

Information Visualization in Eclipse

F R E D R I K A S P P E T E R O D É N

Master of Science Thesis Stockholm, Sweden 2004 ICT/ECS-2006-74

Examiner Dr. Christian Schulte

 2

Abstract

Technology Companies today need evermore data that is vital to their function; this can be
product, customer or other sorts of databases. Very few companies have any user friendly
interface for browsing these vast quantities of data, instead they rely on query – response
schemes with a very basic interface that have evolved very little over last 40 years.
The current research in the field of data visualization has focused on data mining and
displaying how the data is stored, not how to effectively display an object and the structure it
is a part of.
What we propose to do is a simple relational database browser that can both speed up finding
data and most importantly helps users to easy get a broad understanding of the structures of
data.

With a query – response scheme it is very easy and fast to get information about an object in
the database, that is if the object is known by the user.
But if the information wanted is about the context or structure of objects then several
consecutive queries will be needed and only a little of the information will be shown at any
given time, meaning that the user has an hard time figuring out the exact structure. This is
largely dependant on the fact that the user only can look at one object and its relations at a
time. This effectively narrows the users understanding of the structure down to objects one
step from the object he is currently browsing.
With our browser we will address this problem as its surrounding objects will be shown. Not
only the objects in the immediate vicinity, rather the user can choose how many steps from
the object he will see.

We did this browser as a plug in for eclipse as it is one of the fastest growing open source
platforms available right now. It is maintained by the Eclipse group witch has the support of
over 50 companies [7], so it is probable that it will be kept updated for some time to come
giving our system a stable platform that doesn’t become outdated.
Also eclipse is a contender for being the next de facto standard in software development as it
is not only a development environment but rather a framework that allows great
configurability. This is due to the plug in structure that allows the user to modify eclipse into
the tool that fills his every need.

We have also used this property of eclipse in our project as we use GEF or the Graphical
Editing Framework to give our tool its graphical representation. GEF is a plug in that gives a
powerful framework for graphics so that we didn’t have to code a graphical engine from
scratch. Lastly we have done some tests for performance and functionality to show that our
tool does what it is supposed to do within reasonable time.

 3

Acknowledgments:
We would like to thank Dag Rende and Peter Roos at Total Eclipse AB for all their help
during this project and also Christian Schulte for supervising our thesis. Also we would like to
thank all the members of SPX for their constant support.

 4

 Table of contents
 Acknowledgements
 List of abbreviations
 Key expressions
 List of figures
 List of tables
 List of Formulas

1. Introduction 8
2. GUI 9

2.1 What are GUI’s 9
2.2 Building a GUI 9
2.3 Eclipse 10

2.3.1 SWT 11
2.3.2 JFace 11

2.3.2.1 Viewers 11
2.3.3 Eclipse UI paradigm 12
2.3.4 Projects 12
2.3.5 Plug-ins 13

2.4 Graphical Editing Framework 13
2.4.1 Draw2d 15
2.4.2 Figures 15
2.4.3 EditParts 15
2.4.4 Requests and Commands 16
2.4.5 EditPolicies 17
2.4.6 GraphicalViewer 17
2.4.7 RootEditPart 17

3. Design choices 18
3.1 Choosing data representation scheme 18

3.1.1 The Data 18
3.1.2 The Hyperbolic Tree browser 18

3.1.2.1 Key points 19
3.1.2.2 Applicability 20

3.1.3 Pie Slice 20
3.1.3.1 Key points 21
3.1.3.2 Applicability 21

3.1.4 Quad tree scheme 22
3.1.4.1 Key points 23
3.1.4.2 Applicability 23

3.2 Algorithms 24
3.2.1 choosing nodes 24

3.2.1.1 Realization 25
3.2.2 placing into zones 25

3.2.2.1 Realization 28
4. Implementation 29

4.1 Program Structure 29
4.1.1 The Model 29

4.1.1.1 Database emulation 29
4.1.1.1.1 Database objects 29
4.1.1.1.2 Database Relations 29

 5

4.1.1.1.3 The full database model 29
4.1.1.2 parameters for generating quad tree 30

4.1.2 Object package 31
4.1.2.1 ObjectEditPart 32
4.1.2.2 EditPolicies 32
4.1.2.3 ObjectFigure 33
4.1.2.4 ObjectFigureCompartment 33

4.1.3 Relation package 33
4.1.3.1 RelationEditPart 33
4.1.3.2 HideRelationAction 34
4.1.3.3 HideRelationDialog 34

4.1.4 diagram package 34
4.1.4.1 DiagramEditPart 34
4.1.4.2 DiagramLayoutManager 34
4.1.4.3 MyXYLayoutEditPolicy 35
4.1.4.4 GdipEditPartFactory 35
4.1.4.5 RenderDepthChanger 35
4.1.4.6 RenderDepthDialog 35
4.1.4.7 ConstrictorAccessor, RelationAccessor 35
and RelatedObject

4.1.5 Editor 35
4.1.6 Plugin 35
4.1.7 Data 36
4.1.8 DataIo 36

4.2 Putting it all together 36
4.3 Working with eclipse/GEF 37

4.3.1 The Eclipse paradigm 37
5. Results 35

5.1 Screenshots 38
5.1.1 Selection 39
5.1.2 Refocusing 41
5.1.3 Fanning 43
5.1.4 Changing render depth 46
5.1.5 Hide relation 49

5.2 Performance test 52
5.2.1 Platform 52
5.2.2 Setup 52
5.2.3 Tests 52
5.2.4 Results 53
5.2.5 Discussion 55

6. Conclusion 57
7. Further works 58

7.1 Infrastructure 58
7.2 Functionality 58

7.2.1 Favorites 58
7.2.2 Object notes 58
7.2.3 Messages 59
7.2.4 Stepping 59
7.2.5 Visible objects 59
7.2.6 Search 59

 6

7.2.7 Database 60
Referenses 61
Appendix A Use Cases 62

List of Abbreviations

SWT - Standard Widget Toolkit
UI – User Interface
GUI – Graphical User Interfaces
GEF – Graphical Editing Framework

Key Expressions

Focused object The object shown in the center of the focus view.

Selected object The object that is selected. Properties of this object are

shown in the object info view. And the object is
highlighted in the focus view.

Relation type A label on the relation between two objects in the

database. “Consists of” and “replaces” are two
examples.

Focus view The central view of G-dip. It shows the object currently

in focus and its neighbors.

Search view A view that lists results of a search. From which a found

object can be focused.

Object info view A view that displays relevant info about the object

currently in focus.

Changes view A view that lists the change messages that the user

subscribes to.

Active aspect / V view A view that shows in what development aspect the

object in focus resides.

Object An entry in the database is shown in the focus view as a

figure with a label.

Ping message A notification message that informs a user that an

database entry for which they subscribe to, has been
changed.

Content provider The model structure of some viewer or editor, it may be

shared by several viewers and/or editors.

 7

List of Figure
Fig 2.1 page 14
Fig 2.2 page 16
Fig 3.1 page 19
Fig 3.2 page 21
Fig 3.3 page 23
Fig 3.4 page 25
Fig 3.5 page 26
Fig 3.6 page 27
Fig 3.7 page 29
Fig 4.1 page 30
Fig 4.2 page 31
Fig 4.3 page 32
Fig 4.4 page 33
Fig 5.1 page 38
Fig 5.2 page 39
Fig 5.3 page 40
Fig 5.4 page 41
Fig 5.5 page 42
Fig 5.6 page 43
Fig 5.7 page 44
Fig 5.8 page 45
Fig 5.9 page 46
Fig 5.10 page 47
Fig 5.11 page 47
Fig 5.12 page 47
Fig 5.13 page 48
Fig 5.14 page 49
Fig 5.15 page 50
Fig 5.16 page 50
Fig 5.17 page 51
Fig 5.18 page 53
Fig 5.19 page 54
Fig 5.20 page 54
Fig 5.21 page 55

List of Tables
Table 2.1 page 9
Table 2.2 page 13

List of Formulas
Formula 5.1 page 53

 8

 1. Introduction

All industrial design and production processes today grow ever more complex and
larger. For every bit of complexity there is much data added to the documentation of
the project and also more data to be taken into account during the design. There is also
more and more devises and software that are supposed to work together in larger
groups cooperating through any number of media, further there are many standards
that anything produced needs to consider. There is no sign of any diminishing of this
growth of complexity. All this complexity and any device a product needs to
cooperate with add even more data that has to be considered during the design. As the
design phase is traversed it itself adds data that needs to be considered in later stages
of design and construction. This data may be of many different types and very
different in nature, much of this data or info on where to access it is stored in various
relational databases.

Today the standard for accessing a relational database is different types of searches
resulting in zero to several hits that can be displayed one at a time. If the user knows
what he wants or at least its properties this is a very good way of finding info, but if
she wants to find out what subcomponents a product has or the subcomponents
subcomponents it starts to get less and less efficient. For every new object in the
database the user wants to look at she needs to do another search and if she wants to
get a grip on the component structure of a product it will be much work in a search
based interface. It also has the drawback in the structure case that very little of the
information can be shown at any given time.

What we propose to do is not replace or change the query - response scheme but to
add a tool that has its strength where the query – response scheme is at its weakest.
When our Graphical Database Interface Plug-in (GDIP) displays the info of a database
element it will also show its related elements and their related elements and so on. So
a user can easily get an idea of the structure of whatever she is looking at. GDIP is
made to be very general so that it easily can be used with any relational database, and
it also is very adaptable to the users needs, it is possible to change all parameters that
control the drawing of the view of the database. Being built to be easily used with any
relational database it is not very difficult to adapt it to access several different
databases at once so that companies that have different databases for different kinds of
data easily can access it all from a single application. GDIP is not supposed to take
over all database manipulation, instead it is a browser allowing the designers easy
access to the data they need

 9

2. GUI

2.1 What are GUI’s

GUI’s or graphical user interfaces replaced the text based interfaces in what
now can only be considered as the ancient times of personal computers. The
GUI paradigm changed personal computers completely, granting an ease of use
never before seen in computing and thus laying the foundation for the computer
boom with a computer in virtually every home. Today GUI’s is one of the
pillars on which most of the IT industry stands. The idea behind the GUI is
point and click. The user don’t need to remember the name of each little
subroutine, all he needs to do is select what he wants to work with point and
click. To give the point and click paradigm more depth allowing more then one
thing to be done to each selectable item there are several different ways to make
point and click multiple action possibilities.

 The most important generic features in GUI’s are.

• Buttons
• Icons
• Text fields
• Checkboxes
• Menus
• Frame
• Dialogs

Table 2.1

Each of these comes in almost infinite number of variations but they are the
basic blocks of all GUI’s [8].

2.2 Building a GUI

Building a working GUI is not difficult, only somewhat time consuming.
However building a GUI that just works is not the objective of any program
designer, what is needed is an easily usable GUI and that is much harder to
create [8]. A user that does not already know how to use the program must be
able to use it without having to read the manual for every action that he needs to
make. A program where users need to check the help guide too often will be
considered difficult to use and few people will buy it. There is however no easy
way to make an easy to use GUI, no recipe to follow. The designer will need to
know how the user thinks, how the cultural background will influence reactions
to different colors and innumerable other little things [8]. There are also many
things that may seem to be good until the actual users start using the program.
All these problems have to be solved to get a usable GUI. The GUI creation is
one of the major parts of any program construction today.

 10

2.3 Eclipse

Since man started programming the programs has become more and more
complex and man wanting to produce these complex programs, without
making the task extremely time consuming, understood that if the languages
themselves where more powerful the burden would be eased. First there was
raw bytecode which evolved into assembly language which in turn evolved
into higher level languages. These evolved into the object oriented languages
which finally produced the platform independent language Java.

Eclipse takes the evolution one step further by introducing a framework
environment in open source where much of the basic functionality already
exists. A programmer constructs a plug-in, a small eclipse dependant program
or library. These are detected by eclipse when it’s first started and it notes
which extension point the plug-in extends. A plug-in can also use the
functionality of an existing plug-in, as is the case with our plug-in since it uses
GEF which is a plug-in for generating graphics. This solution eases the burden
of writing code, but places a lot of responsibility on the programmer for
understanding the mechanisms of eclipse and the supporting plug-ins.

One more benefit of using eclipse with its plug-in structure is that a user will
do most of his work inside eclipse within different plug-ins. Since these all
resides within eclipse he doesn’t have to learn a new interface as all the
standardized functions will be in the same familiar places as he is used to have
them [6].

Eclipse is so much more then the regular GUI, it is the entire framework
reducing much of the work of program construction. Instead of writing the
entire program all that is needed is the essential computations and writing how
to represent info on screen, All else eclipse takes care of. Because of this a
user that has worked with eclipse based programs will have an idea of how to
work a new eclipse based application. The eclipse platform has pre made stubs
for many different functions such as load, save, undo, redo and many more
leaving only the functional parts to the programmer. There is however difficult
to get used to the very different programming for eclipse as opposed to a
program written from scratch. In eclipse all methods and classes written are
called by the eclipse framework, to get eclipse to do anything a stump of code
doing it must be placed at a spot that is called by the framework. There are
many tricks a programmer must learn before writing programs for eclipse will
be effortless but when mastered it is a tool of much power leaving the
programmer to write few lines of code to achieve much function.

Eclipse began as an IBM project. In November 2001, an IBM-independent
foundation was formed to further the development of Eclipse. And it is this
organization that has driven the development of Eclipse since [7].

 11

2.3.1 SWT

Today any operating system (OS) need to have a almost full set of widgets for
handling GUI:s and there are a few basic widgets that all OS have their
implementation of [8]. There are some more complex widgets, the designers of
each operating system have chosen those they wanted which means all
operating systems with different tools for building GUI:s. It is desirable to use
the systems widgets making the program look the way the user is used to and
keeping a coherent look on screen. This hasn’t been any problem for regular
programming languages such as C++ where every system has its own compiler.
Java on the other hand has to work on all systems with the same bytecode
having to use only those widgets supported by all systems. More complex
widgets have to be emulated by java which makes them not quite fit in among
the other, emulated widgets are also slower in updating making them stand out
even more. SWT is the Standards Widget Toolkit for eclipse have remedied this
flaw by defining a common API for all supported window systems and for each
separate system SWT uses its native widgets when possible, making eclipse
programs look more like the system it is run on [6]. Whenever a window system
doesn’t support a widget that widget will be emulated with all the drawbacks
mentioned earlier. SWT goes even further than this it has support for native
system features such as drag and drop, it also can use components developed
with OS component models such as ActiveX controls in windows.

2.3.2 JFace

JFace is a window system independent toolkit for common User Interface (UI)
handling. Among other things it has classes for dialogs and wizards, but JFace
also handles actions [5].

Actions are a way of abstracting user commands from how they are triggered;
an action can be connected to a menu item or a button. The action keeps track of
the widgets needed to trigger it like a menu item but it can easily be moved to
another menu or to a toolbar button without changing or moving the code of the
action. This helps mostly if the design or grouping of the GUI needs to be
changed late in the construction, perhaps as a result of user testing.

2.3.2.1 Viewers

Viewers handle the higher levels of logic for SWT widgets, and are used to
display modeled data using said widgets. There are a few standard viewers for
common structures such as tables and lists. In eclipse a viewer is shown as a
frame displayed on a part or on the entire main eclipse frame. Usually in eclipse
there are many viewers displayed simultaneously, many of them show different
contents but there are no problems with having multiple viewers having the
same content provider. Viewers sharing their content provider don’t necessarily
show the same part of the data provided as they can have different logic for
choosing what to show and how to show it [6].

 12

2.3.3 Eclipse UI paradigm

The eclipse UI paradigm is based around three things: perspectives, views and
editors. Views and editors are the types of user to data interfaces allowing the
user to view and manipulate data, perspectives are a collection of views and
editors with a common function such as the java programming perspective.
Eclipse can handle several perspectives at any given time but to avoid confusion
only views and editors belonging to the same perspective can be visible at any
given time [6].

Editors have an open - save - close lifecycle, standard editors for text editing
and some other simpler tasks are provided in eclipse and some more advanced
are available in other plug-ins. Editors may have toolbar buttons and menu
items bound to them so that they become available only when the editor is
selected [6].

Views show data to assist the user in whatever task it is supporting. The java
programming perspective has among others a view which shows the hierarchy
of sub and super classes to the class currently edited. Views have less modifying
power then the editors, but some things can be done in views. Most common is
the changing of some property or name. The alterations made in a view are
instantaneous as opposed to the editor where progress has to be manually saved.
If there are several views showing the same information, change is propagated
directly to all views without need for user initiated refreshes. There are
generally several views for every editor visible in a perspective and there are
many standard views provided with eclipse [6]. These standard views lessen the
amount of repetitive work as almost every application needs some of the
standard views. A property view shows the properties of the currently selected
object. To use the provided property view it is only required that the selected
object implements an interface and its methods, a task that once learnt is
finished in a matter of minutes.

2.3.4 Projects

Eclipse is project based, so if some file is open in an eclipse application then
that file must be part of one of the opened projects. The eclipse workspace is
generally mapped to a single directory where each of the projects has its own
subdirectory.

Eclipse incorporates something called the project nature mechanism which is
basically a tag specifying what type of content the project has. The set of project
nature tags are not set and a user can add new tags when necessary, a project
containing several kinds of content types can have several tags to reflect that.
The project nature mechanism provides an easy way of letting projects with
different content types use tools that where never meant to be used together
without the tools having to be aware of each other [6].

 13

2.3.5 Plug-ins

Eclipse itself is just a framework and without any plug-ins it wouldn’t do
anything. There are different sorts of plug-ins, some add building blocks for
other plug-ins such as GEF or draw2d and others add some sort of functionality
such as the java programming plug-in or our Gdip.

A plug-in must be connected to one or more extension points so that eclipse
knows how it is supposed to handle the plug-in. As the plug-ins methods are
always invoked by the eclipse framework this is very important. Extension
points are of many different types.

 Important Extension point types

• Actions
• Perspectives
• Editors
• Views
• Wizards

Table 2.2

These are not all of the types but the ones most regularly used. The user
interfaces for these different types are most often as follows; actions are most
often shown as both a button and an item in a menu but can be either one of
them without the other. Editors is generally a field where different data is shown
and edited, a word processor is a good example of what can be done with a
editor. A view is a field that is mostly used show data that can’t be directly
manipulated such as an error message list. And wizards are used to make
wizards for helping new users through difficult maneuvers.

Any plug-in is also allowed to define any number of new extension points
allowing it to have sub plug-ins for additional or exchangeable functionality [6].

2.4 Graphical Editing Framework

The Graphical Editing Framework or GEF is a part of the Eclipse Tool Project
which is a project whose aim is to build the best possible tools for eclipse and
also to minimize overlapping of functionality so that the wheel doesn’t have to
be reinvented over and over again. GEF is a tool that makes development of
graphical editors within the eclipse environment very easy when you are
familiar with its workings.

GEF’s primary role is to display any model graphically [5], and then allow a
user to manipulate this model by user input. GEF uses the MCV paradigm by
supplying a framework for the Controller and View layers and the programmer
only has to attach his own model. The hard part here is that the programmer
really has to understand how GEF works otherwise he will not be able to make
use of it.

 14

After the programmer has constructed his model he has to define the view;
deciding on which figures and what type of layout he will use. There are many
predefined figures and layouts, or the programmer can opt to write his own
from scratch. After the view is properly setup the programmer will move on to
the controller layer. This layer is composed of so called EditParts which acts as
connectors between the model and the view and provides means to manipulate
the model and when changes occur propagate them to the view. Each viewer
has a factory for creating EditParts, and when the application is started the root
object from where all objects can be reached is supplied to the viewer which
uses the factory to construct the EditPart for that object. When that is done
each EditPart will construct its own EditPart children by calling the factory and
manipulating them. If a new model object is created, the EditPart in which it
will be placed calls the factory which constructs an instance of the correct
EditPart class. The final structure is illustrated in Fig 2.1.

Fig 2.1

When this is done the programmer has to decide what editing functions his
program will have. This is done in two steps. Firstly he has to decide which
tools to use. There are predefined tools ready to use or the programmer can
make custom ones from scratch. Secondly he has to decide how the EditParts
should react when a tool sends a request to it. For this purpose GEF has so
called EditPolicies. An EditPart without an EditPolicy cannot be edited or
manipulated in any way [5]. The EditPart forwards the request to the
EditPolicy that handles the appropriate type of requests. The EditPolicy replies
with a command to the EditPart which sends this command back to the tool

 15

that originally sent the request. The tool then sends the command to the
command stack and where it will be executed.

2.4.1 Draw2d

Draw2d is a lightweight system that runs on SWT and it gives the programmer
easy access to a rendering architecture by handling the painting and the mouse
events by propagating these to the Draw2d figures [5]. There are lots of
predefined figures like Polyline, Triangle and Ellipse, or the programmer can
extend these figures to create his own figures. Also there exist some container
figures like Panel that can be used for nested figures. The figures themselves
can be opaque or transparent and ordered in layers for hiding irrelevant
information.

GEF is heavily dependent on Draw2d for the graphics. Draw2d on the other
hand is a standalone library that can be used without GEF or even without
Eclipse although it’s designed with GEF and Eclipse in mind.

2.4.2 Figures

The figure class is the central building block of Draw2d [5]. Everything that
Draw2d displays is displayed through a figure. The class contains methods
providing the basic functionality that is required for working with the figure. It
contains methods for handling listeners so that the figure can notify the proper
instances when events occur, for registering structural changes in the figures,
for setting the figure’s transparency.

2.4.3 EditParts

EditParts is the central building blocks of GEF. They are used as the controller
layer in the MCV hierarchy which specifies how the model elements should be
represented in the view. There are three types of EditParts: GraphicalEditParts,
ConnectionEditParts and TreeEditParts. GraphicalEditParts role is to render a
model object into graphics, ConnectionEditParts are used as connections
between EditParts to represent i.e. relations and lastly TreeEditParts that are
used for building trees of the model. Usually every object in the model has a
corresponding EditPart, but this is not necessary.

EditParts are defined through a standard interface and when an EditPart is
implemented it is recommended that it is a subclass of the AbstractEditPart
which is an abstract base implementation of that interface. This class provides
many methods which more or less all are used by GEF for management of the
EditParts. These can be overridden for customization of how GEF handles the
EditParts. Apart from these standard methods an EditPart can extend some
standard interfaces for added functionality i.e. IPropertySource which allows
info about the selected EditPart to be displayed in the properties view.

 16

All EditParts are created in a factory which is implemented through the
EditPartFactory interface which contains only one method where the
programmer has to define which EditPart class any given model object should
be coupled up with. When an EditPart is created GEF has to be informed of its
presence to be activated, and if the EditPart should somehow become obsolete
it will be deactivated and after a while garbage collected.

2.4.4 Requests and Commands

Within a framework there has to be a way for the different parts to
communicate with each other. In GEF this is done by requests, which in turn
creates commands. These contain the information that has to be supplied for
executing the intended action. There are three main types of requests,
CreateRequests, GroupRequests and LocationRequests. The common case
when creating a request is that a tool creates a request for some specific
purpose like changing the size of a visual object or selecting another object.
This request is forwarded to the EditPart that is the target of the action. The
EditPart itself doesn’t know what the request means and forwards it to the
corresponding EditPolicy which creates a command for the request and sends it
back. The Command is then sent to the command stack where it will be
executed and the effects of the request will be put into action [5]. This is
shown in Fig 2.2 below.

Fig 2.2 Events, Requests and Commands

 17

2.4.5 EditPolicies

EditPolicies is essentially the component in GEF that gives editing possibilities
to the EditParts. EditParts without EditPolicies are in fact static objects that
users cannot interact with. An EditPolicy defines what is possible to do with an
EditPart, i.e. if it is selectable, movable or resizable. It is also possible for an
EditPolicy to issue requests to other EditParts, which then will forward these to
their corresponding EditPolicy. Each EditPolicy has a role which defines what
type of requests the EditPolicy will respond to. An EditPart can only have one
EditPolicy per role.

2.4.6 GraphicalViewer

The GraphicalViewer is another component that resides within GEF to make
the development of the draw2d part easier. It provides JFace-like integration of
EditParts into Eclipse. For a JFace viewer to work it usually needs some
content, a factory and some configuration. All standard implementations are
provided like drag & drop and other tasks that are time consuming to
implement from scratch each and every time [5].

There are two GraphicalViewer implementations: ScrollingGraphicalViewer
and GraphicalViewer. The first supports native scrolling and the other don’t,
besides that they are identical. The creation of the GrapichalViewer is very
easy as its constructor has no parameters and provides the method
createControl which creates the SWT control of the viewer. When the creation
is done the only thing left to do is to attach a RootEditPart and an
EditPartFactory to the viewer and set the contents to the root model element.

2.4.7 RootEditPart

The RootEditPart is a special EditPart that has no relation to the model and its
only purpose is to provide an environment for the EditParts connected to the
model. In essence it is an interface between the GraphicalViewer and the
model EditParts. The RootEditPart incorporates layers which are used to
separate and/or group figures. Depending on what type the figure is, it is
placed in the appropriate layer so that GEF will handle them properly.

 18

3. Design choices

3.1 Choosing data representation scheme

Choosing data representation scheme is one of the most important design
decisions for our tool as this is the view that an end user will actually be
working with, hence if the scheme is not good enough the tool in its entirety will
be essentially useless.

3.1.1 The Data

The data to be visualized is a generic relational database with no bounds on the
number of elements in the database. Basically the database will be considered a
tree and the focused node will be considered the root to that tree. The focused
object and at least its closest children should be displayed with their most
important attributes so that a user can get the most important info at a glance.

3.1.2 Hyperbolic Tree browser

The hyperbolic tree browser has been around for a while but it has not made it to
any standard applications [3]. As the name suggests it is used to browse tree
structures so it is possible that it could be usable in our project. What it does is
display a tree in less and less detail the further from the root node a node is. This
makes it possible to show trees with several thousand nodes in its entirety on a
computer screen.

The earliest work on hyperbolic tree browsers appeared in the mid nineties and
there have been several papers about it since then. Peter Pirolli et. al. [3] have
done performance tests versus a regular file browser. Their results show that the
hyperbolic tree browser was faster in a series of retrieval and comparison tasks.
Earlier tests made by Lamping et. al. [1] and by Czerwinski and Larson [2]
however does not show any such superiority.

 19

 Fig. 3.1 Hyperbolic tree browser

3.1.2.1 Key points

• Combined display and overview: the hyperbolic tree browser always
shows the search space in its entirety. It also reduces the amount of
information of the nodes gradually the further from the center object
they are [3].

• Multiple levels: the division of the search space into a focused part and

a context parts is necessary to be able to show the entire search space.
And it allows the user to se details about the part currently in center
while all info can be browsed at all times.

• Integrated display: as the context and focus parts are displayed in the

same display there is less time loss as the user does not need to visually
orient him in different displays when he wants to look at different parts
of the search space.

• Nondistortion: It is possible to integrate focus and context on a display

without disorienting distortions to the user that degrade performance

 20

3.1.2.2 Applicability

The hyperbolic tree browser has its strength in showing very many nodes, even
if the majority is shown with very little detail. Using it for this project would
be possible even if it has a few drawbacks:

Area: the area used by hyperbolic tree browsers is circular in shape while the
area it should be put into is rectangular resulting in unusable space. Also if the
hyperbolic tree browser would make use of scrollable panes it would further
increase the area that could be used to display the visualization, but as parts of
it wouldn’t be shown it goes against the original idea that all info should be
visible. All this results in a too small area for the focused part of the hyperbolic
tree browser, especially with large databases.

Size: a corporation database can be huge, and one of the key points with
hyperbolic tree browser is that all nodes are visible. It is simply not possible to
show most databases fully on a screen, also there would be to long a delay if
the entire database had to be loaded to the local computer at startup. The
hyperbolic tree could be used if the set of shown nodes was somehow
delimited but that would remove many of the key advantages to it and only
using the look of the hyperbolic tree.

3.1.3 Pie Slice

We developed the pie slice scheme as we did not find any applicable existing
scheme. The main idea is to have the focused object in the middle and the rest of
the objects represented by nodes displayed on circular levels around the focused
object as shown in fig. 3.2 below. Each relation type would get a pie slice of the
circle to place its objects in. In fig 3.2 there are 3 different relation types, each
with its own pie slice. In the figure slices are delimited by radial lines.

 21

Fig 3.2 Pie slice scheme sample picture, circular and radial support lines are
there to help understanding the scheme and would not be part of an
implementation.

3.1.3.1 Key points

• Extendable: the pie slice scheme doesn’t have any bound on how many
nodes that can be shown depth wise but there is only limited space on
each level. So when handling objects with many relations there would
be need to incorporate a scheme to show only the user selected nodes.
It can also make use of scrollable panes to extend the workspace area
making it possible to have nodes display some info about the object it
represents.

• Flexibility: the pie slice would create a slice for every type of relation

to or from the focused object thus always spreading the objects out as
evenly as possible.

3.1.3.2 Applicability

As this scheme was thought out by us specifically for this project it has the
necessary properties but there are a few drawbacks that made us consider other
options.

 22

Why was it good to build the interface in a circular fashion, we gained some
flexibility allowing the use of the full 360º around the focused object, but what
where the costs? We found that when arranging rectangular objects on a circle
it was less area efficient than we had first thought leaving too little room for
nodes at least on the inner circles.

Flexibility: could actually be disadvantageous as a user would have no way of
knowing in what direction a relation type would be directed thus she would
have to orient herself every time she refocused.

The algorithm: granted that the pie slice scheme have a few flaws and that the
layout algorithm would be somewhat complicated by all the circles we choose to
rework this scheme to lose the most apparent flaws.

3.1.4 Quad tree scheme

This is more or less a reworking and simplification of the pie slice scheme, first
the circular theme where dropped and the number of different ways in which a
relation type can build its tree where dropped to four. The direction set for every
relation type is defined beforehand but can be altered to fit new needs. This
allows users to know in what tree direction she is interested in directly rater than
having to find out at every refocus. This also means that some relations will
have to share directions; this shouldn’t be a problem as long as different
relations are shown with different kinds of arrows or are visually distinguishable
in some other way.

 23

Fig. 3.3 Quad tree scheme. Note that in this picture the relations to the two
nodes directly right of the focused object may be of different types. With a more
advanced implementation of it one of the lines might be dotted to signal a
different relation type.

3.1.4.1 Key points

• Extendable: Quad tree shares the extendable property with the pie slice

scheme. See 3.1.3.1

• Predictability: as all relation types always will have their tree built in
the same direction a user can get an idea of what is what directly as the
picture is drawn.

3.1.4.2 Applicability

The point of this project is to make it easier to find data and understanding the
structure of data in databases, with its more rigid direction allocation it is
easier to find the structure of the data shown.

There is a risk that with this scheme some side may be under populated while
others will be to full to fit all nodes. This mapping problem will have to be
dealt with for each individual database that it is connected to as that depends
on the allocation of directions, an allocation that is very easy to change.

 24

3.2 Algorithms

Both of the two major algorithms used in this project are based on depth first
graph exploration and in the first envision of the solution they where one and the
same. Due to the MCV structure of the eclipse/GEF programming paradigm we
had to divide the initial algorithm into two, doing the same traversing of nodes
but in different MCV layers. The algorithm for choosing nodes works on the
model layer and its sole purpose is to select the nodes to be present in the
control layer. The second algorithms task is to manage the layout so that the
objects are displayed according to the quad tree scheme. As the application
presented in this thesis is only a demo it isn’t yet capable of selecting info from
a database and including it into the model when necessary. To fill this gap there
would be need for a third algorithm, this algorithm would be very similar to the
node choosing algorithm. The differences are that it wouldn’t create the
controller objects for the chosen model objects and that it would check for
external links for the nodes and fetch any wanted object not already in the model
layer.

3.2.1 Choosing nodes

As stated this algorithm only works with the data already in the model layer and
uses the data in the DParam component of the model to decide what model
objects to create control layer objects for. In the diagram of the algorithm we
have chosen not to represent the condition statements instead we have the
question they represent. This choice was made to improve the readability of the
diagram and a short description of the conditions will be given later.

First we need to know what this algorithm is supposed to do, which nodes are
the wanted ones. We firstly consider every relation type two separate types, one
type directed away from the focused object and one type directed towards the
focused object. This is mainly done to make the quad tree readable at all. With
this scheme if a relation between the focused object and a first level object
indicated that the first level object is a subpart then all of its children in the quad
tree will be subparts of its parents. Had we not done this there would not be any
way of knowing what kind of relations its sub tree would contain. Each relation
type has a relation constrictor object that specifies how many levels of it will be
shown. This constrictor does not know of the direction division it only works on
relation type the direction division is achieved by the algorithm. There is also a
list of objects considered unimportant and none of these objects children will be
fetched but the objects themselves will be visible.

Firstly it should be said that this algorithm consists of to very similar parts. One
starts at node 2 and the other at 20, the first of these parts works only on
relations directed away from the focused object while the last only works on
relations directed towards it. Any list operations are done on the most recently
mentioned list.

 25

Fig 3.4 Algorithm for finding the wanted nodes.

Conditionals

5, 13, 24 and 32: this checks the constrictor for the relation type to see if there
should be another layer.
8 and 27: A check to se if the object is considered unimportant if it is the
children is not shown.

3.2.1.1 Realization

The base of this algorithm is recursion as it is a good way of doing depth first. If
we look to the diagram nodes 7 through 19 and 26 through 38, they are two
different but similar recursive functions.

3.2.2 Placing into zones

When the wanted nodes are found next is deciding how to place them and we
have the quad tree scheme to adhere to and to do that the easiest way we have
decided on dividing the on screen layout into smaller parts. First we place each
node into one zone which is more or less just an area to be placed in. The zones
correspond to the layers in the quad tree, each zone is just a list containing zero
or more figures but they convey information on where to draw the figures they
contain. Each of the four directions has its own zone structure if they all where
laid out as their figures should be drawn we would get fig 3.5.

 26

Fig. 3.5 How figures in the zone lists are placed.

Just as with the finding nodes algorithm the zone placing algorithm divided into
two parts each doing nearly the same things however there are more differences
between the two parts here than in the finding nodes algorithm. Here if a relation
type is supposed to point up it only will do so if the relation is directed away
from the focused object. If the relation is directed towards the focused object
then the direction is reversed and will point down instead. This is done to make
the view more easily read. In the figure 3.6 object B is a subpart of A and has
the subpart C. If subparts are supposed to point down, we will get them in the
same order as we would if A was the focused object making it easier to interpret
the data as the order of the figures are the same no matter where along that
relation chain the focus is.

 27

Fig 3.6. Relation direction before and after refocus

As stated each direction has its own zone structure but this is not mentioned
much in the diagram mainly due to space issues. However this is how it works:
the direction is decided in node 5 and the direction decided there is the one used
until node 5 or 22 is reached. Depth is the variable that keeps track of in which
level of the zone structure (see fig. 3.5) nodes should be added to.

Here the advantage of the depth first processing of the nodes and figures
becomes apparent. Because of the depth first processing the order of the figures
in the zones structure have the property that if all of them are drawn from left to
right in their respective zones no of the relations will cross. So this is the scheme
we use for making sure relations will not cross.

 28

Fig. 3.7 Algorithm for placing figures in zones.

Conditionals

Any list operations are done on the most recently handled list.
5: this checks the constrictor for the relation type to see in what direction it
should be shown.
8, 15, 25 and 32: as this was done with recursion these nodes are simply stack
manipulations as the recursive function are called or returns.
22 this checks the constrictor for the relation type to see in what direction it
should be shown and the reverses the direction.

3.1.2.2 Realization

This was realized in much the same way as the node finding algorithm with the
recursion and for-loops. The only real difference is that they work on different
levels in the MCV hierarchy.

 29

4. Implementation

4.1 Program structure

4.1.1 The Model

As the GEF/Eclipse approach is highly MCV oriented we needed to build a
model capable of containing data objects from any database. So we had to use
very general data storage. All data is stored as ArrayLists and Strings so that any
amount of data of any kind can be stored.

4.1.1.1 Database emulation

4.1.1.1.1 Database objects

In our modeling of a database we represent any database object as a structure
containing a unique identifier string and an ArrayList with an arbitrary amount
of attributes. Each of the attributes being represented with a structure containing
two strings, one for the attributes name and one for its value. We choose this
representation because it is very simple but still very adaptable to different types
of data.

4.1.1.1.2 Database Relations

A relation is represented as a class containing two of our database objects and a
type string and would be interpreted like this: the relation originates from one of
the database objects and points at the other. The relation then has the type
specified by the type string. This structure was chosen because GEF relations
are built in this way and it is easier to have them work together if they are
similar in structure.

4.1.1.1.3 The full database model

The class that constitutes the full database is very simple in structure but a little
more complex in its methods. The data it contains are two ArrayLists, one of
database objects and one of database relations, there are also a different structure
for storing parameters for the drawing of the focus image. The methods are
mostly for different sorts of accessing and altering the data in the model.

 30

Fig. 4.1 UML diagram showing the model.

4.1.1.2 Parameters for generating quad tree

To solve the problem of knowing which objects to display, we appended a
structure that contains all the necessary parameters. The most important
parameter when creating a quad tree is the focused object, around which the
whole view is centered. There is also one structure for each relation type in the
depicted view containing information on how to handle that relation type. It has
data on how many levels of objects related to the focused object with this
relation type that should be shown or if it should be left out. This structure
includes a specification on what direction the relation should be expanded in.

There is also the choice to hide all the children of an object so there is a list of
objects that are supposed to be handled in this way.

 31

Fig. 4.2. UML diagram showing model and parameter structure.

4.1.2 Object package

The object package contains all EditParts, EditPolicies and Figures that is needed for
displaying each MdbObject. The package has six classes: ObjectEditPart,
ObjectEditPolicy, ObjectSelectionEditPolicy, ObjectNodeEditPolicy, ObjectFigure
and ObjectFigureCompartment. The structure of the classes are described in Fig 4.3

 32

Fig 4.3 The Object package structure.

4.1.2.1 ObjectEditPart

This is the EditPart responsible for displaying an MdbObject in the diagram and is the
most central part of the object package. The class extends AbstractGdipEditPart and
implements NodeEditPart and IPropertySource [5]. AbstractGdipEditPart is further
described in the diagram package. NodeEditPart is a specialized type of
GraphicalEditPart that is specially made for handling connections, since our goal is to
create a tree-like structure it was the natural choice. IPropertySource is implemented
since it provides easy access to the properties view where we want the info on a
specific object to be shown. All functions ObjectEditpart contains are needed for these
implementations to function correctly. It initializes the EditPolicies and creates the
ObjectFigure.

4.1.2.2 EditPolicies

These classes take care of all the requests that are associated with the EditPart. The
only requests that are handled are selectionRequests and deleteRequests as the
program doesn’t support any editing by the user.

 33

4.1.2.3 ObjectFigure

This is the actual figure that the EditPart will draw. It is a very simple figure that in
essence is only a label and an ObjectFigureCompartment in a toolbar layout. It is
described in Figure 4.4

Fig 4.4 Visual structure of ObjectFigure

4.1.2.4 ObjectFigureCompartment

This class is part of the ObjectFigure and it is a figure containing all the attributes of
an object. These are in label format and are arranged in a toolbar layout.

4.1.3 Relation package

4.1.3.1 RelationEditPart

It extends AbstractConnectionEditPart which has almost all functionality needed; only
the initiations of the EditPolicies are added. We don’t need to create our own figure
for the relation as the PolylineConnection used by AbstractConnectionEditPart fills all
our current needs. It also implements IPropertySource granting easy access to the
properties view where we want the info on a specific relation to be shown.

 34

4.1.3.2 HideRelationAction

This is the action for hiding one relation type, this is achieved by setting a Boolean in
a DRelationConstrictor which resides in DParam. The focus view would be affected in
the same way if the renderdepth for that relation where set to zero. But if it was done
that way the previous renderdepth value would be lost.

4.1.3.3 HideRelationDialog

This is the dialog for HideRelationAction. It lists the available relation types in a list
and when a type is chosen its current visibility mode is displayed and can be altered.
Screenshots of this dialog can be seen in chapter 5.1.5.

4.1.4 Diagram package

The diagram package contains all classes used to represent the full diagram in the
different layers, and also a few actions that work on the diagram. The classes are
AbstractGdipEditPart, ConstrictorAccessor, DiagramEditPart,
DiagramLayout+Manager, Focuser, GdipEditPartFactory, MyXYLayoutEditPolicy,
RelatedObject, RelationAccessor, RenderDepthChanger and RenderDepthDialog.

4.1.4.1 DiagramEditPart

This is the EditPart that controls the entire shown diagram, it is here the node selection
algorithm (see 3.2.1) is implemented and the rest of the EditParts are created, but this
is basically the implementation of that algorithm and a few additional small methods.
The figure it uses for graphical representation is a FreeFormLayer which is basically
an empty area where other figures can be placed. This area can be extended in any
direction if need be so there is always more space to draw figures in no matter in what
direction we want to expand the view.

4.1.4.2 DiagramLayoutManager

This class is responsible for the layout of the figures into the FreeFormLayer. Its main
algorithm for placing the nodes is more thoroughly explained in 3.2.2. There is more
to the layout than just finding the right zone for each figure. Placing the figures in a
zone is pretty simple, first a center point for the zone must be found (see fig 3.5). To
make sure there is always enough room for the figures, all figures in the zone
immediately inside the current one are checked to find out how far the largest figure
extends, then the same is done for the current zone. When both these measurements
are found a margin is put in between the zones and the safe distance is found. The
gradual shading of figures the further from the focused object we get are also a part of
this class.

 35

4.1.4.3 MyXYLayoutEditPolicy

The DiagramEditPart has to have a layout policy but we don’t need more functionality
then is already available in XYLayoutEditPolicy. As XYLayoutEditPolicy is abstract
MyXYLayoutEditPolicy extends it and implements “return null” methods for all
abstract methods.

4.1.4.4 GdipEditPartFactory

Creates all editparts for the project. The functionality of EditPartFactories are further
described in chapter 2.4.

4.1.4.5 RenderDepthChanger

Implements the IEditorActionDelegate interface meaning that it is an action for an
editor activated menu or toolbar. This is an action for altering how many levels a
relation should be drawn in the focus view. The user only sees the dialog and the
action merely starts the dialog and passes the information to the place it should be.

4.1.4.6 RenderDepthDialog

This is the dialog for the RenderDepthChanger. It lists the available relation types in a
list and when a type is chosen its current render depth is displayed and can be altered.

4.1.4.7 ConstrictorAccessor, RelationAccessor and RelatedObject

The accessors are used to access info in the DParam and RelatedObject is a temporary
storage class.

4.1.5 Editor

This package only contains the class FocusEditor. When all parts of the program are
created they have to be displayed. The easiest way to do this is to display the model by
extending the GraphicalEditor class. This class creates a good environment for
displaying models, but it is not suitable for using directly and should be tailored for
specific usage. So therefore the FocusEditor extends GraphicalEditor.

4.1.6 Plugin

This package also only has one class namely the GdipPlugin class. The purpose of this
class is to provide a structure for managing UI resources. Therefore GdipPlugin
extends AbstractUIPlugin which does exactly that. It uses the generic startup and
shutdown methods to manage images, dialog settings, and a preference store during
the lifetime of the plug-in.

 36

4.1.7 Data

The purpose of the Data package is to provide an interface for writing and reading
files that resides on disk so the main program doesn’t have to worry how it is done. It
just supplies the necessary information and the Data package will take care of the
practical issues of writing and reading from disk. The package consists of three
classes: DataIo, DataLoad and DataSave. DataIo is the class that does the real reading
and writing the other two classes are just implemented to provide the buttons for
loading and saving.

4.1.8 DataIo

This is the central class of the data package the other classes are just for making this
class available to the program by creating buttons.
The class contains four functions: convertModel() , convertXML, writeFile() and
readFile(). Initially there should only have been two functions but since the XML-
Decoder/Encoder didn’t accept our classes we had to build a converter that converted
our objects into something that it could accept.
The convertModel() takes a MdbModel object and a string. The string is the identifier
for the file that is to be written to. The function converts the MdbModel object into a
structure consisting of ArrayLists, Strings and Integers. When this is done it calls the
writeFile() function with the converted structure and the string as arguments.
The writeFile() function takes an ArrayList and a string as arguments. The string is the
identifier for the file. The function then loops through the ArrayList and writes each
object to file using the java.beans.XMLEncoder.
The convertXML() takes a String as an argument. This string is used to identify the
file that is to be read. The function then calls the readFile() function with this string.
ReadFile() then uses java.beans.XMLDecoder to extract an ArrayList from the file.
This list is returned to the convertXML() function which converts this structure into a
MdbModel object which then is returned.

4.2 Putting it all together

The program is based on the model-controller-view paradigm and with that as a basis
we will see how the program works and make use of its parts to produce the final
view. It all starts with the model (see chapter 4.1.1 for further details). The model has
to be created before the rest of the program starts to execute, and this model is
unchanged throughout the programs execution with the exception of the parameters.
When the program gets the command to render the view it will first create a controller
level this is done by applying the node choosing algorithm (see chapter 3.2.1 for
further details) and the nodes that where chosen is passed to the EditPartFactory
(4.1.4.3) which creates the ObjectEditParts (4.1.2.1). Each of the ObjectEditParts
contain a figure (4.1.2.3), the remaining work to be done is the layout performed by
the layout manager (4.1.4.1). It uses the placing into zones algorithm from (3.1.2) and
also handles the dynamic placing of the zones so that no two figures may overlap. The
gradual shading is also done during this layout.

 37

Now that we have seen what is done when rendering the view we can take a look at
the prerequisites for it. As already mentioned there has to be a model with all the
objects and relations but it also has to contain the DParam (4.1.1.2) in order to
properly render the view this class is very important as it is here that any alterations of
how to render the view is saved. Before any rendering can be started there is also the
need to create the DiagramEditPart (4.1.4.1) and most of the other classes in the
diagram package (4.1.4) as they are mostly used in different ways to create the
controller and view layers.

To manipulate the view there are a few tools which in different ways alter the info in
DParam so it will change the choice criteria’s for the algorithms and a different view
will be rendered.

4.3 Working with Eclipse/GEF

Starting this project neither of us had worked with eclipse before, so we thought
we should have a chapter regarding our experience working with eclipse for the
first time.

4.3.1 The Eclipse paradigm

Although both of us are somewhat experienced Java programmers and have
been using Java as our main programming language for the past five years the
transition to program for eclipse was a big one. Programming for eclipse has
been describes with the phrase “don’t call us we’ll call you”. And though meant
humorously it captures the essence of programming for eclipse. This was at first
the greatest problem as there is no main class, nowhere where the execution
begins. For someone used to write Java programs from scratch this is very
perplexing. Through the course of this project there has been many times when
we knew how to do some task but not where to put it so that it would be called
at the right times. Also one problem that sometimes arose where that since we
where programming in a predefined MCV structure there where some
abstraction barriers that took some time to get used to, often it was the case that
some function or information that we intuitively would place in one class would
mean that we would break the abstraction barrier and therefore could not be
done that way. It was also the property of this MCV structure that forced our
layout algorithm (3.2.1) to be divided into two parts

There are good API:s for booth eclipse and the plug-ins we have used. There are
also several tutorials and in depth “how to” guides available on the eclipse
homepage [7]. These are of high quality and very helpful.

 38

5 Results

5.1 Screenshots

As the program in it self is the result we have chosen to have an extensive walkthrough of the
functionality accompanied by screenshots to show what actually happens and to have a more
easily understood explanation of the functionality we have implemented.
First we start with an “untouched” picture of the Focus Editor. The model displayed is
generated and has a center object which is surrounded by four binary trees, each with its own
relation type and display direction. To give the different trees individual structure we have
then fanned in or blocked some nodes from showing their children.

Fig 5.1

 39

5.1.1 Selection
First we show how it a selected object looks, just the standard eclipse selection frame. Down
in the properties view the properties of the selected object is shown, in this instance it isn’t
very helpful as all properties is visible directly in the figure but that won’t always be the case.

Fig 5.2 Object Selected

 40

Below we have a picture with a selected relation again it uses the standard eclipse selection
look, and just as before the properties is shown in the properties view.

Fig 5.3 Relation Selected

 41

5.1.2 Refocusing

Refocusing is the most central of the functionality we have implemented and we have chosen
to show a refocus to object leR the selected one in fig. 5.4.

Fig. 5.4 before refocus object selected and mouse pointer posed.

 42

As can be seen in fig. 5.5 leR is now the focused object. Centre is placed to the right even
though it has the same relation type as all the other objects in the fig5.5. It is done this way as
the relation to centre has another direction then the other objects relations. If we compare fig
5.4 to 5.5 we can se that the objects that are in 5.5 keeps the same structure after the refocus
as before, making it easier to recognize objects that appears in a refocus.

Fig. 5.5 after refocus

 43

5.1.3 Fanning

Fanning in or out sets a state in the DParam to make the node choice algorithm ignore all of
one nodes children when selecting nodes for the focus view. In fig. 5.6 we can see the
program ready for a fan in with an object selected and the mouse pointer hovering over the
fan/block button.

Fig 5.6 before fan in/block, object upR selected and mouse pointer posed for click

 44

After the fan in the view displayed is exactly the same except that the children of object upR
is no longer displayed. The program is set up to do a fan out as upR still is selected and the
mouse pointer still hover the fan/block button.

Fig. 5.7 After fan in, object still selected and mouse pointer hovering fan/block button.

 45

When the fan out is done the objects is rearranged and the children of upR is again included in
the view. This shows that the action doesn’t change the model but simply alters the criteria of
the choice algorithms.

Fig 5.8 after fan out

 46

5.1.4 Changing Render depth

Setting the number of steps of each relation type makes for easy manipulation of the focus
view to show only the data the user is interested in. In Fig. 5.9 we can see the starting view
and the mouse pointer hovering over the render depth button.

Fig. 5.9 Mouse pointer hovering the change render depth button

When the render depth button is pressed the render depth dialog appears, it gives a list of
available relation types. These relation types don’t have to be visible in the view or even
represented in the model, they are the types the program is capable of recognizing and make
alterations to.

 47

In Fig 5.10 we can se the dialog as it pops up and the mouse pointer placed at the right
relation type. With a mouse click we move to fig 5.11. When the relation type is selected its
current render depth limit is displayed and selected, this shows the current value and allows
the user to directly type in the new value without having to remove the old one.

Fig. 5.10

Fig. 5.11

Fig. 5.12

As seen in fig. 5.12 we chose 1 to be the new render depth and the mouse pointer now hovers
the ok button. Again a mouse click takes us to the next figure.

 48

Fig. 5.13 shows us that the view is the same but for the right relation type which now is only
shown one step removed from the focused object.

Fig. 5.13

 49

5.1.5 Hide relation
On the same idea as the render depth changer above, we got the hide relation action. The
difference is that hide relation is an on or off state: either it is hidden or not, the hidden state
would look exactly the same as if we set the render depth to 0. However if we use the hide
option the render dept will be remembered when we chose to show the relation again. . In Fig.
5.14 we can see the starting view and the mouse pointer hovering over the hide relation
button.

Fig. 5.14

 50

Pressing the hide relation button we open the hide relation dialog (fig. 5.15) just as in the
render depth dialog there is a list of the available relation types and when one is selected we
get the current state displayed, in this case relation type down has “show“ as its state.

Fig. 5.15

Fig 5.16

The state for relation type down is set to hide, the ok button is pressed.

 51

The resulting focus view is seen in fig 5.17 where there are no object displayed that are
related to the focused object by the down relation type.

Fig. 5.17

 52

5.2 Performance tests

5.2.1 Platform

AMD athlon 3000+, 512 MB ram, Windowx XP, java 2 SE 5.0, eclipse 3.0

5.2.2 Set up

Tests where run on a standard personal computer with a few open though
inactive programs as to simulate standard running conditions for the program.
The data where generated in four binary tree structures where one tree where
completely filled to a set depth before the next where used so the last of the four
where not always as large as the other three. When the tests where done all of
the objects in the model where shown and thus there where no relations that was
to be ignored, if there where many such relations the refocus times should be a
little longer but only marginally.

5.2.3 Tests

For each model size a refocus from displaying the minimum possible number of
nodes to displaying the maximum number. For all tests several different
measurements where made, first of all the total time and also the times for
choosing the visible nodes and for the layout. The results of these tests are done
with all data already in the model, if it where necessary to retrieve data from a
database that would slow things down considerably especially in the beginning
when all data needs to be retrieved.

 53

5.2.4 Results

Refocus time

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000

nodes

s

Fig. 5.18 Refocus time graph.

The runtime of a refocus grows in a polynomial manner

Formula 5.1

 54

refocus time

0

1

2

3

4

5

6

7

0 250 500 750 1000 1250 1500 1750 2000

nodes

s

Fig. 5.19 Refocus time graph, enlargement

The more relevant part of the refocus time diagram as waiting times of more
then a few seconds is way too long to be useful.

execution times

0

0,5

1

1,5

2

2,5

3

3,5

0 500 1000 1500 2000 2500 3000 3500 4000

nodes

s

layout

choose nodes

Fig. 5.20 Refocus time graph for layout and node choosing algorithms

 55

The execution times for the two major algorithms in our program both have
execution time curves similar in shape to that of the full refocus Fig 5.18 and
Fig 5.20. As shown in the percentage diagram (fig 5.21) the node choice
algorithm keeps at ~3 - 4 % of the total runtime. The layout algorithms
execution time grows at a slower rate than the total time and takes up ~ 14 –
16% of the runtime.

procentage total execution time

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0 500 1000 1500 2000 2500 3000 3500 4000

nodes

%

layout

choose nodes

Fig. 5.21 Layout and node choosing algorithms runtime in percent of total refocus time

5.2.5 Discussion

The total refocus time is the most interesting as it shows us how many nodes the
program can handle while keeping the delays within reasonable bounds. As can
be seen in fig 5.18 the delay for a refocus grows rapidly when there are many
nodes. From this diagram we can see that node counts over 2000 nodes starts
taking over 6 seconds which is defiantly too long to be considered useful. So the
useful frame is from 0 to about 1000 nodes. 1000 nodes are however plenty of
information, even if the user only needs to browse a tenth of that the focus time
won’t be much of a bother. If the user is stepping around in the data with many
fast refocuses the node count should be kept to at most 500 where the refocus
time is at about half a second.

As most of the execution time, about 80%, is performed in the eclipse
framework there is very little that we can do there to improve the performance.
The parts that can be improved are the layout and the node choice algorithms,
the node choice algorithm takes up to 4% of the execution time, so improvement

 56

of that wouldn’t make much of a difference. The layout is more time consuming
at about 16% and there might be worth it to try to improve its performance if the
current performance would prove too bad in the end but at the moment there is
no need to do that.

 57

6 Conclusion

We have produced the working skeleton for a graphical database program for use in
Eclipse. This result doesn’t quite fulfill the initial goals to actually produce a full
working database browser. As we got some insight into the subject it was clear that it
would not be possible to do all this. Looking at the revised goals this is exactly what
we set out to do.

The database is displayed in Quad tree fashion and the tree can be navigated through
selecting different objects and changing the focused object. Databases can be massive
and therefore we have implemented limits on how many steps a relation is allowed to
proceed, also we have fanning and blocking to further prune the tree to a more
readable form. The Program also has the ability to read a database from and save it to
disc via an XML- interface, this will also save all the settings such as fanned relations.

All these functions where tested and timed showing that the program preformed within
reasonable time limits. This proves that our choice of algorithms where sound and
good enough.

Most of our insights are in the Eclipse/working with new paradigms area, which
individually is too insignificant and too numerous to mention here, but we have some
general thoughts about Eclipse. One of Eclipses greatest strengths is also one of its
greatest weaknesses: It is all there; almost everything you need to do is made for you
just waiting to be used. For someone with a lot of experience with eclipse this is very
convenient and time saving. But finding all these interfaces and classes for the first
time is very time consuming and when found three quarters of the work is still to be
done in understanding how and where to use it correctly. Most of all we learned that it
is invaluable to have some one with this experience to ask about this sort of things.

In retrospect there are very few things we would like to have done differently, most of
all we read some books on subjects that later became out of scope, mostly books about
databases as that part was left out of the project. That time would have been better
used to study books about Eclipse/GEF.

 58

7 Further Works

If we look at the use cases described in appendix A many of those are as of yet not
implemented and also much of the infrastructure these use cases need to function is
not implemented yet.

7.1 Infrastructure

The first and most obvious thing that needs to be done is to create the connection to a
database as that part is totally left out in this project. To do this we need to firstly
create a library to read the database and translate it to our model classes so that it can
be used by our plug-in.

Then we need to rework the node choice algorithm (chapter 3.2.1) so that it notices if
there are any nodes it is supposed to choose that are not yet read into the model then
invoke some method of the library described in the previous paragraph to add this
node to the model and then resume its work. To make this work there will be need to
store some additional data in the DParam to allow fast checks to see whether there are
any relations out of the model from whichever node is being processed at the moment.

7.2 Functionality

There are several bits of functionality that we have in the vision of the finished
product that we haven’t begun to implement simply because of the time frame of this
project.

7.2.1 Favorites

Favorites is supposed to be similar to the favorites found in most modern internet
browsers. Granting the possibility to have several regular starting points and thus
allowing an easy and fast way of restarting something the user has worked with
earlier.

Use cases
Add/ remove favorite
Focus on favorite

Add and remove is quite self explanatory, and the focus on favorite simply does a
refocus with the favorite object in focus, for further info see appendix A

7.2.2 Object notes

Object notes are an addition to the information already shown when an object is
selected, more or less it is a notepad for the user where he can add his or her own
thoughts, clarifications and/or notes.

 59

Use cases
Save object specific note
Also hide/show object specific notes

Only the save object specific note is taken up among the use cases but as hide/show
will be taken care of by the eclipse framework there is no real need to describe them.

7.2.3 Messages

With some large database systems it is possible to subscribe to the changes of objects
in the database. This takes the form of an update message whenever an object the user
subscribes to is changed, these messages will be collected and displayed.

Use cases
Focus on ping
Delete ping

7.2.4 Stepping

Most web browsers have buttons for undoing one or more actions and also to redo the
ones undone. This functionality would be useful for our plug-in as well.

Use cases
Back
Back several steps
Forward
Forward several steps

7.2.5 Visible objects

Our current program takes no heed to how many objects is fitted into a zone. If there
are too many objects they may be drawn outside the area designated to that zone. The
planed solution to this is to make a check and only show the amount that can be fitted
in the zone and add scrolling so that the figures in the zone can be scrolled pretty
much like a list with a scrollbar.

Use cases
Scroll visible objects

7.2.6 Search

The plug-in is meant to handle the standard query-response searches as well as the
graphical representation.

Use cases

 60

Search
Refine search
New focus

7.2.7 Database

Logging in and out of databases are also left to be done.

 61

References

[1]LAMPING, J., RAO, R., and PIROLLI, P. 1995. A focus C context technique based on
hyperbolic geometry
for visualizing large hierarchies. In Proceedings of CHI ’95, ACM Conference on Human
Factors in Computing Systems. ACM, New York.

[2]CZERWINSKI, M. and LARSON, K. 1997. The new Web browsers: They’re cool but are
they useful?
In People and Computers XII: Proceedings of the HCI ’97 Conference, H. Thimbleby, B.
O’Conaill,
and P. Thomas, Eds. Springer Verlag, Berlin.

[3] PETER PIROLLI, STUART K. CARD, and MIJA M. VAN DER WEGE. 2003. The
Effects of Information Scent on Visual Search in the Hyperbolic Tree Browser
Palo Alto Research Center. In Transactions on Computer-Human Interaction. ACM, New
York.

[4] Object Technology International, Inc.
 Eclipse Platform Technical Overview July 2001 (updated for Eclipse 2.1 in Feb. 2003)
www.eclipse.org

[5] Chris Aniszczyk Using GEF with EMF June 8, 2005
www.eclipse.org

[6] Bill Moore, David Dean, Anna Gerber,Gunnar Wagenknecht and
Philippe Vanderheyden. Eclipse Development using the Graphical Editing Framework and the
Eclipse Modeling Framework February 2004.
www.ibm.com/redbooks

[7] Eclipse Homepage as of 2005-10-01
www.eclipse.org

[8] Alan Dix, Janet E. Finlay, Gregory D. Abowd, Xristine Faulkner. 2003. Human Computer
Interaction. ISBN 0130461091

[9] Donald A. Norman. 2002. The Design of Everyday Things. ISBN 0-465-06710-7

 62

Appendix A Use Cases

Start with a desktop favorite
 -Prerequisites

There is a favorite file available and the plug-in is installed.
 -Sequence of interactions

User “runs” the favorite file and the plug-in is started and a login dialog run, when
user have logged in the plug-in shows the favorite object in focus and selected.

 -Post requisites
Plug-in running and logged in to the database and an favorite object is in focus and
selected

Load a desktop favorite
 -Prerequisites

There is a favorite file available and the plug-in started.
 -Sequence of interactions

User “runs” the favorite file and the plug-in is started and a login dialog run it the user
has not already logged in, when user are logged in the plug-in shows the favorite
object in focus and selected.

 -Post requisites
Plug-in running and logged in to the database and an favorite object is in focus and
selected

Login to database
 -Prerequisites

Plug-in running and not already logged in.
 -Sequence of interactions

User starts by selecting “login” from a scroll down menu and types username and
password in a dialog. Plug-in sends information to the database and logs itself in. User
is informed if the login was successful or unsuccessful. If it was unsuccessful user gets
to retry.

 -Post requisites
Logged in if user has access to database.

Logout from database
 -Prerequisites
 Plug-in running and logged in.
 -Sequence of interactions

User starts by selecting “logout” from a scroll down menu. An affirmation popup is
displayed if “yes” is selected Plug-in sends information to the database and logs itself
out.

 -Post requisites
 User is logged out from database

Search
 -Prerequisites
 Plug-in running and logged in.
 -Sequence of interactions

 63

User types the keys to search for in the search view and presses the search button. The
information is then sent to the database where the search is executed and the result
sent back to the Plug-in which displays the result in the search view.

 -Post requisites
The result of the search is displayed in the search view.

Refine search
 -Prerequisites

Plug-in running and logged in, the result of a search is displayed in the search view.
 -Sequence of interactions

User presses the refine search button in the search view. The information used in the
previous search is then displayed instead, and the user may alter them.

 -Post requisites
The keys from the previous search is displayed in the search view.

New focus
 -Prerequisites

Plug-in running and logged in, the result of a search is displayed in the search view.
 -Sequence of interactions

User selects the appropriate object in the search view. The Focus view then renders the
object and it is then selected.

 -Post requisites
The Focus view has the object focused and selected.

Focus on ping
 -Prerequisites

Plug-in running and logged in, the result of a change ping is displayed in the update
view.

 -Sequence of interactions
User selects the appropriate object in the update view. The Focus view then renders
the object and it is then selected.

 -Post requisites
The Focus view has the object focused and selected.

Back
 -Prerequisites

Plug-in running and logged in, at least two objects has been in focus
 -Sequence of interactions

User presses the back button and the object in focus is changed to the previously
focused object which is also selected.

 -Post requisites
The Focus view has the previously focused object focused and selected and the
previous list and forward list is updated.

Back several steps

 64

 -Prerequisites
Plug-in running and logged in, at least three objects has been in focus

 -Sequence of interactions
User presses the back several steps button and picks one object from the list of
previously focused objects. That object will be focused on and selected.

 -Post requisites
The Focus view has the previously focused object focused and selected and the
previous list and forward list is updated.

Forward
 -Prerequisites

Plug-in running and logged in, forward list is not empty
 -Sequence of interactions

User presses the forward button and the object in focus is changed to the object first in
the forward list object which is also selected.

 -Post requisites
The Focus view has the object focused and selected and the previous list and forward
list is updated.

Forward several steps
 -Prerequisites

Plug-in running and logged in, at least two objects is in forward list
 -Sequence of interactions

User presses the forward several steps button and picks one object from the list of
previously focused objects in the forward list, that object will be focused on and
selected.

 -Post requisites
The Focus view has the previously focused object focused and selected and the
previous list and forward list is updated.

Refocus focus view
 -Prerequisites

Plug-in running and logged in, at least one not focused object is shown in the focus
view.

 -Sequence of interactions
User selects one of the not focused objects in the focus view selects to focus on that
object instead. The focus view then changes focus to that object and selects it.

 -Post requisites
The Focus view has the new development aspect of the object focused and selected.

Refocus V view
 -Prerequisites

Plug-in running and logged in, an object is shown in the V view
 -Sequence of interactions

User selects one of the development steps from the V view selects to focus on another
development aspect of the object currently in focus. The focus view then changes
focus to that development aspect and selects it.

 65

 -Post requisites
The Focus view has the new development aspect of the object focused and selected.

Read document
 -Prerequisites

Plug-in running and logged in, a document object is shown in the focus view.
 -Sequence of interactions

User selects a document object and chooses to read it. The appropriate program is then
started and the document opened in it.

 -Post requisites
Document is showed in an appropriate program.

Change visible objects
 -Prerequisites

Plug-in running and logged in, an object and some of the objects that is related to it is
shown in the focus view.

 -Sequence of interactions
The user selects a group of objects that is related in the same way to the object in
focus. Right click on them and select “choose visible” this will launch a popup where
the user can select which objects to show. If the number of selected objects are greater
then the maximum allowed objects of that type the exceeding objects will not be
shown.

 -Post requisites
The focus view will show the selected objects.

Change number of visible objects
 -Prerequisites
 Plug-in running.
 -Sequence of interactions

Select “visible objects” from a scroll down menu and a popup will be launched where
the user can specify the maximum number of objects that can be shown for each
relation and levels from the object in focus. When the done button the focus view will
be drawn according to the new rules.

 -Post requisites
The focus view will be drawn in accordance with the new rules.

Change render depth
 -Prerequisites:
 Plug-in running.
 -Sequence of interactions:

User selects “Change render depth” in a scroll down menu. The plug-in displays the “Change
render depth” window. The user then changes how many levels of a specific relation will be
rendered. The user then closes the window and the plug-in will register the changes.

 -Post requisites:
The Focus view now shows the appropriate number of levels of all relations.

 66

Focus on favorite:
 -Prerequisites:
 Plug-in running, user logged in.
 -Sequence of interactions:

User selects the appropriate object in the Favorite scroll down menu. The Focus view then
focuses on the object and selects it.

 -Post requisites:
The Focus view has the object focused and selected.

Add to Favorites:
 -Prerequisites:
 Plug-in running, user logged in, object focused.
 -Sequence of interactions:

User selects the “Add to Favorite” option in the Favorites scroll down menu. The plug-in then
displays an affirmation pop up window. The user then selects “OK“ and the Plug in will add the
focused object to the Favorites list.

 -Post requisites:
The added object will now be available from the Favorites scroll down menu.

Remove favorite:
 -Prerequisites:

Plug-in running, Favorite list not empty.
 -Sequence of interactions:

User selects the “Remove Favorite” option in the Favorites scroll down menu. The plug-in then
displays a list of the objects in the Favorites list. The user then selects the object he wishes to
remove from the Favorites list and selects “OK”. The plug-in then displays an affirmation pop
up window. The user selects “OK” and the Plug in will remove the object from the Favorites
list.

 -Post requisites:
The removed object will not be available from the Favorites scroll down menu.

Delete ping
 -Prerequisites:

Plug-in running, ping inbox not empty.
 -Sequence of interactions:

User selects a ping in the update view right click on it and choose delete.
 -Post requisites:

The removed message will not be available.

Show relation:
 -Prerequisites:

Plug-in running, object selected, A specific relation is not shown in the Focus view.
 -Sequence of interactions:

User Right clicks on the focused object and selects the appropriate relation. The plug
in will then draw all relations of that kind in the Focusview.

 -Post requisites:
The focus view will show the appropriate relations.

Hide relation:
 -Prerequisites:

Plug-in running, object selected, relation visible.

 67

 -Sequence of interactions:
The user Right clicks on a relation of the type he wants to hide and selects Hide
relation from the scroll down menu. The Plug-in then hides all Relations of that kind.

 -Post requisites:
All the relations of the specific kind is not shown in the Focus view

Fan out unfocused object:
 -Prerequisites:

Plug-in running, focused object selected, a unfocused object that isn’t Fanned out.
 -Sequence of interactions:

The user Right clicks on the object he wants to fan out and selects Fan out from the
scroll down menu the plug in then displays the relations of the object.

 -Post requisites:
The relations of the Fanned out object is shown in the Focus view

Fan in unfocused object:
 -Prerequisites:

Plug-in running, focused object selected, a unfocused object that is Fanned out.
 -Sequence of interactions:

The user Right clicks on the object he wants to fan in and selects Fan in from the
scroll down menu. The plug in then removes the objects visible relations from the
Focus view

 -Post requisites:
The relations of the Fanned out object is not shown in the Focus view

Scroll visible objects:
 -Prerequisites:

Plug-in running, focused object selected, There are more relations of a kind than can
be shown.

 -Sequence of interactions:
The user presses the next button in the Focus window next to the relations he wants to
scroll. The Plug-in then shows the next set of relations of that type.

 -Post requisites:
The Focus view now shows the next set of relations of that kind

Save object specific note:
 -Prerequisites:
 Plug-in running
 -Sequence of interactions:

User focuses an object and the Plug in then displays the object. The user then proceeds
to select an object and then selects the "object note" view and writes down a note and
presses save. The Plug in then saves the note and associates it with the object.

 -Post requisites:
The Plug in now displays the notes about the object in the "object note" view when
that object is selected.

 68

Select object:
 -Prerequisites:

Plug in running, object focused.
 -Sequence of interactions:

The user Left-clicks on the object he wishes to select and the Plug in then
displays information on the object in the “object info” view.

 -Post requisites:
The object is selected and its info is presented in the “object info view.

