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Abstract

Modeling constraint problems is a very important issue and a good model formu-
lation is essential for finding a solution in an efficient way. However, modeling
becomes difficult if the formulation process involves dealing with lowlevel issues
in order to interface with the constraint solver.
The idea behind this thesis is to design a simple but expressive modeling language
to formulate Constraint Programming problems independent of a solver. It should
combine suitable features from other modeling languages with a new idea: The
language shall contain a facility to define optional matters, like branching strate-
gies, which are not necessarily implemented by the backend solvers.
To demonstrate the independence of the modeling language, a compiler with two
backends is implemented: one translating the model to a Gecode [gcde] model, the
other to a SICStus prolog [Cea95] model. The most interesting part is interfacing
to two different target solvers, which might not implement all issues formulated in
the modeling language, but still generating a valid model.

Zusammenfassung

Ein gut formuliertes Modell eines Constraint Programming Problems vereinfacht
den Loesungsprozess ungemein. Doch Modellieren kann sehr problematisch wer-
den, besonders wenn man dabei auch die Architektur des Solvers beruecksichtigen
muss.
Diese Diplomarbeit beschaeftigt sich damit, eine simple, aber ausdrucksstarke Mod-
ellierungssprache zu entwickeln, in der man Constraint Programming Modelleun-
abhaengig von der Solverarchitektur formulieren kann. Diese Sprachesoll wuen-
schenswerte Charakteristiken anderer Modellierungssprachen enthalten, aber auch
eine neue Eigenschaft praesentieren: Es soll moeglich sein, optionale Kriterien zur
Loesungsfindung (wie etwa spezielle Branching-Strategien) festzulegen, die aber
nicht zwingend vom Solver unterstuetzt werden muessen.
Um die Unabhaengigkeit dieser Modelierungssprache zu demonstrieren, wird ein
Compiler mit zwei Backends implementiert. Das eine uebersetzt in ein korre-
spondierendes C++ Modell fuer den Solver ”Gecode”, das andere inein Prolog
Modell fuer SICStus Prolog. Ein besonders interessanter Punkt hierbei ist, ein
korrektes Modell zu generieren, obwohl nicht alle formulierten Kriterienvon den
Solvern unterstuetzt werden.
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Chapter 1

Introduction

1.1 Aim

Designing a Modeling Language

This thesis is concerned with the design of a new modeling language, AML, to
formulate constraint problems. The mathematical modeling language OPL acts as
role model in the design process because of its clear and concise structure. Con-
sequently, AML has a simple non-declarative structure, supports common expres-
sions and relations, and offers a set of global constraints. Additionally AML intro-
duces a completely new feature that allows to formulate optional matters. These
optional matters concern the solution process (e.g. specifying the branching strat-
egy) and need not be supported by the target solver.

Thus, the modeling language is completely independent of any solver. Obvi-
ously, this is a desirable attribute for a modeling language since it allows the user
to focus on modeling rather than on interfacing with the solver’s architecture or
dealing with its capabilities.

Building a Corresponding Compiler

To emphasize AML’s solver-independence, a compiler is built that can translate
AML models either to SICStus-Prolog-models or Gecode-models in C++. These
target solvers are quite different concerning architecture, offeredfeatures and some
solution strategies. Gecode is a free C++ library that offers various means for ex-
tension (implementation of self-defined variables, branching or search strategies)
but modeling problems implies knowledge of the system’s structure since several
member functions have to be implemented in addition to the problem formulation.
SICStus Prolog is a solver based on the logical programming language Prolog that

3



4 1.2. SCOPE

provides very suitable means for modeling but has limitations concerning extend-
ability (e.g. no self-defined search strategies are supported).

The target languages C++ and Prolog are also very different concerning their
capabilities. For instance it is quite complicated to express relations that are gener-
ically sequenced by multi-nested for-loops in a declarative language like Prolog.
This issue brings up a lot of interesting problems that have to be solved in a suit-
able way.

Furthermore, the compiler implementation is supposed to be extendable, which
would allow to simply add (and remove) other target solvers.

Evaluation

Finally generated Prolog- and C++-models are tested and their performance is eval-
uated. Differences, limitations and possible improvements are presented andideas
for further work are introduced.

1.2 Scope

This thesis deals with the design of a modeling language so consequently therehave
to be limitations stated to keep the work in a sensible scope. The intention is to cre-
ate an expressive but simple language that is easily extendable. Standardfeatures
such as constants, arrays, variables with ranges, for-loops and common operators
are supported. Additional features, like reification or multi-dimensional arrays are
not offered. These limitations restrict expressiveness and the set of problems to be
formulated. However, as the language is designed to be extendable, thesefeatures
are interesting to be considered for further work.

In addition to the language designed, a compiler is constructed. Again this
implies some limitations. The focus of the implementation is clearly set on ex-
tendability and therefore the structure of the compiler. No effort has beenset on
the generation of explicitly good models or compilation-oriented issues like error-
recovery.

1.3 Overview

The first part of this thesis covers background material in Chapter 2. Itpresents the
concepts of Constraint Programming in section 2.1, gives an overview of model-
ing languages and OPL in section 2.2, and finally introduces the two target solvers
Gecode and SICStus Prolog in section 2.3.
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Chapter 3 deals with the design of the modeling language AML. It states basic
requirements and describes ideas, and motivates the structure and limitations.

The compiler structure is introduced in Chapter 4. It gives an overview ofthe
structure, functionality and motivates decisions took during the implementation.
Furthermore it presents interesting challenges concerning the translation and im-
plementation process.

In Chapter 5 typical examples are shown to illustrate and discuss interesting
translation differences and resulting draw-backs. The examples are evaluated ac-
cording to readability and performance of the compiler. The last part gives a con-
clusion to the work done and introduces some ideas on further work in Chapter 6.

Appendix A contains the user’s manual for AML. It gives an introductionto
the AML language on the basis of some examples. Appendix B lists the context
free grammar of AML.
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Chapter 2

Background

This chapter presents necessary background information for this thesis. It gives a
brief introduction to the field of Constraint Programmming and its concepts (sec-
tion 2.1), demonstrates issues concerning modeling languages (section 2.2)and
modeling constraint problems (section 2.2.1). The modeling language OPL, that is
role model for the designed modeling language, is also presented in section 2.2.2.
Section 2.3 introduces both target solvers, Gecode and SICStus Prolog.

2.1 Constraint Programming

This section gives a brief overview of Constraint Programming, since a larger in-
troduction would go beyond the scope of this thesis. The interested readeris rec-
ommended to consult [Apt03].

Combinatorial optimization problems occur in many areas and it can be diffi-
cult to find a (good) solution or even to determine, if a solution exists. Constraint
Programming offers a new efficient approach to solving mathematical problems.
The key issue is describing a large problem by a set of constraints. Sincethis
approach is quite general, many areas apply Constraint Programming methods:
interactive graphic systems, operation research (scheduling), molecular biology
(DNA sequencing), business applications(option trading) and electricalenigneer-
ing (computing optimal circuit layouts), to mention some. The advantages of Con-
straint Programming are outlined by 3 basic characteristics [Apt03]:

1. Two-Phase Approach: The programming process consists of two clearly
separate tasks: specifying the problem as a constraint model and solvingit.

2. High Flexibility : A constraint model is very flexible, since constraints can

7



8 2.1. CONSTRAINT PROGRAMMING

easily be added, removed or modified.

3. Presence of Built-Ins: Constraint solvers offer numerous built-in strategies
and algorithms for solving constraint models.

2.1.1 Principles of Constraint Programming

Constraint Programming is a new evolving software paradigm for modeling and
solving large combinatorial optimization problems. It is based upon the fact that
problems can often be split into requirements, general properties, laws and restric-
tions - in other words - constraints. A constraint on a set of variables is defined as a
relation on the variables’ domains. Representing a problem by a set of constraints
is calledmodelingand the resulting model is refered to asConstraint Satisfaction
Problem (CSP), which is defined as follows.

Definition 2.1 (Constraint Satisfaction Problem (CSP)). A Constraint Satisfaction
Problem (CSP) consists of

• a finite set of variablesX = {x1, . . . , xn} over a set of finite domainsD =
{Dx1

, . . . , Dxn
}

• a finite set of constraintsC, where a constraintci ∈ C is a relation over a
subset of variablesXj ⊆ X

Obviously, there exist several different possible representations ofa problem as
a CSP. It is important to always consider a CSP adescriptionof a problem, without
holding any information about how to solve it. There is a very clear separation
between problem description and means to solve the problem.

2.1.2 Solving Constraint Problems

When solving a constraint problem, we want to determine the solutions to the prob-
lem in case a solution exists. Sometimes it can be interesting to question the quality
of the solutions as well.

The basic process of solving starts by representing all constraints defined in the
CSP by special algorithms, calledpropagators. Propagators are functions over
stores. A store is a collection of variables that are mapped to a set of values (a
subset of their corresponding domain). Example 2.1 shows a sample store.

Example 2.1(Store). Consider the set of VariablesV = {a, b, c} with their corre-
sponding domainsDa = Db = Dc = {1, . . . , 5}, thens is a store:

s = {a → {2, 3, 4}, b → {1, 2, 3}, c → {4, 5}}
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Propagators are used to decrease the variables’ domain space without removing
any solutions. It can be considered an implementation of a constraint, as illustrated
in Example 2.2

Example 2.2(Propagator). Assume the set of variablesV = {x, y} with the cor-
responding domainsDx = Dy = {1, . . . , 5} and the propagatorp≥ representing
x ≥ y:

p≥(s) = {{sx ∈ s(x) | sx ≥ min(s(y))}
{sy ∈ s(y) | sy ≤ max(s(x))}}

The propagator is applied to the store until it reaches a fixpoint1 (meaning it
does no longer reduce the store). The following Example 2.3 demonstrates how to
apply a propagator on a store.

Example 2.3(Running a propagator). Consider the set of variablesV = {x, y}
and propagatorp≥ from Example 2.2. When applyingp≥ on a store
s = {x → {0, 1, 2, 3, 4}, y → {3, 4, 5}}, we get

p≥(s) = {{sx ∈ s(x) | sx ≥ 3}
{sy ∈ s(y) | sy ≤ 4}} =

p≥(s) = {x → {3, 4}, y → {3, 4}}

If a propagator has reached a fixpoint, another available propagator ischoosen
to be applied on the store. This process is calledconstraint propagationand there
exist many efficient strategies how to determine which propagator to pick next.
Finally constraint propagation arrives at a stage, where all propagators reach a
fixpoint and the store cannot be further reduced. At this point the storeusually
does not carry complete assignments to all decision variables (meaning no solution
has been found yet).

So we can only achieve progress by dividing the problem into several disjunct
subproblems and rerun propagation on them. This procedure is repeateduntil a
solution is found or propagation results in a failure. Splitting the problem can
be done by domain or by constraints. Asearch tree represents this approach:
nodes contain the actual computation state that consists of a store hosting some
propagators. Childnodes refer to the computation state of the subproblems and arcs
to their computation. Leaves are either solutions or failures. Figure 2.1 shows a
search tree for theSend-More-Money problemvisualized by the GUI of the ALICE
System [Lau78].

1A functionf ∈ X → X has reached a fixpointx ∈ X iff f(x) = x.
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Figure 2.1: A Search Tree based on binary branching

Obviously, it is important to build the tree in a sensible way in order to gain a
well-structured tree improving the search performance. There exist severalbranch-
ing methodsthat define a strategy on how to construct a tree. The most important
issues are the choice of the variable to start the branching with (the root ofthe tree),
and the sort of decision taken to split the problem. Mostly decisions are takenon
domains, which is refered to asdomain branching. But also the amount of pieces
the problem is split into is an important issue. Deviding the problem into two (dis-
junct) subproblems is calledbinary branching. The searchtree in Figure 2.1 shows
an example of a binary branching.

To actually find a solution in the search tree, we need to traverse it in a sensible
way by applying asearch algorithm. Generally, search algorithms are instances
of simple generic iteration algorithms.

A good choice of propagators, branching and search strategy can make a big
difference in the performance of solving the problem, concerning time, space and
- depending on the definition - the quality of the solutions found.

Usally constraint solvers provide built-in propagators, branching methods and
search strategies. The inner representation of the search tree can alsoaffect the
search time and space, but this point will be covered in section 2.3, dealing with
constraint solvers.

2.1.3 Example: Sudoku

Sudoku is a very popular puzzle. It consists of a 9× 9 array of fields, where each
field is supposed to contain a number between 1 and 9. In every row, every column,
and every major 3× 3 square, each number must occur only once. An instance of
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2 5
9 7 3

2 9 6

2 4 9
7

6 9 1

8 4 1
6 3 8

6 8

Figure 2.2: A Sudoku instance

a Sudoku puzzle will have some fields pre-filled with numbers. Figure 2.2 shows a
sample instance of a Sudoku puzzle. According to the pre-filled fields, onehas to
infer the numbers to be filled in the remaining fields. This is a typical example of
applying Constraint Programming methodics.

Defining the problem

We want to determine the values of all fields, so we introduce a variable for each
field. The domain of each variable lies between 1 and 9, since the possible value
assigned to a field lies in that range. We consider the Sudoku puzzle a matrix and
set the variables’ indices accordingly. We get

• a set of variablesX with xij representing the field in thei-th row in thej-th
column.

• a set of domainsD with dij ∈ D = {1, 2, . . . 9}

Now we have to define the constraints that specify the problem: In every row,
column and major square, all numbers in the domain must occur exactly once.
Since the cardinality of the domain equals the length of the rows and columns, and
the amount of fields in a square, respectively, we can reformulate the constraint:
the values assigned to the variables in every row, column and major square must
bedistinct. Distinct is a very popular constraint and supported by every constraint
solver. We formulate the constraints as follows:

• Every field in rowi must be distinct:
c1: ∀i: distinct(xi1, xi2, . . . , xi9) with i: 1 ≤ i ≤ 9



12 2.2. MODELING LANGUAGES

• Every field in columnj must be distinct:
c2: ∀j: distinct(x1j , x2j , . . . , x9j) with j: 1 ≤ j ≤ 9

• Every field in squareskl with 0 ≤ k, l ≤ 2 and must be distinct:
c3: ∀i, j:
distinct(xij , xi(j+1), xi(j+2),

x(i+1)j , x(i+1)(j+1), x(i+1)(j+2),

x(i+2)j , x(i+2)(j+1), x(i+2)(j+2)) with i = k ∗ 3 + 1 andj = l ∗ 3 + 1

The first two constraints are quite intuitive, whereas the last relation is rather
hard to express in a readible way. The difficulty results from the representation of
the Sudoku puzzle as a matrix.

2.2 Modeling Languages

This section will present usage and advantages of modeling languages in the field
of mathematical programming. It will also outline requirements of modeling lan-
guages for modeling constraint problems. Finally, the modeling language OPL
[VH99] will be introduced, which was the role model for designing AML.

Modeling languages evolved in the area ofmathematical programming, which
generally deals with maximizing or minimizing an objective function, subject to
constraints on variables of the function. The process of mathematical programming
can be listed as a sequence of events as presented in [Apt03]:

1. Formulation of the model (containing variables, objectives and constraints)

2. Creating a problem instance by defining data (constants)

3. Generating a specific objective function on the model and data

4. Solving the problem

5. Analyzing the results

6. Refining data or model, if necessary

Modeling languages simplify solving mathematical programming problems on
various aspects: generally their syntax is close to the standard way of describing
mathematical problems in scientific literature, which makes it more readable and
easier for modeling. For instance, the syntactic notation in OPL [VH99] for the
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mathematical expression

n∑

i=1

ai ∗ xi can be written assum {i in n} a[i] * x[i]

Many modeling languages also provide a clear separation between the abstract
model and model instances, making the model applicable to many problem in-
stances without additional work involved. The solver is mostly considered ablack-
box with the modeling language acting as an interface between user and solver.
This allows the user to focus on modeling the problem without bothering about
low-level issues.

2.2.1 Modeling Constraint Problems

Most of the common modeling languages used for mathematical programming,
provide libraries for Constraint Programming. As defined in section 2.1.1, acon-
straint model consists of a set of decision variables over a finite domain anda set
of constraints. This section will present some basic structures and requirements to
the modeling language for modeling constraint problems.

Defining Decision Variables

Decision variables can be either typed as integer, Boolean or real, even though
the most commonly used are integers . To specify the decision variable’s domain,
we need to introduce a new data structure, which is often refered to asrangeor
domain. Intuitively, it is defined by two values, setting the lower and upper bound
of the domain. Some modeling languages require all decision variables to state a
domain. For illustration, the following table shows the declaration of the decision
variablex in the domaindx = {1, . . . 5} in the modeling languages SICStus-Prolog
[Cea95], Oz [Smo95] , OPL [VH99] , ESRA [Ag04] and the language designed
in this thesis, AML.

Modeling Language Declaration

Prolog X in 1..5

Oz X:::1#5

OPL and AML var int x in 1..5

ESRA dom Dx = 1..5
var X : Dx
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Defining Constraints

Constraints are relations over a set of variables, so most constraints areformed by
relations of expressions. Some solvers make differences between linearand nonlin-
ear expressions, for instance by offering fast algorithms for solving special linear
expressions, like scalar products, for instance. Then the corresponding modeling
languages provide special built-in functions for linear expressions, performing way
better than the standard notation of relations over expressions would.

Most solvers provide numerous built-in constraints as well, typically complex
relationships among variables that in this thesis are refered to asglobal constraints.
The termglobal constraintis a very difficult one, since there does not exist a formal
definition of this constraint concept. The interested reader is refered to [BVH03]
for an excellent characterization of global constraints.

The most popular global constraint isdistinct, also known asalldifferent.
distinct(x1, x2 . . . xn) holds, when all elementsxi are assigned different val-

ues. A lot of global constraints concentrate on special areas of combinatorial opti-
mization problems, for instancecumulative(start, duration, resources)is used for
task ordering according to available resources in the field of scheduling.

Defining optional matters

The most important option is the specification of the branching and search strategy.
Most solvers provide this option and support the most common strategies. There
are also additional options that might be supported: the amount of solutions tobe
found or the graphical display of the searchtree that is offered by somesolvers, like
gecode [gcde], MOzart [MC] and alice-ml [Sys].

Requirements in a nutshell

Finally, a short summary of requirements to a good modeling language, supporting
definitions of constraint problems:

Data types : support a wide range of data types, especially those that represent
sets and ranges

Identifiers : ideally, a modeling language should support 4 different kinds of iden-
tifiers to be as expressive as possible: decision variables, constants, parame-
ters and quantified variables

Constraints : the languages should offer facilities to express all kinds of relations
between expressions (as far as they are supported by the solver)
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Built-in Constraints : in case the solver implements some built-in constraints,
like global constraints, they should be provided by the modeling language

Branch and Search Strategies: to offer the user a flexible usage of the solver, it
is recommended to provide means to specialize the branching and searching
algorithms implemented in the solver

There exist some additional properties that increase the expressiveness of the
modeling language. One property is the ability of nesting all types to an arbitrary
depth, like a set of sets of sets for instance. It is discussed in [FJMM05], which
introduces the modeling languageEssence, which is the first to provide full nesting
of data types.

2.2.2 Example: The Modeling Language OPL

OPL is the role model for the language AML, since it has a lot of interesting fea-
tures that will be presented in this section mostly by code-examples. The applica-
tion range of OPL is very wide. It supports many areas of mathematical program-
ming, such as linear and integer programming. This introduction will only cover
features of constraint programing, for further information consult [VH99].

Basics

OPL is a very expressive modeling language, which combines features ofmodern
programming languages and mathematical modeling languages. A model in OPL
consists of an abstract part and a data part. The abstract part contains declarations
of decision variables, constraints and searching strategies and therefore refers to
the problem description. The data part can be stored in a separate file, containing
constant declarations and corresponds to a problem instance. An abstract model
can be solved according to different data files. Since the interesting issues lie in the
abstract model, we will not consider the data part of an OPL model.

Basically, an abstract model consists of a declaration part, a solve part contain-
ing constraints and a search part for specifying search strategies. The declaration
part covers the declaration and definition of constants, ranges and decision vari-
ables. OPL also supports the declaration of enumerate types that make the code
more readable and compact. The syntactic notion is close to those of modern pro-
gramming languages, as the following example demonstrates.

Example 2.4(n queens problem). The n queens problem, based on the chess game,
is to place n queens on an n× n chessboard without attacking each other. This
requires that no queen may be on the same row, column or diagonal with another
queen. The amount of queens is set ton = 8 in this example.
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1 int n = 8;
2 range Domain 1..n;
3 var int queens[Domain] in Domain;
4
5 solve {
6 forall(ordered i, j in Domain) {
7 queens[i] <> queens[j];
8 queens[i] + i <> queens[j] + j;
9 queens[i] - i <> queens[j] - j;
10 };
11
12 search {
13 forall(i in Domain)
14 generate(queens[i]);
15 };

The example presents the clear structure of OPL models and some powerful
features. The most interesting feature is theforall construct in line 6 that generates
the sequence of constraints

queens[i] <> queens[j];
queens[i] + i <> queens[j] + j;
queens[i] - i <> queens[j] - j;

for all 1 ≤ i < j ≤ 8. This construct allows to express a sequence of constraints
very compact and readable. Another interesting point is the specification of the
search strategy in line 12, wheregenerate uses thefirst-fail principle to search
for a solution on every element of the arrayqueens. This search strategy can be
described as”start, where you are most likely to fail”, meaning that the variable
with the fewest possible remaining alternatives is chosen to start the searchon.
Aside of providing common search strategies, OPL also allows the user to define
his own search procedures that can be completly adapted to the problem.

High-Order Constraints

High-Order constraints are better known asreified constraintsthat are logic con-
straints on a set of constraints. This is done by assigning Boolean variables to a set
of constraints and setting them in relation to each other. Obviously, this method
allows us to express constraints very efficiently, which is illustrated in the next
example.
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Example 2.5(magic sequence). A magic sequence is a sequenceS = (s0, s1, . . . sn−1)
of n numbers, where the elementsi represents the number of occurences ofi in the
sequenceS. For instance, the sequenceS = (2, 1, 2, 0, 0) for n = 5 is a magic
sequence, since 0 and 2 occur twice, 1 occurs once and 3 and 4 occurzero times.

1 int n = ...;
2 range Index = 0..n-1;
3 range Domain = 0..n;
4 var Domain s[Index];
5
6 solve {
7 forall(i in Index)
8 s[i] = sum(j in Index) (s[j] = i);
9 };

The expressionsum(j in Range) (s[j] = i])) in line 8 is used to
count the amount of variables ins for which s[j] = i holds. For solving this
expression, the solver replaces each constraint in the expression by aBoolean vari-
able that is assigned the value 1 if the constraint is satisfied, and 0 if not. Obviously,
high-order constraints are powerful tools for expressing constraintsin a concise
way, keeping the constraints comprehensible. This example also demonstrates the
usage of an external data file: the length of the magic sequencen is read from a
data file, which is expressed by the notionint n = ...; in line 1.

2.3 Constraint Solvers

This section will give an introduction and overview of the constraint solvers gecode
[gcde] and SICStus Prolog [Cea95], since these are the corresponding solvers for
the models AML can be translated to. These solvers and their modeling languages
are highly different and therefore very interesting to compare and examine.

One important issue is the inner representation of the search tree, since both
solvers use completely different strategies.

Search Tree Representation

As discussed in section 2.1.2, in order to solve a problem, the solver has to perform
search, where the searching mechanism is represented by a search tree. When
traversing the tree for a solution, it is common to end up in a branch, where the
search fails. Then it is necessary to get back to a good point of the search tree and
find another path, which may lead to a solution. This can be done by applying one
of the following methods:
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1. Memorizing states bycopying them

2. Reconstructing states by eithertrailing or recomputation

Recomputation regenerates the states from scratch, while trailing reconstructs the
state by always recording the changes that have been applied on the stateand sim-
ply redoing them. Copying uses a very different approach: when computing a new
state, first the old state is copied and then propagated on. So every traversed state
is available at any time.

Consequently, systems based on trailing deal withoperationson data struc-
tures, while copying-based systems are only concerned withdata structures, which
makes search independent of operations on data structures for copying.

Most solvers are trailing-based and only few use copying. However, [Sch99]
gives an excellent comparison of trailing-based and copying-based systems, demon-
strating their competitiveness.

2.3.1 Gecode

Gecode stands forgeneric constraint development environmentand is a free sys-
tem for developing constraint-based systems and applications. It is a very young
project, which has first been released in December 2005. The developers consist of
a small group of researchers at KTH Stockholm in Sweden and SaarlandUniver-
sity in Germany. The development of gecode was motivated by the idea of building
a flexible, open and free constraint solving system that is applicable for academic
pursuit of Constraint Programming. Some of the developers could also contribute
their experience gained by developing the MOzart System [MC].

Features of gecode

Gecode is a C++ library with various interesting features. It is an open system
that can easily be interfaced to other programming environments and supports the
implementation of new propagators, branching strategies, search enginesand also
new variable domains. Gecode is distributed on a BSD-style licence, and offers
free source code, documentation and examples for download. It is portable since
it holds the C++ standard and can be compiled with common C++ compilers and
runs on several machines. Benchmarks presented at [gcde] show that Gecode is
efficient according to time and memory usage and therefore competitive with other
common constraint solvers.

Being a C++ library, the main focus is set on solving rather than modeling:
models for gecode have to be written in C++ and adapted to the solver structure,
which includes, for instance, defining several member functions for classes used.
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So modeling a problem also involves understanding the structure of the solver,
which is time consuming for the unexperienced user. But currently a Java interface
is under development that is supposed to simplify modeling.

The structure is very beneficial when it comes to implementing self-defined
variable types, branching or search strategies. New variable domains can even be
implemented having the same level of efficiency as integer set or finite domain
variables.

Search is based on the rather unusal strategy of copying together with recom-
putation. Therefore every problem model has to provide a copy method in order to
be solved.

Gecode offers common constraints, such as arithmetic, boolean, linear equa-
tions and various global constraints. Since gecode provides finite integerset vari-
ables, it also offers set relations, set operations, and special set constraints.

2.3.2 SICStus Prolog

Prolog is a logic programming language developed in the early 80s and is now part
of the International Standard2. There exist various versions of Prolog and one of
them is SICStus Prolog, developed by the Swedish Institute of Computer Science
(SICS). SICS is a non-profit research organization that first focused on parallel
logic programming and switched research to the area of constraint programming.

Features of Prolog

SICStus Prolog comes with 3 constraint solvers who are based on the general con-
straint logic programming scheme: a solver for Boolean constraints, for constraints
on reals [Hol95] and for finite domain constraints [COC97]. We will only con-
sider the solver for finite domain constraints.

Prolog is a very expressive modeling language, especially for modeling con-
straint problems, since it has a logic and simple structure. As the constraint solver
of SICStus Prolog can be considered a part of the modeling language, thefocus is
clearly set on modeling, rather than on extending solving mechanisms.

The system has two classes of constraints: primitive and global constraints.
Numerous global constraints are provided and reification (high-order constraints)
is also supported for primitive constraints.

Unfortunately, SICStus Prolog is only partially extendable: It is possible to
implement new domain variables and constraints (both primitive and global), but
there are no means to construct self-defined search or branching strategies. SICStus
Prolog uses trailing for search.

2ISO/IEC 13211-1
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2.3.3 Gecode vs. SICStus Prolog

The biggest difference between gecode and SICStus Prolog lies in gecode being a
C++ library and SICStus Prolog a logic programming system where the solveris
included in the language’s structure. This naturally characterizes SICStus Prolog
as being better for modeling problems and gecode being more extendable.

Both solvers use completely different strategies for searching solutions:gecode
is copying-based and Prolog applies trailing.

There exist some benchmarks comparing gecode to SICStus prolog according
to runtime on some model problems.



Chapter 3

Designing AML

This chapter presents the design process of AML (A(ngee’s) ModelingLanguage)
and focuses rather on the ideas and motivations during design than the language
itself. For a detailed description of the language, see the user’s manual in Appendix
A. AML’s grammar is listed in Appendix B.

3.1 Motivation

Before designing AML I tested some typical mathematical modeling languages,
because I wanted to chose a role model for AML. The most inspiring language
turned out to be OPL (discussed in section 2.2.2): it has a very concise model
structure and its syntax is very close to those of modern programming languages.
So AML combines some useful features of OPL with some new ideas on a rather
simple level.

3.2 Goals and Requirements

I designed the structure by first collecting a list ofbasic requirements for the
language to model constraint problems.

Basic types : Most constraint problems are integer-based and to keep things sim-
ple, I decided to only provide integer typed variables. Still I wanted to stress
that the language is strongly typed, so when declaring a variable the keyword
int is necessary.

Arrays : I decided to provide arrays instead of lists, tuples or records, since I
wanted the language to be explicitly non-declarative. Only only one-dimensional
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arrays are supported, since further nesting would have gone beyondthe scope
of this thesis.

Constants : I wanted to support constants to make it possible to describe the
model in an abstract way. It was also important for me to separate the con-
stant declaration from the rest of the model in order to obtain a clear struc-
ture. This is why constants are to be defined in a destined data block that is
mainly inspired by the model structure of the OPL language.

Decision Variables : Decision variables are either integer arrays or simple integer
variables.

Ranges : Ranges are set during the declaration of variables, but there does not
exist a specific range type, since I wanted to have as few types as possible
and ranges are not necessarily needed as types to model constraint problems.

Relations : Relations are binary over arbitrary linear or nonlinear expressions,
since this is the simplest way to describe relations. First I was uncertain, if I
should differentiate between linear and nonlinear expressions, but thatwould
have made it more complicated for the user to model constraints.

Global Constraints : I wanted to provide some basic global constraints that are
commonly provided by solvers and decided to supportdistinct, serialized
andcumulative.

Constraint Sequencing Sequencing constraints generically is a very powerful method
to define a set of constraints, since the formulation is simple and readable.
This is why I wanted to offer aforall construct, which can be arbitrarly
nested. The syntax of the forall loop was also inspired by OPL.

After stating basic requirements, I formulated some goals of the language: a
very important goal is to obtain a clear and concise model structure. That iswhy
I decided to construct the model in form of a block structure, to separate con-
stant declaration, decision variable declaration and constraints. I also introduce an
option block, which allows the user to state some special matters, like branching
strategies. The idea of an optional block is new and interesting: it is supposed to
define some issues, which do not have to be supported by the solver that the model
is interfaced to.

I also wanted the syntax to be close to modern programming languages, since
standard users of modeling languages are usually familiar with programming.
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3.3 The Language Structure

As mentioned, an AML model is constructed of blocks. This section will give
details on the motivation and decisions taken in order to form the structure.

Every model is initiated with the key wordmodel followed by a modelname,
identifying the model. Then braces{ } form the model block that contains the
model description. I have chosen braces to enclose blocks, because Ibelieve that it
is the most readable way.

A big advantage of the usage of blocks is that an order of constant, variable and
constraint declaration is implied in the structure. This makes it easier to compile
and process the model for the programmer on the one hand, but also easier for the
user to write correct code on the other hand.

A model in AML is structured by the following hierachy:

1. data declaration block (optional)

2. variable declaration

3. constraint declaration block

4. options block (optional)

The order of the blocks is inspired by OPL. In the following subsections, each
block will be discussed.

Data Declaration

As mentioned above, I wanted to support constant declarations and separate them
from the rest of the model in a block. This approach is inspired by considering
constant data as problem instance. A possible extension would be allowing multi-
ple data blocks and pick one of them for processing. This would also come close
to the OPL approach that can load constant declarations from differentfiles.

Constraint Declaration Block

The constraint declaration block contains all constraints and is initiated by thekey-
word solve, as in OPL. Collecting all contraints in a block makes the problem
formulation more readable.
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Options Block

The option block is the most interesting part of the language. It contains statements
specifying special issues that concern the solving process. The grammar is very
vague concerning option statements: every statement of the form

IDENTIFIER = EXPRESSION ;

is allowed, but only known options are processed by the compiler. Every unknown
statement is simply ignored and results in a warning message of the compiler. This
brings a lot of advantages for the modeling process: the user does not have to bother
whether the options he choses are supported by the target solver. Additionally the
user is always informed about which options have been processed andwhich are
not applicable. This makes the options block extremly userfriendly.

These advantages are the main reasons, why I have chosen to specify the op-
tions block in this way. Another important reason is the requirement of the lan-
guage being independent of the target solvers, which is hereby clearlydemon-
strated.

3.4 Limitations

This section discusses some modeling boundaries and why they exist. It motivates
some decisions I took in designing the language and discuss some possible exten-
sions.

When designing AML, I knew that it would be a simple language and had to
decide which limitations to accept and which not. I wanted to get as much expres-
siveness as possible with the smallest effort, since I did not want to let constructing
the AML compiler get out of bounds.

Only One-dimensional arrays : One of the first decisions I took, was to restrict
arrays to be one-dimensional. Supporting multi-dimensional arrays would
have been more expressive, since it would allow to represent matrices and
related structures very efficiently. Still I found the effort in implementation
would have been far higher than the expressiveness gained by introducing
multi-dimensional arrays.

No datatype for domains : No specific type representing domains or ranges ex-
ist, even though it is common in other modeling languages for constraint
programming. I decided that there was no necessity for adding a range type,
as it affects the language’s expressiveness only barely, since AML isvery
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simple. It would have been more necessary, if the modeling language was
larger.

No reified constraints : It is not possible to formulate reified constraints (high
order constraints) in AML. I actually did not think of implementing high
order constraints when designing AML. It would certainly be an interesting
feature to add to AML.

Only few global constraints : AML offers only three global constraints. Intu-
tively, this is because supporting all possible global constraints would have
gone beyond the scope of this thesis. So I picked three popular global con-
straints that both target solvers support.
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Chapter 4

Compiler Structure

This chapter presents the structure of the compiler implementation on an abstract
level. It presents ideas, motivation and problems during the implementation pro-
cess. The detailed functionality of the compiler is discussed in context with the
structure. Basic knowledge of compiler construction is presumed, since anin-
troduction would go beyond the scope of this thesis. The so-calleddragonbook
[ASU86] gives an excellent introduction and overview of compiler construction.

4.1 Overview

The compiler implemented in this thesis is supposed to translate an AML model
into a corresponding Gecode or SICStus Prolog model. Figure 4.1 shows the ba-
sic structure of the compiler implementation: given an AML file, the frontend
translates it into a model description, defined in the intermediate language XML.
This model specification is then applied to the backend that translates it either toa
Gecode or SICStus Prolog model.

Frontend and backend are implemented independently and work stand-alone.
This is an important issue concerning re-usability and extensionability, sincethe
structure easily allows to remove or add components (like another backend)to the
compiler.

The following sections present the compiler parts in more detail.

4.2 Frontend

The frontend has been implemented inocaml [Rém00]. Being a functional pro-
gramming language, ocaml is very expressive, provides pattern matching and sup-
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AML Model

Intermediate Language

backendbackend

gecode

gecode
model

prolog
model
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prolog

Figure 4.1: The basic compiler structure

ports even imperative and object oriented styles. There also exist libraries for lexer
and parser generation, which are based on the popular toolslexandyacc [LMB92].

ocamllexallows to specify tokens by regular expressions and generates a cor-
responding lexer.ocamlyaccconstructs a LALR parser, according to a context free
grammar provided. Both tools can be interfaced and easily integrated in ocaml
code.

4.2.1 Functionality

The frontend takes an AML model as input and produces a XML description of the
model. The transformation process can be described by the following sequence of
tasks:

1. Read input file: read the input file from the arguments passed

2. Generate tokens:the lexer filters the input file and splits its content into a
sequence of tokens.

3. Parse the grammar: the parser takes the list of tokens as input and parses
it according to the specified grammar.
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4. Construct an Abstract Syntax Tree (AST): in case the parser processes
the tokens sucessfully, it generates an AST. ASTs represent the grammar by
a tree-structure: leaves correspond to terminals and nodes to non-terminals.

5. Process the AST:semantic features are checked (such as valid identifier dec-
larations), declared constants are inserted into expressions, which areevalu-
ated afterwards.

6. Transform AST to Intermediate Specification: finally a new tree-like data
structure is generated according to the information stored in the AST. This
data structure corresponds to the intermediate language.

7. Write Intermediate Specification into a File: By applying a simple tostring
method the intermediate specification is stored in form of a string that is writ-
ten in a file.

Constant Processing

An important issue is the processing of the constant declarations: all constants
defined in the data block are inserted in the expressions they appear in. Therefore
the model description in the intermediate language corresponds to a model instance
and carries no data block.

Error Handling

Generally, if an error is detected, a message is printed on the standard output, con-
taining information about the type of error and additional information, if available.

Errors in the lexer or parser are treated immediately, while the other modules
handle errors by exceptions. I did not apply any error recovery anddid not focus on
error handling that much, since it would have gone beyond the scope of the thesis.

4.2.2 Implementation Structure

The implementation consists of a lexer, a parser and 3 additional modules.

Lexer and Parser

The lexer is generated byocamllex, which takes a description of tokens by a spe-
cial list of regular expressions. This list may also contain user-defined functions or
statements.ocamlyacc creates the parser according to a specification file con-
taining a list of terminals, grammar rules, operator precedences and user-defined
functions. It also specifies the structure of the AST (abstract syntax tree) in the
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grammar rule definition: every rule states the node or leaf type which is returned,
in case the rule holds.

Additional Modules

The first moduleast contains the data structure definition and functions for the
AST representation. The second moduleconstant contains functions for con-
stant processing, such as insertion in expressions and expression evaluation. Fi-
nally, the modulexml contains the data structure definition and functions for the
intermediate language that is XML.

4.2.3 Challenges in the Design Process

The first part in designing the frontend was the definition of the AML grammarin
the parser, which is listed in Appendix B. The grammar should be simple, easily
extendable and strict. Since I did not have any experience with the design of lan-
guages, it was challenging and difficult. Consequently, I discovered opportunities
for improvement after the whole implementation process. This is why I want to
discuss challenges during the design of the AML grammar in this section.

My appraoch was to structure the grammar by simple means and keeping it as
restrictive as possible. That seemed to work, since I only made few changes during
the whole implementation process. Still I did not consider an important point:
making some parts more abstract can increase extendability without affectingthe
strength of the grammar. The following parts could have been implemented in a
better way:

• Global constraints:
Global constraints are treated as keywords in the grammar. So extending
global constraints inforces extending the grammar. It would have been a bet-
ter approach to treat global constraints in a more abstract way, like function
calls. Then extensions would not imply extending the grammar, but simply
extending transformation rules in the frontend and backend part.

• Options:
Options are defined as expressions that are assigned to identifiers. This
makes it difficult to add options taking more than one parameter, like defin-
ing branching strategies for a specific decision variable. Such an extension
would also affect the grammar. Hence it would again have been better to de-
fine the options-grammar more abstractly in form of function calls that can
take multiple parameters.
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<person>
<name>

<firstname>Andrea</firstname>
<lastname>Rendl</lastname>

</name>
<age>23</age>

</person>

Figure 4.2: A sample XML description of a person

I unfortunately overlooked the opportunity to represent some parts in the grammar
by function calls, since modeling languages are commonly not concerned with
functions.

4.3 Intermediate Language XML

The intermediate language should be simple and store relevant information in a
concise and well-structured way. In addition, it should also be readable and there
should exist means to verify and process its representation. I have chosen XML to
be the intermediate language, since it conforms to all requirements.

XML stands forExtendable Markup Languageand provides means to repre-
sent data in a tree-like structure. An XML description consists of a set of elements,
whose content can either be another element or some data. This implies a hier-
archy in the information described, which makes XML documents very readable
(assuming a reasonable structure).

As demonstrated in the example shown in Figure 4.3, XML is very simple and
easily comprehensible. That’s why XML is a very popular markup languageand
most programming languages provide libraries for parsing XML documents.There
also exist a lot of facilities to verify XML docmuents and display elements in a
fancy way.

The structure of the XML document representing the AML model is strictly
stated by a DTD documentmodel.dtd, which is used to verify the document in
the backend structure. The file is included in the compiler.
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4.4 Backend

The backend part consists of two backends; one translating to C++, the other to
Prolog. Both backends have much in common and the structure has been imple-
mented on a very abstract level in order to simplify extensions, like adding another
target solver.

The implementation language for the backend is Java [1.5]. First I wanted to
implement the backend in ocaml, but had problems with the xml-light library, pro-
viding an ocaml XML parser. I finally decided to switch to Java that also provides
XML parsers.

4.4.1 Functionality

The backend takes an input file and a flag stating the language to translate to.The
input file is assumed to be a XML document, following the rules of the DTD speci-
fication stated inmodel.dtd, which comes with the compiler. The correctness of
the model structure is also assumed, since backend-independent semanticchecks
(for instance check for non-ambigious variable names) are done in the frontend.

Both backends have the same structure, but intuitively their functionality dif-
fers in some parts. The Gecode Backend is concerned with generating a C++ class
where the constructor holds the problem description. Several member functions
have to be generated to conform to the solver’s class hierarchy. The backend trans-
lating to Prolog generates a predicate that contains the problem description and
brachning strategy.

Section 4.4.3 presents some interesting challenges in the translation process for
both backend types.

4.4.2 Implementation Structure

XML parsers

The most important issue of the backend was to build it in a structure that is easily
extendable.

There exist two kinds of XML parsers: SAX (serial access) parsersthat traverse
the XML document and give information about the currently processed XML-
element. The alternatives are DOM (document object model) parsers that generate
a tree-like representation of the XML document. I picked the SAX parser, since its
approach is simpler, faster, less memory-intensive and sufficient for theneeds of
the backend.
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BackendParser Backend

...
out: Writer

writeHeader()

...
processString()

tempVariables:

...
LinkedList

...
writeMainFunction()

PrologBackendGecodeBackend

...
LinkedList

loopVariables:

...
writeRelation(relop)

factory:SAXParserFactory

backend:Backend

...

Figure 4.3: The simplified class structure of the backend

Class Structure

SAX parsers do not store information about the XML file they parse, but notify
about the currently parsed element. So immediate action has to be taken during
the parsing process. That is why I decided to build the whole structure around the
SAX parser, and process the XML element content according to the target-backend
specified. Figure 4.3 shows the skeleton of the major class structure.

BackendParser : The basic part of the backend is the class BackendParser, which
is a subclass of DefaultHandler. Its constructor takes a XML file and a
backend-flag, denoting whether to translate to Prolog or to C++. The field
backend of the type Backend, performs the main translating process and
states how to handle currently processed XML elements.

Backend : The abstract class Backend declares fields and methods necessary toin-
terface with the SAX parser in BackendParser. It also contains the fieldout
of type Writer which is the output file. Any feasible backend-specification
has to inherit from this class.

GecodeBackend: GecodeBackend is a subclass of Backend and the implementa-
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tion of the backend translating from XML to C++.

PrologBackend : GecodeBackend is a subclass of Backend and the implementa-
tion of the backend translating from XML to Prolog.

Functionality

The backend works as follows:

1. The main class creates a BackendParser instance, depending on the target
language to translate to (which is read from the input arguments).

2. The BackendParser instance creates an Backend instance corresponding to
the target language.

3. BackendParser starts the parsing process on the XML file. On everyXML-
element it calls Backend methods that set flags or process the XML element’s
content.

4. After the XML file is processed,out of type Writer (that stores the trans-
lated model) from Backend is flushed into the file.

This structure makes it very easy to extend the backend and add other target
solvers, by simply creating another subclass of Backend.

4.4.3 Challenges in the Design Process

Handling Non-linear expression in Gecode

One feature of Gecode is, that there is no mean to state arbitrary relations between
nonlinear expressions. This means, that a relation can only be over linearexpres-
sions. Hence nonlinear expressions have to be stated separately and represented by
a temporary variable. This temporary variable is then inserted in the relation, since
a single variable is always linear.

Consider the relationa*b > c which contains the nonlinear expressiona*b.
This expression has to be stated separately and assigned to a temporary variable.

tmp = a * b

This variable can now be inserted for the nonlinear expression, making it linear on
the relational level.

tmp > c

Creating temporary variables introduces other issues: temporary variableshave to
be defined before they are used in the C++ model. Since one never knows, if the
upcoming expressions are nonlinear, some information has to be buffered.
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Translating For-loops to Prolog

Prolog is a non-declarative logical programming language and does not support
for-loops. AML offers for-loops and consequently, a strategy has tobe found to
translate relations defined in (multi-nested) for-loops from AML to Prolog. Ba-
sically, a for-loop allows to specify a sequence of relations in a generic way. A
possible strategy is to generate the corresponding sequence in Prolog, which leads
to unfolding of the for-loop. The following code fragments illustrate how a for-loop
is unfolded.

AML Code Generated Prolog Code

for(i in 0..3) { X0 #= 0,
x[i] == i; X1 #= 1,

} X2 #= 2,
X3 #= 3

The example above shows a simple version of a for-loop. However, whenit
comes to multi-nested for-loops with dynamic indices containing expressions the
automated unfolding process becomes more challenging as the following example
demonstrates.

AML Code Generated Prolog Code

for(i in 0..2) { X0 #\= X1,
for(j in i+1..2) { X0 #\= X2,
x[i] != x[j]; X1 #\= X2

}
}
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Chapter 5

Examples and Evaluation

5.1 Motivation

It is interesting to compare generated models, because some solver-dependent as-
pects are treated completely differently in the translation process. Comsequently,
the quality of the generated models can differ quite drastically.

This sections presents some typical examples, which are translated and solved
by both solvers. The generated models are evaluated according to some specified
criteria. This demonstrates differences and weaknesses in the translationprocess
and how they affect the generated model and its performance. The evaluation un-
derlies a set of criteria, which are

• performance (space, time)

• readability

• limitations for larger problems

5.2 Example: nQueens

5.2.1 Overview

The nQueens problem is placing n queens on a n× n chessboard without attacking
each other. So no queen may be on the same row, column and diagonal as another.
The model description in AML is presented below.

1 model QueensN {
2 data { /* amount of queens */
3 int n = 8;
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4 }
5
6 var int queens[n] in 0..n-1;
7
8 solve {
9 /* no queen may be on the same column as another */
10 distinct(queens);
11
12 forall(i in 0..n-1) {
13 forall(j in i+1..n-1) {
14 queens[i]+i != queens[j] + j;
15 queens[i]-i != queens[j] - j;
16 }
17 }
18 }
19 }

nQueens is a very interesting example to examine. On the one hand, the problem
size can be arbitrary altered by the parametern. On the other hand, the problem
description contains forloops that are treated differently in the translation process
since Prolog does not offer aforall construct. Consequently, every forloop
stated in the AML model is unfolded in the Prolog model. The following code
segment shows the unfolded forloop of the generated Prolog file for the smallest
possible valuen = 5.

...
(Queens0__a + 0) #\= (Queens1__a + 1),
(Queens0__a + 0) #\= (Queens2__a + 2),
(Queens0__a + 0) #\= (Queens3__a + 3),
(Queens0__a + 0) #\= (Queens4__a + 4),
(Queens1__a + 1) #\= (Queens2__a + 2),
(Queens1__a + 1) #\= (Queens3__a + 3),
(Queens1__a + 1) #\= (Queens4__a + 4),
(Queens2__a + 2) #\= (Queens3__a + 3),
(Queens2__a + 2) #\= (Queens4__a + 4),
(Queens3__a + 3) #\= (Queens4__a + 4),
(Queens0__a - 0) #\= (Queens1__a - 1),
(Queens0__a - 0) #\= (Queens2__a - 2),
(Queens0__a - 0) #\= (Queens3__a - 3),
(Queens0__a - 0) #\= (Queens4__a - 4),
(Queens1__a - 1) #\= (Queens2__a - 2),
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(Queens1__a - 1) #\= (Queens3__a - 3),
(Queens1__a - 1) #\= (Queens4__a - 4),
(Queens2__a - 2) #\= (Queens3__a - 3),
(Queens2__a - 2) #\= (Queens4__a - 4),
(Queens3__a - 3) #\= (Queens4__a - 4),
...

5.2.2 Evaluation

Obviously, unfolding the forloop easily becomes a problem when parametern in-
creases. This not only affects readability and model size, but also compilation time
drastically. The following table illustrates the differences in compilation time with
an increasingn. Time measurement has been done by the help of the program
time.

n solver total time user CPU time system CPU time
[sec] [sec] [sec]

15 Gecode 0.519 0.438 0.047
Prolog 0.638 0.482 0.055

20 Gecode 521 0.436 0.045
Prolog 0.624 0.546 0.069

25 Gecode 0.521 0.0408 0.076
Prolog 0.729 0.639 0.082

30 Gecode 0.520 0.418 0.061
Prolog 1.446 0.892 0.096

35 Gecode 0.520 0.417 0.068
Prolog 1.750 1.525 0.137

40 Gecode 0.520 0.403 0.074
Prolog 3.076 2.842 0.172

45 Gecode 0.521 0.412 0.067
Prolog 5.366 5.063 0.248

50 Gecode 0.571 0.438 0.048
Prolog 9.860 9.416 0.391

55 Gecode 0.521 0.404 0.077
Prolog 16.340 15.601 0.525

60 Gecode 0.520 0.409 0.070
Prolog 32.556 30.988 0.806
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5.3 Example: Grocery

5.3.1 Overview

Two children buy 4 items at the grocery. The cashier erroneously multiplies the
prizes instead of adding them, but still gains the same result, which is 711. The
AML model formulatinggroceryis presented below.

1 model Grocery {
2
3 data {
4 int prize = 711;
5 }
6
7 var int items[4] in 0..711;
8
9 solve {
10 item[0] + item[1] + item[2] + item[3] == prize;
11 item[0] * item[1] * item[2] * item[3] == prize*100*100*100;
12
13 item[0] > item[1];
14 item[1] > item[2];
15 item[2] > item[3];
16 }
17 }

This example is interesting, because it contains a relation between nonlinear ex-
pressions. Unfortunately it is not scalable.

5.3.2 Evaluation

Non-linear expressions in relations are treated differently when translating to Gecode
than when translating to Prolog. As Prolog supports relations over non-linear ex-
pressions, the information structure does not have to be manipulated. But Gecode
only offers facilities to formulate relations over linear expressions. Thus itis nec-
essary to introduce temporary variables to linearize the structure of expressions.
This increases the amount of variables. Consequently, a high amount complex
non-linear expressions can affect the quality of the generated model.

As the example is not scalable, this effect cannot be demonstrated like in the
nQueens example. The following table shows the compilation time for both mod-
els.



CHAPTER 5. EXAMPLES AND EVALUATION 41

Solver total time user CPU time system CPU time
[sec] [sec] [sec]

Gecode 0.471 0.379 0.066
Prolog 0.471 0.387 0.050
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Chapter 6

Conclusions and Further Work

This thesis has presented a new modeling language AML with its corresponding
compiler. This chapter will give some conclusions about the work and present
ideas for further work.

6.1 Conclusions

The first part of work on this thesis dealed with the design of the modeling language
AML. After investigating several standard modeling languages, OPL has been cho-
sen to act as role model for AML, which turned out to be a good choice. AML’s
syntax is simple and strictly structured. The set of supported global constraints and
options was specified and the context-free grammar for AML was stated.

The second part involved implementing a corresponding compiler for AML
where the focus was set on extendability. This allows to easily add other target
solvers to the compiler.

6.2 Further work

A very interesting idea for further work is extending AML. It is a simple language
and can express a certain set of problems. However, the set of expressable prob-
lems could easily be augmented if AML would support multi-dimensional arrays,
which would allow to represent matrices and other more complex structures. In
addition, means for reification could be added and the set of supported global con-
straints could be expanded.
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44 6.2. FURTHER WORK

The AML compiler translates AML models to C++ and Prolog and is easily
extendable. Thus, adding other target solvers like Oz [Smo95] can be interesting.
However, the most challenging point for further work is setting the focus on gen-
eratinggoodor evenoptimalmodels, which has not been considered in this thesis.



Appendix A

User’s Manual

This manual documents the AML modeling language, which is used to model con-
straint problems and the AML compiler, which can translate the model into either
a C++ model adapted to Gecode, or a Prolog model for the solver integratedin
SICStus prolog.

A.1 Introduction

AML is a modeling language for modeling constraint problems. It is inspired by
the OPL language and has a close syntax. AML is strongly typed and only supports
integer variables and one-dimensional arrays. AML allows you to focus on the
modeling process without bothering about how to interface with the solver. Still
it is possible to specify options, like search and branching strategies for asolver,
which are ignored if the solver does not support them.

A.2 The AML model structure

An AML model has a very strict and concise structure: Every model is defined in
amodel block with an user-defined model name:

model MODELNAME {
/* model definition */

}

A model consists of blocks in order to separate constant delarations, variable
declarations, constraint declarations and options. Comments can be written in/*
a comment */.
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46 A.2. THE AML MODEL STRUCTURE

A.2.1 The Data Block

The first block is thedata block, which is optional and used to define constants.
Constants are integer variables or integer arrays that have to be fully defined. The
following code shows some sample constant declarations.

model Test {

data { /* constant declarations */
int b[2];
int a = 4;
b[0] = a + 2;
b[1] = b[0]*5;

}
/* variable and constraint declaration */

}

If a constant is assigned multiple values, the last value assigned is finally mapped
to the constant.

A.2.2 Decision Variable Declaration

Decision variables may be integer variables or arrays and are denoted bythe key-
wordvar. Domains may be defined, but only in the context of a decision variable
declaration; there exists no independent domain type.

model Test {

data {
int n = 9;

}

/* variable declaration */
var int x in 1..n;
var int y[4];
var int z[9] in 1..4;

/* constraint declaration */
}

The code sample shows some possible variable declarations. The domain is defined
by a lower and an upper bound and denoted by the expressionin LOWERBOUND



APPENDIX A. USER’S MANUAL 47

.. UPPERBOUND. There may not exist variables and constants with the same
name. Intuitively, a valid model contains at least one decision variable.

A.2.3 The Constraint Block

Constraints are defined in a constraint block, initiated by the keywordsolve.
There are two types of constraints: a binary relation over linear or nonlinear ex-
pressions (the syntax of the relational operators can be found in the AMLgrammar
description in Appendix B) or a global constraint. AML supports the following
global constraints:

1. distinct(x) wherex is a declared decision variable array

2. serialized(start, duration) wherestart andduration are
declared decision variable arrays

3. cumulative(start, duration, resources, limit)wherestart,
duration, resources are declared decision variable arrays andlimit
is an integer or integer variable.

The following sample code shows how to use global constraints in a simple schedul-
ing problem.

model Scheduling {

var int s[2] in 0..2;
var int d[2] in 1..3;
var int r[2] in 1..4;

solve {
cumulative(s,d,r,2);
s[0] < 2;
s[1] > 0;
d[0] >= 2;
d[1] > 0;
d[1] < 2;
r[0] >= 2;
r[1] > 0;
r[1] != 2;
r[1] != 3;

}
}
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Additionally, it is possible to generate a sequence of constraints by using the
forall(i in min..max) construct, wherei is an arbitrary identifier and
min andmax are integers. If the value ofmin is greater thanmax, the relations
defined in the forloop will simply be ignored. Forloops can be arbitrarily nested.
Loop-variables are only known in the scope of the forloop. The n-queens problem
demonstrates the usage of forloops.

model Queens {
data { /* amount of queens */

int n = 8;
}

var int queens[n] in 0..n-1;

solve {
distinct(queens);

forall(i in 0..n-1) {
forall(j in i+1..n-1) {

queens[i]+i != queens[j] + j;
queens[i]-i != queens[j] - j;

}
}

}
}

A.2.4 The Option block

The option block is optional and allows you to specify special features, likesearch
or branching strategies. In case an option is not supported by the compiler, it is
simply ignored. AML supports the following option definitions:
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Option Description Supported by

branchingvar = OPTION; OPTION defines which variable Gecode
to choose for branching Prolog

(first fail as default)
branchingval = OPTION; OPTION defines which value

to choose for branching Gecode
(minimum as default)

solutions = NUMBER; NUMBER specifies amount of Gecode
solutions to be searched for

iterations = NUMBER; NUMBER specifies amount of Gecode
iterations to be searched for

The optionbranching var is the most complicated one, since Gecode and
SICStus Prolog have different branching options to chose from and only some
overlap. Still, the compiler is very helpful: stating an unknown or ambigious op-
tion results in a warning message from the compiler providing information about
possible alternatives.

A.3 Installation of the compiler

This section covers the installation process of the AML-compiler. Please note,
that the system was built for usage in Unix-systems. In order to compile the
frontend and backend, you will need a version ofocaml 3.08 (or newer) con-
taining theocamlyacc andocamllex tools and at leastJava 2 Platform
Standard Edition 5.0.

First move the fileAMLCompiler.tar.gz to an existing directory. Change
to that directory and decompress the file by typing

tar -zxvf AMLCompiler.tar.gz

in your shell. This will create the directoryAMLCompiler. It contains two
bash-script files to build the compiler:build all andbuild clean. Simply
run one of them by typing

./build_all

in your bash-shell and the AMLCompiler is built and installed. Further details can
be found in theREADME file.
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A.4 Running the compiler

The compiler has several features and translates in several ways. Make sure, that a
copy of the filemodel.dtd (which describes the XML structure of the constraint
model) is in the same directory as your AML-model. The file can be found in the
examples/ directory.

1. Translating AML to C++ GECODE
To translate an AML model to a C++ Gecode-adapted model, run the script
aml2cc in a bash shell:

$ ./aml2cc inputfile

whereinputfile is a AML-Model. The generated C++ file will be writ-
ten intoinputfile.cc.

2. Translating AML to SICStus Prolog

To translate an AML model to a SICStus Prolog model, run the scriptaml2prolog
in a bash shell:

$ ./aml2prolog inputfile

whereinputfile is a AML-Model. The generated Prolog file will be
written intoinputfile.pl .

3. Translating AML to and XML description

To translate an AML model to a XML description, run the scriptaml2xml
in a bash shell:

$ ./aml2xml inputfile

whereinputfile is a AML-Model. The generated XML file will be writ-
ten intoinputfile.xml.

4. Translating an XML description to a Gecode-adapted C++ model

To translate an XML description to a C++ model, run the scriptxml2cc in
a bash shell:
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$ ./xml2cc inputfile

whereinputfile is a XML-description following the DTD inexamples/model.dtd.
The generated C++ model will be written intoinputfile.cc.

5. Translating an XML description to a SICStus Prolog model

To translate an XML description to a Prolog model, run the scriptxml2prolog
in a bash shell:

$ ./xml2prolog inputfile

whereinputfile is a XML-description follwing the DTD inexamples/model.dtd.
The generated Prolog model will be written intoinputfile.pl .



Appendix B

AML Grammar

This section presents the context free grammar of the AML modeling language.
Terminals are written in capital letters and theepsilon-edge is denoted by/*
epsilon */

aml_model -> MODEL IDENT parameters LBRACE
data_declaration
var_declaration
SOLVE LBRACE constraint_list RBRACE
options

RBRACE
| MODEL IDENT LBRACE

data_declaration
var_declaration
SOLVE LBRACE constraint_list RBRACE
options

RBRACE

parameters -> LPAREN parameter_list RPAREN

identifier -> IDENT
| IDENT LBRACK NUM RBRACK

loop_identifier -> IDENT LBRACK expression RBRACK

parameter_list -> INT IDENT
| INT IDENT LBRACK NUM RBRACK
| parameter_list COMMA INT IDENT

52



APPENDIX B. AML GRAMMAR 53

| parameter_list COMMA INT IDENT LBRACK NUM RBRACK
| IDENT

data_declaration ->
DATA LBRACE const_declaration_list RBRACE

| /* epsilon */

const_declaration_list -> const_declaration
| const_declaration_list const_declaration

const_declaration ->
INT IDENT LBRACK NUM RBRACK SEMICOLON

| INT identifier ASSOP expression SEMICOLON
| identifier ASSOP expression SEMICOLON

var_declaration ->
VAR INT identifier range SEMICOLON

| VAR INT identifier SEMICOLON
| VAR INT IDENT LBRACK expression RBRACK

SEMICOLON
| VAR INT IDENT LBRACK expression RBRACK

range SEMICOLON
| var_declaration

VAR INT identifier SEMICOLON
| var_declaration

VAR INT identifier range SEMICOLON
| var_declaration VAR INT IDENT

LBRACK expression RBRACK SEMICOLON
| var_declaration VAR INT IDENT

LBRACK expression RBRACK range SEMICOLON

range -> IN expression DOTDOT expression

constraint_ -> relation
| DISTINCT LPAREN IDENT RPAREN SEMICOLON
| SERIALIZED LPAREN IDENT COMMA IDENT

RPAREN SEMICOLON
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| CUMULATIVE LPAREN IDENT COMMA IDENT COMMA
IDENT COMMA expression RPAREN SEMICOLON

| forloop

constraint_list -> constraint_
| constraint_list constraint_

expression -> NUMBER
| identifier
| LPAREN expression RPAREN
| expression PLUS expression
| expression MINUS expression
| expression MULT expression
| expression DIV expression

relation -> expression EQ expression SEMICOLON
| expression GT expression SEMICOLON
| expression LT expression SEMICOLON
| expression GTEQ expression SEMICOLON
| expression LTEQ expression SEMICOLON
| expression NOTEQ expression SEMICOLON

forloop -> FORALL LPAREN identifier range RPAREN LBRACE
loop_constraints_list

RBRACE

loop_constraints_list -> loop_constraint
| loop_constraints_list loop_constraint

loop_expression -> NUM
| identifier
| loop_identifier
| LPAREN loop_expression RPAREN
| loop_expression PLUS loop_expression
| loop_expression MINUS loop_expression
| loop_expression MULT loop_expression
| loop_expression DIV loop_expression

loop_constraint ->
loop_expression relop loop_expression SEMICOLON
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| DISTINCT LPAREN IDENT RPAREN SEMICOLON
| SERIALIZED LPAREN IDENT COMMA IDENT RPAREN SEMICOLON
| CUMULATIVE LPAREN IDENT COMMA IDENT COMMA

IDENT COMMA expression RPAREN SEMICOLON
| forloop

relop -> EQ
| GT
| LT
| GTEQ
| LTEQ
| NOTEQ

options -> OPTIONS LBRACE options_list RBRACE
| OPTIONS LBRACE RBRACE
| /* epsilon */

options_list -> options_list ITERATIONS ASSOP NUM SEMICOLON
| options_list SOLUTIONS ASSOP NUM SEMICOLON
| options_list IDENT ASSOP expression SEMICOLON
| options_list IDENT SEMICOLON
| options_list BRANCHINGVAR ASSOP IDENT SEMICOLON
| options_list BRANCHINGVAL ASSOP IDENT SEMICOLON
| BRANCHINGVAL ASSOP IDENT SEMICOLON
| BRANCHINGVAR ASSOP IDENT SEMICOLON
| ITERATIONS ASSOP NUM SEMICOLON
| SOLUTIONS ASSOP NUM SEMICOLON
| IDENT ASSOP expression SEMICOLON
| IDENT SEMICOLON
| /* epsilon */
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