Information Visualization in Eclipse

FREDRIK ASP
PETER ODEN

Examiner
Dr. Christian Schulte

Master of Science Thesis
Stockholm, Sweden 2004

ICT/ECS-2006-74

Abstract

Technology Companies today need evermore datésthal to their function; this can be
product, customer or other sorts of databases. fé@vycompanies have any user friendly
interface for browsing these vast quantities oadimistead they rely on query — response
schemes with a very basic interface that have edolery little over last 40 years.

The current research in the field of data visusiimahas focused on data mining and
displaying how the data is stored, not how to ¢iffety display an object and the structure it
is a part of.

What we propose to do is a simple relational datalmowser that can both speed up finding
data and most importantly helps users to easy gatad understanding of the structures of
data.

With a query — response scheme it is very easyastdo get information about an object in
the database, that is if the object is known byuther.

But if the information wanted is about the contexstructure of objects then several
consecutive queries will be needed and only & laflthe information will be shown at any
given time, meaning that the user has an hardfigneing out the exact structure. This is
largely dependant on the fact that the user onmiyl@ak at one object and its relations at a
time. This effectively narrows the users understamnof the structure down to objects one
step from the object he is currently browsing.

With our browser we will address this problem assiirrounding objects will be shown. Not
only the objects in the immediate vicinity, rattiee user can choose how many steps from
the object he will see.

We did this browser as a plug in for eclipse as dine of the fastest growing open source
platforms available right now. It is maintainedthg Eclipse group witch has the support of
over 50 companies [7], so it is probable that It e kept updated for some time to come
giving our system a stable platform that doesnddmee outdated.

Also eclipse is a contender for being the nextadddf standard in software development as it
is not only a development environment but rathizamework that allows great
configurability. This is due to the plug in structithat allows the user to modify eclipse into
the tool that fills his every need.

We have also used this property of eclipse in oajept as we use GEF or the Graphical
Editing Framework to give our tool its graphicgbresentation. GEF is a plug in that gives a
powerful framework for graphics so that we didréivk to code a graphical engine from
scratch. Lastly we have done some tests for pegfooaand functionality to show that our
tool does what it is supposed to do within reas@ntime.

Acknowledgments:

We would like to thank Dag Rende and Peter Rod®tl Eclipse AB for all their help

during this project and also Christian Schultedigpervising our thesis. Also we would like to
thank all the members of SPX for their constantpsup

Table of contents

1.
2.

4.

Acknowledgements
List of abbreviations
Key expressions
List of figures

List of tables

List of Formulas

Introduction
GUI
2.1What are GUI's
2.2Building a GUI
2.3Eclipse
2.3.1 SWT
2.3.2 JFace
2.3.2.1Viewers
2.3.3 Eclipse Ul paradigm
2.3.4 Projects
2.3.5 Plug-ins
2.4 Graphical Editing Framework
2.4.1 Draw2d
2.4.2 Figures
2.4.3 EditParts
2.4.4 Requests and Commands
2.4.5 EditPolicies
2.4.6 GraphicalViewer
2.4.7 RootEditPart
Design choices
3.1Choosing data representation scheme
3.1.1 The Data
3.1.2 The Hyperbolic Tree browser
3.1.2.1Key points
3.1.2.2Applicability
3.1.3 Pie Slice
3.1.3.1Key points
3.1.3.2Applicability
3.1.4 Quad tree scheme
3.1.4.1Key points
3.1.4.2Applicability
3.2 Algorithms
3.2.1 choosing nodes
3.2.1.1Realization
3.2.2 placing into zones
3.2.2.1Realization
Implementation
4.1 Program Structure
4.1.1 The Model
4.1.1.1Database emulation
4.1.1.1.1 Database objects
4.1.1.1.2 Database Relations

~No

4.1.1.1.3 The full database model
4.1.1.2parameters for generating quad tree
4.1.2 Object package
4.1.2.10bjectEditPart
4.1.2.2EditPolicies
4.1.2.30bjectFigure
4.1.2.40bjectFigureCompartment
4.1.3 Relation package
4.1.3.1RelationEditPart
4.1.3.2HideRelationAction
4.1.3.3HideRelationDialog
4.1.4 diagram package
4.1.4.1DiagramEditPart
4.1.4.2DiagramLayoutManager
4.1.4.3MyXY LayoutEditPolicy
4.1.4.AGdipEditPartFactory
4.1.4.5RenderDepthChanger
4.1.4.6RenderDepthDialog
4.1.4.7ConstrictorAccessor, RelationAccessor
and RelatedObject
4.1.5 Editor
4.1.6 Plugin
4.1.7 Data
4.1.8 Datalo
4.2 Putting it all together
4.3Working with eclipse/GEF
4.3.1 The Eclipse paradigm
Results
5.1Screenshots
5.1.1 Selection
5.1.2 Refocusing
5.1.3 Fanning
5.1.4 Changing render depth
5.1.5 Hide relation
5.2 Performance test
5.2.1 Platform
5.2.2 Setup
5.2.3 Tests
5.2.4 Results
5.2.5 Discussion
Conclusion
Further works
7.1Infrastructure
7.2 Functionality
7.2.1 Favorites
7.2.2 Object notes
7.2.3 Messages
7.2.4 Stepping
7.2.5 Visible objects
7.2.6 Search

29
30
31
32
32
33
33
33
33
34
34
34
34
34
35
35
35
35
35

35
35
36
36
36
37
37
35
38
39
41
43
46
49
52
52
52
52
53
55
57
58
58
58
58
58
59
59
59
59

7.2.7 Database
Referenses

Appendix A Use Cases

List of Abbreviations

60
61
62

SWT - Standard Widget Toolkit

Ul — User Interface

GUI — Graphical User Interfaces
GEF — Graphical Editing Framework

Key Expressions
Focused object

Selected object

Relation type

Focus view

Search view

Object info view

Changes view

Active aspect / V view

Object

Ping message

Content provider

The object shown in the centerefdbus view.

The object that is selected. Ptiegasf this object are
shown in the object info view. And the object is
highlighted in the focus view.

A label on the relation between twgeots in the
database. “Consists of” and “replaces” are two
examples.

The central view of G-dip. It shows tiigect currently
in focus and its neighbors.

A view that lists results of a seaFsiom which a found
object can be focused.

A view that displays relevant irdbout the object
currently in focus.

A view that lists the change messtigedhe user
subscribes to.

A view that shows in whavd®pment aspect the
object in focus resides.

An entry in the database is shown in theg$ogew as a
figure with a label.

A notification message that informsea that an
database entry for which they subscribe to, has bee
changed.

The model structure of some viewvezditor, it may be
shared by several viewers and/or editors.

List of Figure

Fig 2.1 page 14
Fig 2.2 page 16
Fig 3.1 page 19
Fig 3.2 page 21
Fig 3.3 page 23
Fig 3.4 page 25
Fig 3.5 page 26
Fig 3.6 page 27
Fig 3.7 page 29
Fig4.1 page 30
Fig 4.2 page 31
Fig 4.3 page 32
Fig 4.4 page 33
Fig5.1 page 38
Fig 5.2 page 39
Fig 5.3 page 40
Fig5.4 page 41
Fig5.5 page 42
Fig 5.6 page 43
Fig 5.7 page 44
Fig 5.8 page 45
Fig5.9 page 46
Fig 5.10 page 47
Fig 5.11 page 47
Fig 5.12 page 47
Fig 5.13 page 48
Fig 5.14 page 49
Fig 5.15 page 50
Fig 5.16 page 50
Fig 5.17 page 51
Fig 5.18 page 53
Fig 5.19 page 54
Fig 5.20 page 54
Fig 5.21 page 55

List of Tables
Table 2.1 page 9
Table 2.2 page 13

List of Formulas
Formula 5.1 page 53

1. Introduction

All industrial design and production processes yaglaw ever more complex and
larger. For every bit of complexity there is mu@ialadded to the documentation of
the project and also more data to be taken intouatcduring the design. There is also
more and more devises and software that are sugpposeork together in larger
groups cooperating through any number of medighéurthere are many standards
that anything produced needs to consider. Thane sgn of any diminishing of this
growth of complexity. All this complexity and angwice a product needs to
cooperate with add even more data that has to med=mred during the design. As the
design phase is traversed it itself adds datanwdls to be considered in later stages
of design and construction. This data may be ofynaliifierent types and very
different in nature, much of this data or info ohese to access it is stored in various
relational databases.

Today the standard for accessing a relational datals different types of searches
resulting in zero to several hits that can be diggdl one at a time. If the user knows
what he wants or at least its properties thisverg good way of finding info, but if
she wants to find out what subcomponents a prdiagbr the subcomponents
subcomponents it starts to get less and lessastfickor every new object in the
database the user wants to look at she needsanalber search and if she wants to
get a grip on the component structure of a proiwatl be much work in a search
based interface. It also has the drawback in tiuetsire case that very little of the
information can be shown at any given time.

What we propose to do is not replace or changeleey - response scheme but to
add a tool that has its strength where the queegponse scheme is at its weakest.
When our Graphical Database Interface Plug-in (GMiBplays the info of a database
element it will also show its related elements tadr related elements and so on. So
a user can easily get an idea of the structurehatever she is looking at. GDIP is
made to be very general so that it easily can bd ugth any relational database, and
it also is very adaptable to the users needspibssible to change all parameters that
control the drawing of the view of the databasen@éuilt to be easily used with any
relational database it is not very difficult to ptld to access several different
databases at once so that companies that haveedifféatabases for different kinds of
data easily can access it all from a single apjdinaGDIP is not supposed to take
over all database manipulation, instead it is aser allowing the designers easy
access to the data they need

2. GUI
2.1 What are GUI's

GUI's or graphical user interfaces replaced thé besed interfaces in what
now can only be considered as the ancient timgeigonal computers. The
GUI paradigm changed personal computers complegedyiting an ease of use
never before seen in computing and thus layingatedation for the computer
boom with a computer in virtually every home. Todayl's is one of the

pillars on which most of the IT industry standseTitiea behind the GUI is
point and click. The user don’t need to remembemiime of each little
subroutine, all he needs to do is select what hdsama work with point and
click. To give the point and click paradigm morgtteallowing more then one
thing to be done to each selectable item thersereral different ways to make
point and click multiple action possibilities.

The most important generic features in GUI's are.

e Buttons

* lIcons

o Text fields

* Checkboxes
 Menus

e Frame

» Dialogs

Table 2.1

Each of these comes in almost infinite number oifti@ns but they are the
basic blocks of all GUI's [8].

2.2 Building a GUI

Building a working GUI is not difficult, only somdvwat time consuming.
However building a GUI that just works is not tHgextive of any program
designer, what is needed is an easily usable GiUtlat is much harder to
create [8]. A user that does not already know hmwse the program must be
able to use it without having to read the manuakfeery action that he needs to
make. A program where users need to check theduadfe too often will be
considered difficult to use and few people will buylhere is however no easy
way to make an easy to use GUI, no recipe to follble designer will need to
know how the user thinks, how the cultural backgwbwill influence reactions
to different colors and innumerable other littlends [8]. There are also many
things that may seem to be good until the actuailsustart using the program.
All these problems have to be solved to get a esahll. The GUI creation is
one of the major parts of any program constructiaiay.

2.3 Eclipse

Since man started programming the programs hagsimeowre and more
complex and man wanting to produce these complegrams, without
making the task extremely time consuming, undedstbat if the languages
themselves where more powerful the burden woulddsed. First there was
raw bytecode which evolved into assembly langualiehwin turn evolved
into higher level languages. These evolved intoothject oriented languages
which finally produced the platform independentgaage Java.

Eclipse takes the evolution one step further brpohicing a framework
environment in open source where much of the Wasittionality already
exists. A programmer constructs a plug-in, a sealpse dependant program
or library. These are detected by eclipse wherfiis started and it notes
which extension point the plug-in extends. A plagsan also use the
functionality of an existing plug-in, as is the eagith our plug-in since it uses
GEF which is a plug-in for generating graphics.sI$olution eases the burden
of writing code, but places a lot of responsibibity the programmer for
understanding the mechanisms of eclipse and thgostipg plug-ins.

One more benefit of using eclipse with its plugsiructure is that a user will
do most of his work inside eclipse within differgitig-ins. Since these all
resides within eclipse he doesn’t have to learewa interface as all the
standardized functions will be in the same familiaces as he is used to have
them [6].

Eclipse is so much more then the regular GUI, thésentire framework
reducing much of the work of program constructimstead of writing the
entire program all that is needed is the essertialputations and writing how
to represent info on screen, All else eclipse talees of. Because of this a
user that has worked with eclipse based prograithfiavie an idea of how to
work a new eclipse based application. The ecligs&igom has pre made stubs
for many different functions such as load, savelojmedo and many more
leaving only the functional parts to the programmidrere is however difficult
to get used to the very different programming fdipse as opposed to a
program written from scratch. In eclipse all methaad classes written are
called by the eclipse framework, to get eclipsdd@nything a stump of code
doing it must be placed at a spot that is callethyframework. There are
many tricks a programmer must learn before wripnggrams for eclipse will
be effortless but when mastered it is a tool of Impawer leaving the
programmer to write few lines of code to achievecifunction.

Eclipse began as an IBM project. In November 2@d1BM-independent

foundation was formed to further the developmeridipse. And it is this
organization that has driven the development oipEelsince [7].

10

2.3.1 SWT

Today any operating system (OS) need to have asalfmibset of widgets for
handling GUI:s and there are a few basic widgetsdh OS have their
implementation of [8]. There are some more complagets, the designers of
each operating system have chosen those they wahied means all
operating systems with different tools for buildiByl:s. It is desirable to use
the systems widgets making the program look thethayser is used to and
keeping a coherent look on screen. This hasn’'t begrproblem for regular
programming languages such as C++ where everymyss its own compiler.
Java on the other hand has to work on all systeihstine same bytecode
having to use only those widgets supported byyaliesns. More complex
widgets have to be emulated by java which make®s that quite fit in among
the other, emulated widgets are also slower in tipglanaking them stand out
even more. SWT is the Standards Widget Toolkiefdipse have remedied this
flaw by defining a common API for all supported dow systems and for each
separate system SWT uses its native widgets whssilppje, making eclipse
programs look more like the system it is run on Y§henever a window system
doesn’t support a widget that widget will be emedhtvith all the drawbacks
mentioned earlier. SWT goes even further thanitlias support for native
system features such as drag and drop, it alsasnomponents developed
with OS component models such as ActiveX contmoleindows.

2.3.2 JFace

JFace is a window system independent toolkit fonmon User Interface (Ul)
handling. Among other things it has classes folodgand wizards, but JFace
also handles actions [5].

Actions are a way of abstracting user commands from they are triggered;

an action can be connected to a menu item or arbukhe action keeps track of
the widgets needed to trigger it like a menu itarhibcan easily be moved to
another menu or to a toolbar button without chagginmoving the code of the
action. This helps mostly if the design or grouparighe GUI needs to be
changed late in the construction, perhaps as # dauser testing.

2.3.2.1 Viewers

Viewers handle the higher levels of logic for SWitlgets, and are used to
display modeled data using said widgets. There dee standard viewers for
common structures such as tables and lists. Ipsch viewer is shown as a
frame displayed on a part or on the entire maiipselframe. Usually in eclipse
there are many viewers displayed simultaneouslyyneé them show different
contents but there are no problems with havingiplalviewers having the
same content provider. Viewers sharing their canpeovider don’t necessarily
show the same part of the data provided as thephaaa different logic for
choosing what to show and how to show it [6].

11

2.3.3 Eclipse Ul paradigm

The eclipse Ul paradigm is based around three shipgrspectives, views and
editors. Views and editors are the types of usediata interfaces allowing the
user to view and manipulate data, perspectivea amdlection of views and
editors with a common function such as the java@mming perspective.
Eclipse can handle several perspectives at anydgives but to avoid confusion
only views and editors belonging to the same petsmecan be visible at any
given time [6].

Editors have an open - save - close lifecycle dsiesheditors for text editing
and some other simpler tasks are provided in echmsl some more advanced
are available in other plug-ins. Editors may haalar buttons and menu
items bound to them so that they become availatliewehen the editor is
selected [6].

Views show data to assist the user in whateveritasisupporting. The java
programming perspective has among others a viewhntiows the hierarchy
of sub and super classes to the class currentigdediiews have less modifying
power then the editors, but some things can be oloviews. Most common is
the changing of some property or name. The alteratnade in a view are
instantaneous as opposed to the editor where m®ges to be manually saved.
If there are several views showing the same inftionachange is propagated
directly to all views without need for user inigdtrefreshes. There are
generally several views for every editor visibleaiperspective and there are
many standard views provided with eclipse [6]. Ehstmndard views lessen the
amount of repetitive work as almost every applaatieeds some of the
standard views. A property view shows the propguiethe currently selected
object. To use the provided property view it isyordquired that the selected
object implements an interface and its methodaslathat once learnt is
finished in a matter of minutes.

2.3.4 Projects

Eclipse is project based, so if some file is opeari eclipse application then
that file must be part of one of the opened prgjethe eclipse workspace is
generally mapped to a single directory where ed¢heoprojects has its own
subdirectory.

Eclipse incorporates something called the projattinre mechanism which is
basically a tag specifying what type of contentghgject has. The set of project
nature tags are not set and a user can add newvitegsnecessary, a project
containing several kinds of content types can ls@weral tags to reflect that.
The project nature mechanism provides an easy Wwijtimg projects with
different content types use tools that where neweaint to be used together
without the tools having to be aware of each ofékr

12

2.3.5 Plug-ins

Eclipse itself is just a framework and without goiyg-ins it wouldn’t do
anything. There are different sorts of plug-insnscadd building blocks for
other plug-ins such as GEF or draw2d and othersadt sort of functionality
such as the java programming plug-in or our Gdip.

A plug-in must be connected to one or more exteng@nts so that eclipse
knows how it is supposed to handle the plug-inth&splug-ins methods are
always invoked by the eclipse framework this ispMarportant. Extension
points are of many different types.

Important Extension point types

» Actions

» Perspectives
» Editors

* Views

* Wizards

Table 2.2

These are not all of the types but the ones mgstlady used. The user
interfaces for these different types are most dodiefollows; actions are most
often shown as both a button and an item in a nbeihgan be either one of
them without the other. Editors is generally adielhere different data is shown
and edited, a word processor is a good exampléhaf van be done with a
editor. A view is a field that is mostly used shdata that can’t be directly
manipulated such as an error message list. Andregzare used to make
wizards for helping new users through difficult raemers.

Any plug-in is also allowed to define any numbenef extension points
allowing it to have sub plug-ins for additionalexchangeable functionality [6].

2.4 Graphical Editing Framework

The Graphical Editing Framework or GEF is a parthef Eclipse Tool Project
which is a project whose aim is to build the bexgible tools for eclipse and
also to minimize overlapping of functionality sattlihe wheel doesn’t have to
be reinvented over and over again. GEF is a tatlrttakes development of
graphical editors within the eclipse environmentwv@asy when you are
familiar with its workings.

GEF’s primary role is to display any model graphicgb], and then allow a
user to manipulate this model by user input. GE#sise MCV paradigm by
supplying a framework for the Controller and Vieayérs and the programmer
only has to attach his own model. The hard pae fgethat the programmer
really has to understand how GEF works otherwiseilignot be able to make
use of it.

13

Fig 2.1

After the programmer has constructed his modeldsetd define the view;
deciding on which figures and what type of layoetwill use. There are many
predefined figures and layouts, or the programraarapt to write his own
from scratch. After the view is properly setup gnegrammer will move on to
the controller layer. This layer is composed otalted EditParts which acts as
connectors between the model and the view and geevneans to manipulate
the model and when changes occur propagate théme toew. Each viewer
has a factory for creating EditParts, and wheragh@ication is started the root
object from where all objects can be reached iplgghto the viewer which
uses the factory to construct the EditPart for thgeéct. When that is done
each EditPart will construct its own EditPart cheld by calling the factory and
manipulating them. If a new model object is creathd EditPart in which it
will be placed calls the factory which construatsirstance of the correct
EditPart class. The final structure is illustrabedrig 2.1.

EditPartFactory

Model EditParts View

Foo

-+ Bar

When this is done the programmer has to decide adidhg functions his
program will have. This is done in two steps. lirbe has to decide which
tools to use. There are predefined tools readgéoou the programmer can
make custom ones from scratch. Secondly he hascidelhow the EditParts
should react when a tool sends a request to itthtFopurpose GEF has so
called EditPolicies. An EditPart without an Editieglcannot be edited or
manipulated in any way [5]. The EditPart forwarks tequest to the
EditPolicy that handles the appropriate type otiemys. The EditPolicy replies
with a command to the EditPart which sends thisroamd back to the tool

14

that originally sent the request. The tool therdsethe command to the
command stack and where it will be executed.

2.4.1 Draw2d

Draw2d is a lightweight system that runs on SWT iagilves the programmer
easy access to a rendering architecture by hantiewgainting and the mouse
events by propagating these to the Draw2d figusgsThere are lots of
predefined figures like Polyline, Triangle and gdie, or the programmer can
extend these figures to create his own figureso Aigre exist some container
figures like Panel that can be used for nesteddgur he figures themselves
can be opaque or transparent and ordered in l&yehiding irrelevant
information.

GEF is heavily dependent on Draw2d for the grapiidcaw2d on the other
hand is a standalone library that can be used witG&F or even without
Eclipse although it's designed with GEF and Eclipsmind.

2.4.2 Figures

The figure class is the central building block oaid2d [5]. Everything that
Draw2d displays is displayed through a figure. €lass contains methods
providing the basic functionality that is requifed working with the figure. It
contains methods for handling listeners so thafithee can notify the proper
instances when events occur, for registering stratthanges in the figures,
for setting the figure’s transparency.

2.4.3 EditParts

EditParts is the central building blocks of GEFeylare used as the controller
layer in the MCV hierarchy which specifies how thedel elements should be
represented in the view. There are three typesi@PBrts: GraphicalEditParts,
ConnectionEditParts and TreeEditParts. Graphic##adis role is to render a
model object into graphics, ConnectionEditPartsused as connections
between EditParts to represent i.e. relations asitlyl TreeEditParts that are
used for building trees of the model. Usually evaject in the model has a
corresponding EditPart, but this is not necessary.

EditParts are defined through a standard interdackewhen an EditPart is
implemented it is recommended that it is a suba¥ésise AbstractEditPart
which is an abstract base implementation of thatface. This class provides
many methods which more or less all are used by fBEmanagement of the
EditParts. These can be overridden for customiaatfdiow GEF handles the
EditParts. Apart from these standard methods atiPBdican extend some
standard interfaces for added functionality i.eoffertySource which allows
info about the selected EditPart to be displayetthénproperties view.

15

All EditParts are created in a factory which is lempented through the
EditPartFactory interface which contains only orethod where the
programmer has to define which EditPart class avmgngmodel object should
be coupled up with. When an EditPart is created G&d-to be informed of its
presence to be activated, and if the EditPart sheanehow become obsolete
it will be deactivated and after a while garbagkected.

2.4.4 Requests and Commands

Within a framework there has to be a way for thtedent parts to
communicate with each other. In GEF this is donedoyests, which in turn
creates commands. These contain the informatidrhsato be supplied for
executing the intended action. There are three typis of requests,
CreateRequests, GroupRequests and LocationReqlieetsommon case
when creating a request is that a tool createquest for some specific
purpose like changing the size of a visual objectstecting another object.
This request is forwarded to the EditPart thahéstarget of the action. The
EditPart itself doesn’t know what the request meamsforwards it to the
corresponding EditPolicy which creates a commandh® request and sends it
back. The Command is then sent to the command stheke it will be
executed and the effects of the request will bargataction [5]. This is
shown in Fig 2.2 below.

EditPart ﬁ EditFalicy

Tool

SWT SWT Event >
Reqguests

[Requests >

Fig 2.2 Events, Requests and Commands

16

2.4.5 EditPolicies

EditPolicies is essentially the component in GEdt thives editing possibilities
to the EditParts. EditParts without EditPolicies arfact static objects that
users cannot interact with. An EditPolicy defindsatvis possible to do with an
EditPart, i.e. if it is selectable, movable or zasile. It is also possible for an
EditPolicy to issue requests to other EditPartsckvthen will forward these to
their corresponding EditPolicy. Each EditPolicy laa®le which defines what
type of requests the EditPolicy will respond to. BditPart can only have one
EditPolicy per role.

2.4.6 GraphicalViewer

The GraphicalViewer is another component that esswlithin GEF to make
the development of the draw2d part easier. It plesiJFace-like integration of
EditParts into Eclipse. For a JFace viewer to wusually needs some
content, a factory and some configuration. All gi@d implementations are
provided like drag & drop and other tasks thatteme consuming to
implement from scratch each and every time [5].

There are two GraphicalViewer implementations: SiagGraphicalViewer
and GraphicalViewer. The first supports native kicrg and the other don't,
besides that they are identical. The creation®GhapichalViewer is very
easy as its constructor has no parameters anddesothie method
createControl which creates the SWT control ofvilegver. When the creation
is done the only thing left to do is to attach afalitPart and an
EditPartFactory to the viewer and set the contentee root model element.

2.4.7 RootEditPart

The RootEditPart is a special EditPart that hasefaiion to the model and its
only purpose is to provide an environment for tloétfarts connected to the
model. In essence it is an interface between tlapl@calViewer and the
model EditParts. The RootEditPart incorporatesriayéhich are used to
separate and/or group figures. Depending on wipat tiye figure is, it is
placed in the appropriate layer so that GEF witidia them properly.

17

3. Design choices

3.1 Choosing data representation scheme

Choosing data representation scheme is one of ds¢ important design
decisions for our tool as this is the view thatad user will actually be
working with, hence if the scheme is not good eiatg tool in its entirety will
be essentially useless.

3.1.1 The Data

The data to be visualized is a generic relatioaslase with no bounds on the
number of elements in the database. Basically atabdse will be considered a
tree and the focused node will be considered tbetoothat tree. The focused
object and at least its closest children shouldigglayed with their most
important attributes so that a user can get the mgeortant info at a glance.

3.1.2 Hyperbolic Tree browser

The hyperbolic tree browser has been around fdnikewut it has not made it to
any standard applications [3]. As the name sugggeistsised to browse tree
structures so it is possible that it could be usabbur project. What it does is
display a tree in less and less detail the furfiteen the root node a node is. This
makes it possible to show trees with several thodisedes in its entirety on a
computer screen.

The earliest work on hyperbolic tree browsers apgzba the mid nineties and
there have been several papers about it since Reger Pirolli et. al. [3] have
done performance tests versus a regular file bnowseir results show that the
hyperbolic tree browser was faster in a seriegwiaval and comparison tasks.
Earlier tests made by Lamping et. al. [1] and bg@anski and Larson [2]
however does not show any such superiority.

18

Fibers lE'owers B Fruits ;
Aquat, Grains
Grasse

@Bacteria sl
Vegetable

E== Molecules

Geometry

Natural =
Contempaor
Future @The M
Animal Aﬂlin:lal

Tanglhl
hlngs Events Histori L

; Int
& 1 ‘{, ntang Measy Qual Top \ e \i‘

Ml
Fig. 3.1 Hyperbolic tree browser

3.1.2.1 Key points

» Combined display and overview: the hyperbolic tseawvser always
shows the search space in its entirety. It alsaaesthe amount of
information of the nodes gradually the further frthva center object
they are [3].

* Multiple levels: the division of the search spau® ia focused part and
a context parts is necessary to be able to shoentire search space.
And it allows the user to se details about the pantently in center
while all info can be browsed at all times.

» Integrated display: as the context and focus Eaegslisplayed in the
same display there is less time loss as the ussr ot need to visually
orient him in different displays when he wantsdoMl at different parts
of the search space.

* Nondistortion:lt is possible to integrate focus and context alisplay
without disorienting distortions to the user thagthde performance

19

3.1.2.2 Applicability

The hyperbolic tree browser has its strength im&hg very many nodes, even
if the majority is shown with very little detail.dihg it for this project would
be possible even if it has a few drawbacks:

Area: the area used by hyperbolic tree browsersdslar in shape while the
area it should be put into is rectangular resultmgnusable space. Also if the
hyperbolic tree browser would make use of scrofiganes it would further
increase the area that could be used to displayisbalization, but as parts of
it wouldn’'t be shown it goes against the origirtbda that all info should be
visible. All this results in a too small area faetfocused part of the hyperbolic
tree browser, especially with large databases.

Size: a corporation database can be huge, andfahe key points with
hyperbolic tree browser is that all nodes are igsilt is simply not possible to
show most databases fully on a screen, also theuédvibe to long a delay if
the entire database had to be loaded to the locapater at startup. The
hyperbolic tree could be used if the set of shoatles was somehow
delimited but that would remove many of the keyautages to it and only
using the look of the hyperbolic tree.

3.1.3 Pie Slice

We developed the pie slice scheme as we did nibiity applicable existing
scheme. The main idea is to have the focused oibjélot middle and the rest of
the objects represented by nodes displayed onlairtayvels around the focused
object as shown in fig. 3.2 below. Each relatigretyvould get a pie slice of the
circle to place its objects in. In fig 3.2 there &rdifferent relation types, each
with its own pie slice. In the figure slices ardimiéed by radial lines.

20

ol

Focused
Object

[

U

Fig 3.2 Pie slice scheme sample picture, circuidrradial support lines are
there to help understanding the scheme and wouldenpart of an
implementation.

3.1.3.1 Key points

» Extendable: the pie slice scheme doesn’t have angdon how many
nodes that can be shown depth wise but there ysliomted space on
each level. So when handling objects with manytiara there would
be need to incorporate a scheme to show only thesetected nodes.
It can also make use of scrollable panes to extemavorkspace area
making it possible to have nodes display some ahfout the object it
represents.

» Flexibility: the pie slice would create a slice frery type of relation
to or from the focused object thus always spreathiegobjects out as
evenly as possible.

3.1.3.2 Applicability

As this scheme was thought out by us specificalhtiis project it has the
necessary properties but there are a few drawtihaksnade us consider other

options.

21

Why was it good to build the interface in a cireutashion, we gained some
flexibility allowing the use of the full 360° arodnhe focused object, but what
where the costs? We found that when arrangingmgatar objects on a circle
it was less area efficient than we had first thaueggving too little room for
nodes at least on the inner circles.

Flexibility: could actually be disadvantageous aser would have no way of
knowing in what direction a relation type woulddieected thus she would
have to orient herself every time she refocused.

The algorithm: granted that the pie slice schenwe laafew flaws and that the
layout algorithm would be somewhat complicated bthe circles we choose to
rework this scheme to lose the most apparent flaws.

3.1.4 Quad tree scheme

This is more or less a reworking and simplificatadrihe pie slice scheme, first
the circular theme where dropped and the numbdiffefent ways in which a
relation type can build its tree where droppedtar f The direction set for every
relation type is defined beforehand but can beedtéo fit new needs. This
allows users to know in what tree direction shiatisrested in directly rater than
having to find out at every refocus. This also nseiat some relations will
have to share directions; this shouldn’'t be a gwbas long as different
relations are shown with different kinds of arroavsare visually distinguishable
in some other way.

22

Focused

Object
e — | //”/,//

NI

[

Fig. 3.3 Quad tree scheme. Note that in this picthe relations to the two
nodes directly right of the focused object may bdifferent types. With a more
advanced implementation of it one of the lines mighdotted to signal a
different relation type.

3.1.4.1 Key points

» Extendable: Quad tree shares the extendable pyopitht the pie slice
scheme. See 3.1.3.1

» Predictability: as all relation types always widlve their tree built in
the same direction a user can get an idea of whahat directly as the
picture is drawn.

3.1.4.2 Applicability

The point of this project is to make it easieritmfdata and understanding the
structure of data in databases, with its more riijidction allocation it is
easier to find the structure of the data shown.

There is a risk that with this scheme some side Imeaynder populated while
others will be to full to fit all nodes. This mapgiproblem will have to be
dealt with for each individual database that ttasnected to as that depends
on the allocation of directions, an allocation tisatery easy to change.

23

3.2 Algorithms

Both of the two major algorithms used in this pebjare based on depth first
graph exploration and in the first envision of dution they where one and the
same. Due to the MCYV structure of the eclipse/GEfg@mmming paradigm we
had to divide the initial algorithm into two, doitige same traversing of nodes
but in different MCV layers. The algorithm for cheig nodes works on the
model layer and its sole purpose is to select tltes to be present in the
control layer. The second algorithms task is to agarthe layout so that the
objects are displayed according to the quad treense. As the application
presented in this thesis is only a demo it isnttogpable of selecting info from
a database and including it into the model wherssary. To fill this gap there
would be need for a third algorithm, this algoritrould be very similar to the
node choosing algorithm. The differences are thabuldn’t create the
controller objects for the chosen model objectstaatlit would check for
external links for the nodes and fetch any wantgdah not already in the model
layer.

3.2.1 Choosing nodes

As stated this algorithm only works with the dataady in the model layer and
uses the data in the DParam component of the nhodielcide what model
objects to create control layer objects for. Indregram of the algorithm we
have chosen not to represent the condition statisnmesiead we have the
guestion they represent. This choice was made fioove the readability of the
diagram and a short description of the conditioiish& given later.

First we need to know what this algorithm is sugabt do, which nodes are
the wanted ones. We firstly consider every relatige two separate types, one
type directed away from the focused object andtgpe directed towards the
focused object. This is mainly done to make thedquee readable at all. With
this scheme if a relation between the focused thjed a first level object
indicated that the first level object is a subplen all of its children in the quad
tree will be subparts of its parents. Had we natedihis there would not be any
way of knowing what kind of relations its sub treeuld contain. Each relation
type has a relation constrictor object that spesifiow many levels of it will be
shown. This constrictor does not know of the dicectivision it only works on
relation type the direction division is achievedthg algorithm. There is also a
list of objects considered unimportant and nonthes$e objects children will be
fetched but the objects themselves will be visible.

Firstly it should be said that this algorithm catsiof to very similar parts. One
starts at node 2 and the other at 20, the firghedge parts works only on
relations directed away from the focused objectentiie last only works on
relations directed towards it. Any list operati@me done on the most recently
mentioned list.

24

15
Remove

1 16
Add focused I5 list empty? head
Ohject no no
J b Laok at I T £
i i the next| | I5 it the same type
4 Are there any mare as relation in 57
Make a list of all Lists from & - 5
refations frarm it 11
l ™ yes |LOOK atthe head £ 13
o hatkts 20 Should this relation
listfram 2 e e Expand longer?
- recently made § ves
hWake a list of all l - e -
relations to & 2 the object
focused object Rimo;e Is list empty? It points to, and
: = remoyve the head

yes
2 5 no i
Make a list of all
Is st empty? 15 this relation / e no l
\ Supposed to be 7 —no
no

expanded Add the object Is ohiect |

25 yes It points to blocked?
23 | blocked:
Look atthe head Hienee
head - 37
- ¥ " - Are t_here any mare yes - "
; : 24 B Ak .| Lists from 20 \{ Is list empty?
IS this refation [t 17 i r
Supposed to be yes i 38 i
expanded Take the mast 3
l VEE = i 29 recently made Lock atthe next
s list empty? }
yes . 7 ; P4 N na J & 34

Remove

;i 0 H

Add the object] | blocked? Look at the head }\ Is it the same type 7> head
It points to T w‘ as relation in 237

25
Addthe cbject | |Meke alist of el e l)
: i 32
It points to, and Hadnir yes | ShOUI thIS refation
remove the head| Expand longer?

Fig 3.4 Algorithm for finding the wanted nodes.

Conditionals
5, 13, 24 and 32: this checks the constrictorHerrelation type to see if there
should be another layer.
8 and 27: A check to se if the object is considengichportant if it is the
children is not shown.

3.2.1.1 Realization

The base of this algorithm is recursion as it g@ad way of doing depth first. If
we look to the diagram nodes 7 through 19 and &gutih 38, they are two
different but similar recursive functions.

3.2.2 Placing into zones

When the wanted nodes are found next is decidimgtbglace them and we
have the quad tree scheme to adhere to and tatththeasiest way we have
decided on dividing the on screen layout into semglarts. First we place each
node into one zone which is more or less just ea &y be placed in. The zones
correspond to the layers in the quad tree, each Bojast a list containing zero
or more figures but they convey information on vehter draw the figures they
contain. Each of the four directions has its ownezstructure if they all where
laid out as their figures should be drawn we waétlfig 3.5.

25

Zone 2

Zone 1
Zone 0
N N
o (=} E;‘ N
= > 5 o
D D o 3
= o o D
Zone 0
Zone 1

Fig. 3.5 How figures in the zone lists are placed.

Just as with the finding nodes algorithm the zdaeipg algorithm divided into
two parts each doing nearly the same things howtteee are more differences
between the two parts here than in the finding sadgorithm. Here if a relation
type is supposed to point up it only will do sehié relation is directed away
from the focused object. If the relation is directewards the focused object
then the direction is reversed and will point damnstead. This is done to make
the view more easily read. In the figure 3.6 obfgdt a subpart of A and has
the subpart C. If subparts are supposed to poinhdwe will get them in the
same order as we would if A was the focused olojedting it easier to interpret
the data as the order of the figures are the sammeatter where along that
relation chain the focus is.

26

A A
Refocus Foc.
On A
B v
Foc — B
- C

Fig 3.6. Relation direction before and after refocu

As stated each direction has its own zone struttutehis is not mentioned
much in the diagram mainly due to space issues.edemthis is how it works:
the direction is decided in node 5 and the direatiecided there is the one used
until node 5 or 22 is reached. Depth is the vaeidbat keeps track of in which
level of the zone structure (see fig. 3.5) nodesishbe added to.

Here the advantage of the depth first processinbgeofiodes and figures
becomes apparent. Because of the depth first mimgethe order of the figures
in the zones structure have the property that dfahem are drawn from left to
right in their respective zones no of the relatiasiiscross. So this is the scheme
we use for making sure relations will not cross.

27

Ilake a list of all

relations to it

19

Look at the head Y

1
Add focused
Ohject

l

Iake a list of all
relations from it

Are there lists in

5 list empty? ¢ i
Check direction | : i |Remove o backto
for relation o 34 yes - e e:pty’? head = listfrom 2
head Finished %) 16
Look at the head -«
If needed add i Depth -=1

list for zone 0
depth =0

Add the object It
points to the zone
of the current depth

4 |relation in 227

30
I5 it the sams

Type as

Check direction
for relation

yes

FILD queus

4

yes

" R‘:\—“ Is list empty? |
5 |Look atthe head

¥

If needed add

as relation in 57

Remowe
head

I5 it the same type

l

Fush current list
On FILO queus

list for zone 0
depth =0

-

Wake a list of all

remave the relatio

relations from it, and

no

1

Y
I list empty?

\ES

y
Add the object It
points to the zone
of the current depth

4 If needed add list

for zone depth +1.
depth += 1

10

Ilake a list of all
relations from if, and
remoye the relation

i

Fush current list

no

It needed add list
for zone depth +1 = 23
depth += 1 op queue,
Depth -= B

Arethere lists in
FILO queus

Fig. 3.7 Algorithm for placing figures in zones.

Conditionals

on FILD queus

Any list operations are done on the most recerahdited list.

5: this checks the constrictor for the relationetyp see in what direction it

should be shown.
8, 15, 25 and 32: as this was done with recur$iesd nodes are simply stack
manipulations as the recursive function are calleceturns.
22 this checks the constrictor for the relatioretyp see in what direction it
should be shown and the reverses the direction.

3.1.2.2 Realization

This was realized in much the same way as the fiodieg algorithm with the

recursion and for-loops. The only real differeneé¢hat they work on different
levels in the MCV hierarchy.

28

4. Implementation

4.1 Program structure

4.1.1 The Model

As the GEF/Eclipse approach is highly MCV orienteslneeded to build a
model capable of containing data objects from aatglohse. So we had to use
very general data storage. All data is stored agyhists and Strings so that any
amount of data of any kind can be stored.

4.1.1.1 Database emulation

4.1.1.1.1 Database objects

In our modeling of a database we represent anypdstaobject as a structure
containing a unique identifier string and an Arraylwith an arbitrary amount
of attributes. Each of the attributes being represgwith a structure containing
two strings, one for the attributes name and onédwalue. We choose this
representation because it is very simple but\aily adaptable to different types
of data.

4.1.1.1.2 Database Relations

A relation is represented as a class containingafraur database objects and a
type string and would be interpreted like this: tekation originates from one of
the database objects and points at the other.&lagon then has the type
specified by the type string. This structure wassetm because GEF relations
are built in this way and it is easier to have theark together if they are
similar in structure.

4.1.1.1.3 The full database model

The class that constitutes the full database ig siemple in structure but a little
more complex in its methods. The data it contaiesw@o ArrayLists, one of
database objects and one of database relatioms,alealso a different structure
for storing parameters for the drawing of the foimigge. The methods are
mostly for different sorts of accessing and aligtime data in the model.

29

MdbModel

] 1
ohiects relations

MdbObject | %! dest " | MdbRelation

0.1 origin *

attributes

*

MdbAttrib

Fig. 4.1 UML diagram showing the model.

4.1.1.2 Parameters for generating quatree

To solve the problem of knowing which objects tspdiy, we appended a
structure that contains all the necessary parasefee most important
parameter when creating a quad tree is the foanisiedt, around which the
whole view is centered. There is also one strudtureach relation type in the
depicted view containing information on how to hartthat relation type. It has
data on how many levels of objects related to tlee$ed object with this
relation type that should be shown or if it sholoddleft out. This structure
includes a specification on what direction thetietashould be expanded in.

There is also the choice to hide all the childrearoobject so there is a list of
objects that are supposed to be handled in this way

30

relations

2 DRelationConstrictor

focused

fanned i MdbModel
: 1 relation type
* 1 =, * "
MdbObject | e | MdbRelation
0.1 origin £
14
attributes
MdbAttrib

Fig. 4.2. UML diagram showing model and parametiercture.

4.1.2 Object package

The object package contains all EditParts, EditRediand Figures that is needed for
displaying each MdbObject. The package has sixselaObjectEditPart,
ObjectEditPolicy, ObjectSelectionEditPolicy, ObjdodeEditPolicy, ObjectFigure
and ObjectFigureCompartment. The structure of leses are described in Fig 4.3

31

|
|
: / ObjeCtFigure
|
|
|
|
|

————————— DhjectEditFart

ObjectFigure
Compartment

ObjectEditPolicy

Fig 4.3 The Object package structure.

4.1.2.1 ObjectEditPart

This is the EditPart responsible for displayingMatbObject in the diagram and is the
most central part of the object package. The dassnds AbstractGdipEditPart and
implements NodeEditPart and IPropertySource [SkthdrtGdipEditPart is further
described in the diagram package. NodeEditParspzeaialized type of
GraphicalEditPart that is specially made for harglionnections, since our goal is to
create a tree-like structure it was the naturalaghdPropertySource is implemented
since it provides easy access to the properties wieere we want the info on a
specific object to be shown. All functions Objecitigdrt contains are needed for these
implementations to function correctly. It initiadig the EditPolicies and creates the
ObjectFigure.

4.1.2.2 EditPolicies
These classes take care of all the requests thaisaociated with the EditPart. The

only requests that are handled are selectionRexjapdtdeleteRequests as the
program doesn’t support any editing by the user.

32

4.1.2.3 ObjectFigure

This is the actual figure that the EditPart wiladr It is a very simple figure that in
essence is only a label and an ObjectFigureCompattm a toolbar layout. It is
described in Figure 4.4

ObjectFigureCompartment ObjectFigure

/

/ Name «—— |
v

Attribute 7
Attribute /

Attribute

? Labels

Fig 4.4 Visual structure of ObjectFigure

4.1.2.4 ObjectFigureCompartment

This class is part of the ObjectFigure and it figare containing all the attributes of
an object. These are in label format and are aedinga toolbar layout.

4.1.3 Relation package

4.1.3.1 RelationEditPart

It extends AbstractConnectionEditPart which hasoalnall functionality needed; only
the initiations of the EditPolicies are added. Vde'tineed to create our own figure
for the relation as the PolylineConnection usedbgtractConnectionEditPart fills all
our current needs. It also implements IProperty&ogranting easy access to the
properties view where we want the info on a specélation to be shown.

33

4.1.3.2 HideRelationAction

This is the action for hiding one relation typestis achieved by setting a Boolean in
a DRelationConstrictor which resides in DParam. fbloeis view would be affected in
the same way if the renderdepth for that relatitvens set to zero. But if it was done

that way the previous renderdepth value would be lo

4.1.3.3 HideRelationDialog

This is the dialog for HideRelationAction. It ligise available relation types in a list
and when a type is chosen its current visibilityd®ds displayed and can be altered.
Screenshots of this dialog can be seen in chaptés.5

4.1.4 Diagram package

The diagram package contains all classes usegtesent the full diagram in the
different layers, and also a few actions that wankhe diagram. The classes are
AbstractGdipEditPart, ConstrictorAccessor, DiagralitEart,

DiagramLayout+Manager, Focuser, GdipEditPartFactghyXYLayoutEditPolicy,
RelatedObject, RelationAccessor, RenderDepthChaargeRenderDepthDialog.

4.1.4.1 DiagramEditPart

This is the EditPart that controls the entire shalagram, it is here the node selection
algorithm (see 3.2.1) is implemented and the resteoEditParts are created, but this
is basically the implementation of that algorithnda few additional small methods.
The figure it uses for graphical representatioa isreeFormLayer which is basically
an empty area where other figures can be placad .aféa can be extended in any
direction if need be so there is always more spadeaw figures in no matter in what
direction we want to expand the view.

4.1.4.2 DiagramLayoutManager

This class is responsible for the layout of theffes into the FreeFormLayer. Its main
algorithm for placing the nodes is more thorougitplained in 3.2.2. There is more
to the layout than just finding the right zone &ach figure. Placing the figures in a
zone is pretty simple, first a center point for lome must be found (see fig 3.5). To
make sure there is always enough room for the éigjuall figures in the zone
immediately inside the current one are checkethtbdut how far the largest figure
extends, then the same is done for the current 2dhen both these measurements
are found a margin is put in between the zoneslandafe distance is found. The
gradual shading of figures the further from theused object we get are also a part of
this class.

34

4.1.4.3 MyXYLayoutEditPolicy

The DiagramEditPart has to have a layout policywhbeilon't need more functionality
then is already available in XYLayoutEditPolicy. X¥LayoutEditPolicy is abstract
MyXYLayoutEditPolicy extends it and implements ‘wet null” methods for all
abstract methods.

4.1.4.4 GdipEditPartFactory

Creates all editparts for the project. The fundidy of EditPartFactories are further
described in chapter 2.4.

4.1.4.5 RenderDepthChanger

Implements the IEditorActionDelegate interface miegihat it is an action for an
editor activated menu or toolbar. This is an act@raltering how many levels a
relation should be drawn in the focus view. Ther asgy sees the dialog and the
action merely starts the dialog and passes thenv#tion to the place it should be.

4.1.4.6 RenderDepthDialog

This is the dialog for the RenderDepthChangeists the available relation types in a
list and when a type is chosen its current renéepthdis displayed and can be altered.

4.1.4.7 ConstrictorAccessor, RelationAccessor andeRitedObject

The accessors are used to access info in the DRardmRelatedObject is a temporary
storage class.

4.1.5 Editor

This package only contains the class FocusEdittieMall parts of the program are
created they have to be displayed. The easiestavdy this is to display the model by
extending the GraphicalEditor class. This clasateea good environment for
displaying models, but it is not suitable for usdigectly and should be tailored for
specific usage. So therefore the FocusEditor est&rdphicalEditor.

4.1.6 Plugin

This package also only has one class namely theRBdjin class. The purpose of this
class is to provide a structure for managing Ubueses. Therefore GdipPlugin
extends AbstractUIPlugin which does exactly thatiskes the generic startup and
shutdown methods to manage images, dialog settimgsa preference store during
the lifetime of the plug-in.

35

4.1.7 Data

The purpose of the Data package is to provide tenfacte for writing and reading

files that resides on disk so the main programmibbave to worry how it is done. It
just supplies the necessary information and the [patkage will take care of the
practical issues of writing and reading from difke package consists of three
classes: Datalo, DataLoad and DataSave. Datahe islass that does the real reading
and writing the other two classes are just impleeito provide the buttons for
loading and saving.

4.1.8 Datalo

This is the central class of the data package ttiner @lasses are just for making this
class available to the program by creating buttons.

The class contains four functions: convertModetQnvertXML, writeFile() and
readFile(). Initially there should only have beem tfunctions but since the XML-
Decoder/Encoder didn’t accept our classes we haditd a converter that converted
our objects into something that it could accept.

The convertModel() takes a MdbModel object andiagt The string is the identifier
for the file that is to be written to. The functioanverts the MdbModel object into a
structure consisting of ArrayLists, Strings ancegers. When this is done it calls the
writeFile() function with the converted structumedathe string as arguments.

The writeFile() function takes an ArrayList andtang as arguments. The string is the
identifier for the file. The function then loopsdigh the ArrayList and writes each
object to file using the java.beans.XMLEncoder.

The convertXML() takes a String as an arguments Bhing is used to identify the
file that is to be read. The function then calls teadFile() function with this string.
ReadFile() then uses java.beans.XMLDecoder to exéma ArrayList from the file.
This list is returned to the convertXML() functierhich converts this structure into a
MdbModel object which then is returned.

4.2 Putting it all together

The program is based on the model-controller-viewagigm and with that as a basis
we will see how the program works and make usésgdarts to produce the final
view. It all starts with the model (see chapter#fbr further details). The model has
to be created before the rest of the program gstaegecute, and this model is
unchanged throughout the programs execution wéleteption of the parameters.
When the program gets the command to render theivigill first create a controller
level this is done by applying the node choosiggathm (see chapter 3.2.1 for
further details) and the nodes that where chospasdsed to the EditPartFactory
(4.1.4.3) which creates the ObjectEditParts (41).Zach of the ObjectEditParts
contain a figure (4.1.2.3), the remaining work éodmne is the layout performed by
the layout manager (4.1.4.1). It uses the plagitg zones algorithm from (3.1.2) and
also handles the dynamic placing of the zonesadonih two figures may overlap. The
gradual shading is also done during this layout.

36

Now that we have seen what is done when rendenmgiew we can take a look at
the prerequisites for it. As already mentioneddhw®as to be a model with all the
objects and relations but it also has to contaarDRaram (4.1.1.2) in order to
properly render the view this class is very impatris it is here that any alterations of
how to render the view is saved. Before any remgecan be started there is also the
need to create the DiagramEditPart (4.1.4.1) anst mfthe other classes in the
diagram package (4.1.4) as they are mostly usddferent ways to create the
controller and view layers.

To manipulate the view there are a few tools winictiifferent ways alter the info in
DParam so it will change the choice criteria’sttoe algorithms and a different view
will be rendered.

4.3 Working with Eclipse/GEF

Starting this project neither of us had worked wethipse before, so we thought
we should have a chapter regarding our experiemcking with eclipse for the
first time.

4.3.1 The Eclipse paradigm

Although both of us are somewhat experienced Jeogrammers and have
been using Java as our main programming languagbd@ast five years the
transition to program for eclipse was a big onegPxmming for eclipse has
been describes with the phrase “don’t call us vl you”. And though meant
humorously it captures the essence of programnaingdlipse. This was at first
the greatest problem as there is no main classhewhere the execution
begins. For someone used to write Java programs $opatch this is very
perplexing. Through the course of this project¢hass been many times when
we knew how to do some task but not where to pad that it would be called
at the right times. Also one problem that sometiarese where that since we
where programming in a predefined MCV structuredhehere some
abstraction barriers that took some time to getl tiggoften it was the case that
some function or information that we intuitively uld place in one class would
mean that we would break the abstraction barridrtherefore could not be
done that way. It was also the property of this M&Micture that forced our
layout algorithm (3.2.1) to be divided into two fsar

There are good API:s for booth eclipse and the-plagve have used. There are

also several tutorials and in depth “how to” guideailable on the eclipse
homepage [7]. These are of high quality and vetgfae

37

5 Results
5.1 Screenshots

As the program in it self is the result we havesghoto have an extensive walkthrough of the
functionality accompanied by screenshots to shoatwabtually happens and to have a more
easily understood explanation of the functionaltyhave implemented.

First we start with an “untouched” picture of thecks Editor. The model displayed is
generated and has a center object which is suresling four binary trees, each with its own
relation type and display direction. To give th#aient trees individual structure we have
then fanned in or blocked some nodes from showiag thildren.

#= Resource - Focus Editor - Eclipse Platform
File Edit Mavigate Search FProject Run G-dip Window Help

jrirEHE |- |# [ve-2- | e £ | amesource

upR.
atkribl: bar| attribl: barl
attribZ: foo| attrib2: Foo
atbrib3: 1| atbrbsid |

m centre
atbrib2: Fool—_ ateribl: pref
attrib3il | atbrb2io

attriba: laboo
attribg: stesl

~daR |

bar| attribls bar|
aktribz; Foa!
akbrib 1

'-EProperties Sg.."\ml‘jlavig_atorEOutiine- | s B > = Eﬂ_
Propert: I Value Ii
| |
Fig 5.1

38

5.1.1 Selection

First we show how it a selected object looks, faststandard eclipse selection frame. Down
in the properties view the properties of the sel@abject is shown, in this instance it isn’'t
very helpful as all properties is visible direatiythe figure but that won't always be the case.

£~ Resource - Focus Editor - Eclipse Platform
Fie Edit Mavigate Search Project Run G-dip Window Help

J[“j + L = _i%" J,@@ Jt:j e e Ja’ B % . F ﬁ![f’_‘,_Resb_urce

G z

at| CENkre
attr 2‘..'f'a't.ji-.___q__attrib1_: pref ’
trib3: L attribz: 0
attrib3: laboo
athribd: stesl

Elproperties 32 . Mavigatar | Outling |_E skl |
Propert I Yalue !
attribl bar
attribz foo
attrib3 1

Fig 5.2 Object Selected

39

Below we have a picture with a selected relaticairag uses the standard eclipse selection
look, and just as before the properties is showtherproperties view.

Resource - Focus Editor - Eclipse Platform

File Edit Mavigate Search Froject Run G-dip Window Help
J[‘ﬁ" '.,*i,. L__ J% * |/¢n Jf}:' PG S b | 2 B % . F ﬁﬂ.—‘gResource

IR, 2]

i 5 -,centre.-
a0 attribl: pref
atkrib: 0

atbrib: _I_éboo
attribe: stesl

: : "] ! | ", e %
EPropertiesEE__I_\IavigatquOutline! B :",—‘:b e T]
Property | alue |

1 Fram centre

2 Type up

3To upR.

Fig 5.3 Relation Selected

40

5.1.2 Refocusing

Refocusing is the most central of the functionaliy have implemented and we have chosen
to show a refocus to object leR the selected offig.ih.4.

Resource - Focus Editor - Eclipse Platform

File Edit Marvigate Search Project Run G-dip Window Heip
J s 2 |% = _| & It::' e s _| & B ﬁ . :Fﬁ ﬁl&Rgsgum;

m |Focuses the selecked object| i

o attribl: pref
attribz: 0
attrib3: laboo
attribg: steel

ark—"

= Propertizs 25 \‘\ NaCfiga'tor ! Qutline I

Property | walue |
attribl bar
attribz foo
attrib3 i

Fig. 5.4 before refocus object selected and moasegy posed.

41

As can be seen in fig. 5.5 IeR is now the focudgdab. Centre is placed to the right even
though it has the same relation type as all theraibjects in the fig5.5. It is done this way as
the relation to centre has another direction therother objects relations. If we compare fig
5.4 to 5.5 we can se that the objects that arebikéeps the same structure after the refocus
as before, making it easier to recognize objeetsdppears in a refocus.

£ Resource - Focus Editor. - Eclipse Platform [’__||’E][3|
File Edit Mawvigabe Search Project Run G-dip Window Help
FieE 2 aQ, - _. & R il _- 2 8 i@ ¥ =l [Resource

cus Editor: X ﬁ‘

\ leRL

at| attribl; bar IER. :
attrib2: Foo - attribl: bar ceritre
atbrib3 1| attribz: Foo attribl: pref
tabbrib3: 1 attribz: 0
| leRR_ | attrib3: laboo!
_attriljl:'ba_r?-””'ﬂ attribe; steel
ath atkrib2: _Foog
attribail /_attribS:-l
IRRR_
attrind
| El Properties Eg.."\,_I_‘JavigatorIOutIine_ (6 2% e » = mll|
Property | talue |
attribl bar
attribz fao
attrib3 1

Fig. 5.5 after refocus

42

5.1.3 Fanning

Fanning in or out sets a state in the DParam tcerttak node choice algorithm ignore all of
one nodes children when selecting nodes for thesfe@w. In fig. 5.6 we can see the
program ready for a fan in with an object sele@ed the mouse pointer hovering over the
fan/block button.

£~ Resource - Focus Editor - Eclipse Platform
Fie Edit Mavigate Search Project Run G-dip Window Help

_| Ci=ld = J%" J,@@ Jt:j e _| »’_B[\!&ﬂ:i< . F ﬁ!_PDResb_urce
By, LA

G z

upl

sttrib1: b centre | attribl: bar
at -faqmattribi_: pref __—attrib2; Foc
kH attribz; 0 attrib3 1
attrib3: laboo
athribd: stesl

_HR
attribl; Bar

" = = T
= properties 52 " Mavigator | Outline |_E 2 - = F
Fropert | walue |
attribl bar
attribz foo
attrib3 1

Fig 5.6 before fan in/block, object upR selected amuse pointer posed for click

43

After the fan in the view displayed is exactly #@me except that the children of object upR
is no longer displayed. The program is set up ta & out as upR still is selected and the
mouse pointer still hover the fan/block button.

Resource - Focus Editor - Eclipse Platform

File Edit Mavigate Search Project Run G-dp Window Help
_! Er=El & I% ol ‘%Q |"€3 G wiepie [Ed _Bi\!ﬁfi . ik ﬁ: [5Resource
CREIEEED. N 2
attrib2i foo| Tattriba: F
attrib3: 1 attrib3: 1
attribl; bar centre
attribz: foo—___ attribl: pref
] [attribe: 0
- attribia: laboo
_ IR attribd: steel
atbribd: Bar—" i
attribz: Foo| attribz: foo
atbribid: 1 sttrib3: 1|
JEProperties %'_NévigatoriOutline_ B I‘=:€> B = E\I
Propett: I Value]|
attribl bar
atkribz foo
attrib3 1
| | |

Fig. 5.7 After fan in, object still selected anduse pointer hovering fan/block button.

44

When the fan out is done the objects is rearraagédhe children of upR is again included in
the view. This shows that the action doesn’t chahganodel but simply alters the criteria of
the choice algorithms.

& Resource - Focus Editor - Eclipse Platform
File Edit Mavigate Search Project Rum G-dip Window Help

_| - h J Q- J - _| e el e T J 28 1 H ¢ ﬁ!_n.r‘[!_jp\esource_

CrmmE, =

__upR
Sthribl: bar
attribz: Foo
attrib: 1

ikt at centre
attrib2; foor—._attribl: pref
attrib3: 1 attrib2: 0
attrib3: laboo
atbribe: stesl

—

; = s
EProperties 8 \\‘\r_\lavigator i Outline

Propert I Walue !
attribl bar
attribz foo
attrib3 1

Fig 5.8 after fan out

45

5.1.4 Changing Render depth

Setting the number of steps of each relation typkas for easy manipulation of the focus
view to show only the data the user is interestedhi Fig. 5.9 we can see the starting view
and the mouse pointer hovering over the renderdmpton.

= Resource - Focus Editor. - Eclipse Platform
File Edit Mavigate Search Project Rum -G-dip Window Help

|5 HE R @ =00 |2 s MM ot [Rorons

£ Focus Editor. X rChanges a relations render depth] 8

upl |
atbribl s bar
attribZ; Foo
attrib3: 1

attribil: b‘ar‘:
at!ﬁ'r“ib_zl:' Fao!
atkribdi 1 |

| cerkre | b
!::!oj-h______att[ibl s pref | —aktrib2:
| attrib2: O | aktri

attrib3: laboo
attribe: steel

hq“““'-at_trib'i-: bar
attribz: foo
attribd: 1 -

; - T . s
| El Propetties EE\Na\tigator :_Outlin_e_ ’E :«% B =0
Property Yalue I

I |
Fig. 5.9 Mouse pointer hovering the change reneégtldbutton

When the render depth button is pressed the relegeh dialog appears, it gives a list of
available relation types. These relation types tave to be visible in the view or even
represented in the model, they are the types thgrgm is capable of recognizing and make
alterations to.

46

In Fig 5.10 we can se the dialog as it pops upth@anouse pointer placed at the right
relation type. With a mouse click we move to figs.When the relation type is selected its
current render depth limit is displayed and setidieis shows the current value and allows
the user to directly type in the new value withbaving to remove the old one.

#= Render Depth

Seleck relation name

up
righ
dow
left

select renderdepth for a relation

oK | Cancel

Fig. 5.10

= Render Depth

Select relation name

8]

down
left

select renderdepth For & relation

s

10

QI | Cancel

Fig. 5.11

= Render. Depth

Select relation name

8]

down
left

select renderdepth For a relation

1

oK Cancel

Fig. 5.12

As seen in fig. 5.12 we chose 1 to be the new rethejgth and the mouse pointer now hovers
the ok button. Again a mouse click takes us tand figure.

47

Fig. 5.13 shows us that the view is the same bruhfright relation type which now is only
shown one step removed from the focused object.

Resource - Focus Editor - Eclipse Platform
File Edit Mavigate Search Praject Runm G-l:iip WWindaw Heip

I-EE e~ lec-o- o Bl | (iResource

cus Editor X

_upl
atkribl; bar
bz

o
atkrib3: 1|

centre
attribl; pref
attribz: 0
attrib3: laboo
attribg: steel

=l Properties Eﬂ‘\r\lavigator.!bu'tline-| E LR - ENI

Propert | walue |

Fig. 5.13

48

5.1.5 Hide relation

On the same idea as the render depth changer abegnt the hide relation action. The
difference is that hide relation is an on or oéitet either it is hidden or not, the hidden state
would look exactly the same as if we set the rea@gth to 0. However if we use the hide
option the render dept will be remembered when hgese to show the relation again. . In Fig.
5.14 we can see the starting view and the mousggudiovering over the hide relation
button.

Resource - Focus Editor - Eclipse Platform

File Edit Mavigate Search Project Run G-dp Window Help
e At ey 1 [B Epesource

ar|

attribd:1 | attriba: 1 |

centre | t
attribz: Fon—___attribl: pref | attr
attrib3il attribE: 0 2

- a_ttr!b@.' laboa ’—/ —
attribt: bar -t r"‘“aftr_%_ 1 Bar
attrib2: Foo, attribz: Foo
atribg: 1 attrib3: 1

= Propetties E@ﬂ_fxlévigatoriOutline. B e vS mj
Propert I Walue]|
|
Fig. 5.14

49

Pressing the hide relation button we open the taiion dialog (fig. 5.15) just as in the
render depth dialog there is a list of the avadailation types and when one is selected we
get the current state displayed, in this caseiogldype down has “show" as its state.

Hide relation

Select relation name
up

right

left

Select:
i Shai

(i %Hide

Fig. 5.15

#= Hide relation

Select relation name

fup

right

left

Seleck:
7 Show

" Hide

(6] & | Zancel

Fig 5.16

The state for relation type down is set to hide,dk button is pressed.

50

The resulting focus view is seen in fig 5.17 whitlere are no object displayed that are
related to the focused object by the down relatype.

£= Resource - Focus Editor - Eclipse Platform

File Edt Mavigste Search Project Run G-dip ‘Window Help
_I Ci=El & _l Q- J & | it b ! & B ;%I. s @ﬂ [Resnurce
5 hide:s relation =

aktr bZ: Fon~ . attribl: pref
atbrib3: 1 | atkribz; 0

attriba: laboo
attribd: sheel

| ElProperties 52 . Navigator ; Outline |
Property | valus |

Fig. 5.17

51

5.2 Performance tests

5.2.1 Platform

5.2.2 Setup

5.2.3 Tests

AMD athlon 3000+, 512 MB ram, Windowx XP, java 2 SB, eclipse 3.0

Tests where run on a standard personal computerawéw open though
inactive programs as to simulate standard runnimglicions for the program.
The data where generated in four binary tree strastwhere one tree where
completely filled to a set depth before the nexerehused so the last of the four
where not always as large as the other three. Wheetests where done all of
the objects in the model where shown and thus thileeze no relations that was
to be ignored, if there where many such relatitiesréfocus times should be a
little longer but only marginally.

For each model size a refocus from displaying th@mum possible number of
nodes to displaying the maximum number. For atktesveral different
measurements where made, first of all the totat imd also the times for
choosing the visible nodes and for the layout. f@sellts of these tests are done
with all data already in the model, if it where aessary to retrieve data from a
database that would slow things down consideratpeeially in the beginning
when all data needs to be retrieved.

52

5.2.4 Results

Refocus time

0 500 1000 1500 2000 2500 3000 3500 4000
nodes

Fig. 5.18 Refocus time graph.

The runtime of a refocus grows in a polynomial meann

Formula 5.1 T=2%0" n% 9*10"n+0,3512

53

refocus time

0 250 500 750 1000 1250 1500 1750 2000
nodes

Fig. 5.19 Refocus time graph, enlargement

The more relevant part of the refocus time diagasnwvaiting times of more
then a few seconds is way too long to be useful.

execution times * layout
= choose nodes

0 500 1000 1500 2000 2500 3000 3500 4000
nodes

Fig. 5.20 Refocus time graph for layout and nodsosing algorithms

54

The execution times for the two major algorithmsur program both have
execution time curves similar in shape to thaheffull refocus Fig 5.18 and
Fig 5.20. As shown in the percentage diagram (fd.bthe node choice
algorithm keeps at ~3 - 4 % of the total runtimke Tayout algorithms
execution time grows at a slower rate than thd timtee and takes up ~ 14 —
16% of the runtime.

18,000

16,000

14,000

12,000

10,000

%

8,000

6,000

4,000

2,000

0,000

procentage total execution time layout
= choose nodes

——-’—'.—_______,_..—l——'— —

500 1000 1500 2000 2500 3000 3500 4000

nodes

Fig. 5.21 Layout and node choosing algorithms roetin percent of total refocus time

5.2.5 Discussion

The total refocus time is the most interesting abows us how many nodes the
program can handle while keeping the delays witbasonable bounds. As can
be seen in fig 5.18 the delay for a refocus graapsdly when there are many
nodes. From this diagram we can see that nodesoust 2000 nodes starts
taking over 6 seconds which is defiantly too lomdp¢ considered useful. So the
useful frame is from O to about 1000 nodes. 10Gfa@re however plenty of
information, even if the user only needs to brow$enth of that the focus time
won't be much of a bother. If the user is step@ngund in the data with many
fast refocuses the node count should be keptriwoat 500 where the refocus
time is at about half a second.

As most of the execution time, about 80%, is penfedl in the eclipse
framework there is very little that we can do therémprove the performance.
The parts that can be improved are the layout le@ahdde choice algorithms,
the node choice algorithm takes up to 4% of theetien time, so improvement

55

of that wouldn’t make much of a difference. Thedayis more time consuming
at about 16% and there might be worth it to trimiprove its performance if the
current performance would prove too bad in thelautdat the moment there is
no need to do that.

56

6 Conclusion

We have produced the working skeleton for a grapliatabase program for use in
Eclipse. This result doesn’t quite fulfill the iiait goals to actually produce a full
working database browser. As we got some insighttime subject it was clear that it
would not be possible to do all this. Looking & tievised goals this is exactly what
we set out to do.

The database is displayed in Quad tree fashiorrentiee can be navigated through
selecting different objects and changing the fodudgect. Databases can be massive
and therefore we have implemented limits on howysaeps a relation is allowed to
proceed, also we have fanning and blocking to &rrgirune the tree to a more
readable form. The Program also has the abilirg#nl a database from and save it to
disc via an XML- interface, this will also save #ie settings such as fanned relations.

All these functions where tested and timed showliag) the program preformed within
reasonable time limits. This proves that our choicalgorithms where sound and
good enough.

Most of our insights are in the Eclipse/workinglwitew paradigms area, which
individually is too insignificant and too numeraesmention here, but we have some
general thoughts about Eclipse. One of Eclipseatgse strengths is also one of its
greatest weaknesses: It is all there; almost evimiytyou need to do is made for you
just waiting to be used. For someone with a lodxgderience with eclipse this is very
convenient and time saving. But finding all theseifaces and classes for the first
time is very time consuming and when found thregrtgus of the work is still to be
done in understanding how and where to use it cthyreviost of all we learned that it
is invaluable to have some one with this experigoaesk about this sort of things.

In retrospect there are very few things we wolkd to have done differently, most of
all we read some books on subjects that later be@arnof scope, mostly books about
databases as that part was left out of the projéett time would have been better
used to study books about Eclipse/GEF.

57

7 Further Works

If we look at the use cases described in appendnaAy of those are as of yet not
implemented and also much of the infrastructureghese cases need to function is
not implemented yet.

7.1 Infrastructure

The first and most obvious thing that needs todreeds to create the connection to a
database as that part is totally left out in thiggrt. To do this we need to firstly
create a library to read the database and translateur model classes so that it can
be used by our plug-in.

Then we need to rework the node choice algorithmagter 3.2.1) so that it notices if
there are any nodes it is supposed to chooserthaba yet read into the model then
invoke some method of the library described ingrevious paragraph to add this
node to the model and then resume its work. To rtiaikevork there will be need to
store some additional data in the DParam to albkst/¢hecks to see whether there are
any relations out of the model from whichever n@leeing processed at the moment.

7.2 Functionality

There are several bits of functionality that weehavthe vision of the finished
product that we haven’'t begun to implement sim@gduse of the time frame of this
project.

7.2.1 Favorites

Favorites is supposed to be similar to the favefiteind in most modern internet
browsers. Granting the possibility to have sevezgllar starting points and thus
allowing an easy and fast way of restarting sometthe user has worked with
earlier.

Use cases
Add/ remove favorite
Focus on favorite
Add and remove is quite self explanatory, and tfoei$ on favorite simply does a
refocus with the favorite object in focus, for fugt info see appendix A
7.2.2 Object notes
Object notes are an addition to the informatioradly shown when an object is

selected, more or less it is a notepad for the where he can add his or her own
thoughts, clarifications and/or notes.

58

Use cases
Save object specific note
Also hide/show object specific notes

Only the save object specific note is taken up aribe use cases but as hide/show
will be taken care of by the eclipse framework ¢hisrno real need to describe them.

7.2.3 Messages

With some large database systems it is possitdatiscribe to the changes of objects
in the database. This takes the form of an updatsage whenever an object the user
subscribes to is changed, these messages willlleeted and displayed.

Use cases
Focus on ping
Delete ping

7.2.4 Stepping

Most web browsers have buttons for undoing oneanenactions and also to redo the
ones undone. This functionality would be usefuldar plug-in as well.

Use cases

Back

Back several steps
Forward

Forward several steps

7.2.5 Visible objects
Our current program takes no heed to how many tbigditted into a zone. If there
are too many objects they may be drawn outsidartb@ designated to that zone. The
planed solution to this is to make a check and shtw the amount that can be fitted
in the zone and add scrolling so that the figunethé zone can be scrolled pretty
much like a list with a scrollbar.
Use cases
Scroll visible objects

7.2.6 Search

The plug-in is meant to handle the standard quespanse searches as well as the
graphical representation.

Use cases

59

Search
Refine search
New focus

7.2.7 Database

Logging in and out of databases are also left tddye.

60

References

[1]JLAMPING, J., RAO, R., and PIROLLI, P. 1995. Ados C context technique based on
hyperbolic geometry

for visualizing large hierarchies. In Proceedin§€8l1 '95, ACM Conference on Human
Factors in Computing Systems. ACM, New York.

[2]CZERWINSKI, M. and LARSON, K. 1997. The new Wblowsers: They're cool but are
they useful?

In People and Computers Xll: Proceedings of the 19ZIConference, H. Thimbleby, B.
O’Conaiill,

and P. Thomas, Eds. Springer Verlag, Berlin.

[3] PETER PIROLLI, STUART K. CARD, and MIJA M. VANDER WEGE. 2003. The
Effects of Information Scent on Visual Search ia Hyperbolic Tree Browser

Palo Alto Research Center. In Transactions on Caengtuman Interaction. ACM, New
York.

[4] Object Technology International, Inc.
Eclipse Platform Technical Overvieluly 2001 (updated for Eclipse 2.1 in Feb. 2003)
www.eclipse.org

[5] Chris Aniszczyk Using GEF with EMRJune 8, 2005
www.eclipseorg

[6] Bill Moore, David Dean, Anna Gerber,Gunnar Wakjeecht and

Philippe Vanderheyden. Eclipse Development usieg@haphical Editing Framework and the
Eclipse Modeling Framework February 2004.

www.ibm.com/redbooks

[7] Eclipse Homepage as of 2005-10-01
www.eclipse.org

[8] Alan Dix, Janet E. Finlay, Gregory D. Abowd,i3tine Faulkner. 2003. Human Computer
Interaction. ISBN 0130461091

[9] Donald A. Norman. 2002. The Design of Everyddyngs. ISBN 0-465-06710-7

61

Appendix A Use Cases

Start with a desktop favorite

-Prerequisites
There is a favorite file available and the plugsiinstalled.

-Sequence of interactions
User “runs” the favorite file and the plug-in ised and a login dialog run, when
user have logged in the plug-in shows the favatitiect in focus and selected.

-Post requisites
Plug-in running and logged in to the database anf@worite object is in focus and
selected

Load a desktop favorite

-Prerequisites
There is a favorite file available and the plugstarted.

-Sequence of interactions
User “runs” the favorite file and the plug-in issted and a login dialog run it the user
has not already logged in, when user are loggelkiplug-in shows the favorite
object in focus and selected.

-Post requisites
Plug-in running and logged in to the database anfaworite object is in focus and
selected

Login to database

-Prerequisites
Plug-in running and not already logged in.

-Sequence of interactions
User starts by selecting “login” from a scroll domenu and types username and
password in a dialog. Plug-in sends informatiotheodatabase and logs itself in. User
is informed if the login was successful or unsustigslf it was unsuccessful user gets
to retry.

-Post requisites
Logged in if user has access to database.

Logout from database

-Prerequisites
Plug-in running and logged in.

-Sequence of interactions
User starts by selecting “logout” from a scroll domenu. An affirmation popup is
displayed if “yes” is selected Plug-in sends infation to the database and logs itself
out.

-Post requisites
User is logged out from database

Search
-Prerequisites
Plug-in running and logged in.
-Sequence of interactions

62

User types the keys to search for in the search &i®d presses the search button. The
information is then sent to the database whersehech is executed and the result
sent back to the Plug-in which displays the resuthe search view.

-Post requisites
The result of the search is displayed in the segimh.

Refine search
-Prerequisites
Plug-in running and logged in, the result of a ckeas displayed in the search view.
-Sequence of interactions
User presses the refine search button in the se@wah The information used in the
previous search is then displayed instead, andgbemay alter them.
-Post requisites
The keys from the previous search is displayetiénsearch view.

New focus
-Prerequisites
Plug-in running and logged in, the result of a ckeas displayed in the search view.
-Sequence of interactions
User selects the appropriate object in the sedest. he Focus view then renders the
object and it is then selected.
-Post requisites
The Focus view has the object focused and selected.

Focus on ping

-Prerequisites
Plug-in running and logged in, the result of a geping is displayed in the update
view.

-Sequence of interactions
User selects the appropriate object in the update.vi he Focus view then renders
the object and it is then selected.

-Post requisites
The Focus view has the object focused and selected.

Back

-Prerequisites
Plug-in running and logged in, at least two objéets been in focus

-Sequence of interactions
User presses the back button and the object irsfscchanged to the previously
focused object which is also selected.

-Post requisites
The Focus view has the previously focused objemiged and selected and the
previous list and forward list is updated.

Back several steps

63

-Prerequisites
Plug-in running and logged in, at least three dbjbas been in focus
-Sequence of interactions
User presses the back several steps button ansl griekobject from the list of
previously focused objects. That object will beused on and selected.
-Post requisites
The Focus view has the previously focused objemiged and selected and the
previous list and forward list is updated.

Forward

-Prerequisites
Plug-in running and logged in, forward list is mobpty

-Sequence of interactions
User presses the forward button and the objecduad is changed to the object first in
the forward list object which is also selected.

-Post requisites
The Focus view has the object focused and selecteédhe previous list and forward
list is updated.

Forward several steps

-Prerequisites
Plug-in running and logged in, at least two objexis forward list

-Sequence of interactions
User presses the forward several steps buttoniakd pne object from the list of
previously focused objects in the forward list ttbhject will be focused on and
selected.

-Post requisites
The Focus view has the previously focused objemiged and selected and the
previous list and forward list is updated.

Refocus focus view

-Prerequisites
Plug-in running and logged in, at least one noti$ed object is shown in the focus
view.

-Sequence of interactions
User selects one of the not focused objects ifidties view selects to focus on that
object instead. The focus view then changes faztisat object and selects it.

-Post requisites
The Focus view has the new development aspeceadafhifect focused and selected.

Refocus V view
-Prerequisites
Plug-in running and logged in, an object is showthie V view
-Sequence of interactions
User selects one of the development steps frori triew selects to focus on another
development aspect of the object currently in fodue focus view then changes
focus to that development aspect and selects it.

64

-Post requisites
The Focus view has the new development aspeceadafhifect focused and selected.

Read document
-Prerequisites
Plug-in running and logged in, a document objeshswn in the focus view.
-Sequence of interactions
User selects a document object and chooses tatrddw appropriate program is then
started and the document opened in it.
-Post requisites
Document is showed in an appropriate program.

Change visible objects

-Prerequisites
Plug-in running and logged in, an object and sofrtee@objects that is related to it is
shown in the focus view.

-Sequence of interactions
The user selects a group of objects that is relatdte same way to the object in
focus. Right click on them and select “choose VWSithis will launch a popup where
the user can select which objects to show. If tmalwer of selected objects are greater
then the maximum allowed objects of that type tkmeeding objects will not be
shown.

-Post requisites
The focus view will show the selected objects.

Change number of visible objects

-Prerequisites
Plug-in running.

-Sequence of interactions
Select “visible objects” from a scroll down menwanpopup will be launched where
the user can specify the maximum number of objbetiscan be shown for each
relation and levels from the object in focus. Wkl done button the focus view will
be drawn according to the new rules.

-Post requisites
The focus view will be drawn in accordance with tigsv rules.

Change render depth

-Prerequisites:
Plug-in running.

-Sequence of interactions:
User selects “Change render depth” in a scroll down menu. The plug-in displays the “Change
render depth” window. The user then changes how many levels of a specific relation will be
rendered. The user then closes the window and the plug-in will register the changes.

-Post requisites:
The Focus view now shows the appropriate number of levels of all relations.

65

Focus on favorite:
-Prerequisites:
Plug-in running, user logged in.

-Sequence of interactions:
User selects the appropriate object in the Favorite scroll down menu. The Focus view then
focuses on the object and selects it.

-Post requisites:
The Focus view has the object focused and selected.

Add to Favorites:

-Prerequisites:
Plug-in running, user logged in, object focused.

-Sequence of interactions:
User selects the “Add to Favorite” option in the Favorites scroll down menu. The plug-in then
displays an affirmation pop up window. The user then selects “OK* and the Plug in will add the
focused object to the Favorites list.

-Post requisites:
The added object will now be available from the Favorites scroll down menu.

Remove favorite:

-Prerequisites:
Plug-in running, Favorite list not empty.

-Sequence of interactions:
User selects the “Remove Favorite” option in the Favorites scroll down menu. The plug-in then
displays a list of the objects in the Favorites list. The user then selects the object he wishes to
remove from the Favorites list and selects “OK”. The plug-in then displays an affirmation pop
up window. The user selects “OK” and the Plug in will remove the object from the Favorites
list.

-Post requisites:
The removed object will not be available from the Favorites scroll down menu.

Delete ping
-Prerequisites:
Plug-in running, ping inbox not empty.
-Sequence of interactions:
User selects a ping in the update view right click on it and choose delete.
-Post requisites:
The removed message will not be available.

Show relation:
-Prerequisites:
Plug-in running, object selected, A specific relatis not shown in the Focus view.
-Sequence of interactions:
User Right clicks on the focused object and seldetsappropriate relation. The plug
in will then draw all relations of that kind in tik@cusview.
-Post requisites:
The focus view will show the appropriate relations.

Hide relation:
-Prerequisites:
Plug-in running, object selected, relation visible.

66

-Sequence of interactions:
The user Right clicks on a relation of the typentaats to hide and selects Hide
relation from the scroll down menu. The Plug-inrttiédes all Relations of that kind.
-Post requisites:
All the relations of the specific kind is not showthe Focus view

Fan out unfocused object:
-Prerequisites:
Plug-in running, focused object selected, a unfedusbject that isn't Fanned out.
-Sequence of interactions:
The user Right clicks on the object he wants toofatnand selects Fan out from the
scroll down menu the plug in then displays theti@tes of the object.
-Post requisites:
The relations of the Fanned out object is showthénFocus view

Fan in unfocused object:

-Prerequisites:
Plug-in running, focused object selected, a unfedusbject that is Fanned out.

-Sequence of interactions:
The user Right clicks on the object he wants toirieand selects Fan in from the
scroll down menu. The plug in then removes theaibjeisible relations from the
Focus view

-Post requisites:
The relations of the Fanned out object is not shiovthe Focus view

Scroll visible objects:

-Prerequisites:
Plug-in running, focused object selected, Therawawee relations of a kind than can
be shown.

-Sequence of interactions:
The user presses the next button in the Focus wimext to the relations he wants to
scroll. The Plug-in then shows the next set oatiehs of that type.

-Post requisites:
The Focus view now shows the next set of relatadrtkat kind

Save object specific note:

-Prerequisites:
Plug-in running

-Sequence of interactions:
User focuses an object and the Plug in then display object. The user then proceeds
to select an object and then selects the "objetet mew and writes down a note and
presses save. The Plug in then saves the notesaadiates it with the object.

-Post requisites:
The Plug in now displays the notes about the olifeitte "object note" view when
that object is selected.

67

Select object:

-Prerequisites:
Plug in running, object focused.

-Sequence of interactions:
The user Left-clicks on the object he wishes tedednd the Plug in then
displays information on the object in the “objedol’ view.

-Post requisites:
The object is selected and its info is presentdtiéri‘object info view.

68

