

Optimization of a compiler for a
custom microprocessor
Degree project in compiler technology

2nd
 level, 30 HEC

Valence, France 2010/2011

Xavier LEGROS
04/03/2011

legros@kth.se

Supervisor: Philippe GROSSI, Design Authority, THALES Avionics

Examiner: Ass. Prof. Christian SCHULTE, Department of Software and Computer Systems,
School of Information and Communication Technology, KTH

Release agreement

Autorisation de diffusion

 First Name Family Name Position Date Signature

Written by Xavier LEGROS Intern 03/03/2011

Approved by

Philippe GROSSI Supervisor 03/03/2011

Lionel FRAICHARD
Head of the
Department

03/03/2011

Authorized by

Security
Officer

03/03/2011

Abstract

New systems have higher and higher requirements in terms of reliability, safety, power

consumption and performance. To meet those requirements, a custom processor can be a

solution. That is why Thales is developing a processor that includes many features that make its

architecture different from common architectures of general-purpose processors. To become

widely usable, a fully optimizing compiler is the cornerstone that leads to its success.

While most of the existing compilers manage to deal with code optimization for general

purpose processors, their efficiency can considerably decrease when optimizing code for a

custom processor whose architecture differs from general purpose processors.

A new compiler had to be developed to translate C source code into highly optimized assembly

code that would be able to deal with this processor's abilities, such as DSP-like instructions, in

the best way possible, while introducing key features necessary to meet the requirements of

Thales' line of products.

Code optimizations have been introduced and enhanced, using pattern detection, control flow

analysis or peephole optimization. At the same time, new key features have been added to the

compiler, such as a compilation report, built-in functions support, and also fixed-point

representation support. Many of these resources were lacking in existing compilers, which

brings a noticeable added value to this compiler.

As the processor is still under development, tests were carried out using a VHDL simulation

model of the processor designed specifically to test the entire platform. The set of tests focused

both on general purpose applications, and also on data processing algorithms. The optimization

of this compiler led to an 18.3% shorter execution time for the set of tests, while reducing the

total program size by 13.1% at least. Moreover, important features that existing compilers are

lacking, have been added to the compiler. It helped improving the user-friendliness of the pair

compiler/processor and it has proven to be of great interest for programmers.

Acknowledgments

I want to express my gratitude to all of those who made this thesis possible.

First, I would like to thank my supervisor at Thales Avionics, Philippe Grossi. Throughout my

work, he has been helping me with critical reviews, providing detailed background knowledge,

expertise, guidance and encouragement. His personal involvement in the project made it

possible to write a successful thesis and I am immensely grateful for this.

I would like to show my heartiest gratitude to Christian Schulte for being my compiler teacher

and examiner, for his directions and guidance throughout all the formalities of report writing,

but also for his advices that helped me to achieve this thesis.

I'm also thankful for the assistance the Micro-electronic Department gave me at all levels of

the project, for sharing their knowledge, for providing me with priceless feedback and for

patiently answering all my questions.

Lastly, I express my gratitude to my family and friends, without whose patience, constructive

critiques and support it would be far more difficult to complete this project.

List of Abbreviations

ALU: Arithmetic and Logic Unit

ASIC: Application-Specific Integrated Circuit

CFG: Control Flow Graph

CPU: Central Processing Unit

DSP: Digital Signal Processor

FPU: Floating Point Unit

HLL: High Level Language

ISA: Instruction Set Architecture

IR: Intermediate Representation

LSB: Least Significant Bit

MMU: Memory Management Unit

MSB: Most Significant Bit

OS: Operating System

RISC: Reduced Instruction Set Computer

VHDL: Very high speed integrated circuit Hardware Description Language

 Xavier LEGROS

Page 1 of 61

Table of Content

1 Objectives ... 3

2 Introduction .. 5

2.1 Preface .. 5

2.2 What is a compiler? .. 5

2.3 The binary generation tool-chain ... 5
2.3.1 Preprocessor ... 6
2.3.2 Assembler .. 6
2.3.3 Linker ... 7

2.4 Benefits of a compiler ... 7
2.4.1 Portability .. 7
2.4.2 Maintenance ... 7
2.4.3 Reusability ... 7
2.4.4 Quality of the code .. 7

2.5 Internals of a compiler .. 8
2.5.1 The frontend ... 8
2.5.2 The core ... 9
2.5.3 The backend .. 11

2.6 Retargetable compilers ... 11

2.7 Problems ... 12

2.8 Thesis Overview .. 13

3 The Compiler .. 15

3.1 Test methodology ... 15
3.1.1 Description of the optimization levels .. 15
3.1.2 Software tests ... 16
3.1.3 Hardware tests .. 16

3.2 Test process... 17

4 Compiler optimizations ... 19

4.1 Mulneg pattern detection ... 19
4.1.1 Principle ... 19
4.1.2 Results ... 20

4.2 Mulacc pattern detection ... 20
4.2.1 Principle ... 20
4.2.2 Constraints and Limitations .. 22
4.2.3 Results ... 22

4.3 Advanced operator strength reduction .. 24
4.3.1 Principle ... 24
4.3.2 Results ... 26

5 Hardware and compiler optimizations .. 27

5.1 Support of new addressing mode for arithmetic and bitwise instructions 27
5.1.1 Problem ... 27
5.1.2 Principle ... 28
5.1.3 Results ... 29

5.2 Support of the hardware out-of-order algorithm for the FPU 30
5.2.1 Principle ... 30

 Xavier LEGROS

Page 2 of 61

5.2.2 Results ... 30

6 New compiler features .. 33

6.1 Compilation report .. 33

6.2 Built-in function support ... 33
6.2.1 Principle ... 33
6.2.2 Consequences on existing tests .. 35

6.3 Porting the C standard library ... 37

6.4 Fixed-point representation support.. 38
6.4.1 Context .. 38
6.4.2 Compiler modifications ... 38

6.5 Debug support... 40
6.5.1 What is a debugger ... 40
6.5.2 The need for debugging support ... 40

7 Overall results and discussion ... 43

7.1 Execution time .. 43

7.2 Program size .. 44

8 Conclusion .. 47

9 Future work .. 49

9.1 Instruction scheduling ... 49

9.2 Add new functions to standard libraries... 49

9.3 Create a complete source debugging tool-chain .. 49

10 References .. 51

11 List of figures .. 53

12 List of Tables ... 53

13 Appendices ... 55

 Xavier LEGROS

Page 3 of 61

1 Objectives
This master thesis is part of a larger project aimed at developing a custom multi-purpose

microprocessor to integrate it into a large variety of systems. To make this custom

microprocessor easily programmable and use its full potential, the development of a powerful

compiler is a key factor. A stable C compiler fully optimized for a specific target, would offer the

developers a good level of services to become as user-friendly as a widespread compiler for

common microprocessors.

This processor is a RISC (Reduced Instruction Set Computer) processor oriented for digital

signal-processing and data-stream applications, also offering a complete instruction-set for

multi-purpose applications. Its architecture, which is between the one of a general-purpose

processor and the one of a Digital Signal Processor (DSP), presents several challenges when

optimizing a compiler for such an architecture.

While most of the existing compilers manage to deal with code optimization for general-

purpose processors, their efficiency can considerably decrease when optimizing code for a

custom processor whose architecture differs from general-purpose processors.

The main objective of this thesis is to optimize a C compiler to increase performance while

adding new features to it, such as development of standard libraries or built-in function

support. In order to improve it further, the compiler was tested extensively to find and

eliminate existing errors.

 Xavier LEGROS

Page 5 of 61

2 Introduction

2.1 Preface

As this thesis deals with compiler's optimization, it is crucial to have general knowledge

about compilers, their internals and how to optimize such a system. Compiler technology is a

complex subject, and requires a lot of understanding of different areas of computer science.

All the information is gathered in various books, papers and discussions.

This chapter gives a state of the art of what a compiler does and how it does it, and reveals

the problematic of optimizing a compiler. More information can be found in [1], [2], [3] and

[4].

2.2 What is a compiler?

Programming languages are notations used by programmers to describe and express

computations that can be performed by a computer. However, before a program can be

interpreted by a machine, the source code must first be translated into a more basic

representation. The software systems that translate source code into another computer

language are called compilers.

Most compilers translate High Level languages (HLL) into assembly language for a target

processor but translating from an HLL to another HLL (Java to C for example) is also possible.

A compiler is basically a translator. Yet, this task can be very challenging and raises a lot of

issues.

Also, translating a source code into another language does not give an executable binary

program that can run on a microprocessor. That's why a compiler is a part of bigger tool-

chain.

2.3 The binary generation tool-chain

A compiler itself is rarely used alone. It is a part of a much bigger tool-chain that transforms

a HLL source code into an executable program that is adapted to the target machine. From

now on, the term source language refers to the C programming language. The organization

and the different parts of it are shown in Figure 1

 Xavier LEGROS

Page 6 of 61

Figure 1 : The binary generation tool-chain

2.3.1 Preprocessor

The preprocessor is in charge of expanding macros (#define), including files

(#include), following conditional statements (#if, #ifdef, …), and removing

comments, which are useless for the compiler.

It basically deals with directives such as:

#include <stdio.h>

#define DEBUG 1

#ifdef

...

The most common preprocessor for the C language on UNIX and Linux machines is CPP (C

PreProcessor) [5].

2.3.2 Assembler

The assembler works mainly as an encoder: it reads assembly language instructions, and

encodes them in binary, following a scheme described in the Instruction Set Architecture

(ISA) of the target processor.

Ultimately, the assembler produces an object file, which is a binary file, but not yet

executable in most cases. This object file, among program and data, also holds relocation

information, used in the linking stage.

Object files come in a wide variety of format, and they can differ depending on the

architecture and the Operating System (OS) used. The most well-known formats are PE

under Windows and ELF under UNIX systems.

 Xavier LEGROS

Page 7 of 61

2.3.3 Linker

The linker takes several object files and combines them together to produce the final

executable binary. In the process, it also has to compute relocation information that will

be used by the Memory Management Unit (MMU) of the processor when loading the

program in memory.

2.4 Benefits of a compiler

Typically, each target machine has its own assembly code. Even if writing programs in HLLs is

now common, one may wonder why is it good to add a new layer (the HLL) to raise the level

of abstraction, making the process more complicated so that a new tool (a compiler) would

be needed.

First, programming directly in assembly requires knowledge about the processor. In order to

write efficient assembly programs, it is of great importance to be very familiar with the

target processor’s internals, which can be really difficult. This becomes more and more

problematic today, when modern processors are more and more complex, providing

powerful facilities directly in their hardware. Without good knowledge about modern

processors in general, it is rather problematic to write good code for that given processor.

Compilers were not only designed to avoid coding directly in assembly language. In fact,

much more important reasons lead to the use of compilers. These reasons are:

2.4.1 Portability

Assembly code is specific to a target machine whereas HLL source code is not. In order to

get a target specific assembly code, it is necessary to pass an HLL source code though a

compiler. This idea can be well illustrated by the following slogan: "Code once, compile

anywhere!"

2.4.2 Maintenance

As software becomes more and more complex, a good maintenance level needs to be

achieved. HLLs significantly facilitate this task as they are much more "user-friendly" than

assembly code. Moreover, assembly language is the lowest level, which makes it hard to

debug errors.

2.4.3 Reusability

HLLs ease code reusability between projects: They allow the programmer to manipulate

objects, structures, data types, that have been defined with a level of abstraction high

enough to program generic modules.

2.4.4 Quality of the code

Depending on the needs, compilers can optimize code according to different criteria, such

as speed, code size, power consumption, etc.

More importantly, a compiler does not get unfocused halfway through the optimization

process: whatever the size of the code is, the compiler will do its best to optimize it,

which would be more time and energy consuming for a person.

 Xavier LEGROS

Page 8 of 61

However, even though a good compiler can produce code of good quality, the output of

the compiler might not be good enough in time critical applications. Hence, time critical

sections need to be coded manually in assembly.

2.5 Internals of a compiler

A compiler is generally organized in different parts that are depicted in Figure 2.

Figure 2 : Internals of a compiler

2.5.1 The frontend

The frontend analyses the input source code and deduces information from it for the

subsequent parts of the compiler to work on. It checks whether the program is correctly

written in terms of programming language's syntax and semantics. Here legal and illegal

programs are recognized. Errors are reported, if any.

 Lexical analysis: Read the input source code and group the characters into

meaningful tokens representing variables, language keywords, etc.

 Syntax analysis: This pass uses the tokens produced by the lexical analysis and creates

a tree-like representation that depicts the grammatical structure of the source code.

 Semantic analysis: This pass uses the syntax tree to check the source code for

consistency with the HLL definition. Type checking is also performed during this pass.

 Xavier LEGROS

Page 9 of 61

2.5.2 The core

The core generates the Intermediate Representation (IR) for the following backend. Many

optimization efforts are focused on this part.

 Intermediate representation: An explicit low level intermediate representation of the

source code is done. This is the representation that the backend will use to produce

the machine dependent code. Representations can be graph-based or can follow a 3-

addresses code form.

 Machine independent optimizations: The IR is optimized. The optimization often aims

at increasing code speed, but other goals can also be achieved, depending on the

desired objectives: short code size, reduced power consumption, etc.

Common optimizations include:

– Common Sub-expression Elimination:

void f(int x, int y) {

q(x * y, x * y);

}

becomes

void f(int x, int y) {

int tmp;

tmp = x * y;

q(tmp, tmp);

}

The expression x*y is used twice so the optimization consists in computing

it only once and put the result into a temporary variable.

– Constant propagation:

int f() {

int x;

x = 1;

return x;

}

becomes

int f() {

return 1;

}

Since the variable x is not modified between its assignation and the return

statement, the optimization consists in deleting this unnecessary variable

and returning the constant 1.

– Dead code elimination:

int f(int y) {

int x;

x = 3;

y = 2 + 4*x;

return x;

x = 2;

y = 3;

}

becomes

 Xavier LEGROS

Page 10 of 61

int f(int y) {

int x;

x = 3;

y = 2 + 4*x;

return x;

}

Since the code following the return statement is not reachable, this code is

deleted.

– Loop unrolling:

for (i=0 ; i<4 ; i++) {

f(i);

}

becomes

f(0);

f(1);

f(2);

f(3);

The boundaries of the for loop are known at compile-time, so the

optimization consists in getting rid of the loop code and copy the code

inside the loop as many times as it is executed. This optimization results in

a shorter execution time but increases the program size.

– Function inlining:

int f(int y) {

return ((5*x) + 7);

}

int main() {

 int var = 4;

 int res;

 res = f(var);

return res;

}

becomes

int f(int y) {

return ((5*x) + 7);

}

int main() {

 int var = 4;

 int res;

 res = ((5*var) + 7);

return res;

}

The optimization consists in performing the code of the function without

executing this function, which is way faster since no jump to the function is

performed, and hence, no register saving is needed.

 Xavier LEGROS

Page 11 of 61

– Loop hoisting:

for (i=0 ; i<10 ; i++) {

 b = 7;

a = 4*i + b;

}

becomes

b = 7;

for (i=0 ; i<10 ; i++) {

a = 4*i + b;

}

Since the statement b = 7 is independent of the loop, it can be moved

out of the loop.

 Register allocation: this is the process of assigning a large number of program

variables onto a small number of CPU registers. Register allocation can happen

over a basic block (local register allocation), over a whole function (global register

allocation), or in-between functions as a calling convention (interprocedural

register allocation). It avoids the loading and unloading of operands at each

instruction to make full use of available registers. As a consequence, memory

utilization becomes lower, resulting in higher speed and lower power

consumption. A basic block is a straight-line sequence of code with only one entry

point and only one exit.

Many of those optimizations are based on data-flow analysis. Data-flow analysis is a

technique for gathering information about the possible set of values calculated at various

points in a computer program. A program's control-flow graph (CFG) is used to determine

those parts of a program to which a particular value assigned to a variable might

propagate. This way, it is possible to make powerful analysis and optimizations. A CFG is a

representation, using graph notation, of all paths that might be traversed through a

program during its execution.

2.5.3 The backend

The backend is responsible for translating the IR into the target assembly code. The target

instructions are chosen from one or several nodes of the IR.

 Machine-dependent optimizations: This phase is mostly about combining several IR

nodes into one single machine-dependent instruction. The backend also performs

instruction scheduling: Reorder instructions to make better use of the different

pipelines and processing elements a CPU may offer. (Avoid pipeline stalls, etc.)

 Peephole optimizations [6]: Final obvious local optimizations, like redundant

moves/load removal or unnecessary nop removal.

2.6 Retargetable compilers

Modern compilers are designed to be retargetable, which means they can be relatively easily

enhanced to support new target machines.

 Xavier LEGROS

Page 12 of 61

Since a great amount of passes are machine-independent, a careful design allows the

compiler to keep all its code in a common, target-independent core, while providing

functionalities to later plug a machine-dependent code generator into it. That way,

development time for a new processor is shortened, and more importantly, the target-

independent code is factorized, so that it only needs to be developed and tested once.

The core holds all the target and HLL independent code, and provides interfaces to plug

frontends and backends into it as depicted in Figure 3.

Figure 3 : A modular compiler

Most compilers only provide retargetability at the backend level, and are focused on only

one HLL. Some bigger compilers are retargeted at both frontend and backend level. GNU

Compiler Collection [7], also known as GCC and Low Level Virtual Machine (LLVM) [8] are

such compilers.

2.7 Problems

These retargetable architectures are really great for compiler development. However, since

the core is completely factorized in a machine-independent fashion, it is necessary to

completely rely on its interfaces to write a backend for a new machine. Problems arise when

the target machine is very different from "traditional" architectures, and thus breaks

assumptions the core developers made.

As a result, even parts of the compiler that are said to be machine independent can make

assumptions on the target machine. The vast majority of machines have no problems with

that, but when trying to write a backend for an unusual machine architecture, especially

custom designed CPUs, this can lead to a great deal of problems.

Those problems can be difficult to tackle when optimizing a compiler. That is why it might be

necessary to modify the core of the compiler that needs to be optimized, even though,

according to the modularity principle, only the backend should be modified.

 Xavier LEGROS

Page 13 of 61

Also, even on retargetable compilers, extensive knowledge on how the core uses the

backend is necessary to program the exact desired behavior. Otherwise, small changes can

have huge consequences on the output.

2.8 Thesis Overview

Section 3 of this report describes the compiler on which the thesis was based and the test

methodology used to ensure its correct behavior. A brief description of the different

optimization levels of the compiler is also provided in this section

Section 4 describes the compiler optimizations that have been performed during the thesis.

The principle of each optimization and its results are also provided.

Section 5 describes optimizations of the global system composed of the hardware and the

compiler. It highlights the importance of hardware/software co-design and its benefits. In

this section, specific optimizations involving hardware and software modifications will be

described.

Section 6 describes the new features that have been added to the compiler, their impact

and benefits for the end user.

Finally, this thesis ends with Section 7, Section 8 and Section 9 which summarize results

obtained from the previous sections and contain some proposals for future work and

extensions of this master thesis project.

 Xavier LEGROS

Page 15 of 61

3 The Compiler
For this project, the decision had been made to use a retargetable C compiler other than GCC.

This choice is a compromise between the complexity and the maturity of the compiler.

The chosen compiler implements every common optimization described previously and

respects all the notions that have been introduced in the previous sections.

3.1 Test methodology

To ensure the proper functioning of the compiler and evaluate the progress made by the

different optimizations, it is necessary to set up a large variety of tests. These tests have to

check that the compiler can issue valid assembly code, whatever the source program is, and

make sure that the compilation did not alter the meaning of the source program.

Moreover, these tests are also a way to evaluate the performance of the compiler

concerning several aspects such as the execution time or the program size.

For this project, two types of tests have been implemented. Each type is based on a set of

source programs written in C that the compiler must compile.

3.1.1 Description of the optimization levels

In the following sections, results will be analyzed depending on the optimization levels

that have been used to compile the different tests. The compiler provides 5 levels of

optimization that are set using a compilation option that goes from –O0 to –O4. Those

optimization levels correspond to certain optimization flags that enable or not different

kind of optimizations.

In optimization level –O0, no optimization is performed. The compiler simply does

register allocation and translate the source program into assembly code.

In optimization level –O1, the following optimizations are triggered:

 Register allocation

 Removal of unreachable code and unused labels (based on control-flow graph

analysis).

 Common sub-expression elimination, copy propagation and constant propagation

only within basic blocks.

 Loop optimization (loop-invariant code motion).

 Unused object elimination

 DSP-like instruction optimization such as mulacc/mulneg detection

 Strength reduction

Optimization level –O2 performs the same optimizations than –O1 but the common sub-

expression elimination, copy propagation and constant propagation throughout the

whole program instead of being limited to basic blocks.

 Xavier LEGROS

Page 16 of 61

Optimization level –O3 performs the same optimizations than –O2 plus additional

optimizations:

 Pointer analysis, alias analysis

 More aggressive loop optimization (loop unrolling, induction variable elimination)

 Function inlining

 Inter-procedural analysis and cross-module optimizations

Optimization level –O4 performs the same optimizations than –O3 but also activates the

target instruction scheduler. As there is no instruction scheduler developed yet, the

resulting programs for optimization level 3 and 4 are the same.

3.1.2 Software tests

The aim of those tests is to check whether or not the compiler compiles without making

mistakes, and if the generated assembly program is correct at the syntactic level. No

checks are made on the proper functioning of the generated program, but it can very

quickly test the compiler on a substantial set of source programs.

To respect the principle of independency between the developer and the tester, those

software test programs come from test suite of other compilers such as GCC or LLVM

which have not been developed by Thales. Moreover, using complex test suite such has

the one of GCC (which has been under development for many years) is a way to use the

maturity of GCC, and hence, the maturity of its test suite, and evaluate with accuracy the

correctness of a compiler under development.

3.1.3 Hardware tests

The purpose of these tests is to check the proper functioning of the program after

compilation and evaluate the performance of the compiler. Only this kind of test makes

sure that the compilation has not altered the meaning of the source program nor the

expected results.

Part of these tests focuses on very specific checks (on floating-point numbers, arithmetic

operations, or loop constructions, for example). They are called basic tests. Those are

made to test as extensively as possible every class of C constructions to ensure that they

are correctly treated by the compiler. Basic tests include as many combinations of

variables and operation as possible using different types (int, short, long, float,

etc.), different storage-classes (static, extern, local, global, etc.) to be as exhaustive

as possible.

Those tests are also used to evaluate the impact of an optimization on one specific type

of C construction. For example, the following code is extracted from one existing test case

that evaluates performance of different types of operation on floating-point numbers.

The idea is to make sure that results are correct according to the standard (IEEE 754 [9] is

the standard for floating-point number representation) and also evaluate the

performance of such a program.

 Xavier LEGROS

Page 17 of 61

float x;

double d1 = 2.5e45;

double d2 = -2.5e45;

double D[5] = {1.0e51, 0.0, -8.3e6, 3.9e4, -

5.1236e39};

int i = 0x50201;

long int l = 0x80030010005;

int main () {

double y;

float a = 2.3e24;

float b = -8456.216e1;

 x = a + b; // Basic test

 y = D[4] + d1; // Test on array

y = 5.0e2 * d2; // Test with immediate value

x = (float) d2; // Conversion test

y = (double) a; // Conversion test

i = (int) D[2]; // Conversion test

a = 2.0e19;

l = (long int) a; // Test on overflow

f = -0.0;

f = 0.0 / f; // Test for NaN values

f = (-0.0) * f; // Test for NaN values

}

The second category of tests focuses on realistic tests that mix different C constructions.

Those tests are useful when evaluating the performance of the compiler on meaningful

and realistic tests. Indeed, even though basic tests are useful when evaluating the

performance of one particular class of C constructions, the main focus of those tests is to

ensure the accuracy of the resulting program. They are not necessarily relevant when

evaluating the performance of a "real" program that actually has a purpose other than

checking accuracy of constructions as tricky as possible.

That is why the second category of tests focuses on meaningful or/and heavy algorithms

(such as matrix inversion algorithm, FIR-filter algorithm, basic cryptography algorithm,

etc.), in the field of data processing, which is the main field of application of the

processor. Moreover, basic tests do not involve a lot of variables, temporaries or typical C

constructions. Hence, it is hardly possible to test the limits of the compiler or the limits of

the target machine without this second category of test. Compiling one of the basic tests

does not necessarily require many registers of the microprocessor for example, which

means that the mechanism where every register is in use cannot be tested using basic

tests.

A description of all the hardware tests can be found in Appendix 1.

3.2 Test process

The verification process consists in comparing reference results with results given by the

system composed by the compiler and the microprocessor of Thales. Hardware analysis is

conducted through VHDL simulations (called virtual verifications) using the C executable

generated by the compiler. Each test case is compiled both through Thales' compiler and

 Xavier LEGROS

Page 18 of 61

GCC. The output is processed by a VHDL simulation model of the processor and results are

compared with results of GCC executed on a host processor (considered as the golden

reference, which means that those results will be considered as the results to achieve). The

comparison is printed in a result file that can be seen in Appendix 2.

The test case is passed if no difference between the golden reference and the simulation

results is found.

Figure 4 illustrates the different steps of a hardware test:

Figure 4 : Overview of the different steps of a hardware test

These tests can be automatically performed with various optimizations. Several scripts are

used to synthesize all information of the result files into a table summarizing useful

information. An example of a test summary can be seen in Appendix 3 and Appendix 4.

Performing all tests takes a long time (more than an hour), but it is an effective way to check

the proper functioning of the compiler, and ensure that no regression has been introduced

after a change or the addition of a feature in the compiler.

GCC is used as a reference compiler. Indeed, even though it is not free of bugs, this compiler

is the most extensively used in the world. It has been developed for many years and is

known as the most stable and complete compiler. Being able to develop a compiler that

provides the same results as GCC is ambitious considering its complexity.

 Xavier LEGROS

Page 19 of 61

4 Compiler optimizations
This section introduces the major optimizations that have been performed on the compiler to

improve the resulting assembly code. Many other small optimizations have been also

performed. However, they will not be described since they consist in a lot of scattered

modifications all over the code of the compiler.

4.1 Mulneg pattern detection

4.1.1 Principle

The mulneg instruction is a DSP-like instruction provided by the microprocessor, which

allow making a multiplication and a negation in one single instruction. Each of the

following pieces of C code can be transformed into one single mulneg:

a = (-b) * c;

a = b * (-c);

a = -(b * c);

a = b * c;

a = -a;

b = -b;

a = b * c;

This can be done using pattern detection in the backend. When a multiply followed or

preceded by a subtraction is detected, it is a potential candidate for mulneg

optimization. However, something special needs to be taken care of. The last example

illustrates a case that might not be transformed into a mulneg. If b is used after this

statement, it cannot be optimized into a mulneg. The following example shows this

special case where it cannot be optimized:

b = 5;

b = -b; // Now, value of b is -5

a = b * c;

d = 2 * b; // Value of d is -10

If this example is optimized using mulneg, the result would be wrong:

b = 5;

a = mulneg(b,c);

d = 2 * b; // Value of d is 10 -> FALSE

Hence, the IR needs to be scanned to check the use of the variable holding the negation

result, until this variable is overwritten. If it is not used in between, the optimization can

be performed. If this variable is used in between, the optimization cannot be performed.

This check is performed using control-flow graph analysis.

 Xavier LEGROS

Page 20 of 61

4.1.2 Results

Table 1 and Table 2 show the result of this optimization on tests that present possible

mulneg patterns, since they are the only one with which improvements can be seen. As

described in Section 3.1.1, DSP-like optimizations are only activated from optimization

level O1, which is why the following tables do not show results for the optimization level

O0.

Table 1 : Results of the mulneg optimization in terms of execution time

Optimization level
Without mulneg

optimization

With mulneg

optimization
Speed-up

O1 146 204 clock cycles 138 382 clock cycles 5,4%

O2 116 963 clock cycles 111 701 clock cycles 4,5%

O3 108 254 clock cycles 106 534 clock cycles 1,6%

O4 108 254 clock cycles 106 534 clock cycles 1,6%

Results are slightly better for the execution time than the program size. This is explained

by the fact that a mulneg optimization performed in a loop only reduces the code size by

one, but the execution time is reduced by the number of time the loop is executed.

Table 2 : Results of the mulneg optimization in terms of program size

Optimization

level

Without mulneg

optimization

With mulneg

optimization
Evolution

O1 2 143 words 2 119 words -1,1%

O2 2 187 words 2 152 words -1,6%

O3 2 823 words 2 791 words -1,1%

O3 2 823 words 2 791 words -1,1%

4.2 Mulacc pattern detection

4.2.1 Principle

The mulacc instruction (respectively mulsub) is also a DSP-like instruction provided by

the processor, which does a multiplication and accumulation in the same instruction (a =

a + (b * c)) (respectively a = a - (b * c)). A multiply-and-accumulate

operation is very common in digital-signal-processing. Optimizing it can increase the

performance drastically.

This optimization is also a matter of pattern detection in the first place, but the conditions

to be able to perform this optimization are totally different.

First, such an optimization is only valuable while being in a loop. If not in a loop, doing a

simple multiplication followed by an addition is strictly equivalent to doing a multiply and

 Xavier LEGROS

Page 21 of 61

accumulate and store the result into the destination variable (both in terms of execution

time and program size). This is why this optimization should only be performed within a

loop. This case will be illustrated by a proper and simple example. Considering the

following piece of code:

i = 0;

while (i<100) {

dest = dest + (a * b);

i++;

}

This piece of code would be translated into a corresponding non-optimized

representation in the IR that would look like this:

i = 0;

while (i<100) {

temp = (a * b); // 4 clock cycles

dest = dest + temp; // 1 clock cycle

i++; // 1 clock cycle

}

A quick estimation of the execution time shows that the code inside the loop would take

at least 6 clock cycles to execute (4 clock cycles to execute a multiplication (3 for the

multiplication in itself and 1 to store the result into variable temp), 1 for an addition, and

1 for an increment). This piece of code is inside a loop which is executed 100 times.

Hence, the time to compute this inside code is equal to 600 clock cycles. To make it

simpler, the code generated to jump inside the loop and the code to test variable i has

been ignored since it does not matter in this case.

Optimizing this code using a mulacc will save a lot of time and the optimized code

would be the following:

i = 0;

accumulator = 0; // Initialized accumulator to 0

while (i<100) {

mulacc(a * b); // 3 clock cycles

i++; // 1 clock cycle

}

dest = accumulator; // Store the result into

// destination variable

It should be noted that in this piece of code, accumulator is not a variable but the

special register used by the MULAC unit to compute a multiplication. The resulting

execution time to execute the code inside the loop is 4 clock cycles. Indeed, the time to

perform a multiplication and an accumulation is still 3 clock cycles, but we do not have to

store the result into a temporary variable. The resulting time to compute this inside code

is equal to 400 clock cycles. 2 extra cycles should be added to be accurate (1 to initialize

the accumulator to 0 and 1 to store the result into the destination variable).

Performing this optimization resulted in decreasing the execution time by 198 cycles, or

33%! It should be specified that the result of this optimization depends on how many

times the loop is executed. The more times the loop is executed, the more powerful the

mulacc optimization is.

 Xavier LEGROS

Page 22 of 61

The principle of this mulacc optimization is exactly the same for the mulsub

instruction.

4.2.2 Constraints and Limitations

This last example points out the constraints that go with a mulacc optimization.

The first thing that can be noticed is the need to detect loops, and the ability to hoist the

initialization of the accumulator and the storage of the result out of the loop. This

requires a loop analysis based on a control-flow graph representation.

Also, like the mulneg optimization, the variable temp should only be used for this

multiply-and-accumulate operation, and not elsewhere. Otherwise, it is not possible to

perform the optimization.

The last thing to take care of is to allocate an available accumulator throughout the whole

loop so that it cannot be accessed or modified by another multiply operation that could

be inside the loop. If there is no available accumulator anymore, the optimization cannot

be performed. For information, 8 accumulators are available in the MULAC unit, which

means that 8 overlapping mulacc optimizations can be performed. It is more than

enough for a large majority of applications.

4.2.3 Results

Mulacc optimization is focused on one particular type of C construction and

performance will be improved in particular cases described earlier in this section. The

hardware test algo/matrix.c is well suited to evaluate the results of a mulacc

optimization. This test performs multiplication of several matrices (integer and floating-

point matrices), which uses such a construct.

The formula to multiply two matrices A and B into a resulting matrix R is the following:

[] [] [] ∑

for each coefficient of the matrix. This can be translated into the following C code

where the three matrices[], [] and [] are of size five:

for (i=0; i < 5; i++) {

 for (j=0; j < 5; j++) {

 for (k=0; k < 5 ; k++) {

 R[i][j] += A[i][k] * B[k][j];

 }

 }

}

Matrix multiplication is very common in data and signal processing. Moreover, the above

code shows that the multiply-and-accumulate operation is in this case nested inside 3

loops. The efficiency of the mulacc optimization will be even higher.

 Xavier LEGROS

Page 23 of 61

The following table shows the result of the optimization applied to the previous code

section.

Table 3 : Results of the mulacc optimization on matrices multiplication of dimension 5

Optimization

level

Without mulacc

optimization

With mulacc

optimization
Speed-up

O1 9208 clock cycles 7239 clock cycles 21.4%

O2 5741 clock cycles 3716 clock cycles 35.3%

O3 5618 clock cycles 3593 clock cycles 36.0%

O4 5618 clock cycles 3593 clock cycles 36.0%

Note that results for optimization level O0 are not provided because optimization level

O0 disables every possible optimization. Hence, mulacc optimization is only available in

O1, O2, O3 and O4.

This optimization, which is not usually provided by general purpose compilers, is very

efficient. Also, as mentioned before, the more often the loop is executed, the larger the

performance imporvement. The following table shows the result of the same

optimization, on the same piece of code but with matrices of dimension 32. Speed-up due

to the mulacc optimization is much higher.

Table 4 : Results of the mulacc optimization on matrices multiplication of dimension 32

Optimization

level

Without mulacc

optimization

With mulacc

optimization
Speed-up

O1 1 991 012 clock cycles 1 438 052 clock cycles 27.8%

O2 1 306 409 clock cycles 753 449 clock cycles 42.3%

O3 1 273 642 clock cycles 720 682 clock cycles 43.4%

O4 1 273 642 clock cycles 720 682 clock cycles 43.4%

Data processing, such as digital image processing, often works with very large matrices.

For example, 1280x1024 pixels is a very common picture format. Yet, it has not been

possible to build a test using such large matrices. The amount of data grows very fast with

the dimension of the matrix. When the above tests were done, the processor only

provided small memory capabilities. Hence, realistic tests using common picture format

were not possible.

However, tests that have been performed validate the optimization and are still an

accurate benchmark for performance.

 Xavier LEGROS

Page 24 of 61

4.3 Advanced operator strength reduction

4.3.1 Principle

As mentioned before, the core of the compiler does many optimizations including

strength reduction, that is to say replacing expensive operations by equivalent but less

expensive operations (i.e. quicker operations) [10], [11] and [12]. The most common

strength reduction is replacing a multiplication where one of the operands is an integer

constant power of 2, by a shift to the left of the binary representation of the other

operand. The number of shift is equal to log2(constant). For example, this piece of code:

b = a * 2;

d = 8 * c;

can be optimized using strength reduction. The resulting code would be:

b = a << 1;

d = c << 3;

As a matter of fact, those instructions are strictly equivalent. However, a multiplication

takes at least 3 clock cycles, while a shift only needs 1 clock cycle to be executed. The

optimized code is 66% faster and needs only 2 instructions while the non-optimized code

needs 4 assembly instructions. The following is an example of the non-optimized

assembly code:

mul a,2

mov $ACC,b

mul 8,c

mov $ACC,d

while the optimized assembly code would look like this:

lshift a,1,b

lshift c,3,d

For negative integers, the sign extension needs to be taken care of. This is why an

arithmetic shift is performed for negative integer, while it is a logical shift for positive

integers.

This basic optimization is already performed by the core of the compiler, but advanced

strength reduction can still be performed to raise the optimization level for the target.

For example, the core of the compiler does not perform strength reduction on unsigned

division by a power of 2. Indeed, a division by a power of 2 is equivalent to a right shift of

the binary representation of the second operand. Another common strength reduction is

not performed by the core of the compiler: unsigned modulo by x can be replaced by a

logical AND with x-1 when x is a power of 2. The modulo operation finds the remainder of

an integer division of one number by another.

The following example shows some instructions that can be optimized:

b = a / 2;

d = c / 8;

f = e mod 16;

can be optimized by:

 Xavier LEGROS

Page 25 of 61

b = a >> 1;

d = c >> 3;

f = e and 15;

The resulting code is much faster! Indeed, an integer division or a modulo requires as

much time to execute as the length of its operands. That is to say that a division of 2 int

will take 32 clock cycles, 16 clock cycles for a short, and 8 for a char. Hence the

optimized code is 96% faster for 32-bits integer, and requires three times less instructions

compared to the non-optimized version.

To reduce even more the load of the MULAC unit, strength reduction on multiply

instructions can still be improved, since strength reduction can be extended to

multiplication by x where x is not only a constant power of 2, but also a constant power of

2±1 or a constant power of 2±2. Indeed, a multiplication by 5 is equivalent to a

multiplication by 4 followed by and addition (i.e. a*5 = a*4 + a). Here is an example

of such an optimization:

b = a * 9;

d = 15 * c;

can be optimized in:

temp = a * 8;

b = temp + a;

temp2 = c * 16;

d = temp2 – c;

And the final result of this optimization is:

temp = a << 3;

b = temp + a;

temp2 = c << 4;

d = temp2 – c;

Here, the speedup is 33% and the code-size remains unchanged since a multiplication is

done using two instructions (one to compute the multiplication, and one to store the

result in the destination variable). Also, this code does not require the MULAC unit, but

only the ALU. Hence, this optimization makes more mulacc optimizations possible as the

load of the MULAC unit is reduced.

When optimizing multiplication by a constant power of 2±2, the execution time remains

the same and the program size is slightly higher as it can be seen on the following

example:

b = a * 10;

d = 14 * c;

would be optimized in:

temp = a << 8;

temp = temp + a;

b = temp + a;

temp2 = c << 16;

temp2 = temp2 – c;

d = temp2 – c;

 Xavier LEGROS

Page 26 of 61

However, this optimization will still be performed as it decreases the load of the MULAC

unit, which makes more mulacc optimization possible as more accumulators can be

available.

4.3.2 Results

Table 5 shows the result of this optimization in terms of execution time. We can see that

the results are better in lower level of optimization. This is due to the fact that the core of

the compiler already performs some strength reduction which depends on the

optimization level. The higher the optimization is, the more aggressive the strength

reduction of the core will be.

Those results show that backend strength reduction and core strength reduction are

complementary. Using both allows for better execution time.

Table 5 : Results of the advanced strength reduction in terms of execution time

Optimization

level

Without advanced

strength reduction

With advanced

strength reduction Speed-up

O0 1 022 630 clock cycles 892 486 clock cycles 12.7%

O1 823 773 clock cycles 767 854 clock cycles 6.8%

O2 644 871 clock cycles 632 126 clock cycles 2.0%

O3 632 232 clock cycles 621 417 clock cycles 1.7%

O4 632 232 clock cycles 621 417 clock cycles 1.7%

However, Table 6 shows that the program size is slightly higher in optimization level O3

and O4. This overhead is not due to the strength reduction itself, but to additional

instructions that need to be inserted to load and store the results. However, this

overhead is very low and can be disregarded.

Table 6 : Results of the advanced strength reduction in terms of program size

Optimization

level

Without advanced

strength reduction

With advanced

strength reduction
Evolution

O0 12 828 words 12 793 words -0.3%

O1 13 496 words 13 480 words -0.1%

O2 13 050 words 13 052 words +0.0%

O3 14 430 words 14 458 words +0.2%

O4 14 430 words 14 458 words +0.2%

 Xavier LEGROS

Page 27 of 61

5 Hardware and compiler optimizations
As this part of the project is still under development, dialog between the developer team (both

hardware and software developers) has been really important. Thanks to this, it has been

possible to reach a global level of performance that would probably not have been possible

otherwise.

Nowadays, dialog between microprocessor developers and compiler developers is almost

inexistent. Because of this, several microprocessor functionalities are not handled properly by

compilers and vice versa. Sharing experience between each other makes it possible to improve

the global performance of such strongly bonded systems.

The fact that both the microprocessor and the compiler are under development at the same

time makes this dialog possible and very important. While developing the compiler, the lack of

a particular functionality can be pointed out, and modifications can be done on the

microprocessor to tackle this issue.

The fact that the processor is a synthesizable microprocessor makes it easy to modify and

improve, which would be impossible for an ASIC.

The creation of a new addressing mode for arithmetic and bitwise instructions illustrates very

well this possibility.

5.1 Support of new addressing mode for arithmetic and bitwise instructions

5.1.1 Problem

The memory architecture of the processor is different from a classic load/store

architecture where every operand needs to be loaded into a register before the

computation. Indeed, it allows to access operands directly from memory, and the result

can directly be stored in memory as well. Having a register-only addressing mode can be

seen as not as useful as for the traditional processors. That is why the original instruction

set of the processor did not provide arithmetic instruction using only registers as

operands and destination, i.e.:

add $R1,$R2,$R3 # $R3 = $R2 + $R1

Nevertheless, this limitation revealed itself quite problematic for the compiler when

emitting code for tightly coupled instructions such as:

x = a + b;

z = y – x;

With the original addressing mode, the code above could have been translated as

followed:

add d(a),d(b),d(x)

add d(y),d(x),d(z)

which means that every operand are accessed via the data memory, and that the results

are stored in data memory as well. The process of storing the result of an operation in

data memory is called a write-back. This write-back takes more than 1 clock cycle, which

 Xavier LEGROS

Page 28 of 61

is problematic when the result of an instruction is directly used in the next instruction. In

this case, the processor will stall until the write-back is completed and resume execution

afterwards, which takes at least 3 clock cycles. When instructions are interdependent, the

processor spends more time waiting for the completion of the write-back than computing

results. This is why a new addressing mode has been created for arithmetic and bitwise

instructions to answer this specific need.

5.1.2 Principle

As mentioned before, a register-only addressing mode has been created. It uses 2

registers as operands, and also a register as destination, like the instructions of a classic

load/store processor.

To support this new addressing mode, the main modification of the compiler concerned

the register allocation that needed to be adjusted to allow register-only instructions.

However, it was not the only required modification since this addressing mode presents

one more specificity.

The way of accessing right and left operands is not symmetric on Thales' processor. This

means that for some instructions, the amount of possibilities offered to access the right

operand differs from the one to access the left operand. This development choice has

been made in order to limit the processor's hardware complexity, and decrease its area

and power consumption, which are both key factors in embedded system.

This particular specificity has an impact on the register-only addressing mode. Indeed, the

first register of a register-only instruction needs to be the last register used as destination

of a previous instruction. Otherwise, the processor will need to stall the execution in

order to refresh its value. For the sake of performance, it is important that the compiler

does the refreshing of the last value explicitly. Refreshing the value of the last destination

register takes only 1 clock cycle. If not done explicitly, the processor will detect it and stall

for at least 3 clock cycles (because of a pipeline flush). The following example of strength

reduction highlights this issue.

When compiling the following C code:

b = a * 7;

the compiler will perform strength reduction and transform it into the following code:

temp = a << 3;

b = temp - a;

which can be translated into the following assembly code:

assuming that $R1 holds a, $R2 holds temp and

$R3 holds b

rshift 3,$R1,$R2

sub $R1,$R2,$R3 # Performs $R3=$R2-$R1

When the processor executes this piece of assembly code, it will stall before executing

the subtraction. Indeed, the most recently used register before the subtraction is $R2

 Xavier LEGROS

Page 29 of 61

whereas the first operand of the sub instruction is $R1. Refreshing the value contained

in $R1 is needed. Doing it explicitly will save 2 clock cycles:

$CON is a special constant register in which

every bit is set to 1

rshift 3,$R1,$R2

and $CON,$R1,$R1 # Only takes 1 clock cycle

sub $R1,$R2,$R3

This technique is used for instructions in which operands cannot be swapped. If the

instruction would have been an addition instead of a subtraction, swapping $R1 and $R2

would have been possible as a + b = b + a. In those cases, operand swapping is performed,

which does not introduce an overhead.

5.1.3 Results

Table 7 and Table 8 show the performance induced by this new addressing mode.

Table 7 : Results of the register-only addressing mode in terms of execution time

Optimization

level

Without register-only

addressing mode

With register-only

addressing mode
Speed-up

O0 894 271 clock cycles 880 385 clock cycles 1,6%

O1 769 338 clock cycles 760 002 clock cycles 1,2%

O2 629 848 clock cycles 624 403 clock cycles 0,9%

O3 616 702 clock cycles 611 851 clock cycles 0,8%

O4 616 702 clock cycles 611 851 clock cycles 0,8%

Table 8 : Results of the register-only addressing mode in terms of program size

Optimization

level

Without register-only

addressing mode

With register-only

addressing mode
Evolution

O0 12 718 words 12 690 words -0.2%

O1 13 412 words 13 416 words +0.0%

O2 12 999 words 12 974 words -0.2%

O3 14 369 words 14 361 words -0.1%

O4 14 369 words 14 361 words -0.1%

Previous tables show that the results of this optimization are rather limited. Results might

have been better if the register allocation would have been done differently. Indeed, this

new addressing mode points out a limitation that might be the cause of some issues in

the future. For now, register allocation is done in the core of the compiler and there is no

relation between the way how two adjacent IR nodes are treated. Register allocation is

done by calling some backend support functions that evaluate the cost of allocating a

variable to a certain register. But this call is done independently for each IR node even

 Xavier LEGROS

Page 30 of 61

though the most efficient register allocation can only be reached by analyzing

dependencies between instructions and by allocating registers according to each

instruction capabilities.

In this case, the compiler might not use this new addressing mode in the best way

possible because once the backend emits the code, it might be forced to reload operands,

or pass by some intermediary instruction as a workaround. This is one of the problems

that arise when trying to apply techniques for general purpose processors, where the

addressing mode of each instruction is very similar (mostly register access), to this specific

processor.

5.2 Support of the hardware out-of-order algorithm for the FPU

5.2.1 Principle

The out-of-order algorithm, also known as the Tomasulo algorithm [13], is an algorithm

that improves performance and utilization ratio of a computation unit by reordering

instructions. In other words, it allows sequential instructions that would normally be

stalled due to certain dependencies to execute non-sequentially (out-of-order execution).

In early versions of the processor, the FPU was devoid of such an algorithm. Thus, it was

not possible to use the same register twice in the same floating-point instruction. For

example, the following instruction was not possible because the floating-point register

$FP1 is both used as operand and destination:

fadd $FP1,$FP2,$FP1 #FP1 = FP1+FP2

As a consequence, the register allocation and the backend were developed to handle

such situations. In this case, the code produced by the compiler induced a large overhead,

both in terms of execution time and program size, because it was necessary to use more

temporary registers.

This particular situation did not meet the project's requirements so it has been decided to

enhance the FPU so that it would be possible to deal with this issue in hardware.

When the enhanced version of the FPU was released, the compiler had to be modified to

get rid of the unnecessary intermediary code.

The modifications' main impact was on register allocation. However, several

modifications needed to be made in the entire backend.

5.2.2 Results

As explained before, this optimization specifically focuses on floating-point instructions so

improvements can only be seen on tests involving floating-point operations. The following

tables show results for tests that involve floating-point instructions only.

 Xavier LEGROS

Page 31 of 61

Table 9 (respectively Table 10) shows the evolution of the execution time (respectively

program size).

Table 9 : Results of support of hardware out-of-order algorithm in terms of execution time

Optimization level Without out-of-order With out-of-order Speed-up

O0 925 295 clock cycles 861 084 clock cycles 6,9%

O1 758 227 clock cycles 740 058 clock cycles 2,4%

O2 683 345 clock cycles 606 308 clock cycles 11,3%

O3 674 236 clock cycles 597 408 clock cycles 11,4%

O4 674 236 clock cycles 597 408 clock cycles 11,4%

Table 10 : Results of support of hardware out-of-order algorithm in terms of program size

Optimization level Without out-of-order With out-of-order Evolution

O0 7 696 words 7 613 words -1.1%

O1 8 217 words 8 118 words -1.2%

O2 7 960 words 7 874 words -1.1%

O3 9 199 words 9 082 words -1.3%

O4 9 199 words 9 082 words -1.3%

These tables show that the main impact of this optimization is on execution time, even

though the program size decreased noticeably. This can be explained by the very nature

of this optimization. This enhancement deals with floating-point instructions which are

much slower than integer instruction. For example, a floating-point addition needs 10

clock cycles to execute, while the same operation involving integers can be computed in 1

clock cycle. When removing one single floating-point instruction, the execution time is at

least reduced by 10 (and much more if this instruction is located in a loop), whereas the

program size is only reduced by one.

 Xavier LEGROS

Page 33 of 61

6 New compiler features
From the start, the compiler was considered functional, but some important features were

missing for it to meet the company's requirements in term of usability, performance, and

transparency.

This section introduces new features that have been implemented to meet those requirements.

6.1 Compilation report

The compilation report has been developed to provide a good level of information about the

system, and what kinds of operations have been performed on the source code. It logs

significant information about the compilation process.

Moreover, it gives information to developers on how did the compilation go, what

optimizations have been performed and hints that can trigger new optimizations are also

suggested. Notes are sorted into a set of categories to be quickly and easily understandable.

Available categories are:

 Messages

 Warnings

 Errors

 Hints: Suggested hints that could trigger a new optimization by doing some minor

changes in the source code

 Instruction optimizations

 DSP optimizations: This category gather all notifications about detected and

optimized DSP-like instructions such as mulacc or mulneg

 Peephole optimizations

This feedback from the compiler is very important and helpful for a developer when

optimizing a piece of software. This compilation report is created for each compiled file. An

example of a classic compilation report can be seen in Appendix 5.

6.2 Built-in function support

6.2.1 Principle

All "classic" target machine instruction are handled by the compiler. However, if the

target machine provides specific instructions that differ from the "classic" instruction-set

of a RISC microprocessor, they might not be handled properly. Those instructions are

generally input/output and system instructions. In this case, what could correspond to

one single target machine instruction might be transformed into several nodes in the IR,

which makes it almost impossible to translate it back to the corresponding target

instruction while emitting code in the backend. In some cases, it cannot even be handled

at all and generate a compilation error. That is why it is needed to find a way to tell the

compiler about those instructions.

One solution to achieve this is to write such instructions directly in assembly and include

it into the HLL program. This method requires the programmer to know the

 Xavier LEGROS

Page 34 of 61

corresponding assembly instruction and its syntax, which is what a compiler tries to avoid

in the first place. Another drawback with this technique is that no compiler optimization

can be performed with this code. Indeed, assembly code is treated by the compiler as a

black box, and hence skipped during optimization.

A better way to treat special target instructions is to implement built-in function support

in the compiler. A built-in function (generally called built-in) is a function available for use

in a given language whose implementation is handled specially by the compiler. Typically,

it substitutes a sequence of automatically-generated instructions for the original function

call, similar to an inline function. Unlike an inline function though, the compiler has an

intimate knowledge of the built-in function and can therefore integrate it better and

optimize it for the situation.

After analyzing in details the compiler's internal mechanisms, it has been decided to

implement built-in functions using function attributes (because this feature was already

supported by the compiler). Function attributes are additional information that is

provided to the compiler that takes specific decisions accordingly. A new function

attribute has been created: the attribute __builtin_.

Even though function attributes were a mechanism originally provided by the compiler,

the handling of the __builtin_ attribute differs from the handling of usual attributes.

A significant amount of time has been dedicated to understand how a built-in function

should be treated in each step of the compilation (mostly core and backend), and how

this treatment differs from other function handling. Declaring a function as a built-in is a

way to tell the compiler that this function is not a real function, but a specific instruction

of the target, that should be handled in the backend (also known as intrinsic function).

Knowing this, the first decision that could be made would be to bypass the core and all its

optimizations so that the built-in would only be handled in the backend. This decision

would not be the smartest one. Indeed, doing this is strictly equivalent to the use of inline

assembly code, which is what built-in functions try to avoid.

However, if a built-in function is in fact a single target instruction, one may wonder what

can be optimized in a built-in function. The answer is: a built-in function in itself cannot

be optimized, as it is a single target instruction, but the way its parameters are accessed

can be.

The core of the compiler spends most of its time doing optimization such as constant

propagation, and more importantly, register allocation. When a built-in function is

declared, the operands of the target machine instructions are perceived as the arguments

of the corresponding built-in function. For example, the target instruction out is a system

instruction used to output data on the processor's interface. To be used in a C program, it

has been declared as a built-in function.

 Xavier LEGROS

Page 35 of 61

To output variable x (located in data memory) at channel 1 of the interface, the following

assembly instruction is used:

out d(x),c(1)

The prototype of the corresponding built-in function is the following:

__builtin_ extern void out(int channel, int src);

This function can be used in a C program. The corresponding C code of the previous

assembly instruction would be:

out(1,x);

Using the built-in function instead of the assembly code is more efficient because register

allocation can still be performed through the built-in function.

Also, the built-in function is much more easy to use. For example, the assembly code to

output a global variable is different from the code to output a local variable. When using

the built-in, the programmer does not have to worry about it anymore: this difference in

the resulting assembly code will be handled by the compiler itself.

6.2.2 Consequences on existing tests

The built-in out was one of the most important for the sake of the existing tests. Indeed,

the only way to make sure that a computation went correctly was to display the result of

this computation using the instruction out. Before the built-in was implemented, the

instruction out was used via inline assembly code. This was a very inconvenient

limitation which is illustrated by the following example.

Assuming that the addition instruction needs to be tested, the following code should be

written:

c = a + b; // Perform the addition

inline("out d(_c),c(1)"); // output the result

Using inline code is a huge limitation in this case. The only way a programmer can know

what to write as an inline code is to use global variables. This way, the programmer

knows that the way to access global variable c is by writing d(_c) as a global variable is

directly accessed via data memory with the label "_nameofthevariable". On the

opposite, the position of a local variable and the way to access it is unknown by the

programmer since local variables are stored on the stack. This means that in this example,

c should be declared as a global variable in order to be able to use it. This limitation was a

real problem when testing because only global variables were used to display results. The

first consequence was that tests were not as broad as they should have been, because

possibilities of testing every different addressing mode were limited by the compiler

itself. This was very critical. The second consequence concerned optimizations. Indeed,

the use of a global variable is problematic when optimizing as it can be accessed by any

function of the program at any time, which is why they are usually a barrier when

optimizing. Moreover, those tests are not only used to evaluate performance, but also to

check the correctness of the compiler, which means the instruction out is used heavily.

 Xavier LEGROS

Page 36 of 61

Now that this built-in is available, every inlined out has been replaced by the

corresponding built-in, and corresponding global variables has been changed to local

variables. The performance of the tests was then much better. The following is a

comparison of the global execution time between tests using inlined out and tests using

built-in out.

Table 11 : Results of the use of built-in out with local variables on the total execution time

Optimization

level

Using inlined out with

global variables

Using built-in out with

local variables
Speed-up

O0 892 486 clock cycles 891 980 clock cycles 0.06%

O1 767 854 clock cycles 742 196 clock cycles 3.3%

O2 632 126 clock cycles 600 571 clock cycles 5.0%

O3 621 417 clock cycles 590 420 clock cycles 5.0%

O4 621 417 clock cycles 590 420 clock cycles 5.0%

The simple fact of using the built-in out and local variables is 5% faster. Even though it is

not a real optimization of the compiler in term of code generation, this new service

provided by the compiler takes down some constraints which allow the programmer to

write faster code.

This new feature also impact the resulting program size as it is shown in the following

table.

Table 12 : Results of the use of built-in out with local variables on the total program size

Optimization

level

Using inlined out with

global variables

Using built-in out with

local variables
Evolution

O0 12 793 words 12 935 words +1.1%

O1 13 480 words 12 134 words -10.0%

O2 13 052 words 11 131 words -14.7%

O3 14 458 words 12 766 words -11.7%

O4 14 458 words 12 766 words -11.7%

Again, results are very conclusive in terms of program size. However, when no

optimization is activated, the resulting program is bigger, and for some tests slower. This

can be explained by the difference of addressing mode. Global variables are accessed

directly via the data memory (using d(var)), when local variables are stored onto the

stack. Hence, additional stack pointer computation needs to be performed, which is why

performance and program size are slightly worse in O0.

Nevertheless, results are much better in higher optimization levels. Indeed, using local

variables makes possible many of the usual optimizations that would not be possible

 Xavier LEGROS

Page 37 of 61

when using global variables. For example, constant propagation, sub-expression

elimination, invariant code motion are more efficient with local variables, which is why

performance are better when optimizations are activated.

For now, 17 built-in functions have been implemented in the compiler, which enhance

significantly the possibilities of the compiler. For example, a specific built-in has been

created to handle functions that have a variable number of arguments, such as the

printf function. Also, many mathematic functions, such as the sine, cosine, exponential

and square root functions have been implemented as built-in functions.

As previously mentioned, built-in functions are mostly input/output and system

instructions and software functions already implemented in hardware (faster). Most of

those built-in functions are not meant to be used directly by the programmer. However,

they are essential when porting C standard library for this custom processor.

6.3 Porting the C standard library

Making a custom compiler is the first step towards a successful and user-friendly

microprocessor. The second one is porting the C standard libraries [14] for this specific

processor.

The C standard libraries consist of a collection of functions and library routines used to

implement common operations, such as input/output, string and memory handling, and

many more, in the C programming language. Those libraries provide an interface between

the machine and the developer, so that the developer does not need to know the

specificities of the target machine, which is needed for low level functions. A set of complete

and optimized libraries helps to raise the level of abstraction so that the code used by the

programmer is still machine-independent. Hence, the machine-dependent code is handled in

the lower levels of those libraries. This explains why libraries need to be customized and

optimized for each target.

Part of the project was to initiate such libraries so that basic functions would be provided to

the end user. However, the purpose was not to build a set of functions as comprehensive as

the one provided by the C standard libraries of GCC for an x86 architecture [15].

Also, it is sometimes hard to evaluate boundaries between services provided by libraries and

services provided by an OS which is on an even lower abstraction level, compared to

libraries. As standard libraries make use of target built-ins, they also use services provided by

the OS. For example, file management and memory management are generally services

provided by the OS. Hence, those services should not be developed inside the standard

libraries.

As a result, a reduced set of functions has been developed and provided to the end user.

Those libraries include for example the well-known printf function as well as similar

functions fprintf and sprintf. Also some functions provided in math.h have been

implemented such as the exp function.

 Xavier LEGROS

Page 38 of 61

The purpose of this was not only to provide libraries to the end user, but also to make sure

that it was possible to build custom libraries using this tool-chain (compiler, assembler and

linker). It turned out that the tools chain was lacking some features (for example, specific

built-in functions to access the arguments of a function that can have a variable number of

arguments), which had to be implemented to be able to develop such libraries.

Moreover, it should be pointed out that developing new libraries is also a way to broaden

the spectrum of the tests. Writing code for libraries is different from writing code for a

general program. It uses much more complex constructions. Hence, writing and testing

those libraries is also a way to complete the existing test collection.

6.4 Fixed-point representation support

6.4.1 Context

Very few computer languages include built-in support for fixed-point values [16], since

most applications use floating-point representations that are standardized. Floating-point

representations are easier to use than fixed-point representations, because they can

handle a wider dynamic range and do not require programmers to specify the number of

digits after the radix point. On the other hand, floating-point representation requires

either an FPU, which introduce rather large silicon area and power consumption on the

chip, or software-emulated floating-point operations. This last solution introduces very

large software overhead, which is translated into much larger code and much longer

execution time.

This is why the floating-point representation might not be suited for embedded systems.

Providing basic support for fixed-point computation would be of great interest, both in

terms of performance, and in terms of user-friendliness of the compiler. Some

instructions, such as the move-and-shift instruction, are well suited for fixed-point

computation. Nevertheless, the compiler was not able to use this kind of instructions

when using software-emulated fixed-point representation.

This is why it has been decided to enhance the compiler's possibilities to handle built-in

support for fixed-point representation. Existing compilers very rarely provide this feature.

Providing built-in fixed-point support would bring a real added value, especially for

embedded system programmers. It represents a breakthrough as far as efficiency, user-

friendliness and capacities are concerned.

6.4.2 Compiler modifications

New data types have been created to handle fixed-point representation, using new target

variable-attributes. Those attributes have the advantage of being ignored by the core of

the compiler, so that special treatment of those attributes is handled in the backend. This

way, the machine-independence principle of the frontend and the core is still respected.

Those variable-attributes represent the number of bits of the fractional part in the type.

They are named __fracX, where X is the number of bits of the fractional part. This

 Xavier LEGROS

Page 39 of 61

attribute will be interpreted by the backend, which will perform special operation for

those new types.

Using C standard data types in combination with fixed-point variable attributes makes

many combinations possible. For example, an unsigned int __frac15 will be

interpreted by the backend as the following format:

Figure 5 : Binary representation of an unsigned integer with 15 fractional bits

Whereas a signed short __frac3 will be interpreted by the backend as the

following format

Figure 6 : Binary representation of a signed short with 3 fractional bits

This particular fixed-point representation is of great benefit for programmers. Without

such built-in representation, it is impossible to perform a multiplication of two 32-bits

integers inside a third one. Indeed, in fixed point representation, a multiply operation of

two 32-bits integers produces a 64-bits integer, which cannot fit inside another 32-bits

integer which forces programmers to use 64-bits integers. This is not optimized at all, and

it forces the programmer to use twice as much data memory as needed since a long

int must be used to store the temporary result.

The combination of built-in fixed-point representation and specific instructions makes it

possible to perform the above-mentioned operation without any workaround. Indeed,

the processor provides some instructions that are very interesting in fixed-point

representation. For example, the MULAC computation unit (the unit that performs

multiply-and-accumulate instructions) has an instruction that allows the programmer to

retrieve the most significant bits (MSBs) of the accumulator to store them in memory,

while discarding the least significant bits (LSBs). This instruction is perfect for fixed-point

integer multiplication, and it would be translated into the following assembly code:

mul d(_a),d(_b)

mov $ACC>>32,d(_c) # Performs c = a * b

The above shift-and-move instruction was provided by the processor, but any general

purpose compiler would not be able to use this instruction since none of the C language

structures would yield to the appropriate IR nodes that could be interpreted by the

backend as a shift-and-move instruction. Using built-in fixed-point representation inside

the compiler makes it possible.

 Xavier LEGROS

Page 40 of 61

6.5 Debug support

6.5.1 What is a debugger

When programming, it is very important to have powerful debugging tools. Debuggers

such as GDB [17] are very famous for their capabilities that help many programmers. The

capacity to automatically debug a program is the ability to go backward in the

compilation process. The basic feature of a debugger is to be able to display the C source

code from the executable file. To do so, additional information, called debug information,

is added by the compiler to the executable file. This information will then be processed by

an external debugging tool which is capable of retrieving the original source code, tracing

and altering the execution of computer programs. Also, some debuggers allow the user to

monitor and modify the values of programs' internal variables, and even call functions

independently of the program's normal behavior. Yet those are very advanced debugging

tools which require a lot of time to develop.

6.5.2 The need for debugging support

Because the compiler is under development, no debugging information was provided to

the programmer. The only way to debug a program was to look at the assembly code

produced by the compiler. When this is acceptable when debugging very small programs,

it becomes very insufficient when debugging a larger program that uses libraries for

example. That is why basic debugging information has been provided.

The first part was to include information as commentary inside the assembly code

produced by the compiler. This helps relate the assembly code back to the source

program by providing the operation performed (in the IR form), the line and the file

where this code comes from. The following is an example of such information:

mov $R10,d($C1--)

#Put $C1 at the top of the stack

loadsubi 67,$C1

and $C4,$CON,$R3

#Instr ASSIGN, line: 46 of file printf.c

xor $CON,$CON,$R3

mov $R3,d($C1+18)

#Instr CALL, line: 67 of file printf.c

bra $C3,_atoi

Looking at this, it is possible to see how the compiler transformed a C code line into the

target assembly code. Some bugs can be pointed out using this feature.

However, as described in section 2.3, the assembly code can only be accessed before the

linking process. This means that it is only possible to look inside one only source file. If

several files are needed to produce a final executable (as it is often the case), it is not easy

to see how those files interact with each other.

That is why a disassembler has been developed. A disassembler is a very common

computer program that translates machine language into assembly language, the inverse

operation to that of an assembler. It is used to produce a string that is human-readable

out of the instruction code and is very useful for programmers. This string can be

 Xavier LEGROS

Page 41 of 61

displayed inside the simulation program to be more interactive. Coupled to the existing

simulation tools, it is of great help to see a human-readable trace of the execution of a

program. Here is an example of the simulation tool coupled to the disassembler:

Figure 7 : Disassembly code inside the simulation tool

As depicted on Figure 7 the disassembled instruction is much easier to read than the

instruction code.

Nevertheless, additional information is needed to reach the level of abstraction provided

by C language when debugging. Debug information which enables source-level debugging

of executable programs is an important feature that improves greatly the user-

friendliness of a compiler. Depending on the object format and debugger used, the

format and capabilities of debug information can vary widely. Therefore, it is the

responsibility of each backend to generate debug information. However, for common

debug standards there are modules which can be used by the backend and do most of the

work. Such a module was already available in the compiler, but it has never been used.

This existing module uses the DWARF debug standard [18] and more precisely its second

version, called DWARF2. DWARF is a widely used, standardized debugging data format.

Work has been done in the backend to use the functions of DWARF module to insert

debug information inside the assembly code.

However, the assembler and the linker are not able the process this information yet.

Modifying those tools and develop a debugger is part of the project and is part of the

future work.

 Xavier LEGROS

Page 43 of 61

7 Overall results and discussion
The evaluation of performance is done by collecting information (such as program size and

execution time) using the test methodology described earlier. The objectives were to

decrease the execution time of the set of test cases while also reducing the size of the

resulting program. The main focus was on optimization of signal and data processing

programs, which is the main field of application of this project.

During the thesis, many optimizations have been performed, each of them rising the global

level of performance of the compiler. At the same time, new features have been developed

to complete the set of tools of the compiler and its possibilities. Usually, adding new

features is counterproductive because it makes the compiler and the generated code more

complicated, but it has been managed to be avoided. Hence, the compiler is now more

optimized and provides a better level of service to the developer.

7.1 Execution time

The most important criteria when evaluating the performance of a compiler is the execution

time. The lower the execution time is, the better the compiler is optimized. Figure 8 shows

the evolution of the execution time of all the hardware tests in the different optimization

levels available:

Figure 8 : Evolution of the overall execution time

The x-axis represents the different versions of the compiler that has been developed. Each of

them corresponds to one or several optimizations that have been done and/or news

features that have been implemented. A description of each version can be seen in

Appendix 6.

 Xavier LEGROS

Page 44 of 61

This figure shows a global overview of the progress that has been performed: in optimization

level O0, the execution time has been reduced by 22.0% (from 1 121 314 to 874 607 cycles)

and by 18.3% (from 745 840 to 609 454 cycles) in optimization level O4.

This graph shows several significant steps, such as the one from version 6 to version 7, which

is mainly due to a heavy work on the entire optimizer that was improved to delete

unnecessary loop tests when the boundaries are constant. It was also at this point that it has

been decided to activate the peephole for every optimization level. Hence, many

unnecessary instructions got removed. The step between version 13 and version 14 can be

explained by the optimization on the out-of-order algorithm as explained in Section 5.2.

The results on data-processing oriented algorithm are even more conclusive. One of the test

cases is specifically focusing on data processing of matrices (matrix inversion algorithm,

called the MT4 algorithm). For this algorithm, execution time has been reduced by 23.1% in

O0 optimization level and by 21.0% in O4 optimization level. Figure 9 shows the evolution of

the execution time for the different versions of the compiler.

Figure 9 : Evolution of the execution time of the matrix inversion algorithm

7.2 Program size

The program size is the second most important criteria, especially in embedded system

where the storage capacities are reduced. Figure 10 shows the evolution of the program size

of all the hardware tests in the different optimization levels available:

 Xavier LEGROS

Page 45 of 61

Figure 10 : Evolution of the overall program size

This figure shows a global overview of the progress that has been done in term of program

size: in optimization level O0, it has been reduced by 13.1% (from 14 491 to 12 599 words)

and by 20.2% (from 17 802 to 14 214 words) in optimization level O4.

Once again, test cases focusing on data processing present even better results. For the MT4

algorithm, program size has been reduced by 29.7% in O0 optimization level and by 55.9% in

O4 optimization level, as it can be seen on the following figure:

Figure 11: Evolution of the program size of the matrix inversion algorithm

 Xavier LEGROS

Page 47 of 61

8 Conclusion
To summarize this project, following conclusions have been made.

Developing and optimizing a compiler is something that takes time and that needs to be carried

out very carefully, keeping in mind what the underlying hardware is. As a result it was possible

to enhance both the performance and the services provided by the compiler so that it can now

be spread over several departments of the company for more intensive use and feedback,

which will make the development go faster.

Working on a "simple" compiler (compared to GCC) made heavy modifications of the backend

(and the core) possible. This would have been much more complicated using GCC and would

have taken a lot more time. GCC is very complicated which tend to be an issue when tweaking

the compiler for an unusual target machine.

On the other hand, GCC is a much more stable and mature compiler. It has been developed for

years by a large community of developers, and for a large set of target machines. Also, GCC

comes with many additional tools from the GNU collection. As a result, built-in support,

standard libraries, or debugging support is already taken care of, whereas it had to be

developed entirely in the project's compiler.

This compiler's internal mechanisms were easy enough to be able to modify the compiler rather

easily, which made all those optimizations possible. This is one of the most important criteria

when developing an application during a limited period of time.

 Xavier LEGROS

Page 49 of 61

9 Future work

9.1 Instruction scheduling

A compiler is a translator. It reads every source line and transforms it into assembly code.

And even though the core performs some basic block reordering, the compiler itself cannot

reorder assembly instructions to make full use of the target module parallelism. This task is

dedicated to the instruction scheduler.

As the processor has several modules that can run simultaneously (the ALU, the FPU, the

MULAC unit, …), reordering assembly instruction could noticeably rise up performance. A

floating-point division can take more than 30 clock cycles to execute. Without reordering the

instructions, it is very likely that the processor will wait most of this time for this instruction

to complete. Reordering helps to fill waiting time with other module computation and thus

makes the computation ratio rise. A basic instruction scheduler has already been

implemented, but it needs to be developed further to make full use of the parallelism

offered by the processor.

9.2 Add new functions to standard libraries

C standard libraries are very complex, and demand a huge amount of work to implement

each function that is usually provided by standard libraries. So far, only a subset of these

libraries has been implemented. This is why their development should continue to keep

providing more and more services to the final user, keeping in mind where the boundary

between standard libraries and the OS is.

9.3 Create a complete source debugging tool-chain

The existing compilation tool-chain lacks of source debugging support. While it is not an

important issue when debugging small programs, it becomes crucial when debugging large

programs. Basic mechanisms for source debugging are in place but an automated debugging

tool-chain does not exist yet. It is planned to develop such a debugger in the next six

months.

 Xavier LEGROS

Page 51 of 61

10 References
[1] Rainer Leupers, Peter Marwedel. Retargetable Compiler Technology for Embedded Systems:

Tools and applications. Springer Netherlands, 2001. ISBN: 0-7923-7578-5.

[2] Andrew W. Appel. Modern Compiler Implementation in C. Cambridge University Press, 2004.
ISBN: 0-521-60765-5.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman. Compilers: principles, techniques
and tools, Second edition. Addison-Wesley, 2006. ISBN: 0-321-49169-6.

[4] Fred C. Chow, Mark I. Himelstein, Earl Killian, Larry Weber. Engineering a RISC compiler system.
COMPCON 1986: 132-137.

[5] The C Preprocessor. [URL] http://gcc.gnu.org/onlinedocs/cpp/

[6] William M. McKeeman. Peephole optimization. Commun. ACM 8(7): 443-444, 1965.

[7] GCC, the GNU Compiler Collection. [URL] http://gcc.gnu.org/

[8] The LLVM Compiler Infrastructure. [URL] http://llvm.org/

[9] IEEE 754: Standard for Binary Floating-Point Arithmetic. [URL] http://
grouper.ieee.org/groups/754/

[10] John Cocke, Ken Kennedy. An Algorithm for Reduction of Operator Strength. Commun. ACM
20(11): 850-856, 1977.

[11] Keith D. Cooper, L. Taylor Simpson, Christopher A. Vick. Operator Strength Reduction, ACM
Trans. Program. Lang. Syst. 23(5): 603-625, 2001.

[12] Jeffrey Sheldon, Walter Lee, Ben Greenwald, Saman Amarasinghe. Strength Reduction of Integer
Division and Modulo Operations. ACM ISBN:3-540-04029-3, 2001.

[13] Tomasulo, Robert. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM Journal of
Research and Development. January 1967. 11(1):25-33.

[14] Samuel P. Harbison, Guy L. Steele. C: A Reference Manual (5th Edition). Prentice Hall, 2002. ISBN
0-13-089592X

[15] GNU C Library. [URL] http://www.gnu.org/s/libc/

[16] Erick L. Oberstar. Fixed-point representation and fractional Math. Revision 1.2, 2007.

[17] GDB: The GNU Project Debugger. [URL] http://www.gnu.org/software/gdb/

[18] DWARF official page. [URL] http://dwarfstd.org/

http://gcc.gnu.org/onlinedocs/cpp/
http://gcc.gnu.org/
http://llvm.org/
http://www.gnu.org/s/libc/
http://www.gnu.org/software/gdb/
http://dwarfstd.org/

 Xavier LEGROS

Page 53 of 61

11 List of figures
Figure 1 : The binary generation tool-chain ... 6
Figure 2 : Internals of a compiler ... 8
Figure 3 : A modular compiler .. 12
Figure 4 : Overview of the different steps of a hardware test ... 18
Figure 5 : Binary representation of an unsigned integer with 15 fractional bits 39
Figure 6 : Binary representation of a signed short with 3 fractional bits ... 39
Figure 7 : Disassembly code inside the simulation tool ... 41
Figure 8 : Evolution of the overall execution time ... 43
Figure 9 : Evolution of the execution time of the matrix inversion algorithm ... 44
Figure 10 : Evolution of the overall program size .. 45
Figure 11: Evolution of the program size of the matrix inversion algorithm ... 45

12 List of Tables
Table 1 : Results of the mulneg optimization in terms of execution time ... 20
Table 2 : Results of the mulneg optimization in terms of program size .. 20
Table 3 : Results of the mulacc optimization on matrices multiplication of dimension 5 23
Table 4 : Results of the mulacc optimization on matrices multiplication of dimension 32 23
Table 5 : Results of the advanced strength reduction in terms of execution time 26
Table 6 : Results of the advanced strength reduction in terms of program size 26
Table 7 : Results of the register-only addressing mode in terms of execution time 29
Table 8 : Results of the register-only addressing mode in terms of program size 29
Table 9 : Results of support of hardware out-of-order algorithm in terms of execution time 31
Table 10 : Results of support of hardware out-of-order algorithm in terms of program size 31
Table 11 : Results of the use of built-in out with local variables on the total execution time 36
Table 12 : Results of the use of built-in out with local variables on the total program size 36

 Xavier LEGROS

Page 55 of 61

13 Appendices

Appendix 1. Description of each hardware tests

The first part of the hardware tests focus on very particular categories of C constructions and

data types. Those tests contain a large variety of combinations in one particular area and focus

on cases that might be tricky. Also, they are useful when evaluating performance on specific

optimizations. Here is a brief description of those tests:

- Arithmetic_64.c: checks arithmetic on 64-bits integers which is emulated by software

as it is a 32-bits processor. Currently, this file tests:

 addition, subtraction, multiplication and shift on variables, constants and

arrays

 bitwise operations (and, or, not, xor) on variables, constants, arrays and

pointers on pointers on long long

 addition on pointers on long long and pointers on pointers on long long

- Arithmetic.c: checks arithmetic operations on integers. Currently, this file tests:

 addition, subtraction, multiplication, division and shift on variables, constants,

arrays and pointers

 subtraction between pointers

- Arithmetic_extra.c: checks arithmetic operations which have reverse order of

operands in assembler. More tests are performed than in arithmetic.c.

- Bitwise.c: check variables initialization and bitwise operations on integers. Currently,

this file tests:

 global variables initialization

 variables assignment

 and, or, not, xor

 operators priority and parentheses

- Call_functions.c: checks functions: calls, parameters and return values. The

verification is done on the return value after the function call. Currently, this file

tests:

 basic functions of type int, int*, void

 functions with multiples parameters (up to 8)

 function waiting for parameters of type int, long, int*, long*

 that parameters are not altered by function when they should not have been

 function call in a function

 recursivity

 that variables are actually locals (there are locals variables with same name in

different functions which should not change after a function call)

 static variables

 function pointers

 Xavier LEGROS

Page 56 of 61

- data_type.c: checks conversions on every types others than floating-point and

assignment from a variable to another variable. Currently, this file tests:

 conversion from char to (char / unsigned char / short int / unsigned short int /

int / unsigned int / long long int / unsigned long long int)

 conversion from char to (char ... unsigned long long int) after an addition

between two char

 conversion to (char ... unsigned long long int) after an addition between int

and char

 conversion to (char ... unsigned long long int) after an addition between char

and unsigned short int

 conversion to (char ... unsigned long long int) after a subtraction between

unsigned short int and unsigned int

 conversion to (char ... unsigned long long int) after an addition between

unsigned long long int and int

 storage in memory and reload from it

- div_mode.c: checks extensively every possible division mode and type conversion

between operands. Currently, this file tests:

 division mode (8,16,32 or 64bits)

 signed and unsigned division

 cross type use and type conversion (example (unsigned float) f = (signed char)

b / (unsigned long) c)

 tricky values such as 0.0/(-0.0), use of NaNs, …

- Float.c: checks arithmetic on floating-point variables and conversions from floating-

point types to integral types (and vice-versa). Currently, this file tests:

 assignment

 addition, subtraction, multiplication and division on variables, constants and

arrays.

 conversions from float to (double, int, long), double to (float, int, long), int to

(float, double) and long to (float, double)

 conversion int / long to float / double (and vice-versa) which could result in

incorrect value (negative number, overflow, null number, underflow)

- for_loop1.c: checks for loops and addressing mode in it. Currently, this file tests:

 basic for loops (growing and decreasing)

 assignment on induction variable with constants, variables and arrays

 stop with different tests using variables, constants and arrays

- struct.c: checks structure use. Currently, this file tests:

 structure with int and long long fields

 copy of field in a variable

 assignment of a structure in another

 addition of fields of different structures

 function waiting for structure in parameter, and returning a structure

 Xavier LEGROS

Page 57 of 61

- while_loop1.c: checks while loop with different exit tests. Currently, this file tests:

 basic while loops with <, >, <= and >=

 tests on type int, unsigned int and long int with global variables, local

variables, constants and arrays

 if between values for which the comparison (subtraction) exceeds limits

- while_loop2.c: checks while loop with using floating-point variables. Currently, this file

tests:

 tests with float

 if on double limits (positive infinity and negative infinity)

The second part of those tests is real and meaningful algorithms that focuses on evaluating

performance in "real" conditions. Here is a brief description of those tests:

- MT4-invmat.c: a complex algorithm which computes a floating-point vector from a

matrix. Currently, this file tests:

 matrix initialization (for loop, modulo, division) in a function (matrix address is

given as a parameter)

 multiple computations on matrix (multiplication, division, addition,

subtraction) performed in for loops

- Bubblesort.c: a well-known algorithm which sorts a list of integer.

- Luhn.c: an algorithm which performs a simple checksum.

- Matrix.c: checks operations on matrices. Currently, this file tests:

 matrix initialization (for loop, modulo, division) in a function (matrix address is

given as a parameter

 matrix multiplication on int*int->int, long*long->long, double*double->double,

int*long->long and double*int->long

- Pgcd.c: an algorithm which finds the Greatest common divisor (GCD) of two

integers.

- Rot13.c: an encryption algorithm.

- Fir.c: an integer 51 taps Finite impulse response (FIR) filter

 Xavier LEGROS

Page 58 of 61

Appendix 2. Example of result file

#Results file

with stimulus file <tmp.stim>

with program <basic/arithmetic.bin>

with expected results <basic/arithmetic.c.gcc.ref>

#Executing program N°0 at 1.0225 us

#==

Time Page Addr Hex Data pass good data (hex & decimal)

 1.5225 us 0 22 0000012C OK 0000012C 300

 1.5525 us 0 0 00000005 OK 00000005 5

 1.5725 us 0 1 FFFFFFF3 OK FFFFFFF3 -13

 1.5975 us 0 2 00000018 OK 00000018 24

 3.0475 us 0 42 FFFFFFFF OK FFFFFFFF -1

 3.0975 us 0 43 00000014 OK 00000014 20

#==

#Program ends successfully at 3.1375 us

#Runtime duration : 2115 ns

#Runtime cycles : 423

#Runtime active : 387 (1935 ns) *** ratio=91% (Stall losses)

#Runtime stall count : 35 (36 cycles)

#Flag0 asserted : 15 cycles (72 ns)

#Flag1 asserted : 0 cycles (0 ns)

Appendix 3. Example of Hardware test report

Appendix 4. Hardware tests summary

 Xavier LEGROS

Page 59 of 61

Appendix 5. Example of compilation report

Compilation report ##

Thales Compiler Version 1.10 ##

Date : 16-02-2011 - 10:33:06 ##

/---/

/-------------- SUMMARY OF COMPILATION REPORT --------------/

/---/

Compilation of file algo/matrix.c with options:

 - optimization level = 65537 (default optimization level –O1)

 - crossmodule optimization activated

 - inline peephole activated

 - fpu support activated (--fpu)

 - barrel shifter support activated (-barrelshift)

Memory used:

 - Data memory: 19 words

 - Program memory: 181 words (174 instructions, 7 constants)

Number of different messages:

 - 2 NOTES

 - 1 WARNING

 - 1 HINT

 - 2 INTRUCTION OPTIMIZATIONS

 - 4 PEEPHOLE OPTIMIZATIONS

/---/

/-------------- END OF SUMMARY --------------/

/---/

/************************** NOTES **************************/

sync instruction was not emitted as previous div mode is equal to the current one (line 67 of

file matrix.c)

removed unnecessary start test for a FOR loop with constant boundaries (line 167

of file matrix.c)

/************************* WARNING *************************/

Implicit conversion of operand 1 from SIGNED to UNSIGNED: make sure values contained by the

operand are possible UNSIGNED values (line 76 of file matrix.c)

/*************************** HINT **************************/

MULACC transformation line 173 was not possible due to modification of $ACC inside the loop.

Avoid use of other MULT to trigger optimization (line 173 of file matrix.c)

/***************** INTRUCTION OPTIMIZATIONS ****************/

Optimized MULT by CONST=(power of 2) into LSHIFT by log2(CONST) (line 86 of file matrix.c)

Optimized MULT by CONST into 1 LSHIFT and 1 ADD (line 173 of file matrix.c)

/****************** PEEPHOLE OPTIMIZATIONS *****************/

nop instruction deleted (line 565 of file matrix.asm)

loadsubi instructions deleted (loadaddi value has been changed) (line 565 of file matrix.asm)

loadsubi instructions deleted (loadaddi value has been changed) (line 707 of file matrix.asm)

nop instruction deleted (line 720 of file matrix.asm)

loadaddi and loadsubi instructions deleted (line 817 of file matrix.asm)

End of compilation report ##

 Xavier LEGROS

Page 60 of 61

Appendix 6. Description of the different versions of the compiler

Versions: Description:

Version 1

 Removed sync instructions (not necessary anymore)

 Bugfix while transforming -f into -1*f in floating-point numbers

 Added basic debug information into the .asm file

Version 2 Assembly peephole optimization

Version 3 IR peephole optimization

Version 4 Strength reduction on multiply by a power of 2 (optimized into a shift to the left)

Version 5

 Bugfix on must_convert() function, on the assembly peephole and on the

shifting operation handler

 Optimized transform_trivial_operation() function

Version 6

 Added support for division mode provided by the microprocessor (division on char,

short, or int)

 Added mulneg detection optimization

 Strength reduction on division by a power of 2 (optimized into a shift to the right)

and on unsigned modulo by a power of 2 (optimized into an and with value -1)

Version 7

 Bugfix on assembly peephole

 Activation of the assembly peephole on every optimization level

 Improvement of the mulneg detection

 Suppression of unnecessary test for loops with constant boundaries

Version 8

 Added built-in function support to the whole compiler

 Changed inline assembly for instruction out into a built-in function

 Added mulacc detection optimization

Version 9

 Bugfix on mulacc and mulneg optimization

 Optimized ADD 1,X,Y into SUB -1,X,Y for integer addition (uses $CON

register)

Version 10

 Optimized strength reduction on multiply by a (power of 2)±1 or ±2 (optimized into

a shift to the left and some ADD/SUB)

 Improvement of the mulacc detection

Version 11
 Optimized operand access by swapping operands (depending on the different

addressing mode of the different instructions)

Version 12

 Optimization of built-in function out into 2 separated built-in functions: a built-in

setpage and a built-in out. Allows built-in function setpage to be hoisted out

of the loop if possible

Version 13 Added support for a new addressing mode for arithmetic instructions.

Version 14

 Added new built-in functions flagset, flagclr, flagpulse, flagsetall,

flagclrall, flagpulseall, sin, and cos.

 Added compiler support for multi-accumulator architecture (not activated yet)

 Bugfix on instructions mulclr.u et mulclr.us, fconvsp, mulacc and out

 Activated support for new FPU architecture using out of order algorithm. Allows

using the same floating-point register as operand and destination.

 Optimized parameters for loop optimization.

Version 15
 Many bugfixes

 Changed support of instruction div to handle new format for the instruction

 Xavier LEGROS

Page 61 of 61

(including 64bits integer division) using new instruction div8, div16, div32,

div64, divload, and divload64.

Version 16

 Correct a bug on conversion algorithm from float to integer

 Correct a bug on fconvsp

 Correct a bug on addressing mode of instructions mulclr.u and mulclr.us

 Correct a bug on built-in handling

 Changed conversion algorithm in the core of the compiler for DIV operation

Version 17

 New peephole optimization to delete unnecessary move to tmp_Rreg and tmp_Creg

 New peephole optimization to delete unnecessary reload of last_Rreg

 Add support for new single precision FPU instructions. Now instructions such as

faddsp, fmulsp, or fsubsp are available (is faster to compute than double

precision instructions)

Version 18

 Add support for new instruction mov64

 Add new built-in sqrt and sqrtsp to be able to use those built-ins directly in the C

code (very important for libraries)

 New peephole optimization to deleted unnecessary move to tmp_FPreg and

tmp_FPreg2

Version 19

 New peephole optimization to handle post-increment and post-decrement

capabilities.

 New peephole optimization to combine a loadaddi followed by a loadsubi by

1 single instruction loadaddi or loadsubi

Version 20
 Add new built-in __builtin_va_start to be able to handle variable arguments function

(variadic functions) correctly

Version 21

 Optimized bitwise and arithmetic instructions when using indexed addressing mode

for operand 1 done with use of Cx+Imm and operand swap

 Correct a bug on built-in out

 Correct a bug on setreturn for floating-point type

 Correct a bug on wrong overlapping internal flag values

Version 22

 Peephole optimization to use post incrementation and post decrementation

capabilities

 Core optimization to delete unnecessary type conversion

Version 23

 Developed new built-in in

 Correct a bug on multiply-to-shift conversion

 Optimized crt0.s using djnzd instruction instead of djnz

Version 24
 Optimized loadoperand() function to take advantage of the new register-only

addressing mode

Version 25 Peephole to remove unnecessary nop instructions

	1 Objectives
	2 Introduction
	2.1 Preface
	2.2 What is a compiler?
	2.3 The binary generation tool-chain
	2.3.1 Preprocessor
	2.3.2 Assembler
	2.3.3 Linker

	2.4 Benefits of a compiler
	2.4.1 Portability
	2.4.2 Maintenance
	2.4.3 Reusability
	2.4.4 Quality of the code

	2.5 Internals of a compiler
	2.5.1 The frontend
	2.5.2 The core
	2.5.3 The backend

	2.6 Retargetable compilers
	2.7 Problems
	2.8 Thesis Overview

	3 The Compiler
	3.1 Test methodology
	3.1.1 Description of the optimization levels
	3.1.2 Software tests
	3.1.3 Hardware tests

	3.2 Test process

	4 Compiler optimizations
	4.1 Mulneg pattern detection
	4.1.1 Principle
	4.1.2 Results

	4.2 Mulacc pattern detection
	4.2.1 Principle
	4.2.2 Constraints and Limitations
	4.2.3 Results

	4.3 Advanced operator strength reduction
	4.3.1 Principle
	4.3.2 Results

	5 Hardware and compiler optimizations
	5.1 Support of new addressing mode for arithmetic and bitwise instructions
	5.1.1 Problem
	5.1.2 Principle
	5.1.3 Results

	5.2 Support of the hardware out-of-order algorithm for the FPU
	5.2.1 Principle
	5.2.2 Results

	6 New compiler features
	6.1 Compilation report
	6.2 Built-in function support
	6.2.1 Principle
	6.2.2 Consequences on existing tests

	6.3 Porting the C standard library
	6.4 Fixed-point representation support
	6.4.1 Context
	6.4.2 Compiler modifications

	6.5 Debug support
	6.5.1 What is a debugger
	6.5.2 The need for debugging support

	7 Overall results and discussion
	7.1 Execution time
	7.2 Program size

	8 Conclusion
	9 Future work
	9.1 Instruction scheduling
	9.2 Add new functions to standard libraries
	9.3 Create a complete source debugging tool-chain

	10 References
	11 List of figures
	12 List of Tables
	13 Appendices

