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Abstract

This thesis is the result of a Master thesis project at the Department of Microelectronics
and Information Technology, at the Royal Institute of Technology, Sweden. The project
was done at BEA Systems Stockholm Engineering in Sweden during 2004.

The goal of the project was to study and implement hardware sampling and profile
guided optimizations in a virtual execution environment. Profile guided optimizations
are available in several modern compilers. The large overhead of collecting the profile
has limited the use of profile guided optimizations in virtual execution environments.
This thesis presents how using hardware sampling and profile guided optimizations affect
various aspects such as performance and optimization time.

The hardware sampling and profile guided optimization was implemented in BEA
Weblogic JRockit, a Java virtual machine. To collect the profile information the hardware
sampling capabilities on the Intel Itanium 2 processor and a Linux-based operating system
was used.

The conclusion of this Master thesis is that the use of hardware sampling together
with profile guided optimizations show encouraging results. The optimization time has
significantly decreased and is 67% less when using profile information to guide optimiza-
tions. The tested applications show a performance gain at 4.7% on average when using
hardware sampling and profile guided optimizations.

Sammanfattning

Denna rapporẗar resultatet av ett examensarbete för Institutionen f̈or Mikroelektronik och
Informationsteknik p̊a Kungliga Tekniska ḧogskolan. Examensarbetet utfördes p̊a BEA
Systems Stockholm Engineering i Sverige under 2004.

Målet med examensarbetet har varit att studera och implementera hårdvarusampling
och profilstyrda optimieringar i en virtuell exekveringsmiljö. Profilstyrda optimieringar
anv̈ands i flera moderna kompilatorer. Kostnaden i prestandaförlust för att samla in pro-
filinformationen har tidigare hindrat användandet i virtuella exekveringsmiljöer. Rap-
porten presenterar hur användandet av h̊ardvarusampling och profilstyrda optimeringingar
påverkar olika aspekter, till exempel prestanda och optimeringstid.

Hårdvarusamplingen och profilstyrda optimeringar implementerades i Javamotorn BEA
Weblogic JRockit. F̈or att samla in profilinformationen användes h̊ardvarusamplingsm̈oj-
ligheterna p̊a en Intel Itanium 2 processor och ett Linuxbaserat operativsystem.

Slutsatsen i rapporten̈ar att h̊ardvarusampling tillsammans med profilstyrda opti-
meringar visar motiverande resultat. Optimeringstiden blir markant kortare ochär 67%
mindre n̈ar profilinformation utnyttjas i optimeringarna. De undersökta applikationerna
uppvisarökad prestanda på 4,7% i medel n̈ar hardvarusampling och profilstyrda opti-
meringar anv̈ands.
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Chapter 1

Introduction

The main objective for compilers besides generating correct code, has always been
to generate efficient code. The efficiency of the code is often measured by its size
and execution speed. Compiler optimizations are mostly focused on reducing ex-
ecution time. Common optimizations remove redundant code for exampledead
code eliminationandcopy propagation. Others likeloop invariant code removal
andloop inductionmove code from frequently executed regions (e.g. inside loops)
to less frequently executed regions. Another loop optimization isloop unrolling
where short loop bodies are duplicated to increase the size of optimizable re-
gions [3, 25]. All optimizations mentioned above are different examples ofstatic
optimizations. Static optimizations only use information that can be extracted
from the code at compile time.

Static analysis misses many optimization opportunities since it only has knowl-
edge of the static information extracted from the source code. Static optimizations
have for example trouble handling conditional statements and loops efficiently
since it does not know the outcome of a conditional statement or the most com-
mon number of iterations in a loop. This information is known at runtime and can
be collected to build a profile of the code. This profile can be used to optimize the
code during a recompilation.

It has been shown thatprofile guided optimizations(PGO) give a clear perfor-
mance improvement of the generated code [11, 12, 28]. PGO gives the compiler
an opportunity to more efficiently doinlining, trace schedulingetc. Using a pro-
file optimizations can be focused to optimize the most executed path through the
code, which is where optimizations will have the largest effect.

PGO is used in modern compilers [16, 17] to take advantage of these oppor-
tunities. To create a PGO optimized binary the compiler first compiles a special
instrumented version of the code. This code is then executed with typical input and
a profile is collected during the execution. The code is then recompiled with the
profile information available to create a binary using profile guided optimizations.
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The problem with this approach is to find typical input to use when gathering the
profile.

Virtual Execution Environments1 (VEE) have become widely accepted and
used during the last decade with programming environments such as Java and
C#. A VEE helps programmers writing complex applications by having runtime
services such as memory management, exception handling and security already
available. VEE:s limit the platform dependent design issues otherwise visible to
developers. The code executed by a VEE is usually in a platform independent
format to allow execution on different systems without recompilation. The plat-
form independent format is dynamically compiled or interpreted at runtime by the
VEE.

Since the VEE is handling the whole process of executing a program it is
possible for the VEE to collect profile information of a running application using
real data. This profile information will be more accurate than when the code is
executed with training input and it can also be updated if the input changes. This
method,dynamic profile guided optimizations(DPGO) [1], can be used to do
efficient optimizations and create an advantage for dynamic compilers in VEE:s.

Profiling has often been implemented in software because of limited hardware
support. Implementing profiling in software has been associated with a large over-
head where as much a one third of the execution time is spent profiling [7]. Recent
years more efficient methods have been able to reduce this overhead to around
5% [6]. The large overhead has limited the use of DPGO since execution would
be slowed down too much by profiling. With the Intel IA-64 architecture [21] new
opportunities open for DPGO with hardware support for available in the architec-
ture. The hardware is calledPerformance Monitoring Unitand can be used to do
sampling of running programs. Using this hardware, profiling have been shown
to give as little as 2% overhead [35], making it interesting to implement DPGO
on IA-64.

This thesis describes how DPGO was implemented in BEA Weblogic JRockit,
hereafter referred to as JRockit, on the Intel IA-64 architecture using the hardware
sampling capabilities of the processor.

JRockit is aJava Virtual Machine(JVM) [23] focused on large scale server
applications and its behavior is optimized for the characteristics of such applica-
tions [8]. The JVM is the VEE for the Java programming language [18]. Java
is compiled to a machine independent format calledJava bytecodewhich can be
executed in a JVM.

To collect the profile information, a hardware sampling module was added to

1Virtual Execution Environments, otherwise known as managed runtimes, abstract machines,
or virtual machines, has been chosen as the collective name for this type of programming environ-
ment.
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the sampling framework in JRockit. Hardware sampling is available in JRockit
on the Linux IA-64 platform. The sampling framework is able to collect the pro-
file information sampled by the processor and map it to Java methods running in
JRockit.

The most complicated part in implementing DPGO is to handle the profile in-
formation correctly. The profile information must be updated continously during
the code generation. Many optimizations changes the flow of a method, this re-
quires the profile to be updated to the reflect the new flow of the method. The
requirement to update the profile information is not restricted to PGO:s, all op-
erations that change the flow of a method must be able to manage the profile. A
framework was designed to update the profile when the flow changes and allow
quick access to profile information.

Several optimizations were implemented in JRockit to use the profile infor-
mation. These include both static optimizations, that were changed to make use
of the profile information, and new profile guided optimizations. Static optimiza-
tions that have been made more efficient with the use of profile information in
JRockit include inlining and loop peeling. Added profile guided optimizations
include basic block scheduling and branch hints.

The implementation is tested with several applications to determine the ben-
efits of DPGO compared to static optimizations. The areas studied include the
size of optimized code and time the optimizations require. The performance of
the applications is measured to determine if any gains are visible with DPGO.
The profile accuracy is also measured to check how accurate the profile is after all
optimizations.

The results presented in the thesis show encouraging results for using DPGO
and hardware sampling in a VEE. Both code size and optimization time has de-
creased. Optimizations time is less then half when using profile guided optimiza-
tions compared to static optimiziations. The performance of the tested applica-
tions show an average increase of 5%.

The rest of this thesis is organized as follows. In Section 2 different types of
profiling is described. Section 3 presents several different Profile Guided Opti-
mizations previously studied. Section 4 describes how JRockit is designed. In
Section 5 the implemented hardware sampling and profile guided optimizations
are presented. In Section 6 the experimental results are presented and discussed.
Section 7 concludes the thesis and discusses future work.
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Chapter 2

Profiling

Profiling is often focused on gathering information about the control flow of the
code. This is not however the only information that can be profiled and used for
efficient optimizations.

To build a profile, information is gathered during the execution of the appli-
cation of interest. The information is collected through eitherinstrumentationor
sampling. Instrumentation involves adding special instrumentation code in the
application that stores the information [7]. Sampling collects information about
an application by stopping it with a certain frequency and extracting the informa-
tion [19].

2.1 Value Profiles

Value profiles [9] are used to identify the most common values for various vari-
ables. Some variables can be statically determined to be constants at compile
time, this information can be used to do optimizations. The variables that can
not be statically determined to be constants might during runtime only take one
or a few values. If this behavior is discovered in a value profile it could be used
to make similar optimizations as if the variable was statically determined to be
a constant. Care must however be taken that the variable actually can take other
values and these cases must also be handled. This can be solved by creating spe-
cialized versions of the code. Which version to use is selected depending on the
value of the variable.

2.2 Memory Profiles

Higher processor speeds and multiprocessor systems have increased the demand
for fast memory, which is one of the biggest bottlenecks in computer systems
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today. This problem has increased the demand for effecient memory optimzia-
tions. Memory profiles describe how memory addresses are read and written by a
program. These profiles can be used to make various memory optimizations.

One way to reduce this bottleneck is to use prefetching. Prefetching is similar
to an ordinary load but it does not put the referenced memory in a register. The
purpose of the prefetch instruction is to make sure that the referenced memory is
in the processors memory cache. It is very difficult to determine where to put the
prefetch in the code so the reference is available in the cache when the real load
is executed. With a memory profile it is possible to determine where memory is
referenced and if the reference causes a cache miss. This information can be used
to decide when and where a prefetch should be inserted in the code [2].

Another possible optimization is to arrange how the data layout of a structure
is ordered in memory. The structures should be ordered in such a way that re-
ferring data structures are close, preferably on the same cache-line. This reduce
cache misses and give better performance [22].

2.3 Control Flow Profiles

Control flow profiling is the most frequently used type of profiling and the one
that has been studied most [4, 7, 11, 28, 36]. A control flow profile describes how
the execution path flows through aControl Flow Graph(CFG) of the code. The
CFG consists of a directed graph where the nodes arebasic blocks. A basic block
is a section of straight line code that does not contain any branches. When a basic
block is entered all instructions in that basic block are executed in order. The
basic blocks are connected by directed edges that represent the possible branches
in the code. The control flow profile consists of a trace of the program execution.
Since a complete trace of a program execution usually is very large the control
flow profile is approximated using frequencies of sub paths.

There are several approximation methods but the most common arenode pro-
files, edge profiles[28] andpath profiles[7]. Node profiles describe the execution
frequencies of the different basic blocks in the CFG. Edge profiles consist of the
execution frequencies of each edge in the graph. Collecting edge profiles is done
by analysis of the frequency of branches in the executing code and has similar
overhead as node profiling. Edge profiles are superior to node profile since a node
profile can always be calculated from an edge profile while the opposite is not
always possible. Path profiles are complete paths through a section of the code.
Path profiles contain more information than edge profiles about the execution. An
edge profile can be determined from a path profile while the opposite is not true.
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Chapter 3

Profile Guided Optimizations

This section describes various profile guided optimizations that have been devel-
oped. Many of them are modified static optimizations, which have been made
more efficient with the use of profile information.

3.1 Static Optimizations

Static optimizations per definition do not use profile information. It is however
possible to indirectly use profile information to guide static optimizations. Opti-
mizing code that is seldom or never executed is a waste of resources. If the code
is never executed it does not matter how fast it is after optimization.

Unnecessary optimizations are one of the biggest issues with static optimiza-
tions. Since static optimizations lack profile information it has to treat all the code
as equally important. If profile information is available it is possible to concen-
trate the static optimizations to frequently executed code. The optimizations will
still be static but indirectly they use the profile information to decide which sec-
tions of code to optimize. This will reduce compilation time since less amount of
code is optimized. The performance of the code should not be affected since only
code that is never or infrequently executed is left unoptimized.

3.1.1 Loop Unrolling

Loop unrolling is an efficient optimization that reduces the overhead of loop con-
trol code and exposes more instructions for optimizations in the loop block. The
optimization is done by replicating the body of the loop so that each iteration in
the new loop corresponds to several iterations in the original loop. The downside
of the optimization is that register pressure and code size increase with the unroll
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factor1. Using a profile it is possible to determine if loop unrolling is beneficial.
The profile can be used to guide how high the unroll factor should be depending
on the common number of iterations in the loop [33].

3.1.2 Escape Analysis

Escape analysis tries to find memory structures in the code that are local to a
method and therefore do not need to be allocated on the heap. Allocating this
structure locally, on the stack or in registers, instead of on the heap minimizes
memory management overhead since heap defragmentation is reduced and the
structure does not need to be freed. Statically this can only be done if the entire
method is analyzed and the structure is found to be local in the entire method.

Using profile information it is possible to find the common way through a
method and then determine if an object is local with reference to this part of the
code. If this is the case it is possible to allocate the object locally instead. Care
has to be taken if the structure is not local outside the common path. Then extra
code has to be inserted to move the structure to the heap if the execution enters a
region where the structure is not local. Profile guided escape analysis is described
by Whaley [34].

3.2 Inlining

When inlining, the called functions code is moved to the caller function and the
call is removed. The benefits from inlining come from removing the call overhead.
The call overhead consist of everything that is required to make a call, for example
saving variables on the stack and doing the actual jump. Another benefit is the
possibility to create a specialized version of the inlined method through the use of
data properties at the call site and constant arguments.

3.2.1 Inlining Static Calls

Static method inlining is an efficient optimization that has been used for a long
time. Static calls are calls where the destination is known at compile time and
never change.

Static inlining heuristics are difficult to setup optimally. Inlining every call
in a method is often bad since the called method might be very large and get
called from several different methods. This would probably make it bad choice
for inlining. Using profile information when inlining it is possible to derive better

1The unroll factor is the number of times a loop is unrolled
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heuristics for determining which methods to inline and which to leave as calls. It
has been shown that using a profile to guide inlining can give faster execution and
reduced code size compared to static heuristics [5, 30].

3.2.2 Inlining Virtual Calls

Virtual calls are calls where the destination may be unknown until the call is ex-
ecuted. This is the case for calls to function pointers in C and non-fixed instance
methods in object oriented languages such as Java and C++. A solution to this
problem is to create specialized static calls to the methods and select different
paths through depending on the method pointer or the object type. This type of
optimization was first described by Chambers in [10].

A virtual call can either bemonomorphic, with only one possible destination,
or polymorphic, with several possible destinations. In statically compiled lan-
guages such as C++ some virtual calls can be determined to be monomorphic
through analysis. This is the case if a method can be proven to only have one
implementation. This can done in Java as well, but since dynamic class loading is
possible the result might be invalidated later when new classes are loaded.

If one destination of a polymorphic call is inlined, execution of that inlined
call must be guarded. The guards have to make certain that the inlined method is
the correct method to execute. If it is not the correct method the original virtual
call is made instead. Detlefs [15] compareclass test[14] andmethod test, which
are different algorithms for determining that the correct method is executed when
doing virtual inlining. Class test compares the class of the method with the class of
the object before the inlined code is executed. Method test compares the memory
address of the call destination to be made with the address of the original method
that is inlined.

Both methods have advantages and disadvantages: consider the case where
classB inherits classA. Let A implement the methodm() whichB does not over-
ride. Suppose there exists a virtual call tom() that would be good to inline, and
the actual method inlined isA.m(). The inlined code must be guarded to check
that the correct method is executed. Using the class test to check the test will fail
for all objects of typeB and the inlined code will not be executed even though it
is the correct method. If the method test is used instead the test will succeed for
the objects of typeB since it is known that the same method is called.

Inlining of virtual calls is difficult if no profile information is available and
the call is polymorphic. The problem is to decide which of the called methods to
inline. A call might be “almost monomorphic” if it is polymorphic but most calls
go to the same destination. If the wrong method is inlined performance will suffer
because of the added guard check. Using a profile of the program it is possible to
determine which calls are almost monomorphic, and find the common destination.
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3.3 Code Positioning

The number of branches in the executed code affects the performance. The proces-
sor has to fetch new instructions from memory before executing them. Normally
the next instruction is available in the cache because a full cache-line is filled
every time . If a branch is taken the destination instruction might not be in the
cache because the instruction is placed too far away in memory from the branch
to be automatically be prefetched by the processor. This result in a stall waiting
for the memory read to be completed. Most modern processors do some predic-
tion of branches to minimize the time for instruction fetching. Mispredicting a
branch can take hundreds of clock cycles to handle before the correct instruction
is fetched and executed.

Pettis and Hansen [27] has developed an algorithm for increasing the cache
locality of code. They try to place methods that call each other close together in
order to minimize page faults. They also do intra method optimizations such as
basic block ordering and method splitting.

In basic block ordering they arrange the basic blocks so that blocks that often
executed sequentially are arranged in that order in memory. This reduces the num-
ber of taken branches and therefore makes it more probable that the instructions
to execute is already in the instruction cache.

Method splitting splits the method in two parts:Primary andFluff. Primary
is the code that is executed normally in the method while the fluff is the code that
is almost never executed. Method splitting makes the primary part of methods
smaller and easier to fit within a page. When ordering the methods the primary
parts are put on the same pages while the fluff parts are placed together on other
pages. This gives the Operating System (OS) a possibility to always keep the
pages with primary code in memory while swapping out the fluff pages.

3.4 Superblock

Basic blocks are normally short code segments with few instructions. This makes
it difficult to do efficient instruction scheduling. To overcome this problem it is
possible to use a structure calledsuperblock[24].

A superblock differs from a basic block in that it allows branches out of the
block inside of the superblock. It is however only allowed to branch to the begin-
ning of the superblock. The execution of a superblock must start at the beginning
of the block but may leave at one or more exit points. Basic blocks can rather
easy be merge to create a superblock. If the merged basic block has entry points
in the middle of the block these can be removed through tail duplication [11]. Tail
duplication is done by copying all blocks that are below the first entry point in
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the merged block. Then all entry points to the middle of the merged block are
changed to point to the duplicated basic blocks instead. The merged block are
now treated as a superblock since it only has one entry point left at the beginning.

3.5 Memory Optimization

Using the memory profile described earlier (Section 2.2) it is possible to do some
memory optimizations that can reduce execution time. The use of linked data
structures results in many memory accesses that are hard to know at compile time
and hard to optimize. Since the data can be widely spread in memory the refer-
enced memory might not be available in the cache.

Adl-Tabatabai [2] describes an algorithm to minimize cache misses through
prefetching. By sampling memory references it is possible to determine how the
structures that refer to each other are positioned in memory. Adelta is calculated
between referring structures. The delta is the distance between two structures
in memory. The delta is calculated for a type of structures and not individual
structures. This delta is then used when a certain type of structure is read from
memory to prefetch the normally referred structures. This algorithm works since
most memory structures are allocated in the same order all the time and therefore
end up in the same relative memory positions every time.

3.6 Profile Maintenance

Many optimizations change the CFG of the code and therefore have to update the
profile at the same time. This is an important issue since optimizations are done
sequentially and all optimizations need an accurate profile to work optimally. This
is a difficult problem to discover since an inaccurate profile does not generate
erroneous code instead the code will be not be optimal. An inaccurate profile can
seriously cripple performance since the only the common path is optimized while
the other paths sometimes are slowed down by moved code.

Wu [35] shows the importance of accurate profiles and shows how to update
the profile after various optimizations. The optimization that contributes most to
the loss of accuracy is inlining. A reason for this is the problem that the profile
for a method is calculated over all calls and not for every specific call site. This
may result in that a profile that is globally correct for a method is incorrect for
a specific call site. Figure 3.1 illustrates an example of how the global and local
profile might differ for a method.
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Figure 3.1: Graph showing the difference between the local profile of a specific call site
and the global profile collected using calls from all call sites. This difference between the
global and local profiles can result in that wrong optimizations are done. It is a problem
since often only the global profile is available and the local profile is completely unknown.
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Chapter 4

JRockit

JRockit is a JVM focused on server applications. A server application typically
has a long running time and demand high performance. Since the applications are
long running, the startup time is of less importance than for client applications.
Because of this and to achieve highest possible performance, JRockit always gen-
erates native code from the bytecode instead of interpreting it, as Sun [31] and
IBM [20] does. Other demands of server applications are scalability and non-
disruptiveness. To minimize disruptiveness in applications JRockit has several
different garbage collectors. Which garbage collector to use is selected at runtime
depending on the characteristics of the running application.

Optimization are time consuming and since many methods are only executed
once or infrequently it is not necessary to do extensive optimization on all meth-
ods. Instead all methods are first compiled with few or no optimizations. When a
method is later discovered to be frequently executed, hot, that method ishotspot-
tedand recompiled with aggressive optimizations.

4.1 Software Sampling

JRockit only optimize and recompile methods that are frequently executed. These
methods are found by sampling the running application. JRockit uses software
sampling to find the frequently executed methods in the running application. The
information is collected by iterating through the running Java threads in the JVM.
Each thread is suspended and the context of the thread is read to find the current
instruction pointer. Using the instruction pointer, JRockit finds which method a
thread is currently executing and increases the hotness score of that method.

Suspending a thread, reading its context and then restarting it is associated
with a large overhead. To get more information when a thread is already sus-
pended JRockit looks at the call stack of the thread. The hotness scores of the
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methods found on the call stack are also increased. This approach usually gives a
good result since optimizing a method higher up in the call chain expose possibil-
ities to do inlining.

As stated earlier, it is costly to suspend the threads and read their context.
JRockit therefore only looks at a fixed number of threads each time to avoid prob-
lems with applications using a large number of threads.

To minimize the overhead and unnecessary sampling JRockit has two different
states of sampling calledactiveandpassive. Active sampling is a high frequency
sampling that quickly finds methods to optimize but with a large overhead. Pas-
sive sampling reduces the overhead by decreasing the frequency of the sampling.
However because of the lower frequency it will find methods slower. This is
important for long running applications where sampling after a while becomes
unnecessary, since the important methods already have been discovered and opti-
mized. Which sampling mode to use is determined by looking at the ratio between
samples in optimized and non-optimized code, and elapsed time since new code
was generated.

4.2 Code Generation

Since JRockit always compile the bytecode to native code, JRockit is very similar
to a traditional compiler and therefore contains the parts available in a compiler.

To represent a method compilers often use anintermediate representation
(IR). The IR is a data structure that holds all the information about a method
that is needed to compile and optimize it. The IR is an abstract representation
of a method and makes code generation and optimization easier for the compiler.
The IR represents all the instructions in the code and also the possible flow of
execution in the method.

There are various ways to implement the IR, for example Appel [3] uses a
tree structure to hold the instructions and flow of a method. In JRockit the IR
consists of a graph that describes the flow of the method and nodes that contain
the instructions. The graph is a CFG where the nodes are basic blocks and the
edges describe the possible flow of the execution.

The code generation use three different levels of IR called HIR, MIR and LIR,
which is short for High-, Middle- and Low-level IR. Figure 4.1 shows how the
bytecode is translated to native code through a series of intermediate steps. For
every step the IR is transformed to a format that more resembles native code.

The HIR is a very high level representation and is mostly used to ease the
translation from bytecode. The platform independent MIR level is where most
high level optimizations, such as inlining and dead code elimination, occur. The
MIR is transformed to SSA-form [13] and back during optimizations. The SSA-
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BC HIR MIR LIR NC

Platform dependentPlatform independent

Figure 4.1: During code generation the Java bytecode (BC) is transformed to an inter-
mediate representation. There exists three different levels of IR called High-, Middle-
and Low-level IR. When the code generation reaches the LIR level the code is platform
dependent and is then translated to native code (NC).

form simplifies several optimizations. In LIR the IR has become platform depen-
dent. The instructions in LIR are very similar to real native code instructions,
which makes register allocation and low level optimizations easier.

JRockit has different IR levels since it is hard to accommodate the needs of
the stages involved in code generation in one grand unified representation. Each
representation is suitable for its specific stage and the optimizations of the code
done in that stage.

15



16



Chapter 5

Implementation

A new type sampling is implemented in JRockit using thehardware sampling
capabilities of Itanium 2. With this hardware it is possible to gather extensive in-
formation about individual methods in the application that can be used for profile
guided optimizations. This section describes the hardware sampling and how this
new information is used in JRockit to enable profile guided optimizations.

5.1 Hardware Sampling

The hardware sampling is divided in layers to hide as much as possible of the un-
derlying OS and processor from JRockit. This is to simplify porting of hardware
sampling in JRockit to other OS:s and processors as profiling becomes available.
Another reason is to have one profiling framework, independent of which type of
sampling that is used.

5.1.1 Performance Monitoring Unit

The IA-64 architecture defines aPerformance Monitoring Unit[21] (PMU) that
allows monitoring of processor events. The architecture states that the PMU must
implement at least four performance counters, each consists of two type of regis-
ters calledPerformance Monitor Configuration(PMC) andPerformance Monitor
Data (PMD). The PMC is used to configure how to monitor an event. The result
is gathered in the PMD register or registers controlled by that PMC register. The
PMU is only writable in privileged mode (kernel mode) but it is possible configure
the PMU to make it readable for applications not running in kernel mode.

The Itanium processor implements the IA-64 architecture and the PMU, and
several monitoring possibilities have been added to the PMU. The Itanium has
added 6 PMC registers and 14 PMD registers to the ones required by the IA-64
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architecture. The architecture requires only two events to be available, but the
Itanium has extended this to approximately 230 different events. Important ad-
ditions areAddress range checking, Event Address Registers(EAR) andBranch
Trace Buffer(BTB).

Address range checkingAddress range checking is used to limit the memory
range in which events are captured. This can be used to sample only a
specific application or a part of an application.

EAR The EAR registers are used to capture events related to memory usage.
Two different EAR registers exist, one for instructions (I-EAR) and one
for data (D-EAR). The D-EAR captures events for loads, stores and other
instructions that use memory. D-EAR uses three PMD registers to record
instruction address, memory address and memory latency for one event.
D-EAR can be used to create memory profiles of an application. I-EAR
instead record instructions address and memory latency when the processor
fetches instructions.

BTB The BTB consists of four pairs of PMD registers that capture the address
of a branch instructions along with the destination of those instructions. By
using the PMC register for the BTB it is possible to configure which types of
branches to capture. The BTB can for example be configured to sample only
taken, not taken or mispredicted branches. With the four pairs of registers
in the BTB it is possible to build path or edge profiles of the code.

5.1.2 Linux/IA64 kernel

Since the PMU is writable only when the processor is in kernel mode the OS must
provide a system call if unprivileged programs are to be allowed to access it. In
the Linux kernel1 for IA-64 this support is calledperfmon[26].

Perfmon consists of a single system call,perfmonctl() through which
user level applications can register to receive all supported monitors. Through
this system call it is possible for applications to register per-task or system-wide
sampling. Perfmon is able to handle several distinct per-task sessions to be moni-
tored in parallel. Perfmon also handles security aspects so that only the owner of
a monitoring session is allowed to read the associated registers in the PMU.

1Perfmon is available in both 2.4 (perfmon-1.x) and 2.6 (perfmon-2.x) version of the Linux
kernel. The API is slightly different between the two kernel versions.
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5.1.3 RTMon

To minimize platform dependence, Intel, in a joint project with BEA, has devel-
oped an API calledRTMonthat lies between the OS kernel and the application.
RTMon works as a producer of monitoring events. A consumer can register what
type of information it is interested in and supply a buffer for storing the sampled
data. The buffer is filled with the requested information and when the buffer is
full the consumer is notified and can start to decode the data in the buffer.

5.1.4 Sample Processing

When a buffer is received in JRockit from RTMon, all collected samples are pro-
cessed. Since the samples in the buffer are just a from- and a target-address for
the sampled branches they need to be processed to limit the memory usage. Each
sample is decoded and the method they belong to is looked up. For every unique
sample a new counter is added to the corresponding method. This counter is then
increased for every subsequent sample with the same address. For each sample the
hotness score is increased in a similar fashion as with software sampling. When
a method reaches a hotness score higher than a certain threshold the method is
queued for optimizations.

5.2 Profile Decoration

Decorating the IR is the process of determining the probabilities and frequencies
of the edges and basic blocks in the IR. This is done by mapping the sampled
information to the branches in the IR. As shown in Figure 5.1 the IR gets decorated
at the MIR level in the code generation. This is level was chosen since JRockit
does not do any optimizations earlier. Decorating earlier would therefore only
require more work managing a profile that is not used.

The IR only gets decorated when a method has been hotspotted and is recom-
piled with optimizations. Decorating the IR is one of the more complicated parts
of the profiling process and involves translating the sampled instruction pointers
to positions in the Java bytecode.

To enable this translation JRockit uses a mapping between the emitted ma-
chine instruction and the original Java bytecode it originates from. This mapping
is called alocationwhich is defined as a specific method and abytecode index. A
bytecode index is the offset of a specific bytecode instruction within a method. To
limit the number of locations only certain types of bytecode instructions are given
locations, for example control transfer instructions.
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BC HIR MIR LIR NC

Profile

Figure 5.1: The IR is decorated in the MIR level. The reason the IR does not get decorated
earlier is because that no optimizations are performed in the higher levels. Decorating
the IR earlier would only impose more work since the profile would need to be managed
longer without being used.

A limitation with locations is that, there exist bytecode instructions that ex-
pand to several branches in native code. This makes it difficult to find which
bytecode instruction that corresponds to the sampled machine instruction since
several samples may correspond to the same bytecode instruction and location.

Figure 5.2 shows an example of an instruction that is expanded to two branches.
If samples are collected for these branches it is impossible to separate them from
each other using only locations.

To determine the probability for a specific branch the collected samples corre-
sponding to that branch need to be found. In MIR the blocks are not yet scheduled
and because of this it is impossible to know how the basic blocks are ordered in
memory. This makes matching of branch samples with edges in the IR non-trivial.

To determine the probabilities for the edges in the IR in Figure 5.3, the sam-
ples for the two different outcomes of the corresponding branch must be found.
First, the two samples with a from address corresponding to location 1 must be
found. Location 1 is the last location in the basic block and corresponds to the
branch. When the two samples have been found it must be determined which of
the IR edges the samples corresponds to. The target address of the samples must
correspond to the first location in one of the successor blocks, in this case either
location 2 or 3. Using the count for the samples it is possible to calculate the prob-
abilities for the two edges in the IR. If only one edge has received any samples the
other edge is infrequently or never executed and should have zero probability.

Since all information is collected through sampling some parts of the IR may
not have any samples at all while others contain many. Because of this there
must exist a way to guess the outcome of branches that lack profile information.
To solve this problem a simple algorithm has been implemented that give the
branches equal probability, unless it is possible to assume that either edge should
be taken infrequently. Examples of such branches are tests that check if an object
reference is null or if either edge is connected to a basic block that throws a Java
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...
aastore a[], 3, obj

...

...
aastore a[ ] i obj, (47)

...

...
if a[ ] != NULL, (47)

throw NullPointer
if (0 <= i < a.length), (47)

a[i] = obj, (47)
...

throw OutOfBounds

True

True
False

False

(Bytecode Instruction) (Expanded Instruction)

Figure 5.2: The figure shows how the bytecode instruction aastore, which stores a value
at a specified index in an array is expanded. The single bytecode instruction, is expanded
to two branches and the actual store all with the same bytecode index, 47. Since all
instructions in the expanded version have the same location it is impossible to make any
distinction between them when processing samples.

....
Location1

Location 2
....

Location 3
....

Figure 5.3: A simple IR with three different locations used to find samples that correspond
to the edges in the IR in order to decorate it.
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Exception. These are both exceptional cases that normally do not occur and are
therefore are given a low probability.

As stated above, sometimes only one of the edges out of a basic block has re-
ceived any samples. For normal basic block with branches this poses no problem.
However if the edge with no samples is a loop exit this means that the loop never
exits. For some loops this is correct but for most loops this is not true. This prob-
lem occurs in loops that do many iterations before exiting, since there is a risk of
all samples are collected from within the loop. To accommodate this problem, all
loop exits are set to have a small, non-zero, probability.

The IR is at first decorated with branch probabilities for every edge in the
IR. Using this information, basic block and edge frequencies are calculated using
the algorithm described by Wu [36]. This enables the optimizations to find the
frequently executed,hot, or infrequently executed,cold, basic blocks and edges
in the IR. The frequency of a basic block is the sum of the frequencies of all
the incoming edges. The frequency of an edge going out of a basic block is the
frequency of that basic block multiplied with the probability of the of the edge
itself. The equations below describe this relation.

bfreq(bi) = 1.0 (if bi is the start block)

bfreq(bi) = Σbpεpred(bi)freq(bp → bi) (otherwise)

freq(bp → bi) = bfreq(bi)prob(bp → bi)

The equations are straight forward to solve for methods that do not contain
loops. Then the equations can be solved by starting at the entry block2 of the
method and topologically walk the graph calculating the frequencies for edges
and block as they are encountered. If the method contains a loop the equations
become recursive since the frequency of an incoming edge to a basic block may
depend on one of the outgoing edges from itself. Wu describes a fast algorithm
that handles this and also is able to solve the equations for methods containing
non-terminating loops.

The incoming frequency to a method is always 1.0, which makes it easy to
determine if a block is hot or cold. A basic block or edge that has frequency 1.0,
is executed one time on each entry of the method on average. If the frequency is
even higher this shows how often for each entry in the method how many times
that basic block is executed. The same is true if the block has a frequency less
than 1.0, which implies that the block is not executed every time the method is

2The entry block in a method is the block where execution of the method always starts when
the method is called.
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entered. Using this information it is possible to set limits for when a basic block
is hot or cold.

5.3 Profile Guided Optimizations

JRockit does several optimizations of the code in the different levels of IR. Most
optimizations are made in the MIR stage. Each optimization can be performed
several times, since when the IR is transformed by an optimization, new opti-
mization opportunities that were not possible before might arise. This requires
that JRockit is able to correctly manage the profile information so that it is still
correct after the IR has been transformed. This update must be done for both
profile guided and static optimizations.

Some of the static optimizations in JRockit have been modified to use the
profile information available. New optimizations completely dependent on pro-
file information has also been added to JRockit. These changes and additions to
JRockits optimizations are described below.

Hoist Loads Only hoist loads from a basic block if the basic block to where the
load is moved has a lower execution frequency than the basic block where
it is currently located.

Loop Peeling Only do loop peeling on loops with high execution frequency. These
are either loops that are entered often, do many iterations, or both.

Load Prefetch Do not add prefetches for loads in cold blocks, since most of
the time it will be unnecessary. The effect of limiting the prefetches will
hopefully be less instructions and reduced number of memory accesses.

5.3.1 Inlining

Inlining can increase performance significantly by removing the overhead of a
call. The downside of inlining is code growth and longer optimization time be-
cause of the larger code. Using the profile information, inlining is restricted to
calls that are frequently executed.

To determine which methods to inline, a score is calculated for each call. The
score is a measurement on how profitable it would be to inline that call. To calcu-
late the score, the function examines various aspects of a call, and returns a score
depending on how these aspects affect inlining. The aspects considered at are for
example number of constants in the call, loop depth, recursive calls and size of
the called method.
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The old static score function is still used since it performs well. Instead the
score function is altered by adding profile knowledge. The first change is that all
blocks that are cold are ignored and no score are calculated for calls in cold blocks.
However inlining is still done for small methods for which the code to make the
call is larger then the method called. If a call is not cold, the score for the call is
calculated. The score is now not only affected by the static information but also
the profile information. The higher the frequency of a call site is, the higher score
it receives. These changes concentrate our inlining to the hot blocks of a method
and limits the unnecessary inlining in cold blocks.

5.3.2 Basic Block Scheduling

One of the last steps in the code generation is the basic block scheduling. Basic
block scheduling decides in which order the basic blocks will be placed in mem-
ory. An algorithm developed by Pettis and Hansen [27], simply calledAlgo2 or
Bottom-up Positioning, was implemented to do scheduling of basic blocks using
profile information. The algorithm works by trying to build chains of basic blocks
that are frequently executed in order. A chain is a linked list of basic blocks that
also are connected in the IR. To determine how the blocks should be added to the
chains, the edges are sorted by frequency in descending order. Going through all
edges in order it looks at the two basic blocks connected by the edge.

To connect either of the basic blocks to an existing chain the other block must
be first or last in a chain depending how the blocks are connected. To add the
successor block to a chain, the predecessor block must be the last block in one of
the available chains. If the predecessor is to be added, the successor block must be
the first block in a chain. If either block is in the middle of an existing chain, the
edge is skipped. If neither of the blocks are in a chain, a new chain is created with
the two blocks. After all edges have been processed, some basic blocks might not
have been added to a chain. Each of these basic blocks are now added to new
chains containing only a single basic block.

The last step in the algorithm is to order the chains. In Algo2, this done by
analyzing the precedence relations between the basic blocks in the chains. The
objective is to minimize the number of backward jumps and it tries to place the
chains in such a way that only forward jumps occur. This is not implemented
in JRockit, instead the chains are ordered by finding the successor block that is
connected with the highest frequency to a block in the last added chain. This will
order the chains in the most frequently executed order and move less executed
chains of blocks to the end of the method.

Figure 5.4 show an example of how the algorithm works when the IR in the
figure is scheduled. The first step is to build the chains. The edge with the highest
frequency is 1 so the first chain is A→B. The next edge is 2, since C is a successor
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Figure 5.4: A decorated IR with edge frequencies. On the right are the chains that are
created when scheduling the basic blocks with Pettis and Hansen’s [27] algorithm.

of B, C is added to the end of the first chain since B is the last block in that chain.
In the same way E added to end of the first chain. D does not get added when
going through edges 3 and 5 since both the successor and predecessor of D are in
the middle of chain 1. The order of the chains is simple, since the start block must
be first in a method the first chain is placed first, followed by the second chain.

5.3.3 Branch Prediction

The IA-64 branch instructions give the opportunity to set hints on branches. The
hints are a guess of the outcome of a branch. Table 5.1 shows the hints available
to branch instructions. These hints enable the processor to prefetch the code on
the destination of the hinted outcome and start the execution before the evaluation
is completed. Previously JRockit guessed how to place hints depending on the
direction and type of branch. The new optimization use the profile information
to determine the normal outcome of the branch and adds a dynamic taken or not-
taken hint depending on the profile.

5.3.4 Profile Management

A very difficult problem when using PGO is to keep the profile updated and correct
at all times. If the profile gets incorrect during a transformation of the IR it is
hard or often impossible to recreate the lost information later. The profile has
to be correct until the code has been generated and placed in memory, since the
the profile information is used during the whole code generation. Optimizations,
whether or not they depend on profile information, must update the profile if they
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Table 5.1: The prediction hints available for branch instructions on IA-64. The table
comes from Intel IA-64 Manual [21]

Hint Strategy Operation

spnt Static Not-Taken Ignore this branch, do not allocate predic-
tion resources for this branch.

sptk Static Taken Always predict taken, do not allocate pre-
diction resources for this branch.

dpnt Dynamic Not-Taken Use dynamic prediction hardware. If no
dynamic history information exists for
this branch, predict not-taken.

dptk Dynamic Taken Use dynamic prediction hardware. If no
dynamic history information exists for
this branch, predict taken.

in some way change the flow of the IR. These changes might be adding or remove
basic blocks, which might affect the probability and frequency for connected basic
blocks.

Many transformations can be handled locally, such as splitting a basic block,
where only the edge connecting the two blocks must be set to the correct probabil-
ity and frequency. Others, like removing a predecessor from a basic block, require
a recalculation of frequencies in all reachable basic blocks and edges. Changes to
instructions inside basic blocks or movement of instructions to other blocks, do
not require the profile to be updated. This is true for instructions not affecting the
flow of the code. Examples of optimizations that affect the profile are:

Inlining The method that gets inlined must have a profile that is correct and
scaled to the frequency of basic block containing the call site.

Constant Branch Removal If one edge is removed the probability of the other
edge or edges is affected. Since the changed probability affects the fre-
quency of the edge and successor block the frequency for the IR must be
recalculated.

IR Conversion Going from one level of IR to the next usually involves transfor-
mation of instructions to a format closer to native code. This might add new
basic block in the new IR depending on the type of instruction. The new
blocks and their edges must have correct probability and frequency set.
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Chapter 6

Results and discussion

6.1 Methodology

All the performance results presented in this thesis were obtained on an HP work-
station zx2000, a single processor system with an Itanium 2, 900 MHz, processor.
The OS used was Suse 9.0 [32] with Linux kernel version 2.6.5. To evaluate hard-
ware sampling and the implemented profile guided optimization, SPECjbb2000
and SPECjvm98 [29] benchmarks and an BEA internally developed streaming
XML-parsing benchmark, XMLStax, were chosen. SPECjvm98 is a test suite
composed of eight separate benchmarks.

Each benchmark was executed several times each run to let the JVM hotspot
and optimize as many methods as possible. Depending on optimization and type
of sampling, different number of methods might be hotspotted and optimized.

First the individual parts of sampling and optimizations are tested. The soft-
ware and hardware sampling is compared to see how they affect performance.
Also the difference in ability to find frequently executed methods to optimize is
studied. Then the implemented profile guided optimizations, are benchmarked to
see how they impact optimization time, size of optimized code and performance
of the benchmarks. The correctness of the profile information of the optimized
methods is measured, in order to determine how the updated profile has been af-
fected during code generaration and optimizations. Finally, the current version of
JRockit with software sampling and static optimizations is compared to a version
of JRockit with both hardware sampling and profile guided optimizations enabled.

6.2 Hardware Sampling

Table 6.1 shows the number of methods that were optimized in each of the bench-
marks. The hardware sampling finds fewer methods to optimize than software
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Table 6.1: The number of methods optimized when hotspotting with software (SW) and
hardware (HW) sampling, respectively.

Benchmark SW Sampling HW Sampling

SPECjbb2000 159 177
201 compress 13 7
202 jess 52 43
209 db 24 15
213 javac 261 177
222 mpegaudio 75 63
227 mtrt 44 54
228 jack 78 72
XMLStax 25 20

sampling. This is true for all but two cases, SPECjbb2000 and 227mtrt, where
more methods are optimized.

In Figure 6.1, the normalized optimization time spent for the hotspotted meth-
ods are shown. Optimizing methods found with hardware sampling require on
average 37% of the time spent on optimizing methods found through software
sampling. The time spent optimizing methods is lower when using hardware sam-
pling, even in the two cases where more methods were optimized.

The performance difference between hardware and software sampling is shown
in Figure 6.2. The applications show similar performance results on the various
benchmarks independent of the sampling method. On average the benchmarks
differ less than 0.3% in performance. The benchmarks 202jess and 213javac
stand out with a performance difference around 10% between the two types of
sampling.

Using hardware sampling instead of software sampling shows a slight decrease
in performance compared to using the software sampling for most applications.
However, using the hardware sampling fewer methods are normally optimized
and the optimization time has been drastically shortened. This is achieved with-
out using the more extensive information that is gathered through hardware sam-
pling compared to software sampling. The plausible explanation for this is that
hardware sampling produces a more accurate profile of a program than software
profiling does.

One factor in decreasing the optimization time is that hardware sampling does
not promote methods higher up in the call stack as the software sampling does.
This limits the code growth when optimizing since less inlining can be done in
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Figure 6.1: Normalized time spent on optimizing methods hotspotted with software and
hardware sampling.
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Figure 6.2: Normalized performance difference on the various benchmarks between hard-
ware and software sampling.
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Figure 6.3: Comparison of the size of the code when using different PGO against us-
ing static optimization. PGO uses all implemented profile guided optimizations. Inline,
LoopPeel, BB Schedule and Branch Hints use only that particular PGO while all other
optimizations used are static.

methods lower in the call stack. Optimization time does not scale linearly to
growing code size, so much of the shorter optimization is most likely a result of
less inlining.

The decreased performance of 213javac probably comes from missing meth-
ods higher in the call chain where inlining has a large impact on performance.
This has not been proved but should be the reason for the performance loss.

6.3 Profile Guided Optimizations

This section compares how different profile guided optimizations affect the size
of the code, optimization time and performance. The compared profile guided
optimizations are inlining, loop peeling, basic block scheduling and branch hints.
They are both compared individually and combined against static optimizations.
All versions of JRockit use hardware sampling and optimize the same methods.

Figures 6.3 and 6.4 show data for compilation overhead. Figure 6.3 shows the
size of the optimized code expansion using different profile guided optimizations
compared to only using static optimizations. In Figure 6.4, a comparison of the
optimization times for the profile guided optimizations against static optimizations
is shown. A comparison of performance is shown in Figure 6.5.

Comparing the effect of the different profile guided optimizations, it is clear
that inlining has the largest effect on optimization time and code size. In most
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Figure 6.4: The amount of time spent optimizing code using different PGO compared to
using static optimization. Inline, LoopPeel, BB Schedule and Branch Hints use only that
particular PGO while all other optimizations used are static.
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Figure 6.5: Comparison of the benchmark results when using different PGO compared to
using static optimization. Inline, LoopPeel, BB Schedule and Branch Hints use only that
particular PGO while all other optimizations used are static.
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cases it also has the largest effect on performance as well. The other profile guided
optimizations do not affect either the size or time in a large extent, which is not
unexpected. Using PGO, there is on average a 4.9% performance increase on the
benchmarks, compared to only using static optimization. There are three cases
that stand out, 201compress, 222mpegaudio and 227mtrt.

Figure 6.4 shows a large increase in optimization time for 201compress, but
since the total optimization time is around 500 ms for the benchmark, this is of
little interest.

The large increase in optimization time for 222mpegaudio due to inlining is
more interesting. The increase is around 13 seconds and comes from one single
method namedq.o 1. The profile guided inlining decides to inline two calls to the
same method inside a loop in theq.o method. The inlined method is large which
explains the increased optimization time. The size also is the reason that the static
inline function decides not to inline the two calls. When these calls are inlined
other optimizations are able to remove several memory reads and array bounds
checks. These optimizations results in a 25% increase in performance compared
to the static optimizations.

The benchmark 227mtrt shows a performance loss of around 6% when using
profile guided inlining. It is one single method,Scene.RenderScene , that
causes the performance loss. The problem is that inlining makes the profile in-
accurate. A part of the method is thought to be infrequently executed while in
reality it is. Because of the inaccurate profile, wrong decisions are made about
optimizations which results in a performance loss. This shows how important it
is that the profile is correct during all optimizations to be able to make correct
decisions. This is even more evident when looking at the performance when all
PGO:s are enabled. This gives even lower performance since all the other PGO:s
also use the inaccurate profile and make wrong decisions.

6.4 Profile Correctness

To measure the correctness of the profile the code was split into three different
sections when it was placed in memory. These parts wherehot, coldandmedium.
A hot block is a block that is executed on average 0.9 times or more each time a
method is entered. A cold block is executed 0.1 times or less for each method en-
try. The medium blocks are the blocks with a frequency between these extremes.

The optimized code was then sampled and the collected samples were ana-
lyzed to determine how the execution was divided between the different sections
of code. Looking at how the samples in the optimized code are distributed be-

1The benchmark 222mpegaudio uses obfuscated code, therefore the awkward name.
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Figure 6.6: The figure shows how execution was divided between the different types of
blocks for each benchmark.

tween the sections makes it possible to see if the profile of the optimized code was
correct. The benchmarks were executed with hardware sampling and all profile
guided optimizations enabled.

Figure 6.6 shows how execution was divided between the different types of
blocks. On average 80% of the excution time was spent in hot blocks and less
than 5% was spent in cold blocks. There are two benchmarks that deviate from
this, 213javac and 227mtrt. 213javac has the largest deviation and spend around
50% of the execution in either cold or medium block.

That 213javac executes more medium and cold blocks depends on the bench-
mark characteristics. The methods contain many branches with equal probabil-
ity to be taken or not. If a method contains a few consecutive branches with
equal probability for either outcome the frequency along a path in the method will
quickly become small. The frequency is halved for each branch it passes along a
path. That explains why there exists many medium and cold blocks in 213javac
that get executed.

Since the aim of PGO is to make the common case fast, they have less impact
on methods where there is no clear common case. Since much of the execution is
spent in what the profile said were cold blocks which are ignored by profile guided
optimizations, the performance of the benchmark is less than optimal. Despite
this problem 213javac shows increased performance over static optimizations as
shown in Figure 6.5.

The benchmark 227mtrt has an inaccurate profile, with around 10% of the
execution is in unoptimized cold code. The performance which was decreased by
8%, clearly shows the importance of using accurate profile information.
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6.5 Hardware Sampling and Profile Guided Opti-
mization

This section compares the current JRockit with software sampling and static op-
timizations to a JRockit with the hardware sampling and profile guided optimiza-
tions described in this thesis.

Table 6.2 shows how many methods that were optimized by the two different
sampling and optimizations strategies. The number of optimized methods depends
more on the sampling than on optimizations and are similar to the numbers in
Table 6.1, which compares software and hardware sampling.

Figure 6.7 shows the difference in size of the optimized code. In Figure 6.8
the optimization time is compared. The performance difference is shown in Fig-
ure 6.9.

Comparing software sampling and static optimization with hardware sampling
and profile guided optimizations, the latter in most cases show improvement in all
categories measured. The size of the optimized code is significantly smaller than
when using static optimizations. Using PGO the time spent on optimizations is
on average 32% of the time used with static optimizations. The performance gain
when using PGO is on average 4.7%. This clearly shows the advantage of using
PGO to reduce optimization time and increase the performance of an application
running in a JVM.

Two benchmarks mentioned earlier, 213javac and 227mtrt, do however show
decreased performance. The performance 213javac has increased with the use of
profile guided optimizations but is still lower than when using software sampling
and static optimizations. This depends on the hardware sampling as shown earlier.
In the 227mtrt benchmark, the performance loss is due to inaccurate profile as
discussed earlier.
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Table 6.2: The number of methods optimized when using software sampling with static
optimizations and hardware sampling and profile guided optimizations.

Benchmark Static opt. PGO

SPECjbb2000 159 170
201 compress 13 7
202 jess 52 41
209 db 24 17
213 javac 261 175
222 mpegaudio 75 67
227 mtrt 44 55
228 jack 78 68
XMLStax 25 18
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Figure 6.7: Difference in code size of optimized code when using hardware sampling and
PGO compared to software sampling and static optimizations.
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Figure 6.8: Time spent optimizing code using hardware sampling and PGO compared to
using software sampling and static optimizations.
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Figure 6.9: Performance of the benchmarks using hardware sampling and PGO com-
pared to software sampling and static optimizations.
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Chapter 7

Conclusion

In this thesis a comparison between software sampling with static optimizations
and hardware sampling with profile guided optimizations in a JVM on the Ita-
nium processor was presented. The results show encouraging support for using
hardware sampling on Itanium. The hardware sampling gathers a more accurate
profile of hot methods in the running application. The information collected is
also more extensive than what is possible with software sampling. Using this in-
formation to build profiles for single methods and do profile guided optimizations
creates possibilities for further performance gains.

The performance gain on the benchmarks used in this thesis was on average
4.7% and clearly shows the advantage of hardware sampling and profile guided
optimization. At the same time the size of the optimized code is 10% smaller than
when using static optimizations. The optimization time decreased even more and
is 67% less when using profile guided optimization.

While the opportunities with hardware sampling and PGO is clear, care must
be taken to ensure that the collected profile is correct during the optimization.
An inaccurate profile can lead to performance loss due to wrong optimization
decisions. The problem is that there is no obvious way to verify that the profile is
correct during optimization.

The results in this thesis clearly show the advantages of using hardware sam-
pling and PGO on Itanium in a VEE. The use of hardware sampling enables col-
lection of profile information with low overhead. The information collected en-
ables the use of PGO that gives higher performance and less optimization time
than using static optimizations.
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7.1 Future Work

The evaluation of hardware sampling and profile guided optimizations in this the-
sis shows several new interesting areas to study. Especially concerning the prob-
lems with incorrect profiles, unsampled areas in methods and importance of find-
ing methods higher in the call chain.

Using the branch samples it is possible to find the calling method when looking
at the return branch. Is it beneficial to use this information to increase the count
of methods higher in the call chain and do optimizations on these as well?

If a method contains a loop that does many iterations, many of the samples
will be in that loop. In some cases a method can be hotspotted with samples only
collected in a frequently executed loop. This results in a method that only contains
samples for a small part of a method and several branches rely on static guessing.
How is it possible to make sure that a method gets samples evenly spread through
out a method? A problem is that some parts of a method might never get executed
and should never receive samples. How is it possible to determine when to stop
sampling?

The problem with inaccurate profiles could be solved by allowing sampling of
the optimized method and then do a reoptimization of that method. The sampling
information collected will give a local profile for inlined methods and also about
the benefits of other optimizations. When should a method be selected for reopti-
mization? How should the mapping of native code and bytecode for the optimized
method look to be able to extract any data?
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