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Abstract 

 

New systems have higher and higher requirements in terms of reliability, safety, power 

consumption and performance. To meet those requirements, a custom processor can be a 

solution. That is why Thales is developing a processor that includes many features that make its 

architecture different from common architectures of general-purpose processors. To become 

widely usable, a fully optimizing compiler is the cornerstone that leads to its success. 

While most of the existing compilers manage to deal with code optimization for general 

purpose processors, their efficiency can considerably decrease when optimizing code for a 

custom processor whose architecture differs from general purpose processors.  

A new compiler had to be developed to translate C source code into highly optimized assembly 

code that would be able to deal with this processor's abilities, such as DSP-like instructions, in 

the best way possible, while introducing key features necessary to meet the requirements of 

Thales' line of products. 

Code optimizations have been introduced and enhanced, using pattern detection, control flow 

analysis or peephole optimization. At the same time, new key features have been added to the 

compiler, such as a compilation report, built-in functions support, and also fixed-point 

representation support. Many of these resources were lacking in existing compilers, which 

brings a noticeable added value to this compiler. 

As the processor is still under development, tests were carried out using a VHDL simulation 

model of the processor designed specifically to test the entire platform. The set of tests focused 

both on general purpose applications, and also on data processing algorithms. The optimization 

of this compiler led to an 18.3% shorter execution time for the set of tests, while reducing the 

total program size by 13.1% at least. Moreover, important features that existing compilers are 

lacking, have been added to the compiler. It helped improving the user-friendliness of the pair 

compiler/processor and it has proven to be of great interest for programmers. 
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1 Objectives 
This master thesis is part of a larger project aimed at developing a custom multi-purpose 

microprocessor to integrate it into a large variety of systems. To make this custom 

microprocessor easily programmable and use its full potential, the development of a powerful 

compiler is a key factor. A stable C compiler fully optimized for a specific target, would offer the 

developers a good level of services to become as user-friendly as a widespread compiler for 

common microprocessors. 

This processor is a RISC (Reduced Instruction Set Computer) processor oriented for digital 

signal-processing and data-stream applications, also offering a complete instruction-set for 

multi-purpose applications. Its architecture, which is between the one of a general-purpose 

processor and the one of a Digital Signal Processor (DSP), presents several challenges when 

optimizing a compiler for such an architecture. 

While most of the existing compilers manage to deal with code optimization for general-

purpose processors, their efficiency can considerably decrease when optimizing code for a 

custom processor whose architecture differs from general-purpose processors.  

The main objective of this thesis is to optimize a C compiler to increase performance while 

adding new features to it, such as development of standard libraries or built-in function 

support. In order to improve it further, the compiler was tested extensively to find and 

eliminate existing errors. 
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2 Introduction 

2.1 Preface 

As this thesis deals with compiler's optimization, it is crucial to have general knowledge 

about compilers, their internals and how to optimize such a system. Compiler technology is a 

complex subject, and requires a lot of understanding of different areas of computer science. 

All the information is gathered in various books, papers and discussions. 

This chapter gives a state of the art of what a compiler does and how it does it, and reveals 

the problematic of optimizing a compiler. More information can be found in [1], [2], [3] and 

[4]. 

2.2 What is a compiler? 

Programming languages are notations used by programmers to describe and express 

computations that can be performed by a computer. However, before a program can be 

interpreted by a machine, the source code must first be translated into a more basic 

representation. The software systems that translate source code into another computer 

language are called compilers. 

Most compilers translate High Level languages (HLL) into assembly language for a target 

processor but translating from an HLL to another HLL (Java to C for example) is also possible. 

A compiler is basically a translator. Yet, this task can be very challenging and raises a lot of 

issues. 

Also, translating a source code into another language does not give an executable binary 

program that can run on a microprocessor. That's why a compiler is a part of bigger tool-

chain. 

2.3 The binary generation tool-chain 

A compiler itself is rarely used alone. It is a part of a much bigger tool-chain that transforms 

a HLL source code into an executable program that is adapted to the target machine. From 

now on, the term source language refers to the C programming language. The organization 

and the different parts of it are shown in Figure 1 
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Figure 1 : The binary generation tool-chain 

2.3.1 Preprocessor 

The preprocessor is in charge of expanding macros (#define), including files 

(#include), following conditional statements (#if, #ifdef, …), and removing 

comments, which are useless for the compiler. 

It basically deals with directives such as: 

#include <stdio.h> 

#define DEBUG 1 

#ifdef 

... 

The most common preprocessor for the C language on UNIX and Linux machines is CPP (C 

PreProcessor) [5]. 

2.3.2 Assembler 

The assembler works mainly as an encoder: it reads assembly language instructions, and 

encodes them in binary, following a scheme described in the Instruction Set Architecture 

(ISA) of the target processor. 

Ultimately, the assembler produces an object file, which is a binary file, but not yet 

executable in most cases. This object file, among program and data, also holds relocation 

information, used in the linking stage. 

Object files come in a wide variety of format, and they can differ depending on the 

architecture and the Operating System (OS) used. The most well-known formats are PE 

under Windows and ELF under UNIX systems. 



  Xavier LEGROS 

Page 7 of 61 

2.3.3 Linker 

The linker takes several object files and combines them together to produce the final 

executable binary. In the process, it also has to compute relocation information that will 

be used by the Memory Management Unit (MMU) of the processor when loading the 

program in memory. 

2.4 Benefits of a compiler 

Typically, each target machine has its own assembly code. Even if writing programs in HLLs is 

now common, one may wonder why is it good to add a new layer (the HLL) to raise the level 

of abstraction, making the process more complicated so that a new tool (a compiler) would 

be needed.  

First, programming directly in assembly requires knowledge about the processor. In order to 

write efficient assembly programs, it is of great importance to be very familiar with the 

target processor’s internals, which can be really difficult. This becomes more and more 

problematic today, when modern processors are more and more complex, providing 

powerful facilities directly in their hardware. Without good knowledge about modern 

processors in general, it is rather problematic to write good code for that given processor. 

Compilers were not only designed to avoid coding directly in assembly language. In fact, 

much more important reasons lead to the use of compilers. These reasons are: 

2.4.1 Portability 

Assembly code is specific to a target machine whereas HLL source code is not. In order to 

get a target specific assembly code, it is necessary to pass an HLL source code though a 

compiler. This idea can be well illustrated by the following slogan: "Code once, compile 

anywhere!" 

2.4.2 Maintenance 

As software becomes more and more complex, a good maintenance level needs to be 

achieved. HLLs significantly facilitate this task as they are much more "user-friendly" than 

assembly code. Moreover, assembly language is the lowest level, which makes it hard to 

debug errors. 

2.4.3 Reusability 

HLLs ease code reusability between projects: They allow the programmer to manipulate 

objects, structures, data types, that have been defined with a level of abstraction high 

enough to program generic modules. 

2.4.4 Quality of the code 

Depending on the needs, compilers can optimize code according to different criteria, such 

as speed, code size, power consumption, etc. 

More importantly, a compiler does not get unfocused halfway through the optimization 

process: whatever the size of the code is, the compiler will do its best to optimize it, 

which would be more time and energy consuming for a person. 
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However, even though a good compiler can produce code of good quality, the output of 

the compiler might not be good enough in time critical applications. Hence, time critical 

sections need to be coded manually in assembly. 

2.5 Internals of a compiler 

A compiler is generally organized in different parts that are depicted in Figure 2. 

 
Figure 2 : Internals of a compiler 

2.5.1 The frontend 

The frontend analyses the input source code and deduces information from it for the 

subsequent parts of the compiler to work on. It checks whether the program is correctly 

written in terms of programming language's syntax and semantics. Here legal and illegal 

programs are recognized. Errors are reported, if any. 

 Lexical analysis: Read the input source code and group the characters into 

meaningful tokens representing variables, language keywords, etc. 

 Syntax analysis: This pass uses the tokens produced by the lexical analysis and creates 

a tree-like representation that depicts the grammatical structure of the source code. 

 Semantic analysis: This pass uses the syntax tree to check the source code for 

consistency with the HLL definition. Type checking is also performed during this pass. 
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2.5.2 The core 

The core generates the Intermediate Representation (IR) for the following backend. Many 

optimization efforts are focused on this part. 

 Intermediate representation: An explicit low level intermediate representation of the 

source code is done. This is the representation that the backend will use to produce 

the machine dependent code. Representations can be graph-based or can follow a 3-

addresses code form. 

 Machine independent optimizations: The IR is optimized. The optimization often aims 

at increasing code speed, but other goals can also be achieved, depending on the 

desired objectives: short code size, reduced power consumption, etc. 

Common optimizations include: 

– Common Sub-expression Elimination: 

void f(int x, int y) { 

q(x * y, x * y); 

} 

becomes 

void f(int x, int y) { 

int tmp; 

tmp = x * y; 

q(tmp, tmp); 

} 

The expression x*y is used twice so the optimization consists in computing 

it only once and put the result into a temporary variable. 

– Constant propagation: 

int f() { 

int x; 

x = 1; 

return x; 

} 

becomes 

int f() { 

return 1; 

} 

Since the variable x is not modified between its assignation and the return 

statement, the optimization consists in deleting this unnecessary variable 

and returning the constant 1. 

– Dead code elimination: 

int f(int y) { 

int x; 

x = 3; 

y = 2 + 4*x; 

return x; 

x = 2; 

y = 3; 

} 

becomes 
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int f(int y) { 

int x; 

x = 3; 

y = 2 + 4*x; 

return x; 

} 

Since the code following the return statement is not reachable, this code is 

deleted. 

– Loop unrolling: 

for (i=0 ; i<4 ; i++) { 

f(i); 

} 

becomes 

f(0); 

f(1); 

f(2); 

f(3); 

The boundaries of the for loop are known at compile-time, so the 

optimization consists in getting rid of the loop code and copy the code 

inside the loop as many times as it is executed. This optimization results in 

a shorter execution time but increases the program size. 

– Function inlining: 

int f(int y) { 

return ((5*x) + 7); 

} 

 

int main() { 

 int var = 4; 

 int res; 

 

 res = f(var); 

return res; 

} 

becomes 

int f(int y) { 

return ((5*x) + 7); 

} 

 

int main() { 

 int var = 4; 

 int res; 

 

 res = ((5*var) + 7); 

return res; 

} 

The optimization consists in performing the code of the function without 

executing this function, which is way faster since no jump to the function is 

performed, and hence, no register saving is needed. 
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– Loop hoisting: 

for (i=0 ; i<10 ; i++) { 

 b = 7; 

a = 4*i + b; 

} 

becomes 

b = 7; 

for (i=0 ; i<10 ; i++) { 

a = 4*i + b; 

} 

Since the statement b = 7 is independent of the loop, it can be moved 

out of the loop. 

 Register allocation: this is the process of assigning a large number of program 

variables onto a small number of CPU registers. Register allocation can happen 

over a basic block (local register allocation), over a whole function (global register 

allocation), or in-between functions as a calling convention (interprocedural 

register allocation). It avoids the loading and unloading of operands at each 

instruction to make full use of available registers. As a consequence, memory 

utilization becomes lower, resulting in higher speed and lower power 

consumption. A basic block is a straight-line sequence of code with only one entry 

point and only one exit. 

Many of those optimizations are based on data-flow analysis. Data-flow analysis is a 

technique for gathering information about the possible set of values calculated at various 

points in a computer program. A program's control-flow graph (CFG) is used to determine 

those parts of a program to which a particular value assigned to a variable might 

propagate. This way, it is possible to make powerful analysis and optimizations. A CFG is a 

representation, using graph notation, of all paths that might be traversed through a 

program during its execution. 

2.5.3 The backend 

The backend is responsible for translating the IR into the target assembly code. The target 

instructions are chosen from one or several nodes of the IR.  

 Machine-dependent optimizations: This phase is mostly about combining several IR 

nodes into one single machine-dependent instruction. The backend also performs 

instruction scheduling: Reorder instructions to make better use of the different 

pipelines and processing elements a CPU may offer. (Avoid pipeline stalls, etc.) 

 Peephole optimizations [6]: Final obvious local optimizations, like redundant 

moves/load removal or unnecessary nop removal. 

2.6 Retargetable compilers 

Modern compilers are designed to be retargetable, which means they can be relatively easily 

enhanced to support new target machines. 



  Xavier LEGROS 

Page 12 of 61 

Since a great amount of passes are machine-independent, a careful design allows the 

compiler to keep all its code in a common, target-independent core, while providing 

functionalities to later plug a machine-dependent code generator into it. That way, 

development time for a new processor is shortened, and more importantly, the target-

independent code is factorized, so that it only needs to be developed and tested once. 

The core holds all the target and HLL independent code, and provides interfaces to plug 

frontends and backends into it as depicted in Figure 3. 

 
Figure 3 : A modular compiler 

Most compilers only provide retargetability at the backend level, and are focused on only 

one HLL. Some bigger compilers are retargeted at both frontend and backend level. GNU 

Compiler Collection [7], also known as GCC and Low Level Virtual Machine (LLVM) [8] are 

such compilers. 

2.7 Problems 

These retargetable architectures are really great for compiler development. However, since 

the core is completely factorized in a machine-independent fashion, it is necessary to 

completely rely on its interfaces to write a backend for a new machine. Problems arise when 

the target machine is very different from "traditional" architectures, and thus breaks 

assumptions the core developers made. 

As a result, even parts of the compiler that are said to be machine independent can make 

assumptions on the target machine. The vast majority of machines have no problems with 

that, but when trying to write a backend for an unusual machine architecture, especially 

custom designed CPUs, this can lead to a great deal of problems. 

Those problems can be difficult to tackle when optimizing a compiler. That is why it might be 

necessary to modify the core of the compiler that needs to be optimized, even though, 

according to the modularity principle, only the backend should be modified. 
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Also, even on retargetable compilers, extensive knowledge on how the core uses the 

backend is necessary to program the exact desired behavior. Otherwise, small changes can 

have huge consequences on the output. 

2.8 Thesis Overview 

Section 3 of this report describes the compiler on which the thesis was based and the test 

methodology used to ensure its correct behavior. A brief description of the different 

optimization levels of the compiler is also provided in this section 

Section 4 describes the compiler optimizations that have been performed during the thesis. 

The principle of each optimization and its results are also provided. 

Section 5 describes optimizations of the global system composed of the hardware and the 

compiler. It highlights the importance of hardware/software co-design and its benefits. In 

this section, specific optimizations involving hardware and software modifications will be 

described. 

Section 6 describes the new features that have been added to the compiler, their impact 

and benefits for the end user. 

Finally, this thesis ends with Section 7, Section 8 and Section 9 which summarize results 

obtained from the previous sections and contain some proposals for future work and 

extensions of this master thesis project. 
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3 The Compiler 
For this project, the decision had been made to use a retargetable C compiler other than GCC. 

This choice is a compromise between the complexity and the maturity of the compiler. 

The chosen compiler implements every common optimization described previously and 

respects all the notions that have been introduced in the previous sections. 

3.1 Test methodology 

To ensure the proper functioning of the compiler and evaluate the progress made by the 

different optimizations, it is necessary to set up a large variety of tests. These tests have to 

check that the compiler can issue valid assembly code, whatever the source program is, and 

make sure that the compilation did not alter the meaning of the source program. 

Moreover, these tests are also a way to evaluate the performance of the compiler 

concerning several aspects such as the execution time or the program size. 

For this project, two types of tests have been implemented. Each type is based on a set of 

source programs written in C that the compiler must compile. 

3.1.1 Description of the optimization levels 

In the following sections, results will be analyzed depending on the optimization levels 

that have been used to compile the different tests. The compiler provides 5 levels of 

optimization that are set using a compilation option that goes from –O0 to –O4. Those 

optimization levels correspond to certain optimization flags that enable or not different 

kind of optimizations. 

In optimization level –O0, no optimization is performed. The compiler simply does 

register allocation and translate the source program into assembly code. 

In optimization level –O1, the following optimizations are triggered: 

 Register allocation 

 Removal of unreachable code and unused labels (based on control-flow graph 

analysis). 

 Common sub-expression elimination, copy propagation and constant propagation 

only within basic blocks. 

 Loop optimization (loop-invariant code motion). 

 Unused object elimination 

 DSP-like instruction optimization such as mulacc/mulneg detection 

 Strength reduction 

Optimization level –O2 performs the same optimizations than –O1 but the common sub-

expression elimination, copy propagation and constant propagation throughout the 

whole program instead of being limited to basic blocks. 
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Optimization level –O3 performs the same optimizations than –O2 plus additional 

optimizations: 

 Pointer analysis, alias analysis 

 More aggressive loop optimization (loop unrolling, induction variable elimination) 

 Function inlining 

 Inter-procedural analysis and cross-module optimizations 

Optimization level –O4 performs the same optimizations than –O3 but also activates the 

target instruction scheduler. As there is no instruction scheduler developed yet, the 

resulting programs for optimization level 3 and 4 are the same. 

3.1.2 Software tests 

The aim of those tests is to check whether or not the compiler compiles without making 

mistakes, and if the generated assembly program is correct at the syntactic level. No 

checks are made on the proper functioning of the generated program, but it can very 

quickly test the compiler on a substantial set of source programs. 

To respect the principle of independency between the developer and the tester, those 

software test programs come from test suite of other compilers such as GCC or LLVM 

which have not been developed by Thales. Moreover, using complex test suite such has 

the one of GCC (which has been under development for many years) is a way to use the 

maturity of GCC, and hence, the maturity of its test suite, and evaluate with accuracy the 

correctness of a compiler under development. 

3.1.3 Hardware tests 

The purpose of these tests is to check the proper functioning of the program after 

compilation and evaluate the performance of the compiler. Only this kind of test makes 

sure that the compilation has not altered the meaning of the source program nor the 

expected results. 

Part of these tests focuses on very specific checks (on floating-point numbers, arithmetic 

operations, or loop constructions, for example). They are called basic tests. Those are 

made to test as extensively as possible every class of C constructions to ensure that they 

are correctly treated by the compiler. Basic tests include as many combinations of 

variables and operation as possible using different types (int, short, long, float, 

etc.), different storage-classes (static, extern, local, global, etc.) to be as exhaustive 

as possible. 

Those tests are also used to evaluate the impact of an optimization on one specific type 

of C construction. For example, the following code is extracted from one existing test case 

that evaluates performance of different types of operation on floating-point numbers. 

The idea is to make sure that results are correct according to the standard (IEEE 754 [9] is 

the standard for floating-point number representation) and also evaluate the 

performance of such a program. 
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float x; 

double d1 = 2.5e45; 

double d2 = -2.5e45; 

double D[5] = {1.0e51, 0.0, -8.3e6, 3.9e4, -

5.1236e39}; 

 

int i = 0x50201; 

long int l = 0x80030010005; 

 

int main () { 

double y; 

 

float a = 2.3e24; 

float b = -8456.216e1; 

 

 x = a + b;  // Basic test 

 y = D[4] + d1; // Test on array 

y = 5.0e2 * d2; // Test with immediate value 

x = (float) d2; // Conversion test 

y = (double) a;  // Conversion test 

i = (int) D[2];  // Conversion test 

a = 2.0e19; 

l = (long int) a; // Test on overflow 

f = -0.0; 

f = 0.0 / f; // Test for NaN values 

f = (-0.0) * f; // Test for NaN values 

} 

The second category of tests focuses on realistic tests that mix different C constructions. 

Those tests are useful when evaluating the performance of the compiler on meaningful 

and realistic tests. Indeed, even though basic tests are useful when evaluating the 

performance of one particular class of C constructions, the main focus of those tests is to 

ensure the accuracy of the resulting program. They are not necessarily relevant when 

evaluating the performance of a "real" program that actually has a purpose other than 

checking accuracy of constructions as tricky as possible. 

That is why the second category of tests focuses on meaningful or/and heavy algorithms 

(such as matrix inversion algorithm, FIR-filter algorithm, basic cryptography algorithm, 

etc.), in the field of data processing, which is the main field of application of the 

processor. Moreover, basic tests do not involve a lot of variables, temporaries or typical C 

constructions. Hence, it is hardly possible to test the limits of the compiler or the limits of 

the target machine without this second category of test. Compiling one of the basic tests 

does not necessarily require many registers of the microprocessor for example, which 

means that the mechanism where every register is in use cannot be tested using basic 

tests. 

A description of all the hardware tests can be found in Appendix 1. 

3.2 Test process 

The verification process consists in comparing reference results with results given by the 

system composed by the compiler and the microprocessor of Thales. Hardware analysis is 

conducted through VHDL simulations (called virtual verifications) using the C executable 

generated by the compiler. Each test case is compiled both through Thales' compiler and 
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GCC. The output is processed by a VHDL simulation model of the processor and results are 

compared with results of GCC executed on a host processor (considered as the golden 

reference, which means that those results will be considered as the results to achieve). The 

comparison is printed in a result file that can be seen in Appendix 2. 

The test case is passed if no difference between the golden reference and the simulation 

results is found. 

Figure 4 illustrates the different steps of a hardware test: 

 
Figure 4 : Overview of the different steps of a hardware test 

These tests can be automatically performed with various optimizations. Several scripts are 

used to synthesize all information of the result files into a table summarizing useful 

information. An example of a test summary can be seen in Appendix 3 and Appendix 4. 

Performing all tests takes a long time (more than an hour), but it is an effective way to check 

the proper functioning of the compiler, and ensure that no regression has been introduced 

after a change or the addition of a feature in the compiler. 

GCC is used as a reference compiler. Indeed, even though it is not free of bugs, this compiler 

is the most extensively used in the world. It has been developed for many years and is 

known as the most stable and complete compiler. Being able to develop a compiler that 

provides the same results as GCC is ambitious considering its complexity. 
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4 Compiler optimizations 
This section introduces the major optimizations that have been performed on the compiler to 

improve the resulting assembly code. Many other small optimizations have been also 

performed. However, they will not be described since they consist in a lot of scattered 

modifications all over the code of the compiler. 

4.1 Mulneg pattern detection 

4.1.1 Principle 

The mulneg instruction is a DSP-like instruction provided by the microprocessor, which 

allow making a multiplication and a negation in one single instruction. Each of the 

following pieces of C code can be transformed into one single mulneg: 

a = (-b) * c; 

 

a = b * (-c); 

 

a = -(b * c); 

 

a = b * c; 

a = -a; 

 

b = -b; 

a = b * c; 

This can be done using pattern detection in the backend. When a multiply followed or 

preceded by a subtraction is detected, it is a potential candidate for mulneg 

optimization. However, something special needs to be taken care of. The last example 

illustrates a case that might not be transformed into a mulneg. If b is used after this 

statement, it cannot be optimized into a mulneg. The following example shows this 

special case where it cannot be optimized: 

b = 5; 

b = -b;   // Now, value of b is -5 

a = b * c; 

d = 2 * b;  // Value of d is -10 

If this example is optimized using mulneg, the result would be wrong: 

b = 5; 

a = mulneg(b,c); 

d = 2 * b;  // Value of d is 10 -> FALSE 

Hence, the IR needs to be scanned to check the use of the variable holding the negation 

result, until this variable is overwritten. If it is not used in between, the optimization can 

be performed. If this variable is used in between, the optimization cannot be performed. 

This check is performed using control-flow graph analysis. 
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4.1.2 Results 

Table 1 and Table 2 show the result of this optimization on tests that present possible 

mulneg patterns, since they are the only one with which improvements can be seen. As 

described in Section 3.1.1, DSP-like optimizations are only activated from optimization 

level O1, which is why the following tables do not show results for the optimization level 

O0. 

Table 1 : Results of the mulneg optimization in terms of execution time 

Optimization level 
Without mulneg 

optimization 

With mulneg 

optimization 
Speed-up 

O1 146 204 clock cycles 138 382 clock cycles 5,4% 

O2 116 963 clock cycles 111 701 clock cycles 4,5% 

O3 108 254 clock cycles 106 534 clock cycles 1,6% 

O4 108 254 clock cycles 106 534 clock cycles 1,6% 

Results are slightly better for the execution time than the program size. This is explained 

by the fact that a mulneg optimization performed in a loop only reduces the code size by 

one, but the execution time is reduced by the number of time the loop is executed. 

Table 2 : Results of the mulneg optimization in terms of program size 

Optimization 

level 

Without mulneg 

optimization 

With mulneg 

optimization 
Evolution 

O1 2 143 words 2 119 words -1,1% 

O2 2 187 words 2 152 words -1,6% 

O3 2 823 words 2 791 words -1,1% 

O3 2 823 words 2 791 words -1,1% 

 

4.2 Mulacc pattern detection 

4.2.1 Principle 

The mulacc instruction (respectively mulsub) is also a DSP-like instruction provided by 

the processor, which does a multiplication and accumulation in the same instruction (a = 

a + (b * c)) (respectively a = a - (b * c)). A multiply-and-accumulate 

operation is very common in digital-signal-processing. Optimizing it can increase the 

performance drastically. 

This optimization is also a matter of pattern detection in the first place, but the conditions 

to be able to perform this optimization are totally different. 

First, such an optimization is only valuable while being in a loop. If not in a loop, doing a 

simple multiplication followed by an addition is strictly equivalent to doing a multiply and 
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accumulate and store the result into the destination variable (both in terms of execution 

time and program size). This is why this optimization should only be performed within a 

loop. This case will be illustrated by a proper and simple example. Considering the 

following piece of code: 

i = 0; 

while (i<100) { 

dest = dest + (a * b); 

i++;  

} 

This piece of code would be translated into a corresponding non-optimized 

representation in the IR that would look like this: 

i = 0; 

while (i<100) { 

temp = (a * b);  // 4 clock cycles 

dest = dest + temp; // 1 clock cycle 

i++;     // 1 clock cycle 

} 

A quick estimation of the execution time shows that the code inside the loop would take 

at least 6 clock cycles to execute (4 clock cycles to execute a multiplication (3 for the 

multiplication in itself and 1 to store the result into variable temp), 1 for an addition, and 

1 for an increment). This piece of code is inside a loop which is executed 100 times. 

Hence, the time to compute this inside code is equal to 600 clock cycles. To make it 

simpler, the code generated to jump inside the loop and the code to test variable i has 

been ignored since it does not matter in this case. 

Optimizing this code using a mulacc will save a lot of time and the optimized code 

would be the following: 

i = 0; 

accumulator = 0; // Initialized accumulator to 0 

while (i<100) { 

mulacc(a * b); // 3 clock cycles 

i++;    // 1 clock cycle 

} 

dest = accumulator; // Store the result into 

// destination variable 

It should be noted that in this piece of code, accumulator is not a variable but the 

special register used by the MULAC unit to compute a multiplication. The resulting 

execution time to execute the code inside the loop is 4 clock cycles. Indeed, the time to 

perform a multiplication and an accumulation is still 3 clock cycles, but we do not have to 

store the result into a temporary variable. The resulting time to compute this inside code 

is equal to 400 clock cycles. 2 extra cycles should be added to be accurate (1 to initialize 

the accumulator to 0 and 1 to store the result into the destination variable). 

Performing this optimization resulted in decreasing the execution time by 198 cycles, or 

33%! It should be specified that the result of this optimization depends on how many 

times the loop is executed. The more times the loop is executed, the more powerful the 

mulacc optimization is.  
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The principle of this mulacc optimization is exactly the same for the mulsub 

instruction. 

4.2.2 Constraints and Limitations 

This last example points out the constraints that go with a mulacc optimization. 

The first thing that can be noticed is the need to detect loops, and the ability to hoist the 

initialization of the accumulator and the storage of the result out of the loop. This 

requires a loop analysis based on a control-flow graph representation. 

Also, like the mulneg optimization, the variable temp should only be used for this 

multiply-and-accumulate operation, and not elsewhere. Otherwise, it is not possible to 

perform the optimization. 

The last thing to take care of is to allocate an available accumulator throughout the whole 

loop so that it cannot be accessed or modified by another multiply operation that could 

be inside the loop. If there is no available accumulator anymore, the optimization cannot 

be performed. For information, 8 accumulators are available in the MULAC unit, which 

means that 8 overlapping mulacc optimizations can be performed. It is more than 

enough for a large majority of applications. 

4.2.3 Results 

Mulacc optimization is focused on one particular type of C construction and 

performance will be improved in particular cases described earlier in this section. The 

hardware test algo/matrix.c is well suited to evaluate the results of a mulacc 

optimization. This test performs multiplication of several matrices (integer and floating-

point matrices), which uses such a construct. 

The formula to multiply two matrices A and B into a resulting matrix R is the following: 

[ ]    [ ]    [ ]    ∑         

 

   

 

for each coefficient       of the matrix. This can be translated into the following C code 

where the three matrices[ ], [ ] and [ ] are of size five: 

for (i=0; i < 5; i++) { 

 for (j=0; j < 5; j++) { 

    for (k=0; k < 5 ; k++) { 

      R[i][j] += A[i][k] * B[k][j]; 

    }  

  } 

} 

Matrix multiplication is very common in data and signal processing. Moreover, the above 

code shows that the multiply-and-accumulate operation is in this case nested inside 3 

loops. The efficiency of the mulacc optimization will be even higher.  
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The following table shows the result of the optimization applied to the previous code 

section. 

Table 3 : Results of the mulacc optimization on matrices multiplication of dimension 5 

Optimization 

level 

Without mulacc 

optimization 

With mulacc 

optimization 
Speed-up 

O1 9208 clock cycles 7239 clock cycles 21.4% 

O2 5741 clock cycles 3716 clock cycles 35.3% 

O3 5618 clock cycles 3593 clock cycles 36.0% 

O4 5618 clock cycles 3593 clock cycles 36.0% 

Note that results for optimization level O0 are not provided because optimization level 

O0 disables every possible optimization. Hence, mulacc optimization is only available in 

O1, O2, O3 and O4. 

This optimization, which is not usually provided by general purpose compilers, is very 

efficient. Also, as mentioned before, the more often the loop is executed, the larger the 

performance imporvement. The following table shows the result of the same 

optimization, on the same piece of code but with matrices of dimension 32. Speed-up due 

to the mulacc optimization is much higher. 

Table 4 : Results of the mulacc optimization on matrices multiplication of dimension 32 

Optimization 

level 

Without mulacc 

optimization 

With mulacc 

optimization 
Speed-up 

O1 1 991 012 clock cycles 1 438 052 clock cycles 27.8% 

O2 1 306 409 clock cycles 753 449 clock cycles 42.3% 

O3 1 273 642 clock cycles 720 682 clock cycles 43.4% 

O4 1 273 642 clock cycles 720 682 clock cycles 43.4% 

Data processing, such as digital image processing, often works with very large matrices. 

For example, 1280x1024 pixels is a very common picture format. Yet, it has not been 

possible to build a test using such large matrices. The amount of data grows very fast with 

the dimension of the matrix. When the above tests were done, the processor only 

provided small memory capabilities. Hence, realistic tests using common picture format 

were not possible. 

However, tests that have been performed validate the optimization and are still an 

accurate benchmark for performance. 
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4.3 Advanced operator strength reduction 

4.3.1 Principle 

As mentioned before, the core of the compiler does many optimizations including 

strength reduction, that is to say replacing expensive operations by equivalent but less 

expensive operations (i.e. quicker operations) [10], [11] and [12]. The most common 

strength reduction is replacing a multiplication where one of the operands is an integer 

constant power of 2, by a shift to the left of the binary representation of the other 

operand. The number of shift is equal to log2(constant). For example, this piece of code: 

b = a * 2; 

d = 8 * c; 

can be optimized using strength reduction. The resulting code would be: 

b = a << 1; 

d = c << 3; 

As a matter of fact, those instructions are strictly equivalent. However, a multiplication 

takes at least 3 clock cycles, while a shift only needs 1 clock cycle to be executed. The 

optimized code is 66% faster and needs only 2 instructions while the non-optimized code 

needs 4 assembly instructions. The following is an example of the non-optimized 

assembly code: 

mul a,2 

mov $ACC,b 

mul 8,c 

mov $ACC,d 

while the optimized assembly code would look like this: 

lshift a,1,b 

lshift c,3,d 

For negative integers, the sign extension needs to be taken care of. This is why an 

arithmetic shift is performed for negative integer, while it is a logical shift for positive 

integers.  

This basic optimization is already performed by the core of the compiler, but advanced 

strength reduction can still be performed to raise the optimization level for the target. 

For example, the core of the compiler does not perform strength reduction on unsigned 

division by a power of 2. Indeed, a division by a power of 2 is equivalent to a right shift of 

the binary representation of the second operand. Another common strength reduction is 

not performed by the core of the compiler: unsigned modulo by x can be replaced by a 

logical AND with x-1 when x is a power of 2. The modulo operation finds the remainder of 

an integer division of one number by another. 

The following example shows some instructions that can be optimized: 

b = a / 2; 

d = c / 8; 

f = e mod 16; 

can be optimized by: 
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b = a >> 1; 

d = c >> 3; 

f = e and 15; 

The resulting code is much faster! Indeed, an integer division or a modulo requires as 

much time to execute as the length of its operands. That is to say that a division of 2 int 

will take 32 clock cycles, 16 clock cycles for a short, and 8 for a char. Hence the 

optimized code is 96% faster for 32-bits integer, and requires three times less instructions 

compared to the non-optimized version.  

To reduce even more the load of the MULAC unit, strength reduction on multiply 

instructions can still be improved, since strength reduction can be extended to 

multiplication by x where x is not only a constant power of 2, but also a constant power of 

2±1 or a constant power of 2±2. Indeed, a multiplication by 5 is equivalent to a 

multiplication by 4 followed by and addition (i.e. a*5 = a*4 + a). Here is an example 

of such an optimization: 

b = a * 9; 

d = 15 * c; 

can be optimized in: 

temp = a * 8; 

b = temp + a; 

temp2 = c * 16; 

d = temp2 – c; 

And the final result of this optimization is: 

temp = a << 3; 

b = temp + a; 

temp2 = c << 4; 

d = temp2 – c; 

Here, the speedup is 33% and the code-size remains unchanged since a multiplication is 

done using two instructions (one to compute the multiplication, and one to store the 

result in the destination variable). Also, this code does not require the MULAC unit, but 

only the ALU. Hence, this optimization makes more mulacc optimizations possible as the 

load of the MULAC unit is reduced. 

When optimizing multiplication by a constant power of 2±2, the execution time remains 

the same and the program size is slightly higher as it can be seen on the following 

example: 

b = a * 10; 

d = 14 * c; 

would be optimized in: 

temp = a << 8; 

temp = temp + a; 

b = temp + a; 

temp2 = c << 16; 

temp2 = temp2 – c; 

d = temp2 – c; 
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However, this optimization will still be performed as it decreases the load of the MULAC 

unit, which makes more mulacc optimization possible as more accumulators can be 

available. 

4.3.2 Results 

Table 5 shows the result of this optimization in terms of execution time. We can see that 

the results are better in lower level of optimization. This is due to the fact that the core of 

the compiler already performs some strength reduction which depends on the 

optimization level. The higher the optimization is, the more aggressive the strength 

reduction of the core will be. 

Those results show that backend strength reduction and core strength reduction are 

complementary. Using both allows for better execution time. 

Table 5 : Results of the advanced strength reduction in terms of execution time 

Optimization 

level 

Without advanced 

strength reduction 

With advanced 

strength reduction Speed-up 

O0 1 022 630 clock cycles 892 486 clock cycles 12.7% 

O1 823 773 clock cycles 767 854 clock cycles 6.8% 

O2 644 871 clock cycles 632 126 clock cycles 2.0% 

O3 632 232 clock cycles 621 417 clock cycles 1.7% 

O4 632 232 clock cycles 621 417 clock cycles 1.7% 

However, Table 6 shows that the program size is slightly higher in optimization level O3 

and O4. This overhead is not due to the strength reduction itself, but to additional 

instructions that need to be inserted to load and store the results. However, this 

overhead is very low and can be disregarded.  

Table 6 : Results of the advanced strength reduction in terms of program size 

Optimization 

level 

Without advanced 

strength reduction 

With advanced 

strength reduction 
Evolution 

O0 12 828 words 12 793 words -0.3% 

O1 13 496 words 13 480 words -0.1% 

O2 13 050 words 13 052 words +0.0% 

O3 14 430 words 14 458 words +0.2% 

O4 14 430 words 14 458 words +0.2% 
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5 Hardware and compiler optimizations 
As this part of the project is still under development, dialog between the developer team (both 

hardware and software developers) has been really important. Thanks to this, it has been 

possible to reach a global level of performance that would probably not have been possible 

otherwise. 

Nowadays, dialog between microprocessor developers and compiler developers is almost 

inexistent. Because of this, several microprocessor functionalities are not handled properly by 

compilers and vice versa. Sharing experience between each other makes it possible to improve 

the global performance of such strongly bonded systems.  

The fact that both the microprocessor and the compiler are under development at the same 

time makes this dialog possible and very important. While developing the compiler, the lack of 

a particular functionality can be pointed out, and modifications can be done on the 

microprocessor to tackle this issue. 

The fact that the processor is a synthesizable microprocessor makes it easy to modify and 

improve, which would be impossible for an ASIC. 

The creation of a new addressing mode for arithmetic and bitwise instructions illustrates very 

well this possibility. 

5.1 Support of new addressing mode for arithmetic and bitwise instructions 

5.1.1 Problem 

The memory architecture of the processor is different from a classic load/store 

architecture where every operand needs to be loaded into a register before the 

computation. Indeed, it allows to access operands directly from memory, and the result 

can directly be stored in memory as well. Having a register-only addressing mode can be 

seen as not as useful as for the traditional processors. That is why the original instruction 

set of the processor did not provide arithmetic instruction using only registers as 

operands and destination, i.e.: 

add $R1,$R2,$R3  # $R3 = $R2 + $R1 

Nevertheless, this limitation revealed itself quite problematic for the compiler when 

emitting code for tightly coupled instructions such as: 

x = a + b; 

z = y – x; 

With the original addressing mode, the code above could have been translated as 

followed: 

add d(a),d(b),d(x) 

add d(y),d(x),d(z) 

which means that every operand are accessed via the data memory, and that the results 

are stored in data memory as well. The process of storing the result of an operation in 

data memory is called a write-back. This write-back takes more than 1 clock cycle, which 
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is problematic when the result of an instruction is directly used in the next instruction. In 

this case, the processor will stall until the write-back is completed and resume execution 

afterwards, which takes at least 3 clock cycles. When instructions are interdependent, the 

processor spends more time waiting for the completion of the write-back than computing 

results. This is why a new addressing mode has been created for arithmetic and bitwise 

instructions to answer this specific need. 

5.1.2 Principle 

As mentioned before, a register-only addressing mode has been created. It uses 2 

registers as operands, and also a register as destination, like the instructions of a classic 

load/store processor.  

To support this new addressing mode, the main modification of the compiler concerned 

the register allocation that needed to be adjusted to allow register-only instructions. 

However, it was not the only required modification since this addressing mode presents 

one more specificity. 

The way of accessing right and left operands is not symmetric on Thales' processor. This 

means that for some instructions, the amount of possibilities offered to access the right 

operand differs from the one to access the left operand. This development choice has 

been made in order to limit the processor's hardware complexity, and decrease its area 

and power consumption, which are both key factors in embedded system. 

This particular specificity has an impact on the register-only addressing mode. Indeed, the 

first register of a register-only instruction needs to be the last register used as destination 

of a previous instruction. Otherwise, the processor will need to stall the execution in 

order to refresh its value. For the sake of performance, it is important that the compiler 

does the refreshing of the last value explicitly. Refreshing the value of the last destination 

register takes only 1 clock cycle. If not done explicitly, the processor will detect it and stall 

for at least 3 clock cycles (because of a pipeline flush). The following example of strength 

reduction highlights this issue. 

When compiling the following C code: 

b = a * 7; 

the compiler will perform strength reduction and transform it into the following code: 

temp = a << 3; 

b = temp - a; 

which can be translated into the following assembly code: 

# assuming that $R1 holds a, $R2 holds temp and  

# $R3 holds b 

rshift 3,$R1,$R2 

sub $R1,$R2,$R3 # Performs $R3=$R2-$R1 

When the processor executes this piece of assembly code, it will stall before executing 

the subtraction. Indeed, the most recently used register before the subtraction is $R2 
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whereas the first operand of the sub instruction is $R1. Refreshing the value contained 

in $R1 is needed. Doing it explicitly will save 2 clock cycles: 

# $CON is a special constant register in which 

# every bit is set to 1 

rshift 3,$R1,$R2 

and $CON,$R1,$R1 # Only takes 1 clock cycle 

sub $R1,$R2,$R3 

This technique is used for instructions in which operands cannot be swapped. If the 

instruction would have been an addition instead of a subtraction, swapping $R1 and $R2 

would have been possible as a + b = b + a. In those cases, operand swapping is performed, 

which does not introduce an overhead. 

5.1.3 Results 

Table 7 and Table 8 show the performance induced by this new addressing mode. 

Table 7 : Results of the register-only addressing mode in terms of execution time 

Optimization 

level 

Without register-only 

addressing mode 

With register-only 

addressing mode 
Speed-up 

O0 894 271 clock cycles 880 385 clock cycles 1,6% 

O1 769 338 clock cycles 760 002 clock cycles 1,2% 

O2 629 848 clock cycles 624 403 clock cycles 0,9% 

O3 616 702 clock cycles 611 851 clock cycles 0,8% 

O4 616 702 clock cycles 611 851 clock cycles 0,8% 

Table 8 : Results of the register-only addressing mode in terms of program size 

Optimization 

level 

Without register-only 

addressing mode 

With register-only 

addressing mode 
Evolution 

O0 12 718 words 12 690 words -0.2% 

O1 13 412 words 13 416 words +0.0% 

O2 12 999 words 12 974 words -0.2% 

O3 14 369 words 14 361 words -0.1% 

O4 14 369 words 14 361 words -0.1% 

Previous tables show that the results of this optimization are rather limited. Results might 

have been better if the register allocation would have been done differently. Indeed, this 

new addressing mode points out a limitation that might be the cause of some issues in 

the future. For now, register allocation is done in the core of the compiler and there is no 

relation between the way how two adjacent IR nodes are treated. Register allocation is 

done by calling some backend support functions that evaluate the cost of allocating a 

variable to a certain register. But this call is done independently for each IR node even 
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though the most efficient register allocation can only be reached by analyzing 

dependencies between instructions and by allocating registers according to each 

instruction capabilities. 

In this case, the compiler might not use this new addressing mode in the best way 

possible because once the backend emits the code, it might be forced to reload operands, 

or pass by some intermediary instruction as a workaround. This is one of the problems 

that arise when trying to apply techniques for general purpose processors, where the 

addressing mode of each instruction is very similar (mostly register access), to this specific 

processor. 

5.2 Support of the hardware out-of-order algorithm for the FPU 

5.2.1 Principle 

The out-of-order algorithm, also known as the Tomasulo algorithm [13], is an algorithm 

that improves performance and utilization ratio of a computation unit by reordering 

instructions. In other words, it allows sequential instructions that would normally be 

stalled due to certain dependencies to execute non-sequentially (out-of-order execution). 

In early versions of the processor, the FPU was devoid of such an algorithm. Thus, it was 

not possible to use the same register twice in the same floating-point instruction. For 

example, the following instruction was not possible because the floating-point register 

$FP1 is both used as operand and destination: 

fadd $FP1,$FP2,$FP1 #FP1 = FP1+FP2 

As a consequence, the register allocation and the backend were developed to handle 

such situations. In this case, the code produced by the compiler induced a large overhead, 

both in terms of execution time and program size, because it was necessary to use more 

temporary registers. 

This particular situation did not meet the project's requirements so it has been decided to 

enhance the FPU so that it would be possible to deal with this issue in hardware. 

When the enhanced version of the FPU was released, the compiler had to be modified to 

get rid of the unnecessary intermediary code. 

The modifications' main impact was on register allocation. However, several 

modifications needed to be made in the entire backend. 

5.2.2 Results 

As explained before, this optimization specifically focuses on floating-point instructions so 

improvements can only be seen on tests involving floating-point operations. The following 

tables show results for tests that involve floating-point instructions only. 
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Table 9 (respectively Table 10) shows the evolution of the execution time (respectively 

program size). 

Table 9 : Results of support of hardware out-of-order algorithm in terms of execution time 

Optimization level Without out-of-order With out-of-order Speed-up 

O0 925 295 clock cycles 861 084 clock cycles 6,9% 

O1 758 227 clock cycles 740 058 clock cycles 2,4% 

O2 683 345 clock cycles 606 308 clock cycles 11,3% 

O3 674 236 clock cycles 597 408 clock cycles 11,4% 

O4 674 236 clock cycles 597 408 clock cycles 11,4% 

Table 10 : Results of support of hardware out-of-order algorithm in terms of program size 

Optimization level Without out-of-order With out-of-order Evolution 

O0 7 696 words 7 613 words -1.1% 

O1 8 217 words 8 118 words -1.2% 

O2 7 960 words 7 874 words -1.1% 

O3 9 199 words 9 082 words -1.3% 

O4 9 199 words 9 082 words -1.3% 

These tables show that the main impact of this optimization is on execution time, even 

though the program size decreased noticeably. This can be explained by the very nature 

of this optimization. This enhancement deals with floating-point instructions which are 

much slower than integer instruction. For example, a floating-point addition needs 10 

clock cycles to execute, while the same operation involving integers can be computed in 1 

clock cycle. When removing one single floating-point instruction, the execution time is at 

least reduced by 10 (and much more if this instruction is located in a loop), whereas the 

program size is only reduced by one. 
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6 New compiler features 
From the start, the compiler was considered functional, but some important features were 

missing for it to meet the company's requirements in term of usability, performance, and 

transparency. 

This section introduces new features that have been implemented to meet those requirements. 

6.1 Compilation report 

The compilation report has been developed to provide a good level of information about the 

system, and what kinds of operations have been performed on the source code. It logs 

significant information about the compilation process. 

Moreover, it gives information to developers on how did the compilation go, what 

optimizations have been performed and hints that can trigger new optimizations are also 

suggested. Notes are sorted into a set of categories to be quickly and easily understandable. 

Available categories are: 

 Messages 

 Warnings 

 Errors 

 Hints: Suggested hints that could trigger a new optimization by doing some minor 

changes in the source code 

 Instruction optimizations 

 DSP optimizations: This category gather all notifications about detected and 

optimized DSP-like instructions such as mulacc or mulneg 

 Peephole optimizations 

This feedback from the compiler is very important and helpful for a developer when 

optimizing a piece of software. This compilation report is created for each compiled file. An 

example of a classic compilation report can be seen in Appendix 5. 

6.2 Built-in function support 

6.2.1 Principle 

All "classic" target machine instruction are handled by the compiler. However, if the 

target machine provides specific instructions that differ from the "classic" instruction-set 

of a RISC microprocessor, they might not be handled properly. Those instructions are 

generally input/output and system instructions. In this case, what could correspond to 

one single target machine instruction might be transformed into several nodes in the IR, 

which makes it almost impossible to translate it back to the corresponding target 

instruction while emitting code in the backend. In some cases, it cannot even be handled 

at all and generate a compilation error. That is why it is needed to find a way to tell the 

compiler about those instructions. 

One solution to achieve this is to write such instructions directly in assembly and include 

it into the HLL program. This method requires the programmer to know the 
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corresponding assembly instruction and its syntax, which is what a compiler tries to avoid 

in the first place. Another drawback with this technique is that no compiler optimization 

can be performed with this code. Indeed, assembly code is treated by the compiler as a 

black box, and hence skipped during optimization. 

A better way to treat special target instructions is to implement built-in function support 

in the compiler. A built-in function (generally called built-in) is a function available for use 

in a given language whose implementation is handled specially by the compiler. Typically, 

it substitutes a sequence of automatically-generated instructions for the original function 

call, similar to an inline function. Unlike an inline function though, the compiler has an 

intimate knowledge of the built-in function and can therefore integrate it better and 

optimize it for the situation.  

After analyzing in details the compiler's internal mechanisms, it has been decided to 

implement built-in functions using function attributes (because this feature was already 

supported by the compiler). Function attributes are additional information that is 

provided to the compiler that takes specific decisions accordingly. A new function 

attribute has been created: the attribute __builtin_. 

Even though function attributes were a mechanism originally provided by the compiler, 

the handling of the __builtin_ attribute differs from the handling of usual attributes. 

A significant amount of time has been dedicated to understand how a built-in function 

should be treated in each step of the compilation (mostly core and backend), and how 

this treatment differs from other function handling. Declaring a function as a built-in is a 

way to tell the compiler that this function is not a real function, but a specific instruction 

of the target, that should be handled in the backend (also known as intrinsic function). 

Knowing this, the first decision that could be made would be to bypass the core and all its 

optimizations so that the built-in would only be handled in the backend. This decision 

would not be the smartest one. Indeed, doing this is strictly equivalent to the use of inline 

assembly code, which is what built-in functions try to avoid. 

However, if a built-in function is in fact a single target instruction, one may wonder what 

can be optimized in a built-in function. The answer is: a built-in function in itself cannot 

be optimized, as it is a single target instruction, but the way its parameters are accessed 

can be. 

The core of the compiler spends most of its time doing optimization such as constant 

propagation, and more importantly, register allocation. When a built-in function is 

declared, the operands of the target machine instructions are perceived as the arguments 

of the corresponding built-in function. For example, the target instruction out is a system 

instruction used to output data on the processor's interface. To be used in a C program, it 

has been declared as a built-in function.  
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To output variable x (located in data memory) at channel 1 of the interface, the following 

assembly instruction is used: 

out d(x),c(1) 

The prototype of the corresponding built-in function is the following: 

__builtin_ extern void out(int channel, int src); 

This function can be used in a C program. The corresponding C code of the previous 

assembly instruction would be: 

out(1,x); 

Using the built-in function instead of the assembly code is more efficient because register 

allocation can still be performed through the built-in function.  

Also, the built-in function is much more easy to use. For example, the assembly code to 

output a global variable is different from the code to output a local variable. When using 

the built-in, the programmer does not have to worry about it anymore: this difference in 

the resulting assembly code will be handled by the compiler itself. 

6.2.2 Consequences on existing tests 

The built-in out was one of the most important for the sake of the existing tests. Indeed, 

the only way to make sure that a computation went correctly was to display the result of 

this computation using the instruction out. Before the built-in was implemented, the 

instruction out was used via inline assembly code. This was a very inconvenient 

limitation which is illustrated by the following example. 

Assuming that the addition instruction needs to be tested, the following code should be 

written: 

c = a + b;   // Perform the addition 

inline("out d(_c),c(1)"); // output the result 

Using inline code is a huge limitation in this case. The only way a programmer can know 

what to write as an inline code is to use global variables. This way, the programmer 

knows that the way to access global variable c is by writing d(_c) as a global variable is 

directly accessed via data memory with the label "_nameofthevariable". On the 

opposite, the position of a local variable and the way to access it is unknown by the 

programmer since local variables are stored on the stack. This means that in this example, 

c should be declared as a global variable in order to be able to use it. This limitation was a 

real problem when testing because only global variables were used to display results. The 

first consequence was that tests were not as broad as they should have been, because 

possibilities of testing every different addressing mode were limited by the compiler 

itself. This was very critical. The second consequence concerned optimizations. Indeed, 

the use of a global variable is problematic when optimizing as it can be accessed by any 

function of the program at any time, which is why they are usually a barrier when 

optimizing. Moreover, those tests are not only used to evaluate performance, but also to 

check the correctness of the compiler, which means the instruction out is used heavily. 
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Now that this built-in is available, every inlined out has been replaced by the 

corresponding built-in, and corresponding global variables has been changed to local 

variables. The performance of the tests was then much better. The following is a 

comparison of the global execution time between tests using inlined out and tests using 

built-in out. 

Table 11 : Results of the use of built-in out with local variables on the total execution time 

Optimization 

level 

Using inlined out with 

global variables 

Using built-in out with 

local variables 
Speed-up 

O0 892 486 clock cycles 891 980 clock cycles 0.06% 

O1 767 854 clock cycles 742 196 clock cycles 3.3% 

O2 632 126 clock cycles 600 571 clock cycles 5.0% 

O3 621 417 clock cycles 590 420 clock cycles 5.0% 

O4 621 417 clock cycles 590 420 clock cycles 5.0% 

The simple fact of using the built-in out and local variables is 5% faster. Even though it is 

not a real optimization of the compiler in term of code generation, this new service 

provided by the compiler takes down some constraints which allow the programmer to 

write faster code. 

This new feature also impact the resulting program size as it is shown in the following 

table. 

Table 12 : Results of the use of built-in out with local variables on the total program size 

Optimization 

level 

Using inlined out with 

global variables 

Using built-in out with 

local variables 
Evolution 

O0 12 793 words 12 935 words +1.1% 

O1 13 480 words 12 134 words -10.0% 

O2 13 052 words 11 131 words -14.7% 

O3 14 458 words 12 766 words -11.7% 

O4 14 458 words 12 766 words -11.7% 

Again, results are very conclusive in terms of program size. However, when no 

optimization is activated, the resulting program is bigger, and for some tests slower. This 

can be explained by the difference of addressing mode. Global variables are accessed 

directly via the data memory (using d(var)), when local variables are stored onto the 

stack. Hence, additional stack pointer computation needs to be performed, which is why 

performance and program size are slightly worse in O0. 

Nevertheless, results are much better in higher optimization levels. Indeed, using local 

variables makes possible many of the usual optimizations that would not be possible 



  Xavier LEGROS 

Page 37 of 61 

when using global variables. For example, constant propagation, sub-expression 

elimination, invariant code motion are more efficient with local variables, which is why 

performance are better when optimizations are activated. 

For now, 17 built-in functions have been implemented in the compiler, which enhance 

significantly the possibilities of the compiler. For example, a specific built-in has been 

created to handle functions that have a variable number of arguments, such as the 

printf function. Also, many mathematic functions, such as the sine, cosine, exponential 

and square root functions have been implemented as built-in functions. 

As previously mentioned, built-in functions are mostly input/output and system 

instructions and software functions already implemented in hardware (faster). Most of 

those built-in functions are not meant to be used directly by the programmer. However, 

they are essential when porting C standard library for this custom processor. 

6.3 Porting the C standard library 

Making a custom compiler is the first step towards a successful and user-friendly 

microprocessor. The second one is porting the C standard libraries [14] for this specific 

processor. 

The C standard libraries consist of a collection of functions and library routines used to 

implement common operations, such as input/output, string and memory handling, and 

many more, in the C programming language. Those libraries provide an interface between 

the machine and the developer, so that the developer does not need to know the 

specificities of the target machine, which is needed for low level functions. A set of complete 

and optimized libraries helps to raise the level of abstraction so that the code used by the 

programmer is still machine-independent. Hence, the machine-dependent code is handled in 

the lower levels of those libraries. This explains why libraries need to be customized and 

optimized for each target. 

Part of the project was to initiate such libraries so that basic functions would be provided to 

the end user. However, the purpose was not to build a set of functions as comprehensive as 

the one provided by the C standard libraries of GCC for an x86 architecture [15]. 

Also, it is sometimes hard to evaluate boundaries between services provided by libraries and 

services provided by an OS which is on an even lower abstraction level, compared to 

libraries. As standard libraries make use of target built-ins, they also use services provided by 

the OS. For example, file management and memory management are generally services 

provided by the OS. Hence, those services should not be developed inside the standard 

libraries. 

As a result, a reduced set of functions has been developed and provided to the end user. 

Those libraries include for example the well-known printf function as well as similar 

functions fprintf and sprintf. Also some functions provided in math.h have been 

implemented such as the exp function. 
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The purpose of this was not only to provide libraries to the end user, but also to make sure 

that it was possible to build custom libraries using this tool-chain (compiler, assembler and 

linker). It turned out that the tools chain was lacking some features (for example, specific 

built-in functions to access the arguments of a function that can have a variable number of 

arguments), which had to be implemented to be able to develop such libraries. 

Moreover, it should be pointed out that developing new libraries is also a way to broaden 

the spectrum of the tests. Writing code for libraries is different from writing code for a 

general program. It uses much more complex constructions. Hence, writing and testing 

those libraries is also a way to complete the existing test collection. 

6.4 Fixed-point representation support 

6.4.1 Context 

Very few computer languages include built-in support for fixed-point values [16], since 

most applications use floating-point representations that are standardized. Floating-point 

representations are easier to use than fixed-point representations, because they can 

handle a wider dynamic range and do not require programmers to specify the number of 

digits after the radix point. On the other hand, floating-point representation requires 

either an FPU, which introduce rather large silicon area and power consumption on the 

chip, or software-emulated floating-point operations. This last solution introduces very 

large software overhead, which is translated into much larger code and much longer 

execution time. 

This is why the floating-point representation might not be suited for embedded systems. 

Providing basic support for fixed-point computation would be of great interest, both in 

terms of performance, and in terms of user-friendliness of the compiler. Some 

instructions, such as the move-and-shift instruction, are well suited for fixed-point 

computation. Nevertheless, the compiler was not able to use this kind of instructions 

when using software-emulated fixed-point representation.  

This is why it has been decided to enhance the compiler's possibilities to handle built-in 

support for fixed-point representation. Existing compilers very rarely provide this feature. 

Providing built-in fixed-point support would bring a real added value, especially for 

embedded system programmers. It represents a breakthrough as far as efficiency, user-

friendliness and capacities are concerned. 

6.4.2 Compiler modifications 

New data types have been created to handle fixed-point representation, using new target 

variable-attributes. Those attributes have the advantage of being ignored by the core of 

the compiler, so that special treatment of those attributes is handled in the backend. This 

way, the machine-independence principle of the frontend and the core is still respected. 

Those variable-attributes represent the number of bits of the fractional part in the type. 

They are named __fracX, where X is the number of bits of the fractional part. This 
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attribute will be interpreted by the backend, which will perform special operation for 

those new types. 

Using C standard data types in combination with fixed-point variable attributes makes 

many combinations possible. For example, an unsigned int __frac15 will be 

interpreted by the backend as the following format: 

 
Figure 5 : Binary representation of an unsigned integer with 15 fractional bits 

Whereas a signed short __frac3 will be interpreted by the backend as the 

following format 

 
Figure 6 : Binary representation of a signed short with 3 fractional bits  

This particular fixed-point representation is of great benefit for programmers. Without 

such built-in representation, it is impossible to perform a multiplication of two 32-bits 

integers inside a third one. Indeed, in fixed point representation, a multiply operation of 

two 32-bits integers produces a 64-bits integer, which cannot fit inside another 32-bits 

integer which forces programmers to use 64-bits integers. This is not optimized at all, and 

it forces the programmer to use twice as much data memory as needed since a long 

int must be used to store the temporary result. 

The combination of built-in fixed-point representation and specific instructions makes it 

possible to perform the above-mentioned operation without any workaround. Indeed, 

the processor provides some instructions that are very interesting in fixed-point 

representation. For example, the MULAC computation unit (the unit that performs 

multiply-and-accumulate instructions) has an instruction that allows the programmer to 

retrieve the most significant bits (MSBs) of the accumulator to store them in memory, 

while discarding the least significant bits (LSBs). This instruction is perfect for fixed-point 

integer multiplication, and it would be translated into the following assembly code: 

mul d(_a),d(_b) 

mov $ACC>>32,d(_c)  # Performs c = a * b 

The above shift-and-move instruction was provided by the processor, but any general 

purpose compiler would not be able to use this instruction since none of the C language 

structures would yield to the appropriate IR nodes that could be interpreted by the 

backend as a shift-and-move instruction. Using built-in fixed-point representation inside 

the compiler makes it possible. 
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6.5 Debug support 

6.5.1 What is a debugger 

When programming, it is very important to have powerful debugging tools. Debuggers 

such as GDB [17] are very famous for their capabilities that help many programmers. The 

capacity to automatically debug a program is the ability to go backward in the 

compilation process. The basic feature of a debugger is to be able to display the C source 

code from the executable file. To do so, additional information, called debug information, 

is added by the compiler to the executable file. This information will then be processed by 

an external debugging tool which is capable of retrieving the original source code, tracing 

and altering the execution of computer programs. Also, some debuggers allow the user to 

monitor and modify the values of programs' internal variables, and even call functions 

independently of the program's normal behavior. Yet those are very advanced debugging 

tools which require a lot of time to develop. 

6.5.2 The need for debugging support 

Because the compiler is under development, no debugging information was provided to 

the programmer. The only way to debug a program was to look at the assembly code 

produced by the compiler. When this is acceptable when debugging very small programs, 

it becomes very insufficient when debugging a larger program that uses libraries for 

example. That is why basic debugging information has been provided. 

The first part was to include information as commentary inside the assembly code 

produced by the compiler. This helps relate the assembly code back to the source 

program by providing the operation performed (in the IR form), the line and the file 

where this code comes from. The following is an example of such information: 

mov $R10,d($C1--) 

#Put $C1 at the top of the stack 

loadsubi 67,$C1 

and $C4,$CON,$R3 

#Instr ASSIGN, line: 46 of file printf.c 

xor $CON,$CON,$R3 

mov $R3,d($C1+18) 

#Instr CALL, line: 67 of file printf.c 

bra $C3,_atoi 

Looking at this, it is possible to see how the compiler transformed a C code line into the 

target assembly code. Some bugs can be pointed out using this feature. 

However, as described in section 2.3, the assembly code can only be accessed before the 

linking process. This means that it is only possible to look inside one only source file. If 

several files are needed to produce a final executable (as it is often the case), it is not easy 

to see how those files interact with each other. 

That is why a disassembler has been developed. A disassembler is a very common 

computer program that translates machine language into assembly language, the inverse 

operation to that of an assembler. It is used to produce a string that is human-readable 

out of the instruction code and is very useful for programmers. This string can be 
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displayed inside the simulation program to be more interactive. Coupled to the existing 

simulation tools, it is of great help to see a human-readable trace of the execution of a 

program. Here is an example of the simulation tool coupled to the disassembler: 

 
Figure 7 : Disassembly code inside the simulation tool 

As depicted on Figure 7 the disassembled instruction is much easier to read than the 

instruction code. 

Nevertheless, additional information is needed to reach the level of abstraction provided 

by C language when debugging. Debug information which enables source-level debugging 

of executable programs is an important feature that improves greatly the user-

friendliness of a compiler. Depending on the object format and debugger used, the 

format and capabilities of debug information can vary widely. Therefore, it is the 

responsibility of each backend to generate debug information. However, for common 

debug standards there are modules which can be used by the backend and do most of the 

work. Such a module was already available in the compiler, but it has never been used. 

This existing module uses the DWARF debug standard [18] and more precisely its second 

version, called DWARF2. DWARF is a widely used, standardized debugging data format. 

Work has been done in the backend to use the functions of DWARF module to insert 

debug information inside the assembly code. 

However, the assembler and the linker are not able the process this information yet. 

Modifying those tools and develop a debugger is part of the project and is part of the 

future work. 
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7 Overall results and discussion 
The evaluation of performance is done by collecting information (such as program size and 

execution time) using the test methodology described earlier. The objectives were to 

decrease the execution time of the set of test cases while also reducing the size of the 

resulting program. The main focus was on optimization of signal and data processing 

programs, which is the main field of application of this project. 

During the thesis, many optimizations have been performed, each of them rising the global 

level of performance of the compiler. At the same time, new features have been developed 

to complete the set of tools of the compiler and its possibilities. Usually, adding new 

features is counterproductive because it makes the compiler and the generated code more 

complicated, but it has been managed to be avoided. Hence, the compiler is now more 

optimized and provides a better level of service to the developer. 

7.1 Execution time 

The most important criteria when evaluating the performance of a compiler is the execution 

time. The lower the execution time is, the better the compiler is optimized. Figure 8 shows 

the evolution of the execution time of all the hardware tests in the different optimization 

levels available: 

 
Figure 8 : Evolution of the overall execution time 

The x-axis represents the different versions of the compiler that has been developed. Each of 

them corresponds to one or several optimizations that have been done and/or news 

features that have been implemented. A description of each version can be seen in 

Appendix 6. 
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This figure shows a global overview of the progress that has been performed: in optimization 

level O0, the execution time has been reduced by 22.0% (from 1 121 314 to 874 607 cycles) 

and by 18.3% (from 745 840 to 609 454 cycles) in optimization level O4. 

This graph shows several significant steps, such as the one from version 6 to version 7, which 

is mainly due to a heavy work on the entire optimizer that was improved to delete 

unnecessary loop tests when the boundaries are constant. It was also at this point that it has 

been decided to activate the peephole for every optimization level. Hence, many 

unnecessary instructions got removed. The step between version 13 and version 14 can be 

explained by the optimization on the out-of-order algorithm as explained in Section 5.2. 

The results on data-processing oriented algorithm are even more conclusive. One of the test 

cases is specifically focusing on data processing of matrices (matrix inversion algorithm, 

called the MT4 algorithm). For this algorithm, execution time has been reduced by 23.1% in 

O0 optimization level and by 21.0% in O4 optimization level. Figure 9 shows the evolution of 

the execution time for the different versions of the compiler. 

 
Figure 9 : Evolution of the execution time of the matrix inversion algorithm 

7.2 Program size 

The program size is the second most important criteria, especially in embedded system 

where the storage capacities are reduced. Figure 10 shows the evolution of the program size 

of all the hardware tests in the different optimization levels available: 
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Figure 10 : Evolution of the overall program size 

This figure shows a global overview of the progress that has been done in term of program 

size: in optimization level O0, it has been reduced by 13.1% (from 14 491 to 12 599 words) 

and by 20.2% (from 17 802 to 14 214 words) in optimization level O4. 

Once again, test cases focusing on data processing present even better results. For the MT4 

algorithm, program size has been reduced by 29.7% in O0 optimization level and by 55.9% in 

O4 optimization level, as it can be seen on the following figure: 

 
Figure 11: Evolution of the program size of the matrix inversion algorithm 
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8 Conclusion 
To summarize this project, following conclusions have been made. 

Developing and optimizing a compiler is something that takes time and that needs to be carried 

out very carefully, keeping in mind what the underlying hardware is. As a result it was possible 

to enhance both the performance and the services provided by the compiler so that it can now 

be spread over several departments of the company for more intensive use and feedback, 

which will make the development go faster. 

Working on a "simple" compiler (compared to GCC) made heavy modifications of the backend 

(and the core) possible. This would have been much more complicated using GCC and would 

have taken a lot more time. GCC is very complicated which tend to be an issue when tweaking 

the compiler for an unusual target machine.  

On the other hand, GCC is a much more stable and mature compiler. It has been developed for 

years by a large community of developers, and for a large set of target machines. Also, GCC 

comes with many additional tools from the GNU collection. As a result, built-in support, 

standard libraries, or debugging support is already taken care of, whereas it had to be 

developed entirely in the project's compiler. 

This compiler's internal mechanisms were easy enough to be able to modify the compiler rather 

easily, which made all those optimizations possible. This is one of the most important criteria 

when developing an application during a limited period of time. 
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9 Future work 

9.1 Instruction scheduling 

A compiler is a translator. It reads every source line and transforms it into assembly code. 

And even though the core performs some basic block reordering, the compiler itself cannot 

reorder assembly instructions to make full use of the target module parallelism. This task is 

dedicated to the instruction scheduler. 

As the processor has several modules that can run simultaneously (the ALU, the FPU, the 

MULAC unit, …), reordering assembly instruction could noticeably rise up performance. A 

floating-point division can take more than 30 clock cycles to execute. Without reordering the 

instructions, it is very likely that the processor will wait most of this time for this instruction 

to complete. Reordering helps to fill waiting time with other module computation and thus 

makes the computation ratio rise. A basic instruction scheduler has already been 

implemented, but it needs to be developed further to make full use of the parallelism 

offered by the processor. 

9.2 Add new functions to standard libraries 

C standard libraries are very complex, and demand a huge amount of work to implement 

each function that is usually provided by standard libraries. So far, only a subset of these 

libraries has been implemented. This is why their development should continue to keep 

providing more and more services to the final user, keeping in mind where the boundary 

between standard libraries and the OS is. 

9.3 Create a complete source debugging tool-chain 

The existing compilation tool-chain lacks of source debugging support. While it is not an 

important issue when debugging small programs, it becomes crucial when debugging large 

programs. Basic mechanisms for source debugging are in place but an automated debugging 

tool-chain does not exist yet. It is planned to develop such a debugger in the next six 

months.
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13 Appendices 

Appendix 1. Description of each hardware tests 

The first part of the hardware tests focus on very particular categories of C constructions and 

data types. Those tests contain a large variety of combinations in one particular area and focus 

on cases that might be tricky. Also, they are useful when evaluating performance on specific 

optimizations. Here is a brief description of those tests: 

- Arithmetic_64.c: checks arithmetic on 64-bits integers which is emulated by software 

as it is a 32-bits processor. Currently, this file tests: 

 addition, subtraction, multiplication and shift on variables, constants and 

arrays 

 bitwise operations (and, or, not, xor) on variables, constants, arrays and 

pointers on pointers on long long 

 addition on pointers on long long and pointers on pointers on long long 

- Arithmetic.c: checks arithmetic operations on integers. Currently, this file tests: 

 addition, subtraction, multiplication, division and shift on variables, constants, 

arrays and pointers 

 subtraction between pointers 

- Arithmetic_extra.c: checks arithmetic operations which have reverse order of 

operands in assembler. More tests are performed than in arithmetic.c. 

- Bitwise.c: check variables initialization and bitwise operations on integers. Currently, 

this file tests: 

 global variables initialization 

 variables assignment 

 and, or, not, xor 

 operators priority and parentheses 

- Call_functions.c: checks functions: calls, parameters and return values. The 

verification is done on the return value after the function call. Currently, this file 

tests: 

 basic functions of type int, int*, void 

 functions with multiples parameters (up to 8) 

 function waiting for parameters of type int, long, int*, long* 

 that parameters are not altered by function when they should not have been 

 function call in a function 

 recursivity 

 that variables are actually locals (there are locals variables with same name in 

different functions which should not change after a function call) 

 static variables 

 function pointers 
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- data_type.c: checks conversions on every types others than floating-point and 

assignment from a variable to another variable. Currently, this file tests: 

 conversion from char to (char / unsigned char / short int / unsigned short int / 

int / unsigned int / long long int / unsigned long long int) 

 conversion from char to (char ... unsigned long long int) after an addition 

between two char 

 conversion to (char ... unsigned long long int) after an addition between int 

and char 

 conversion to (char ... unsigned long long int) after an addition between char 

and unsigned short int 

 conversion to (char ... unsigned long long int) after a subtraction between 

unsigned short int and unsigned int 

 conversion to (char ... unsigned long long int) after an addition between 

unsigned long long int and int 

 storage in memory and reload from it 

- div_mode.c: checks extensively every possible division mode and type conversion 

between operands. Currently, this file tests: 

 division mode (8,16,32 or 64bits) 

 signed and unsigned division 

 cross type use and type conversion (example (unsigned float) f = (signed char) 

b / (unsigned long) c) 

 tricky values such as 0.0/(-0.0), use of NaNs, … 

- Float.c: checks arithmetic on floating-point variables and conversions from floating-

point types to integral types (and vice-versa). Currently, this file tests: 

 assignment 

 addition, subtraction, multiplication and division on variables, constants and 

arrays. 

 conversions from float to (double, int, long), double to (float, int, long), int to 

(float, double) and long to (float, double) 

 conversion int / long to float / double (and vice-versa) which could result in 

incorrect value (negative number, overflow, null number, underflow) 

- for_loop1.c: checks for loops and addressing mode in it. Currently, this file tests: 

 basic for loops (growing and decreasing) 

 assignment on induction variable with constants, variables and arrays 

 stop with different tests using variables, constants and arrays 

- struct.c: checks structure use. Currently, this file tests: 

 structure with int and long long fields 

 copy of field in a variable 

 assignment of a structure in another 

 addition of fields of different structures 

 function waiting for structure in parameter, and returning a structure 
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- while_loop1.c: checks while loop with different exit tests. Currently, this file tests: 

 basic while loops with <, >, <= and >= 

 tests on type int, unsigned int and long int with global variables, local 

variables, constants and arrays 

 if between values for which the comparison (subtraction) exceeds limits 

- while_loop2.c: checks while loop with using floating-point variables. Currently, this file 

tests: 

 tests with float 

 if on double limits (positive infinity and negative infinity) 

The second part of those tests is real and meaningful algorithms that focuses on evaluating 

performance in "real" conditions. Here is a brief description of those tests: 

- MT4-invmat.c: a complex algorithm which computes a floating-point vector from a 

matrix. Currently, this file tests: 

 matrix initialization (for loop, modulo, division) in a function (matrix address is 

given as a parameter) 

 multiple computations on matrix (multiplication, division, addition, 

subtraction) performed in for loops 

- Bubblesort.c: a well-known algorithm which sorts a list of integer. 

- Luhn.c: an algorithm which performs a simple checksum. 

- Matrix.c: checks operations on matrices. Currently, this file tests: 

 matrix initialization (for loop, modulo, division) in a function (matrix address is 

given as a parameter 

 matrix multiplication on int*int->int, long*long->long, double*double->double, 

int*long->long and double*int->long 

- Pgcd.c: an algorithm which finds the Greatest common divisor (GCD) of two 

integers. 

- Rot13.c: an encryption algorithm. 

- Fir.c: an integer 51 taps Finite impulse response (FIR) filter  
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Appendix 2. Example of result file 

#Results file 

#  with stimulus file <tmp.stim> 

#  with program <basic/arithmetic.bin> 

#  with expected results <basic/arithmetic.c.gcc.ref> 

#Executing program N°0 at 1.0225 us 

#============================================================ 

#  Time     Page  Addr  Hex Data     pass  good data (hex & decimal) 

 1.5225 us     0    22  0000012C      OK  0000012C            300 

 1.5525 us     0     0  00000005      OK  00000005              5 

 1.5725 us     0     1  FFFFFFF3      OK  FFFFFFF3            -13 

 1.5975 us     0     2  00000018      OK  00000018             24 

 3.0475 us     0    42  FFFFFFFF      OK  FFFFFFFF             -1 

 3.0975 us     0    43  00000014      OK  00000014             20 

#============================================================ 

#Program ends successfully at 3.1375 us 

 

#Runtime duration : 2115 ns 

#Runtime cycles : 423 

#Runtime active : 387 (1935 ns) *** ratio=91% (Stall losses) 

#Runtime stall count : 35 (36 cycles) 

 

#Flag0 asserted : 15 cycles (72 ns) 

#Flag1 asserted : 0 cycles (0 ns) 

Appendix 3. Example of Hardware test report 

 

Appendix 4. Hardware tests summary 
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Appendix 5. Example of compilation report 

 

############################################################### 

##                                                           ## 

## Compilation report                                        ## 

## Thales Compiler Version 1.10                              ## 

##                                                           ## 

## Date : 16-02-2011 - 10:33:06                              ## 

##                                                           ## 

############################################################### 

 

 

/-------------------------------------------------------------/ 

/--------------  SUMMARY OF COMPILATION REPORT  --------------/ 

/-------------------------------------------------------------/ 

 

Compilation of file algo/matrix.c with options: 

 - optimization level = 65537 (default optimization level –O1) 

 - crossmodule optimization activated 

 - inline peephole activated 

 - fpu support activated (--fpu) 

 - barrel shifter support activated (-barrelshift) 

 

Memory used: 

 - Data memory: 19 words 

 - Program memory: 181 words (174 instructions, 7 constants) 

 

Number of different messages: 

 - 2 NOTES 

 - 1 WARNING 

 - 1 HINT 

 - 2 INTRUCTION OPTIMIZATIONS 

 - 4 PEEPHOLE OPTIMIZATIONS 

 

/-------------------------------------------------------------/ 

/--------------          END OF SUMMARY         --------------/ 

/-------------------------------------------------------------/ 

 

 

/**************************  NOTES  **************************/ 

sync instruction was not emitted as previous div mode is equal to the current one  (line 67 of 

file matrix.c) 

removed unnecessary start test for a FOR loop with constant boundaries             (line 167 

of file matrix.c) 

 

/*************************  WARNING  *************************/ 

Implicit conversion of operand 1 from SIGNED to UNSIGNED: make sure values contained by the 

operand are possible UNSIGNED values  (line 76 of file matrix.c) 

 

/***************************  HINT  **************************/ 

MULACC transformation line 173 was not possible due to modification of $ACC inside the loop. 

Avoid use of other MULT to trigger optimization  (line 173 of file matrix.c) 

 

/*****************  INTRUCTION OPTIMIZATIONS  ****************/ 

Optimized MULT by CONST=(power of 2) into LSHIFT by log2(CONST)  (line 86 of file matrix.c) 

Optimized MULT by CONST into 1 LSHIFT and 1 ADD                  (line 173 of file matrix.c) 

 

/******************  PEEPHOLE OPTIMIZATIONS  *****************/ 

nop instruction deleted                                          (line 565 of file matrix.asm) 

loadsubi instructions deleted (loadaddi value has been changed)  (line 565 of file matrix.asm) 

loadsubi instructions deleted (loadaddi value has been changed)  (line 707 of file matrix.asm) 

nop instruction deleted                                          (line 720 of file matrix.asm) 

loadaddi and loadsubi instructions deleted                       (line 817 of file matrix.asm) 

 

 

############################################################### 

##                                                           ## 

##                End of compilation report                  ## 

##                                                           ## 

############################################################### 
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Appendix 6. Description of the different versions of the compiler 

Versions: Description: 

Version 1 

 Removed sync instructions (not necessary anymore) 

 Bugfix while transforming -f into -1*f in floating-point numbers 

 Added basic debug information into the .asm file 

Version 2  Assembly peephole optimization 

Version 3  IR peephole optimization 

Version 4  Strength reduction on multiply by a power of 2 (optimized into a shift to the left) 

Version 5 

 Bugfix on must_convert() function, on the assembly peephole and on the 

shifting operation handler 

 Optimized transform_trivial_operation() function 

Version 6 

 Added support for division mode provided by the microprocessor (division on char, 

short, or int) 

 Added mulneg detection optimization 

 Strength reduction on division by a power of 2 (optimized into a shift to the right) 

and on unsigned modulo by a power of 2 (optimized into an and with value -1) 

Version 7 

 Bugfix on assembly peephole 

 Activation of the assembly peephole on every optimization level 

 Improvement of the mulneg detection 

 Suppression of unnecessary test for loops with constant boundaries 

Version 8 

 Added built-in function support to the whole compiler 

 Changed inline assembly for instruction out into a built-in function 

 Added mulacc detection optimization 

Version 9 

 Bugfix on mulacc and mulneg optimization 

 Optimized ADD 1,X,Y into SUB -1,X,Y for integer addition (uses $CON 

register) 

Version 10 

 Optimized strength reduction on multiply by a (power of 2)±1 or ±2 (optimized into 

a shift to the left and some ADD/SUB) 

 Improvement of the mulacc detection 

Version 11 
 Optimized operand access by swapping operands (depending on the different 

addressing mode of the different instructions) 

Version 12 

 Optimization of built-in function out into 2 separated built-in functions: a built-in 

setpage and a built-in out. Allows built-in function setpage to be hoisted out 

of the loop if possible 

Version 13  Added support for a new addressing mode for arithmetic instructions. 

Version 14 

 Added new built-in functions flagset, flagclr, flagpulse, flagsetall, 

flagclrall, flagpulseall, sin, and cos. 

 Added compiler support for multi-accumulator architecture (not activated yet) 

 Bugfix on instructions mulclr.u et mulclr.us, fconvsp, mulacc and out 

 Activated support for new FPU architecture using out of order algorithm. Allows 

using the same floating-point register as operand and destination. 

 Optimized parameters for loop optimization. 

Version 15 
 Many bugfixes 

 Changed support of instruction div to handle new format for the instruction 
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(including 64bits integer division) using new instruction div8, div16, div32, 

div64, divload, and divload64. 

Version 16 

 Correct a bug on conversion algorithm from float to integer 

 Correct a bug on fconvsp 

 Correct a bug on addressing mode of instructions mulclr.u and mulclr.us 

 Correct a bug on built-in handling 

 Changed conversion algorithm in the core of the compiler for DIV operation 

Version 17 

 New peephole optimization to delete unnecessary move to tmp_Rreg and tmp_Creg 

 New peephole optimization to delete unnecessary reload of last_Rreg 

 Add support for new single precision FPU instructions. Now instructions such as 

faddsp, fmulsp, or fsubsp are available (is faster to compute than double 

precision instructions) 

Version 18 

 Add support for new instruction mov64 

 Add new built-in sqrt and sqrtsp to be able to use those built-ins directly in the C 

code (very important for libraries) 

 New peephole optimization to deleted unnecessary move to tmp_FPreg and 

tmp_FPreg2 

Version 19 

 New peephole optimization to handle post-increment and post-decrement 

capabilities. 

 New peephole optimization to combine a loadaddi followed by a loadsubi by 

1 single instruction loadaddi or loadsubi 

Version 20 
 Add new built-in __builtin_va_start to be able to handle variable arguments function 

(variadic functions) correctly 

Version 21 

 Optimized bitwise and arithmetic instructions when using indexed addressing mode 

for operand 1 done with use of Cx+Imm and operand swap 

 Correct a bug on built-in out 

 Correct a bug on setreturn for floating-point type 

 Correct a bug on wrong overlapping internal flag values 

Version 22 

 Peephole optimization to use post incrementation and post decrementation 

capabilities 

 Core optimization to delete unnecessary type conversion 

Version 23 

 Developed new built-in in 

 Correct a bug on multiply-to-shift conversion 

 Optimized crt0.s using djnzd instruction instead of djnz 

Version 24 
 Optimized loadoperand() function to take advantage of the new register-only 

addressing mode 

Version 25  Peephole to remove unnecessary nop instructions 
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