the GECODE system priorisive 1.0. Apparently
prior to version 1.0 of the GECODE system, there were sonoeseim the functions for
doing copying-based search. These tests were run usingjex @arsion of GECODE
and due to the parallel execution the effects of these buglsl t@mve a great effect on
this particular test.

Finally this analysis section ends with with a table showting speed-up for all the

tests compared to the original sequential runtime. Theseefigcan be seen in Table
7.3

7.6 Improvements

The above sections state that there is still room for imprem in the parallel plat-
form. By re-compiling and adjusting the platform to use titest version of GECODE,

35



Speedup Sequential 1 2 4 8 16
Packing Recomputation 1.0/ 0.96| 1.10| 1.66 | 3.06 | 6.50
Packing Copying 1.0/ 0.99| 1.18| 1.27| 2.75| 5.70
Hamming Recomputation 1.0/ 098] 1.09| 1.21| 2.82| 6.58
Hamming Copying 1.0|1.01| 1.18| 1.37| 3.30 | 8.07
Magic-square Recomputation 1.0 1.08| 135|151 | 121 2.79
Magic-square Copying 1.0| 1.07| 1.78 | 2.15| 2.08 | 3.69
Golomb Recomputation 1.0| 1.02| 0.60 | 0.37| 0.24 | 0.20
Golomb Copying 1.0|1.01| 1.15| 0.76| 1.92 | 3.76
Partition Re-computation 1.0| 1.00| 0.97| 1.39| 2.36 | 4.86
Partition Copying 1.0]1.01| 1.12| 1.33| 1.98 | 4.66

Table 7.3: The speedup for all of the tests

| believe that the problems with the non-linear runtime @f tlopying based tests could
be solved.

The runtime could be significantly improved if the racing dition could be removed.
There are several possible solutions for removing the gaoimdition:

e Checking if a worker has work to share is in fact a read-onlgrapjon on the
workers stack. As it is implemented in the system this is donghe sharing
function. That is the worker locks the mutex which contrdie stack just to
check for more data. By moving this check out into its own tiorcand only
lock the mutex if there truly is data to share, the overheaded by the racing
condition could be severely reduced.

e Currently the function for finding work goes in a strict ordwrer the worker
when looking for work. It first starts to check with worker nber 1, then 2,
etc. This strict order places a high load on worker numbespeeially in the
start of the search, when it is the only worker who actually Wark to share.
By changing the find-function to check with all the workerst in a random
order. The amount of threads disturbing worker number 1dseed, and thus
the overhead could be reduced as well.

¢ A solution which is a bit more advanced is to divide the stdiakaxh worker into
two parts. One from which data can be shared without lockiegss to the other
part of the stack, and one from which data is shared only irsta@se scenarios.
Such a splitting of the search stack has been done usingafalepth[6]. This
cut-off depth is a depth in the stack where the owner cannathgye without
locking the stack, and the thread looking for work cannot glml. A similar
order could be introduced to the platform to reduce the eaditaused by the
racing condition.

e In the current implementation the controller checks all Warkers for work,
instead of doing this the platform could be modified so thattierkers report to
the controller when they have work to share. The controllenlel then keep an
array of workers which have work to share. This would imprieeperformance
of the find-function as well as ensuring that the workers atedisturbed when
they do not have enough work to share. Implementing thisiregallot of
reworking of the platform. It also requires the developerdgfarallel search-
script to keep track of when there is work to share, and tortépis to the worker
from the search-script. While this solution could improve grerformance of the
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system, | believe that it cannot be implemented in a way whichld keep the
separation between the search-scripts and workers in tlyel Wwave tried to
achieve.

| believe that by implementing the first three possible sohg for the racing-condition,
the performance of the system will increase tremendously.
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Chapter 8

Conclusion

This thesis has covered the concepts of implementing alpbsalarch-engine for a
constraint programming system. It should be apparent todghder that the imple-
mentation of a parallel search-engine is somewhat of a balant. There are alot of
decisions which need to be made about the nature of how thigadmunicate and
distribute work.

I've developed a platform for parallel search on which dif# search-engines easily
could be built. | have also implemented two types of seardjirees on this platform;
depth-first search and branch and bound. Each with differemhory handling tech-
nigues; re-computation and copying. These search-engareact as examples of how
to implement other search-engines using the same platforrthfead handling and
sharing.

| aimed at making the platform as generic as possible. Thewasto allow several
types of search-engines to use the same structure. Howeseplatform cannot ac-
commodate for more specialized search techniques, suchirag optimistic branch
and bound for example. In some cases the problem could be lEE@OBE handles
the models of problems, in other cases more specialized cmication was required.
This platform however should allow the vast majority thefetiént types of search-
engines to use the parallel capacity offered.

The results from the analysis of the platform | have impleteérshow poor perfor-
mance for all but one test. This test however shows promispegedup and it is my
belief that the platform can be modified to perform to a degvkere it is beneficial to
use it.

Given the poor results of this platform | am still confiderdtthis performance numbers
can be improved. Even though this implementation does néaqe well it proves that
creating a generic platform for doing parallel search isjide, and an implementation
like this can achieve speedup. As the tests show; the brandfound engine using
re-computation for backtracking reduced the runtime to @@ent of the original se-
guential runtime when running 16 threads for the computatio
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