A Modeling Language for
Constraint Programming

ANDREA RENDL

Examiner
Dr. Christian Schulte

Master of Science Thesis
Stockholm, Sweden 2006

ICT/ECS-2006-58

A Modeling Language for Constraint
Programming

Andrea Rendl

March 2006

Master’s Thesis

Supervisor: Dr. Christian Schulte, Associate ProfessoKHHKTT Stockholm
Univ.Prof. Dipl.-Ing. Dr. Wolfgang Slany

This Thesis

This is a Master’s Thesis from the Telematics Master programme at the Univer
sity of Technology (TU) Graz in Austria. It was conducted in collaboratigi

the Royal Institute of Technology (KTH) in Stockholm at the Departmentie¢E
tronic, Computer, and Software Systems in Sweden. The supervisd?sdiessor
Wolfgang Slany at TU Graz and Associate Professor Christian SchuKdtdt
Stockholm. The work has been performed at the School of InformatidrCam-
munication Technology (ICT) at KTH in Stockholm. Mikael Lagerkvist hated

as advisor to the work.

Acknowledgments

First of all, | want to thank my supervisors at KTH in Stockholm Christianuiieh
and Mikael Lagerkvist for their support. | always received help fidvelcome
and integrated at the ICT. Mikael constantly inspired me and never gottireat
swering all my questions.

| also want to mention my friends from Stockholm and Austria, and my family
who supported me in many different ways. Thanks to every single oneuf y

This thesis would not have been possible without financial aid. That islwhy
want to thank the University of Technology Graz for providing me with the/ty
scolarship, andONTACIub for awarding me thEONTA Technical Award for Ad-
vanced Studies

Finally, 1 would like to thank Wolfgang Slany for supervising my thesis in
Austria.

Thank you all!

IKUWI: Kurzfristige wissenschaftliche Arbeiten oder fachspezifischies im Ausland

Abstract

Modeling constraint problems is a very important issue and a good modelformu
lation is essential for finding a solution in an efficient way. However, modelin
becomes difficult if the formulation process involves dealing with lowleveldssu

in order to interface with the constraint solver.

The idea behind this thesis is to design a simple but expressive modelingd@ngua
to formulate Constraint Programming problems independent of a solvéioutds
combine suitable features from other modeling languages with a new idea: The
language shall contain a facility to define optional matters, like branchingestra
gies, which are not necessarily implemented by the backend solvers.

To demonstrate the independence of the modeling language, a compiler with two
backends is implemented: one translating the model to a Gecode [gcde] medel, th
other to a SICStus prolog [Cea95] model. The most interesting part is icitagfa

to two different target solvers, which might not implement all issues formdiiate

the modeling language, but still generating a valid model.

Zusammenfassung

Ein gut formuliertes Modell eines Constraint Programming Problems veobinfa
den Loesungsprozess ungemein. Doch Modellieren kann sehr pradisiemaer-
den, besonders wenn man dabei auch die Architektur des Solveechksithtigen
muss.

Diese Diplomarbeit beschaeftigt sich damit, eine simple, aber ausdrudesistad-
ellierungssprache zu entwickeln, in der man Constraint Programming Maaotelle
abhaengig von der Solverarchitektur formulieren kann. Diese Spsatheuen-
schenswerte Charakteristiken anderer Modellierungsspracheritentlaer auch
eine neue Eigenschaft praesentieren: Es soll moeglich sein, optiornadfrzur
Loesungsfindung (wie etwa spezielle Branching-Strategien) festzyldigaber
nicht zwingend vom Solver unterstuetzt werden muessen.

Um die Unabhaengigkeit dieser Modelierungssprache zu demonstnerdrein
Compiler mit zwei Backends implementiert. Das eine uebersetzt in ein korre-
spondierendes C++ Modell fuer den Solver "Gecode”, das andegsiRrolog
Modell fuer SICStus Prolog. Ein besonders interessanter Punktehiisth ein
korrektes Modell zu generieren, obwohl nicht alle formulierten Kritexien den
Solvern unterstuetzt werden.

Contents

1 Introduction 3
L1 AIM . e 3
1.2 Scope e 4
1.3 OVerview e e 4
2 Background 7
2.1 Constraint Programming 7
2.1.1 Principles of Constraint Programming 8
2.1.2 Solving ConstraintProblems 8
2.1.3 Example:Sudoku. 10
2.2 ModelingLanguages 12
2.2.1 Modeling Constraint Problems 13
2.2.2 Example: The Modeling Language OPL 15
2.3 ConstraintSolvers. 17
231 Gecode e 18
232 SICStusProlog 19
2.3.3 Gecodevs. SICStusProlog. 20
3 Designing AML 21
3.1 Motivation. 21
3.2 Goalsand Requirements 21
3.3 Thelanguage Structure 23
3.4 Limitations 24
4 Compiler Structure 27
4.1 OVerVIEW o o 27
4.2 Frontend 27
4.2.1 Functionality 28
4.2.2 Implementation Structure. 29

4.2.3 Challenges inthe Design Process 30
4.3 Intermediate Language XML 31
44 Backend 32
4.4.1 Functionality 32
4.4.2 Implementation Structure 32
4.4.3 Challengesinthe DesignProcess 34
5 Examples and Evaluation 37
51 Motivation. 37
5.2 Example:nQueens 37
521 Overview 37
5.2.2 Evaluation00, 39
5.3 Example: Grocery. 40
531 Overview e 40
5.3.2 Evaluation o 40
6 Conclusions and Further Work 43
6.1 Conclusions e e 43
6.2 Furtherwork 43
A User's Manual 45
A.l Introduction 45
A.2 The AML model structure 45
A.2.1 TheDataBlock 46
A.2.2 Decision Variable Declaration 46
A.2.3 TheConstraintBlock 47
A.24 TheOptionblock 48
A.3 Installation of the compiler 49
A.4 Runningthecompiler, 50
B AML Grammar 52
Bibliography 56

Chapter 1

Introduction

1.1 Aim

Designing a Modeling Language

This thesis is concerned with the design of a new modeling language, AML, to
formulate constraint problems. The mathematical modeling language OPL acts as
role model in the design process because of its clear and concise sruCtum-
sequently, AML has a simple non-declarative structure, supports comxpoese

sions and relations, and offers a set of global constraints. AdditionaMl #atro-

duces a completely new feature that allows to formulate optional matters. These
optional matters concern the solution process (e.g. specifying the limgrsthat-

egy) and need not be supported by the target solver.

Thus, the modeling language is completely independent of any solver. Obvi-
ously, this is a desirable attribute for a modeling language since it allows the use
to focus on modeling rather than on interfacing with the solver’'s architecture o
dealing with its capabilities.

Building a Corresponding Compiler

To emphasize AML’s solver-independence, a compiler is built that casléian
AML models either to SICStus-Prolog-models or Gecode-models in C++.€Thes
target solvers are quite different concerning architecture, offesdres and some
solution strategies. Gecode is a free C++ library that offers various srfeaex-
tension (implementation of self-defined variables, branching or seaatiegts)

but modeling problems implies knowledge of the system’s structure sinceabever
member functions have to be implemented in addition to the problem formulation.
SICStus Prolog is a solver based on the logical programming language) Emato

3

4 1.2. SCOPE

provides very suitable means for modeling but has limitations concerningdexten
ability (e.g. no self-defined search strategies are supported).

The target languages C++ and Prolog are also very different aaingetheir
capabilities. For instance it is quite complicated to express relations thatraee ge
ically sequenced by multi-nested for-loops in a declarative language I{ed?r
This issue brings up a lot of interesting problems that have to be solved i+ a su
able way.

Furthermore, the compiler implementation is supposed to be extendable, which
would allow to simply add (and remove) other target solvers.

Evaluation

Finally generated Prolog- and C++-models are tested and their perfognsasal-
uated. Differences, limitations and possible improvements are presentéateasd
for further work are introduced.

1.2 Scope

This thesis deals with the design of a modeling language so consequentliyadkiere

to be limitations stated to keep the work in a sensible scope. The intention is to cre-
ate an expressive but simple language that is easily extendable. Stéewtards

such as constants, arrays, variables with ranges, for-loops and coopeoators

are supported. Additional features, like reification or multi-dimensionalyarare

not offered. These limitations restrict expressiveness and the seitdéms to be
formulated. However, as the language is designed to be extendablefaatses

are interesting to be considered for further work.

In addition to the language designed, a compiler is constructed. Again this
implies some limitations. The focus of the implementation is clearly set on ex-
tendability and therefore the structure of the compiler. No effort has beean
the generation of explicitly good models or compilation-oriented issues like-erro
recovery.

1.3 Overview

The first part of this thesis covers background material in Chapteip2esents the
concepts of Constraint Programming in section 2.1, gives an overview délmo
ing languages and OPL in section 2.2, and finally introduces the two talgetso
Gecode and SICStus Prolog in section 2.3.

CHAPTER 1. INTRODUCTION 5

Chapter 3 deals with the design of the modeling language AML. It states basic
requirements and describes ideas, and motivates the structure and limitations.

The compiler structure is introduced in Chapter 4. It gives an overvieiveof
structure, functionality and motivates decisions took during the implementation.
Furthermore it presents interesting challenges concerning the translatidma
plementation process.

In Chapter 5 typical examples are shown to illustrate and discuss interesting
translation differences and resulting draw-backs. The examples alieagd ac-
cording to readability and performance of the compiler. The last pars givaon-
clusion to the work done and introduces some ideas on further work int€@tép

Appendix A contains the user’s manual for AML. It gives an introduction
the AML language on the basis of some examples. Appendix B lists the context
free grammar of AML.

1.3. OVERVIEW

Chapter 2

Background

This chapter presents necessary background information for this.thiegiges a
brief introduction to the field of Constraint Programmming and its concepts (sec
tion 2.1), demonstrates issues concerning modeling languages (secticand.2)
modeling constraint problems (section 2.2.1). The modeling language OPIs tha
role model for the designed modeling language, is also presented in se@idn 2
Section 2.3 introduces both target solvers, Gecode and SICStus Prolog.

2.1 Constraint Programming

This section gives a brief overview of Constraint Programming, sincegaran-
troduction would go beyond the scope of this thesis. The interested risager
ommended to consult [Apt03].

Combinatorial optimization problems occur in many areas and it can be diffi-
cult to find a (good) solution or even to determine, if a solution exists. Canstra
Programming offers a new efficient approach to solving mathematical pnsble
The key issue is describing a large problem by a set of constraints. iisce
approach is quite general, many areas apply Constraint Programming siethod
interactive graphic systems, operation research (scheduling), maldxalagy
(DNA sequencing), business applications(option trading) and elecéigheer-
ing (computing optimal circuit layouts), to mention some. The advantages of Con
straint Programming are outlined by 3 basic characteristics [Apt03]:

1. Two-Phase Approach The programming process consists of two clearly
separate tasks: specifying the problem as a constraint model and sitlving

2. High Flexibility : A constraint model is very flexible, since constraints can

7

8 2.1. CONSTRAINT PROGRAMMING

easily be added, removed or modified.

3. Presence of Built-Ins Constraint solvers offer numerous built-in strategies
and algorithms for solving constraint models.

2.1.1 Principles of Constraint Programming

Constraint Programming is a new evolving software paradigm for modelidg an
solving large combinatorial optimization problems. It is based upon the faict tha
problems can often be split into requirements, general properties, |larsstnic-
tions - in other words - constraints. A constraint on a set of variablediisadeas a
relation on the variables’ domains. Representing a problem by a set sifaions

is calledmodelingand the resulting model is refered to@snstraint Satisfaction
Problem (CSP)which is defined as follows.

Definition 2.1 (Constraint Satisfaction Problem (CSPA Constraint Satisfaction
Problem (CSP) consists of

e afinite set of variableX” = {z,,...,z,} over a set of finite domain® =
{Dz,,..., Dz, }

e a finite set of constraint€’, where a constraint; € C is a relation over a
subset of variablex’; C X

Obviously, there exist several different possible representaticapiablem as
a CSP. Itis important to always consider a CSfeacriptionof a problem, without
holding any information about how to solve it. There is a very clear separatio
between problem description and means to solve the problem.

2.1.2 Solving Constraint Problems

When solving a constraint problem, we want to determine the solutions to the pro
lem in case a solution exists. Sometimes it can be interesting to question the quality
of the solutions as well.

The basic process of solving starts by representing all constraintedéfithe
CSP by special algorithms, callguiopagators. Propagators are functions over
stores A store is a collection of variables that are mapped to a set of values (a
subset of their corresponding domain). Example 2.1 shows a sample store.

Example 2.1(Store) Consider the set of Variabld$ = {a, b, ¢} with their corre-
sponding domain®, = D, = D. = {1,...,5}, thens is a store:

s={a—{2,3,4},0 — {1,2,3},c — {4,5}}

CHAPTER 2. BACKGROUND 9

Propagators are used to decrease the variables’ domain space wathoutng
any solutions. It can be considered an implementation of a constraint, asikastr
in Example 2.2

Example 2.2(Propagator) Assume the set of variablés = {x, y} with the cor-
responding domain®, = D, = {1,...,5} and the propagatop> representing
T >y

p>(s) = {{sz € s(2) [5o = min(s(y))}
{sy € s(y) | sy < maw(s(x))}}

The propagator is applied to the store until it reaches a fixpgmeaning it
does no longer reduce the store). The following Example 2.3 demonstoates h
apply a propagator on a store.

Example 2.3(Running a propagatar)Consider the set of variablds = {xz,y}
and propagatop> from Example 2.2. When applyipg on a store
s={xr—{0,1,2,3,4},y — {3,4,5}}, we get

p>(s) = {{ss € s(2) | sx >3}
{sy €s(y) [sy <4}} =
p>(s) = {z— {34}y — {3,4}}

If a propagator has reached a fixpoint, another available propagaimodsen
to be applied on the store. This process is catledstraint propagatiorand there
exist many efficient strategies how to determine which propagator to pidk nex
Finally constraint propagation arrives at a stage, where all propagegach a
fixpoint and the store cannot be further reduced. At this point the siguwally
does not carry complete assignments to all decision variables (meanintyitiorso
has been found yet).

So we can only achieve progress by dividing the problem into sevejahdts
subproblems and rerun propagation on them. This procedure is repgdted
solution is found or propagation results in a failure. Splitting the problem can
be done by domain or by constraints. s&arch treerepresents this approach:
nodes contain the actual computation state that consists of a store hosting some
propagators. Childnodes refer to the computation state of the subprobidrasca
to their computation. Leaves are either solutions or failures. Figure 2.1sshow
search tree for th8end-More-Money problewisualized by the GUI of the ALICE
System [Lau78].

A function f € X — X has reached a fixpoint € X iff f(z) = z.

10 2.1. CONSTRAINT PROGRAMMING

Figure 2.1: A Search Tree based on binary branching

Obviously, it is important to build the tree in a sensible way in order to gain a
well-structured tree improving the search performance. There exetedbvanch-
ing methodsthat define a strategy on how to construct a tree. The most important
issues are the choice of the variable to start the branching with (the rta tvee),
and the sort of decision taken to split the problem. Mostly decisions are taken
domains, which is refered to @main branching But also the amount of pieces
the problem is split into is an important issue. Deviding the problem into two (dis-
junct) subproblems is calldainary branching The searchtree in Figure 2.1 shows
an example of a binary branching.

To actually find a solution in the search tree, we need to traverse it in a kensib
way by applying asearch algorithm. Generally, search algorithms are instances
of simple generic iteration algorithms.

A good choice of propagators, branching and search strategy cae aniailg
difference in the performance of solving the problem, concerning timegesaad
- depending on the definition - the quality of the solutions found.

Usally constraint solvers provide built-in propagators, branching metaod
search strategies. The inner representation of the search tree caffatsdhe
search time and space, but this point will be covered in section 2.3, dealtimg w
constraint solvers.

2.1.3 Example: Sudoku

Sudoku is a very popular puzzle. It consists of a 9 array of fields, where each
field is supposed to contain a number between 1 and 9. In every row,@iamn,
and every major X 3 square, each number must occur only once. An instance of

CHAPTER 2. BACKGROUND 11

2 5
9 713
2 9 6
2 4 9
7
6 9 1
8 4 1
6|3 8
6 8

Figure 2.2: A Sudoku instance

a Sudoku puzzle will have some fields pre-filled with numbers. Figure 2\2ssho
sample instance of a Sudoku puzzle. According to the pre-filled fieldshasi&o
infer the numbers to be filled in the remaining fields. This is a typical example of
applying Constraint Programming methodics.

Defining the problem

We want to determine the values of all fields, so we introduce a variablabir e
field. The domain of each variable lies between 1 and 9, since the posdile va
assigned to a field lies in that range. We consider the Sudoku puzzle a nmatrix a
set the variables’ indices accordingly. We get

e aset of variables{ with z;; representing the field in thieth row in thej-th
column.

e asetof domaind withd;; € D = {1,2,...9}

Now we have to define the constraints that specify the problem: In every ro
column and major square, all numbers in the domain must occur exactly once.
Since the cardinality of the domain equals the length of the rows and colunths, an
the amount of fields in a square, respectively, we can reformulate trstraimn:
the values assigned to the variables in every row, column and major square mu
bedistinct Distinctis a very popular constraint and supported by every constraint
solver. We formulate the constraints as follows:

e Every field in row: must be distinct:
cy: Vi diStinCl(:v“, Ti2y e ,l’ig) withi: 1 <i<9

12 2.2. MODELING LANGUAGES

e Every field in columnj must be distinct:
co: Vg diStinCt(l‘lj,l’gj, e ,1‘9]') with 7:1<5<9

e Every field in squarey; with 0 < &,/ < 2 and must be distinct:
c3: Vi, g
distinct (iﬂu, i(j+1)> i(j+2)

La+1)> 1) G+ P+ G+2), .
x(i+2)j’x(i+2)(j+1) Z+2]+2) W|th 1= k * 3 + 1 and] = l * 3 + 1

The first two constraints are quite intuitive, whereas the last relation isrrathe
hard to express in a readible way. The difficulty results from the reptasen of
the Sudoku puzzle as a matrix.

2.2 Modeling Languages

This section will present usage and advantages of modeling languagesfialth

of mathematical programming. It will also outline requirements of modeling lan-
guages for modeling constraint problems. Finally, the modeling language OPL
[VH99] will be introduced, which was the role model for designing AML.

Modeling languages evolved in the areanmdithematical programmingvhich
generally deals with maximizing or minimizing an objective function, subject to
constraints on variables of the function. The process of mathematicabpnogng
can be listed as a sequence of events as presented in [Apt03]:

1. Formulation of the model (containing variables, objectives and contsfyain
2. Creating a problem instance by defining data (constants)

3. Generating a specific objective function on the model and data

4. Solving the problem

5. Analyzing the results

6. Refining data or model, if necessary

Modeling languages simplify solving mathematical programming problems on
various aspects: generally their syntax is close to the standard way wildeg
mathematical problems in scientific literature, which makes it more readable and
easier for modeling. For instance, the syntactic notation in OPL [VH99] for th

CHAPTER 2. BACKGROUND 13

mathematical expression

n

> a;*x;canbewritenassum {i in n} a[i] * x[i]

=1

Many modeling languages also provide a clear separation between thecabstr
model and model instances, making the model applicable to many problem in-
stances without additional work involved. The solver is mostly considebdaick-
box with the modeling language acting as an interface between user and solve
This allows the user to focus on modeling the problem without bothering about
low-level issues.

2.2.1 Modeling Constraint Problems

Most of the common modeling languages used for mathematical programming,
provide libraries for Constraint Programming. As defined in section 2.1ctna
straint model consists of a set of decision variables over a finite domaia aet

of constraints. This section will present some basic structures andeawnis to

the modeling language for modeling constraint problems.

Defining Decision Variables

Decision variables can be either typed as integer, Boolean or real, eveghth

the most commonly used are integers . To specify the decision variable’'srdoma
we need to introduce a new data structure, which is often refered rangs or
domain Intuitively, it is defined by two values, setting the lower and upper bound
of the domain. Some modeling languages require all decision variables to state a
domain. For illustration, the following table shows the declaration of the decision
variablez in the domaini, = {1, ...5} in the modeling languages SICStus-Prolog
[Cea95], Oz [Sm095], OPL [VH99], ESRA [Ag04] and the languagsigieed

in this thesis, AML.

| Modeling Language Declaration |
Prolog Xin11l..5

Oz X 1#5

OPL and AML var int x in 1..5

ESRA domDx = 1..5
var X : Dx

14 2.2. MODELING LANGUAGES

Defining Constraints

Constraints are relations over a set of variables, so most constrairfitsraesl by
relations of expressions. Some solvers make differences betweerdimaonlin-
ear expressions, for instance by offering fast algorithms for solyaegial linear
expressions, like scalar products, for instance. Then the corrésggomodeling
languages provide special built-in functions for linear expressiom&oeng way
better than the standard notation of relations over expressions would.

Most solvers provide numerous built-in constraints as well, typically complex
relationships among variables that in this thesis are referedgiobal constraints
The termglobal constrainis a very difficult one, since there does not exist a formal
definition of this constraint concept. The interested reader is refereBW(3]
for an excellent characterization of global constraints.

The most popular global constraintdsstinct, also known asilldifferent

distinct(zy, x2 . . . ;) holds, when all elements; are assigned different val-
ues. A lot of global constraints concentrate on special areas of cotabalapti-
mization problems, for instancaimulative(start, duration, resourceis)used for
task ordering according to available resources in the field of scheduling.

Defining optional matters

The most important option is the specification of the branching and seaatégsir
Most solvers provide this option and support the most common strategiese Th
are also additional options that might be supported: the amount of solutidues to
found or the graphical display of the searchtree that is offered by solvers, like
gecode [gcde], MOzart [MC] and alice-ml [Sys].

Requirements in a nutshell

Finally, a short summary of requirements to a good modeling language,r§ngpo
definitions of constraint problems:

Data types : support a wide range of data types, especially those that represent
sets and ranges

Identifiers : ideally, a modeling language should support 4 different kinds of iden-
tifiers to be as expressive as possible: decision variables, consianats)e
ters and quantified variables

Constraints : the languages should offer facilities to express all kinds of relations
between expressions (as far as they are supported by the solver)

CHAPTER 2. BACKGROUND 15

Built-in Constraints : in case the solver implements some built-in constraints,
like global constraints, they should be provided by the modeling language

Branch and Search Strategies: to offer the user a flexible usage of the solver, it
is recommended to provide means to specialize the branching and searching
algorithms implemented in the solver

There exist some additional properties that increase the expressivehtine
modeling language. One property is the ability of nesting all types to an aybitrar
depth, like a set of sets of sets for instance. It is discussed in [FIMM@B¢h
introduces the modeling languagesencewhich is the first to provide full nesting
of data types.

2.2.2 Example: The Modeling Language OPL

OPL is the role model for the language AML, since it has a lot of interestiag fe
tures that will be presented in this section mostly by code-examples. Theapplic
tion range of OPL is very wide. It supports many areas of mathematicatgroeg
ming, such as linear and integer programming. This introduction will only cover
features of constraint programing, for further information consult $9H

Basics

OPL is a very expressive modeling language, which combines featurasd#rn
programming languages and mathematical modeling languages. A model in OPL
consists of an abstract part and a data part. The abstract part coieaiarations
of decision variables, constraints and searching strategies and tleerefers to
the problem description. The data part can be stored in a separate fitainiag
constant declarations and corresponds to a problem instance. Aacilmstdel
can be solved according to different data files. Since the interestingissuethe
abstract model, we will not consider the data part of an OPL model.

Basically, an abstract model consists of a declaration part, a solveopeairt-
ing constraints and a search part for specifying search strategiesdetharation
part covers the declaration and definition of constants, ranges arsiotecari-
ables. OPL also supports the declaration of enumerate types that makeléhe co
more readable and compact. The syntactic notion is close to those of modern pr
gramming languages, as the following example demonstrates.

Example 2.4(n queens problem)The n queens problem, based on the chess game,
is to place n queens on an:x n chessboard without attacking each other. This
requires that no queen may be on the same row, column or diagonal matiher
gueen. The amount of queens is set te 8 in this example.

16 2.2. MODELING LANGUAGES

1 int n = 8;

2 range Domain 1..n;

3 var int queens[Domain] in Domain;

4

5 sol ve {

6 forall (ordered i, j in Donmain) {
7 gueens[i] <> queens[j];

8 queens[i] + i <> queens[j] + j;
9 queens[i] - i <> queens[j] - j;
10 1

11

12 search {

13 forall (i in Domain)

14 gener at e(queens[i]);

15 };

The example presents the clear structure of OPL models and some powerful
features. The most interesting feature isfirall construct in line 6 that generates
the sequence of constraints

queens[i] <> queens[j];
queens[i] + i <> queens[j] +
queens[i] - i <> queens[j] -

i
i

forall 1 < i < j < 8. This construct allows to express a sequence of constraints
very compact and readable. Another interesting point is the specificdtithre o
search strategy in line 12, whegener at e uses thdirst-fail principle to search

for a solution on every element of the arrqyeens. This search strategy can be
described asstart, where you are most likely to fail’meaning that the variable
with the fewest possible remaining alternatives is chosen to start the saarch
Aside of providing common search strategies, OPL also allows the user te defi
his own search procedures that can be completly adapted to the problem.

High-Order Constraints

High-Order constraints are better knownrasied constraintghat are logic con-
straints on a set of constraints. This is done by assigning Boolean vartaldeset

of constraints and setting them in relation to each other. Obviously, this method
allows us to express constraints very efficiently, which is illustrated in thé nex
example.

CHAPTER 2. BACKGROUND 17

Example 2.5(magic sequenceA magic sequence is a sequenste: (sg, $1, - - - Sp—1)
of n numbers, where the elementrepresents the number of occurences iofthe
sequences. For instance, the sequence= (2,1,2,0,0) for n = 5 is a magic
sequence, since 0 and 2 occur twice, 1 occurs once and 3 and 4 ze@utimes.

1 int n=...;
2 range I ndex = 0..n-1;
3 range Domain = 0..n;
4 var Donmin s[lndex];
5
6 sol ve {
7 forall (i in Index)
8 s[i] = sum(j in Index) (s[j] =1);
9 1
The expressiosum(j in Range) (s[j] = 1i])) inline 8 is used to
count the amount of variables snfor whichs[j] = i holds. For solving this

expression, the solver replaces each constraint in the expressidddnjesan vari-
able that is assigned the value 1 if the constraint is satisfied, and O if nobuB3hy
high-order constraints are powerful tools for expressing constrairesconcise
way, keeping the constraints comprehensible. This example also demagimte
usage of an external data file: the length of the magic sequeiceead from a
data file, which is expressed by the notiomt n = ... ; inline 1.

2.3 Constraint Solvers

This section will give an introduction and overview of the constraint sslgecode
[gcde] and SICStus Prolog [Cea95], since these are the corraapauadvers for
the models AML can be translated to. These solvers and their modeling laagyuag
are highly different and therefore very interesting to compare and examin

One important issue is the inner representation of the search tree, sihce bo
solvers use completely different strategies.

Search Tree Representation

As discussed in section 2.1.2, in order to solve a problem, the solver hasdmpe
search, where the searching mechanism is represented by a searchinen
traversing the tree for a solution, it is common to end up in a branch, where the
search fails. Then it is necessary to get back to a good point of thehsieae and

find another path, which may lead to a solution. This can be done by applyeng o
of the following methods:

18 2.3. CONSTRAINT SOLVERS

1. Memorizing states bgopying them
2. Reconstructing states by eithaailing or recomputation

Recomputation regenerates the states from scratch, while trailing reatastre
state by always recording the changes that have been applied on thenstaien-
ply redoing them. Copying uses a very different approach: when ctngpa new
state, first the old state is copied and then propagated on. So evergpadigtate
is available at any time.

Consequently, systems based on trailing deal wjtkrationson data struc-
tures, while copying-based systems are only concerneddatdnstructureswhich
makes search independent of operations on data structures for gopyin

Most solvers are trailing-based and only few use copying. Howe#rh99]
gives an excellent comparison of trailing-based and copying-basezhsy, demon-
strating their competitiveness.

2.3.1 Gecode

Gecode stands fageneric constraint development environmand is a free sys-
tem for developing constraint-based systems and applications. It is a eengy
project, which has first been released in December 2005. The deketmpesist of
a small group of researchers at KTH Stockholm in Sweden and SadJiaindr-
sity in Germany. The development of gecode was motivated by the idea oiflguild
a flexible, open and free constraint solving system that is applicableéateanic
pursuit of Constraint Programming. Some of the developers could al¢oleda
their experience gained by developing the MOzart System [MC].

Features of gecode

Gecode is a C++ library with various interesting features. It is an opeerays
that can easily be interfaced to other programming environments and ssufipor
implementation of new propagators, branching strategies, search eagmhesso
new variable domains. Gecode is distributed on a BSD-style licence, agrd off
free source code, documentation and examples for download. It is [@osiabe
it holds the C++ standard and can be compiled with common C++ compilers and
runs on several machines. Benchmarks presented at [gcde] sho@ebade is
efficient according to time and memory usage and therefore competitive wéh oth
common constraint solvers.

Being a C++ library, the main focus is set on solving rather than modeling:
models for gecode have to be written in C++ and adapted to the solver séquctur
which includes, for instance, defining several member functions fosetagsed.

CHAPTER 2. BACKGROUND 19

So modeling a problem also involves understanding the structure of the,solve
which is time consuming for the unexperienced user. But currently a Jeréaice
is under development that is supposed to simplify modeling.

The structure is very beneficial when it comes to implementing self-defined
variable types, branching or search strategies. New variable domairevea be
implemented having the same level of efficiency as integer set or finite domain
variables.

Search is based on the rather unusal strategy of copying together wotn+e
putation. Therefore every problem model has to provide a copy methadén
be solved.

Gecode offers common constraints, such as arithmetic, boolean, linesr equ
tions and various global constraints. Since gecode provides finite irdegeari-
ables, it also offers set relations, set operations, and specialrsdtaiots.

2.3.2 SICStus Prolog

Prologis a logic programming language developed in the early 80s and is now part
of the International Standafd There exist various versions of Prolog and one of
them is SICStus Prolog, developed by the Swedish Institute of Computerc8cien
(SICS). SICS is a non-profit research organization that first fatus parallel
logic programming and switched research to the area of constraint prodng.

Features of Prolog

SICStus Prolog comes with 3 constraint solvers who are based on thalgere
straint logic programming scheme: a solver for Boolean constraints, feti@ints
on reals [Hol95] and for finite domain constraints [COC97]. We will only-con
sider the solver for finite domain constraints.

Prolog is a very expressive modeling language, especially for modeling con
straint problems, since it has a logic and simple structure. As the constbiat s
of SICStus Prolog can be considered a part of the modeling languadectiweis
clearly set on modeling, rather than on extending solving mechanisms.

The system has two classes of constraints: primitive and global constraints
Numerous global constraints are provided and reification (high-olest@ints)
is also supported for primitive constraints.

Unfortunately, SICStus Prolog is only partially extendable: It is possible to
implement new domain variables and constraints (both primitive and global), but
there are no means to construct self-defined search or branchitegssa SICStus
Prolog uses trailing for search.

2|SO/IEC 13211-1

20 2.3. CONSTRAINT SOLVERS

2.3.3 Gecode vs. SICStus Prolog

The biggest difference between gecode and SICStus Prolog lies ideybetng a
C++ library and SICStus Prolog a logic programming system where the gelver
included in the language’s structure. This naturally characterizes SSG3tlog
as being better for modeling problems and gecode being more extendable.
Both solvers use completely different strategies for searching solugiessde
is copying-based and Prolog applies trailing.
There exist some benchmarks comparing gecode to SICStus prologliagcor
to runtime on some model problems.

Chapter 3

Designing AML

This chapter presents the design process of AML (A(ngee’s) Modehmguage)
and focuses rather on the ideas and motivations during design than thedgng
itself. For a detailed description of the language, see the user’'s manuapendix
A. AML's grammar is listed in Appendix B.

3.1 Motivation

Before designing AML | tested some typical mathematical modeling languages,
because | wanted to chose a role model for AML. The most inspiring larguag
turned out to be OPL (discussed in section 2.2.2): it has a very concisel mod
structure and its syntax is very close to those of modern programming laeguag
So AML combines some useful features of OPL with some new ideas on a rathe
simple level.

3.2 Goals and Requirements

| designed the structure by first collecting a list sic requirementsfor the
language to model constraint problems.

Basic types : Most constraint problems are integer-based and to keep things sim-
ple, | decided to only provide integer typed variables. Still | wanted to stress
that the language is strongly typed, so when declaring a variable the katywo
i nt is necessary.

Arrays : | decided to provide arrays instead of lists, tuples or records, since |
wanted the language to be explicitly non-declarative. Only only one-dimeaisio

21

22 3.2. GOALS AND REQUIREMENTS

arrays are supported, since further nesting would have gone béy®adope
of this thesis.

Constants : | wanted to support constants to make it possible to describe the
model in an abstract way. It was also important for me to separate the con-
stant declaration from the rest of the model in order to obtain a clear struc-
ture. This is why constants are to be defined in a destined data block that is
mainly inspired by the model structure of the OPL language.

Decision Variables : Decision variables are either integer arrays or simple integer
variables.

Ranges: Ranges are set during the declaration of variables, but there dbes no
exist a specific range type, since | wanted to have as few types aslpossib
and ranges are not necessarily needed as types to model constraieinzo

Relations : Relations are binary over arbitrary linear or nonlinear expressions,
since this is the simplest way to describe relations. First | was uncertain, if |
should differentiate between linear and nonlinear expressions, butdligd
have made it more complicated for the user to model constraints.

Global Constraints : | wanted to provide some basic global constraints that are
commonly provided by solvers and decided to supplstinct, serialized
andcumulative

Constraint Sequencing Sequencing constraints generically is a very powerful method
to define a set of constraints, since the formulation is simple and readable.
This is why | wanted to offer & or al | construct, which can be arbitrarly
nested. The syntax of the forall loop was also inspired by OPL.

After stating basic requirements, | formulated some goals of the language: a
very important goal is to obtain a clear and concise model structure. Tindyis
| decided to construct the model in form of a block structure, to sepawate c
stant declaration, decision variable declaration and constraints. | aleduct an
option block, which allows the user to state some special matters, like branching
strategies. The idea of an optional block is new and interesting: it is segos
define some issues, which do not have to be supported by the solvereimad el
is interfaced to.

| also wanted the syntax to be close to modern programming languages, since
standard users of modeling languages are usually familiar with programming.

CHAPTER 3. DESIGNING AML 23

3.3 The Language Structure

As mentioned, an AML model is constructed of blocks. This section will give
details on the motivation and decisions taken in order to form the structure.

Every model is initiated with the key wombdel followed by a modelname,
identifying the model. Then bracgs} form the model block that contains the
model description. | have chosen braces to enclose blocks, bedaeisave that it
is the most readable way.

A big advantage of the usage of blocks is that an order of constantblesad
constraint declaration is implied in the structure. This makes it easier to compile
and process the model for the programmer on the one hand, but alsofeatie
user to write correct code on the other hand.

A model in AML is structured by the following hierachy:

1. data declaration block (optional)
2. variable declaration

3. constraint declaration block

4. options block (optional)

The order of the blocks is inspired by OPL. In the following subsectioash e
block will be discussed.

Data Declaration

As mentioned above, | wanted to support constant declarations ancisefieem
from the rest of the model in a block. This approach is inspired by corisgle
constant data as problem instance. A possible extension would be allowltig mu
ple data blocks and pick one of them for processing. This would also ctuse c
to the OPL approach that can load constant declarations from diffidlesnt

Constraint Declaration Block

The constraint declaration block contains all constraints and is initiated lkgyhe
word sol ve, as in OPL. Collecting all contraints in a block makes the problem
formulation more readable.

24 3.4. LIMITATIONS

Options Block

The option block is the most interesting part of the language. It containssate
specifying special issues that concern the solving process. The graswey
vague concerning option statements: every statement of the form

| DENTI FI ER = EXPRESSI ON ;

is allowed, but only known options are processed by the compiler. Eveayawn
statement is simply ignored and results in a warning message of the compiler. This
brings a lot of advantages for the modeling process: the user doeavadtidbother
whether the options he choses are supported by the target solver. Adttithe

user is always informed about which options have been processeatacid are

not applicable. This makes the options block extremly userfriendly.

These advantages are the main reasons, why | have chosen to spedfy th
tions block in this way. Another important reason is the requirement of the lan-
guage being independent of the target solvers, which is hereby cléamipn-
strated.

3.4 Limitations

This section discusses some modeling boundaries and why they exist. latastiv
some decisions | took in designing the language and discuss some posthle ex
sions.

When designing AML, | knew that it would be a simple language and had to
decide which limitations to accept and which not. | wanted to get as much expres
siveness as possible with the smallest effort, since | did not want to Istrooting
the AML compiler get out of bounds.

Only One-dimensional arrays : One of the first decisions | took, was to restrict
arrays to be one-dimensional. Supporting multi-dimensional arrays would
have been more expressive, since it would allow to represent matrides an
related structures very efficiently. Still | found the effort in implementation
would have been far higher than the expressiveness gained by icitngdu
multi-dimensional arrays.

No datatype for domains : No specific type representing domains or ranges ex-
ist, even though it is common in other modeling languages for constraint
programming. | decided that there was no necessity for adding a rarge typ
as it affects the language’s expressiveness only barely, since AMérys

CHAPTER 3. DESIGNING AML 25

simple. It would have been more necessary, if the modeling language was
larger.

No reified constraints : It is not possible to formulate reified constraints (high
order constraints) in AML. | actually did not think of implementing high
order constraints when designing AML. It would certainly be an interesting
feature to add to AML.

Only few global constraints : AML offers only three global constraints. Intu-
tively, this is because supporting all possible global constraints woule hav
gone beyond the scope of this thesis. So | picked three popular glabal co
straints that both target solvers support.

26

3.4. LIMITATIONS

Chapter 4

Compiler Structure

This chapter presents the structure of the compiler implementation on an abstrac
level. It presents ideas, motivation and problems during the implementation pro-
cess. The detailed functionality of the compiler is discussed in context with the
structure. Basic knowledge of compiler construction is presumed, sinée- an
troduction would go beyond the scope of this thesis. The so-cdliagonbook
[ASUS86] gives an excellent introduction and overview of compiler carcston.

4.1 Overview

The compiler implemented in this thesis is supposed to translate an AML model
into a corresponding Gecode or SICStus Prolog model. Figure 4.1 shevisth

sic structure of the compiler implementation: given an AML file, the frontend
translates it into a model description, defined in the intermediate language XML.
This model specification is then applied to the backend that translates it eiter to
Gecode or SICStus Prolog model.

Frontend and backend are implemented independently and work stared-alon
This is an important issue concerning re-usability and extensionability, Hiece
structure easily allows to remove or add components (like another badicetind)
compiler.

The following sections present the compiler parts in more detail.

4.2 Frontend

The frontend has been implementedoiceml [ReémO00]. Being a functional pro-
gramming language, ocaml is very expressive, provides pattern matctdrsypn

27

28 4.2. FRONTEND

AML Model

!

frontend

i

Intermediate Language

v 1

backend backend
gecode prolog

v 1

ecode rolo
;gnodel Fnode

Figure 4.1: The basic compiler structure

ports even imperative and object oriented styles. There also exist [bfarikexer

and parser generation, which are based on the populai¢s@sdyacc [LMB92].
ocamllexallows to specify tokens by regular expressions and generates a cor-

responding lexemcamlyacaonstructs a LALR parser, according to a context free

grammar provided. Both tools can be interfaced and easily integrated in ocaml

code.

4.2.1 Functionality

The frontend takes an AML model as input and produces a XML desaripfithe
model. The transformation process can be described by the followingsegof
tasks:

1. Read input file: read the input file from the arguments passed

2. Generate tokens:the lexer filters the input file and splits its content into a
sequence of tokens.

3. Parse the grammar: the parser takes the list of tokens as input and parses
it according to the specified grammar.

CHAPTER 4. COMPILER STRUCTURE 29

4. Construct an Abstract Syntax Tree (AST): in case the parser processes
the tokens sucessfully, it generates an AST. ASTs represent the grdsyma
a tree-structure: leaves correspond to terminals and nodes to non-srmina

5. Process the ASTsemantic features are checked (such as valid identifier dec-
larations), declared constants are inserted into expressions, whieticédie
ated afterwards.

6. Transform AST to Intermediate Specification: finally a new tree-like data
structure is generated according to the information stored in the AST. This
data structure corresponds to the intermediate language.

7. Write Intermediate Specification into a File: By applying a simple tcstring
method the intermediate specification is stored in form of a string that is writ-
ten in afile.

Constant Processing

An important issue is the processing of the constant declarations: allacbss
defined in the data block are inserted in the expressions they appeareirefdre

the model description in the intermediate language corresponds to a modeténstan
and carries no data block.

Error Handling

Generally, if an error is detected, a message is printed on the standaund, cotp
taining information about the type of error and additional information, if alégla

Errors in the lexer or parser are treated immediately, while the other modules
handle errors by exceptions. | did not apply any error recoverydahdot focus on
error handling that much, since it would have gone beyond the scope tidhis.

4.2.2 Implementation Structure

The implementation consists of a lexer, a parser and 3 additional modules.

Lexer and Parser

The lexer is generated lmcam | ex, which takes a description of tokens by a spe-
cial list of regular expressions. This list may also contain user-defunectibns or
statementsocani yacc creates the parser according to a specification file con-
taining a list of terminals, grammar rules, operator precedences andefsszd
functions. It also specifies the structure of the AST (abstract syntaX imethe

30 4.2. FRONTEND

grammar rule definition: every rule states the node or leaf type which is esturn
in case the rule holds.

Additional Modules

The first moduleast contains the data structure definition and functions for the
AST representation. The second modatenst ant contains functions for con-
stant processing, such as insertion in expressions and expresalaat@n. Fi-
nally, the modulexmi contains the data structure definition and functions for the
intermediate language that is XML.

4.2.3 Challenges in the Design Process

The first part in designing the frontend was the definition of the AML granmimar
the parser, which is listed in Appendix B. The grammar should be simple, easily
extendable and strict. Since | did not have any experience with the dedigm-o
guages, it was challenging and difficult. Consequently, | discoverpdramities

for improvement after the whole implementation process. This is why | want to
discuss challenges during the design of the AML grammar in this section.

My appraoch was to structure the grammar by simple means and keeping it as
restrictive as possible. That seemed to work, since | only made few ehaluging
the whole implementation process. Still | did not consider an important point:
making some parts more abstract can increase extendability without affdoting
strength of the grammar. The following parts could have been implemented in a
better way:

e Global constraints:
Global constraints are treated as keywords in the grammar. So extending
global constraints inforces extending the grammar. It would have been a b
ter approach to treat global constraints in a more abstract way, like fanctio
calls. Then extensions would not imply extending the grammar, but simply
extending transformation rules in the frontend and backend part.

e Options:
Options are defined as expressions that are assigned to identifiers. This
makes it difficult to add options taking more than one parameter, like defin-
ing branching strategies for a specific decision variable. Such an extens
would also affect the grammar. Hence it would again have been better to de-
fine the options-grammar more abstractly in form of function calls that can
take multiple parameters.

CHAPTER 4. COMPILER STRUCTURE 31

<per son>
<nane>
<firstnane>Andr ea</first nane>
<l ast nane>RendI </ | ast nane>
</ name>
<age>23</ age>
</ person>

Figure 4.2: A sample XML description of a person

| unfortunately overlooked the opportunity to represent some parts irrémergar
by function calls, since modeling languages are commonly not concerned with
functions.

4.3 Intermediate Language XML

The intermediate language should be simple and store relevant information in a
concise and well-structured way. In addition, it should also be readadi¢hare
should exist means to verify and process its representation. | haverckd4l to

be the intermediate language, since it conforms to all requirements.

XML stands forExtendable Markup Languagend provides means to repre-
sent data in a tree-like structure. An XML description consists of a séeofents,
whose content can either be another element or some data. This implies a hier-
archy in the information described, which makes XML documents very t#ada
(assuming a reasonable structure).

As demonstrated in the example shown in Figure 4.3, XML is very simple and
easily comprehensible. That's why XML is a very popular markup langaage
most programming languages provide libraries for parsing XML docum&htse

also exist a lot of facilities to verify XML docmuents and display elements in a
fancy way.

The structure of the XML document representing the AML model is strictly
stated by a DTD documeniodel . dt d, which is used to verify the document in
the backend structure. The file is included in the compiler.

32 4.4. BACKEND

4.4 Backend

The backend part consists of two backends; one translating to C++{hibeto
Prolog. Both backends have much in common and the structure has been imple-
mented on a very abstract level in order to simplify extensions, like addirntgemno
target solver.

The implementation language for the backend is Java [1.5]. First | wanted to
implement the backend in ocaml, but had problems with the xml-light library, pro-
viding an ocaml XML parser. | finally decided to switch to Java that alsoiges/

XML parsers.

4.4.1 Functionality

The backend takes an input file and a flag stating the language to translateto.
input file is assumed to be a XML document, following the rules of the DTD speci-
fication stated imodel . dt d, which comes with the compiler. The correctness of
the model structure is also assumed, since backend-independent sezhaokis
(for instance check for non-ambigious variable names) are done inahiefrd.

Both backends have the same structure, but intuitively their functionality dif-
fers in some parts. The Gecode Backend is concerned with generatifg @daSs
where the constructor holds the problem description. Several membsioius
have to be generated to conform to the solver’s class hierarchy. Therzhtrans-
lating to Prolog generates a predicate that contains the problem description a
brachning strategy.

Section 4.4.3 presents some interesting challenges in the translation porcess f
both backend types.

4.4.2 Implementation Structure
XML parsers

The most important issue of the backend was to build it in a structure thatlis eas
extendable.

There exist two kinds of XML parsers: SAX (serial access) patbatdraverse
the XML document and give information about the currently processed-XM
element. The alternatives are DOM (document object model) parserstiatage
a tree-like representation of the XML document. | picked the SAX parser $ts
approach is simpler, faster, less memory-intensive and sufficient forebds of
the backend.

CHAPTER 4. COMPILER STRUCTURE 33

BackendParser Backend

factory:SAXParserFactory out: Writer

backend:Backend .
writeHeader()

processString()

N

GecodeBackend PrologBackend
tempVariables: loopVariables:
LinkedList LinkedList
writeMainFunction() writeRelation(relop)

Figure 4.3: The simplified class structure of the backend

Class Structure

SAX parsers do not store information about the XML file they parse, btityn
about the currently parsed element. So immediate action has to be taken during
the parsing process. That is why | decided to build the whole structuradithe

SAX parser, and process the XML element content according to the-taagkend
specified. Figure 4.3 shows the skeleton of the major class structure.

BackendParser : The basic part of the backend is the class BackendParser, which
is a subclass of DefaultHandler. Its constructor takes a XML file and a
backend-flag, denoting whether to translate to Prolog or to C++. The field
backend of the type Backend, performs the main translating process and
states how to handle currently processed XML elements.

Backend : The abstract class Backend declares fields and methods necessary to
terface with the SAX parser in BackendParser. It also contains theofigld
of type Writer which is the output file. Any feasible backend-specification
has to inherit from this class.

GecodeBackend: GecodeBackend is a subclass of Backend and the implementa-

34 4.4. BACKEND

tion of the backend translating from XML to C++.

PrologBackend : GecodeBackend is a subclass of Backend and the implementa-
tion of the backend translating from XML to Prolog.

Functionality
The backend works as follows:

1. The main class creates a BackendParser instance, depending omdhe ta
language to translate to (which is read from the input arguments).

2. The BackendParser instance creates an Backend instancepondieg to
the target language.

3. BackendParser starts the parsing process on the XML file. On &y
element it calls Backend methods that set flags or process the XML element’s
content.

4. After the XML file is processedyut of type Writer (that stores the trans-
lated model) from Backend is flushed into the file.

This structure makes it very easy to extend the backend and add othedr targ
solvers, by simply creating another subclass of Backend.

4.4.3 Challenges in the Design Process
Handling Non-linear expression in Gecode

One feature of Gecode is, that there is no mean to state arbitrary relatioreebe
nonlinear expressions. This means, that a relation can only be over éixgas-
sions. Hence nonlinear expressions have to be stated separatelpeasdnted by
a temporary variable. This temporary variable is then inserted in the relatice, s
a single variable is always linear.

Consider the relatioa*b > c¢ which contains the nonlinear expressetb.
This expression has to be stated separately and assigned to a tempdednig va

tmp = a * b

This variable can now be inserted for the nonlinear expression, makingdirlon
the relational level.

tmp > ¢
Creating temporary variables introduces other issues: temporary vaiivies$o

be defined before they are used in the C++ model. Since one never kiftives
upcoming expressions are nonlinear, some information has to be buffered

CHAPTER 4. COMPILER STRUCTURE 35

Translating For-loops to Prolog

Prolog is a non-declarative logical programming language and doesippbd
for-loops. AML offers for-loops and consequently, a strategy hdsetéound to
translate relations defined in (multi-nested) for-loops from AML to Prolog- B
sically, a for-loop allows to specify a sequence of relations in a genenc wa
possible strategy is to generate the corresponding sequence in Prblol,|@ads
to unfolding of the for-loop. The following code fragments illustrate howrddop

is unfolded.

| AML Code | Generated Prolog Code
for(i in 0..3) {| X0 #= 0O,
x[i] ==1i; X1 #= 1,
} X2 #= 2,
X3 #= 3

The example above shows a simple version of a for-loop. However, Wwhen
comes to multi-nested for-loops with dynamic indices containing expressions the
automated unfolding process becomes more challenging as the following lexamp
demonstrates.

| AML Code | Generated Prolog Code
for(i in 0..2) { X0 #\ = X1,
for(j ini+l..2) {| X0 #\ = X2,
x[i] '=x[jl; X1 #\= X2
}
}

36

4.4. BACKEND

Chapter 5

Examples and Evaluation

5.1 Motivation

It is interesting to compare generated models, because some solvedeepas
pects are treated completely differently in the translation process. Conmslgue
the quality of the generated models can differ quite drastically.

This sections presents some typical examples, which are translated agd solv
by both solvers. The generated models are evaluated according to secifeedp
criteria. This demonstrates differences and weaknesses in the tranplate@ss
and how they affect the generated model and its performance. Theigwalun-
derlies a set of criteria, which are

e performance (space, time)
e readability

¢ limitations for larger problems

5.2 Example: nQueens

5.2.1 Overview

The nQueens problem is placing n queens orkamchessboard without attacking
each other. So no queen may be on the same row, column and diagonaitees.an
The model description in AML is presented below.

1 nodel QueensN {
2 data { /* anpunt of queens =/
3 int n = 8;

37

38 5.2. EXAMPLE: NQUEENS

4}

5

6 var int queens[n] in 0..n-1;

-

8 sol ve {

9 /+* no queen nmay be on the sane colum as another =*/
10 di stinct (queens);

11

12 forall (i in 0..n-1) {

13 forall(j ini+1l..n-1) {

14 queens[i]+i != queens[j] + |;
15 queens[i]-i != queens[j] - j;
16 }

17 }

18 }

19 }

nQueens is a very interesting example to examine. On the one hand, thewproble
size can be arbitrary altered by the paramete©On the other hand, the problem
description contains forloops that are treated differently in the translatmreps
since Prolog does not offer faor al | construct. Consequently, every forloop
stated in the AML model is unfolded in the Prolog model. The following code
segment shows the unfolded forloop of the generated Prolog file fomtl#est
possible value = 5.

.(.Q.Jeenso_

~a + 0) #\= (Queensl a + 1),
(Queens0__a + 0) #\= (Queens2__a + 2),
(QueensO0__a + 0) #\= (Queens3__a + 3),
(QueensO0__a + 0) #\= (Queensd__a + 4),
(Queensl a + 1) #\= (Queens2__a + 2),
(Queensl a + 1) #\= (Queens3__a + 3),
(Queensl a + 1) #\= (Queens4__a + 4),
(Queens2__a + 2) #\= (Queens3__a + 3),
(Queens2__a + 2) #\= (Queens4__a + 4),
(Queens3__a + 3) #\= (Queensd4d__a + 4),
(Queens0__a - 0) #\= (Queensl a - 1),
(QueensO0_a - 0) #\= (Queens2__a - 2),
(Queens0__a - 0) #\= (Queens3__a - 3),
(QueensO0_a - 0) #\= (Queensd4__a - 4),
(Queensl a - 1) #\= (Queens2__a - 2),

CHAPTER 5. EXAMPLES AND EVALUATION 39

(Queensl a - 1) #\= (Queens3__a - 3),
(Queensl a - 1) #\= (Queensd4d__a - 4),
(Queens2__a - 2) #\= (Queens3__a - 3),
(Queens2__a - 2) #\= (Queens4__a - 4),
(Queens3__a - 3) #\= (Queens4__a - 4),

5.2.2 Evaluation

Obviously, unfolding the forloop easily becomes a problem when parameter
creases. This not only affects readability and model size, but also caimpilene
drastically. The following table illustrates the differences in compilation time with
an increasingn. Time measurement has been done by the help of the program
tinme.

n | solver | totaltime | user CPU timeg system CPU time
[sec] [sec] [sec]
15 | Gecode 0.519 0.438 0.047
Prolog 0.638 0.482 0.055
20 | Gecode 521 0.436 0.045
Prolog 0.624 0.546 0.069
25 | Gecode 0.521 0.0408 0.076
Prolog 0.729 0.639 0.082
30 | Gecode 0.520 0.418 0.061
Prolog 1.446 0.892 0.096
35 | Gecode 0.520 0.417 0.068
Prolog 1.750 1.525 0.137
40 | Gecode 0.520 0.403 0.074
Prolog 3.076 2.842 0.172
45 | Gecode 0.521 0.412 0.067
Prolog 5.366 5.063 0.248
50 | Gecode 0.571 0.438 0.048
Prolog 9.860 9.416 0.391
55 | Gecode 0.521 0.404 0.077
Prolog 16.340 15.601 0.525
60 | Gecode 0.520 0.409 0.070
Prolog 32.556 30.988 0.806

40 5.3. EXAMPLE: GROCERY

5.3 Example: Grocery

5.3.1 Overview

Two children buy 4 items at the grocery. The cashier erroneously multiplies the
prizes instead of adding them, but still gains the same result, which is 711. The
AML model formulatinggroceryis presented below.

1 nodel Gocery {

2

3 data {

4 int prize = 711;

5 }

6

7 wvar int items[4] in 0..711;

8

9 solve {

10 itenfO] + itenfl] + itenf2] + itenf 3] == prize;
11 itenfO] » itenfl] * itenf2] * iten{3] == prizex100%x100%100;
12

13 itenf0] > iten{1];

14 itenf1] > iten2];

15 itenf2] > itenf3];

16 }

17 }

This example is interesting, because it contains a relation between nonlizear e
pressions. Unfortunately it is not scalable.

5.3.2 Evaluation

Non-linear expressions in relations are treated differently when trargtati®@ecode
than when translating to Prolog. As Prolog supports relations over noarlaxe
pressions, the information structure does not have to be manipulated.eBatd&
only offers facilities to formulate relations over linear expressions. Thissnéc-
essary to introduce temporary variables to linearize the structure ofssxqns.
This increases the amount of variables. Consequently, a high amountesomp
non-linear expressions can affect the quality of the generated model.

As the example is not scalable, this effect cannot be demonstrated like in the
nQueens example. The following table shows the compilation time for both mod-
els.

CHAPTER 5. EXAMPLES AND EVALUATION

41

Solver | total time | user CPU time system CPU time
[sec] [sec] [sec]

Gecode| 0.471 0.379 0.066

Prolog 0.471 0.387 0.050

42

5.3. EXAMPLE: GROCERY

Chapter 6

Conclusions and Further Work

This thesis has presented a new modeling language AML with its corresjgondin
compiler. This chapter will give some conclusions about the work anceptes
ideas for further work.

6.1 Conclusions

The first part of work on this thesis dealed with the design of the modelingitage
AML. After investigating several standard modeling languages, OPL é&s tho-
sen to act as role model for AML, which turned out to be a good choiceL'&M
syntax is simple and strictly structured. The set of supported global edmtstand
options was specified and the context-free grammar for AML was stated.

The second part involved implementing a corresponding compiler for AML
where the focus was set on extendability. This allows to easily add othet targ
solvers to the compiler.

6.2 Further work

A very interesting idea for further work is extending AML. It is a simple laage

and can express a certain set of problems. However, the set okseaple prob-
lems could easily be augmented if AML would support multi-dimensional arrays,
which would allow to represent matrices and other more complex structumes. |
addition, means for reification could be added and the set of supporteal glon-
straints could be expanded.

43

44 6.2. FURTHER WORK

The AML compiler translates AML models to C++ and Prolog and is easily
extendable. Thus, adding other target solvers like Oz [Smo095] can bestitey.
However, the most challenging point for further work is setting the focugen-
eratinggoodor evenoptimalmodels, which has not been considered in this thesis.

Appendix A

User’'s Manual

This manual documents the AML modeling language, which is used to model con-
straint problems and the AML compiler, which can translate the model into either
a C++ model adapted to Gecode, or a Prolog model for the solver integnated
SICStus prolog.

A.1 Introduction

AML is a modeling language for modeling constraint problems. It is inspired by
the OPL language and has a close syntax. AML is strongly typed and quppes
integer variables and one-dimensional arrays. AML allows you to focuthe
modeling process without bothering about how to interface with the solér. S
it is possible to specify options, like search and branching strategiessilver,
which are ignored if the solver does not support them.

A.2 The AML model structure

An AML model has a very strict and concise structure: Every model iméefin
anodel block with an user-defined model name:

nodel MODELNAME {
/* nodel definition =/

}

A model consists of blocks in order to separate constant delarationahhear
declarations, constraint declarations and options. Comments can be written in
a conment */.

45

46 A.2. THE AML MODEL STRUCTURE

A.2.1 The Data Block

The first block is thedat a block, which is optional and used to define constants.
Constants are integer variables or integer arrays that have to be fuliedefihe
following code shows some sample constant declarations.

nodel Test {

data { /+ constant declarations */

int b[2];
int a = 4;
b[0] = a + 2;

b[1] = b[0] *5;
}

[* variabl e and constraint declaration */

}

If a constant is assigned multiple values, the last value assigned is finallyechapp
to the constant.

A.2.2 Decision Variable Declaration

Decision variables may be integer variables or arrays and are denotbd kgy-
wordvar . Domains may be defined, but only in the context of a decision variable
declaration; there exists no independent domain type.

nodel Test {

data {
int n=09;

}

[+ variable declaration */
var int x in 1..n;

var int y[4];

var int z[9] in 1..4;

[* constraint declaration =/

}

The code sample shows some possible variable declarations. The doméiimad de
by a lower and an upper bound and denoted by the expreisgionONERBOUND

APPENDIX A. USER’'S MANUAL a7

UPPERBOUND. There may not exist variables and constants with the same
name. Intuitively, a valid model contains at least one decision variable.

A.2.3 The Constraint Block

Constraints are defined in a constraint block, initiated by the keywaoidve.
There are two types of constraints: a binary relation over linear or namliee
pressions (the syntax of the relational operators can be found in thegk®dfhmar
description in Appendix B) or a global constraint. AML supports the follavin
global constraints:

1. di stinct (x) wherex is a declared decision variable array

2. serialized(start, duration) wherestart anddurati on are
declared decision variable arrays

3. curmul ative(start, duration, resources, limt) wherestart,
dur ati on, resour ces are declared decision variable arrays anari t
is an integer or integer variable.

The following sample code shows how to use global constraints in a simpledched
ing problem.

nodel Schedul i ng {

var int s[2] in 0..2;
var int d[2] in 1..3;
var int r[2] in 1..4;

sol ve {
currul ative(s,d, r, 2);
s[0] < 2;
s[1] > O;
d[0] >= 2;
d[1] > 0;
d 1] < 2;
r[0] >= 2;
r(1] > 0;
rpi1] '= 2;
r[1] '= 3;

48 A.2. THE AML MODEL STRUCTURE

Additionally, it is possible to generate a sequence of constraints by using the
forall (i in mn..nmax) construct, where is an arbitrary identifier and

m n andmax are integers. If the value afi n is greater thamax, the relations
defined in the forloop will simply be ignored. Forloops can be arbitrarilyates
Loop-variables are only known in the scope of the forloop. The n{ugipeoblem
demonstrates the usage of forloops.

nmodel Queens {
data { /* amount of queens =*/
int n = 8;

}
var int queens[n] in 0..n-1;

sol ve {
di stinct (queens);

forall (i in 0..n-1) {
forall(j ini+1..n-1) {
queens[i]+i != queens[j] + j;
queens[i]-i != queens[j] - |

’

A.2.4 The Option block

The option block is optional and allows you to specify special featuressékech
or branching strategies. In case an option is not supported by the canipiger
simply ignored. AML supports the following option definitions:

APPENDIX A. USER’'S MANUAL 49

Option Description Supported by

branchingvar = OPTION;| OPTION defines which variable Gecode
to choose for branching Prolog
(first fail as default)
branchingval = OPTION; | OPTION defines which value
to choose for branching Gecode
(minimum as default)
solutions = NUMBER; NUMBER specifies amount of Gecode
solutions to be searched for
iterations = NUMBER,; NUMBER specifies amount of ~ Gecode
iterations to be searched for

The optionbr anchi ng_var is the most complicated one, since Gecode and
SICStus Prolog have different branching options to chose from atydsame
overlap. Still, the compiler is very helpful: stating an unknown or ambigious op-
tion results in a warning message from the compiler providing information about
possible alternatives.

A.3 Installation of the compiler

This section covers the installation process of the AML-compiler. Please note
that the system was built for usage in Unix-systems. In order to compile the
frontend and backend, you will need a versioroofam 3. 08 (or newer) con-
taining theocani yacc andocam | ex tools and at leastava 2 Pl atform
Standard Edition 5.0.

First move the fillAMLConpi | er . t ar . gz to an existing directory. Change
to that directory and decompress the file by typing

tar -zxvf AMLConpiler.tar.gz

in your shell. This will create the directodM_Conpi | er. It contains two
bash-script files to build the compilebui | d_al | andbui | d_cl ean. Simply
run one of them by typing

./build_all

in your bash-shell and the AMLCompiler is built and installed. Further detaiis c
be found in theREADVE file.

50 A.4. RUNNING THE COMPILER

A.4 Running the compiler

The compiler has several features and translates in several ways.9dak that a
copy of the filenodel . dt d (which describes the XML structure of the constraint
model) is in the same directory as your AML-model. The file can be found in the
exanpl es/ directory.

1. Translating AML to C++ GECODE
To translate an AML model to a C++ Gecode-adapted model, run the script
am 2cc in a bash shell:

$./am 2cc inputfile

wherei nput fi | e is a AML-Model. The generated C++ file will be writ-
tenintoi nputfile. cc.

2. Translating AML to SICStus Prolog

To translate an AML model to a SICStus Prolog model, run the sanp2pr ol og
in a bash shell:

$./am 2prolog inputfile

wherei nput fil e is a AML-Model. The generated Prolog file will be
written intoi nput fil e. pl .

3. Translating AML to and XML description

To translate an AML model to a XML description, run the scapt 2xm
in a bash shell:

$./am 2xml inputfile

wherei nput fi | e isa AML-Model. The generated XML file will be writ-
tenintoi nputfile. xm .

4. Translating an XML description to a Gecode-adapted C++ model

To translate an XML description to a C++ model, run the scxipit 2cc in
a bash shell:

APPENDIX A. USER’'S MANUAL 51

$./xm 2cc inputfile

wherei nput fi | e isa XML-description following the DTD irxanpl es/ nodel . dt d.
The generated C++ model will be written intoput fi | e. cc.

5. Translating an XML description to a SICStus Prolog model

To translate an XML description to a Prolog model, run the sanipt2pr ol og
in a bash shell:

$./xm 2prolog inputfile

wherei nput f i | e isa XML-description follwing the DTD irexanpl es/ nodel . dt d.
The generated Prolog model will be written intaput fi | e. pl .

Appendix B

AML Grammar

This section presents the context free grammar of the AML modeling language
Terminals are written in capital letters and thesilon-edge is denoted by *
epsilon «/

anml _nodel -> MODEL | DENT paraneters LBRACE

dat a_decl arati on
var _decl aration
SOLVE LBRACE constraint _|ist RBRACE
opti ons

RBRACE

| MODEL | DENT LBRACE

data_decl arati on
var _decl aration
SOLVE LBRACE constraint_|ist RBRACE
options

RBRACE

parameters -> LPAREN paraneter |ist RPAREN

identifier -> | DENT
| | DENT LBRACK NUM RBRACK

| oop_identifier -> | DENT LBRACK expressi on RBRACK
paraneter |ist -> | NT | DENT

| I NT | DENT LBRACK NUM RBRACK
| parameter |ist COVMA | NT | DENT

52

APPENDIX B. AML GRAMMAR 53

| parameter _|ist COVMA | NT | DENT LBRACK NUM RBRACK
| 1 DENT

data_decl aration ->
DATA LBRACE const _decl aration_list RBRACE
| /* epsilon */

const _declaration_list -> const _declaration
| const_declaration_list const_declaration

const declaration ->
I NT | DENT LBRACK NUM RBRACK SEM COLON
| INT identifier ASSOP expression SEM COLON
| identifier ASSOP expression SEM COLON

var _declaration ->
VAR I NT identifier range SEM COLON

| VAR INT identifier SEM COLON

| VAR I NT | DENT LBRACK expressi on RBRACK
SEM COLON

| VAR I NT | DENT LBRACK expressi on RBRACK
range SEM COLON

| var_decl aration
VAR I NT identifier SEM COLON

| var_decl aration
VAR | NT identifier range SEM COLON

| var_declaration VAR | NT | DENT
LBRACK expressi on RBRACK SEM COLON

| var_declaration VAR I NT | DENT
LBRACK expressi on RBRACK range SEM COLON

range -> | N expressi on DOTDOT expression

constraint_ -> relation
| DI STI NCT LPAREN | DENT RPAREN SEM COLON
| SERI ALI ZED LPAREN | DENT COWNA | DENT
RPAREN SEM COLON

54

| CUMULATI VE LPAREN | DENT COVIVA | DENT COWIVA
| DENT COMVA expressi on RPAREN SEM COLON
| forloop

constraint_list -> constraint_
| constraint _|ist constraint_

expression -> NUMBER
| identifier
| LPAREN expressi on RPAREN
| expression PLUS expression
| expression M NUS expression
| expression MIT expression
| expression DIV expression
relation -> expression EQ expressi on SEM COLON
| expression GI expressi on SEM COLON
| expression LT expressi on SEM COLON
| expression GIEQ expressi on SEM COLON
| expression LTEQ expressi on SEM COLON
| expression NOTEQ expressi on SEM COLON

forloop -> FORALL LPAREN identifier range RPAREN LBRACE
| oop_constraints_|ist
RBRACE

| oop_constraints_list -> | oop_constrai nt
| loop_constraints _|ist |oop_constraint

| oop_expression -> NUM

| identifier

| |oop_identifier

| LPAREN | oop_expressi on RPAREN
| 1oop_expression PLUS | oop_expression
| | oop_expression M NUS | oop_expression
| 1oop_expression MIT | oop_expression
| | oop_expression DIV | oop_expression

| oop_constraint ->
| oop_expression relop | oop_expressi on SEM COLON

APPENDIX B. AML GRAMMAR 55

| DI STI NCT LPAREN | DENT RPAREN SEM COLON
| SERI ALI ZED LPAREN | DENT COWIVA | DENT RPAREN SEM COLON
| CUMULATI VE LPAREN | DENT COMVA | DENT COMVA
| DENT COMVA expressi on RPAREN SEM COLON
| forloop

relop -> EQ

Gr

LT
GTEQ
LTEQ
NOTEQ

options -> OPTI ONS LBRACE options_list RBRACE
| OPTI ONS LBRACE RBRACE
| /* epsilon =/

options_list -> options_list | TERATI ONS ASSOP NUM SEM COLON
| options_list SOLUTI ONS ASSCP NUM SEM CCLON
| options_|ist |IDENT ASSOP expressi on SEM COLON
| options_list IDENT SEM COLON
| options_Iist BRANCH NGVAR ASSOP | DENT SEM COLON
| options_list BRANCH NGVAL ASSOP | DENT SEM COLON
| BRANCHI NGVAL ASSOP | DENT SEM COLON
| BRANCHI NGVAR ASSOP | DENT SEM COLON
| 1 TERATI ONS ASSOP NUM SEM COLON
| SCOLUTI ONS ASSOP NUM SEM COLON

| | DENT ASSCOP expressi on SEM COLON

| I DENT SEM COLON

| /* epsilon */

Bibliography

[1.5]

[Ag04]

[Apt03]

[ASUSE]

[BVHO3]

[Cea95]

[COCO7]

[FIMMO5]

[gcde]

[Hol95]

The Java 2 Standard Edition Application Programming Interface. ver-
sion 1.5.0. Availabe aitt p: //j ava. sun. com j 2se/ 1. 5. 0/
docs/ api /.

M. A gren. introducing esra, a relational language for modelling
combinatorial problems.OPSTR’03: Revised Selected Paper, LNCS
3018,214-2322004.

K.R. Apt. "Principles of Constraint Programming” Cambridge Uni-
versity Press, 2003.

A.V. Aho, R. Sethi, and J. D. UllmanCompilers: Principles, Tech-
niques, and ToolsAddison-Wesley, Reading, Mass., 1986.

C. Bessiere and P. Van Hentenryck. "to be or not to be ... aajlob
constraint”.CP 2003 789-7942003.

M. Carlsson et al.”SICStus Prolog User's Manual”’, Release. 3
Swedish Institute of Computer Science, Sweden, 1995.

M. Carlsson, G. Ottosson, and B. Carlson. An open-endéd fio-
main constraint solver, 1997.

A. Frisch, C. Jefferson, B. Martinez, and I. Miguel. "rudsonstraint
modeling”. 1JCAI-05, Proceedings of the Nineteenth International
Joint Conference on Atrtificial Intelligence, Edinburgh, |L2005.

gecode generic constraint development environment. Availedie f
http://ww. gecode. org.

C. Holzbaur. Ofai clp(qg,r) manual, edition 1.3.3, 1995.

56

BIBLIOGRAPHY 57

[Lau78]

[LMB92]

[MC]

[RémO0]

[Schog]

[Sm095]

[Sys]
[VHO9]

J-L. Lauriere. "a language and a program for stating aridngp
combinatorial problems”Artificial Intelligence 10(1) pages 29-127,
1978.

J.R. Levine, T. Mason, and D. Brownlex & yacc, Second Edition
O'Reilly & Associates, Inc., 1992.

The Mozart programming system MOzart Consortium. Available from
http://ww. nozart- o0z. org.

D. Remy. Using, understanding, and unraveling the ocaml language.
from practice to theory and vice versa. APPSEM pages 413-536,
2000.

C. Schulte. Comparing trailing and copying for constraint @nogr
ming. In Danny De Schreye, editd?yoceedings of the Sixteenth In-
ternational Conference on Logic Programmjrgages 275-289, Las
Cruces, NM, USA, 1999. The MIT Press.

G. Smolka. "the oz programming model”.@omputer Science Today
pages 324-343. 1995.

The Alice System. Availabe atwv. ps. uni - sb. de/ al i ce.

P. Van Hentenryck. "The OPL Optimization Programming Lan-
guage”. Massachusetts Institute of Technology, Cambridge, 1999.

