
School of Information and
Communication Technology

Creating the Conveyerl visualisation tool for
Erlang programs

Johan Tjelldén and Erik Ylipää

Supervisor: Joe Armstrong (Ericsson AB)
Examiner: Christian Schulte (School of ICT)

Degree Project in Information
and Software Systems
First Level, 15.0 HEC

Stockholm, Sweden 2012

TRITA-ICT-EX-2012:142

Every problem of computer science can be solved by another level of
indirection, except the problem of too many levels of indirection.

— Unattributed

2

Sammandrag

Inom de flesta ingenjörsområden — forutom programvaruutveckling —
har ingenjören möjligheten att fysiskt kunna skåda resultatet av sitt arbete.
En ingengör som jobbar med en bro kommer så småningom att kunna se
frukten av sitt arbete som en fysisk, och ofta magnifik konstruktion. Sys-
temen som programvaruutvecklare skapar är inte mindre magnifika i deras
komplexitet, men de är helt abstrakta.

Det är en fascinerande idé att kunna att se det mjukvarusystem vi har
skapat. Vi tror att mjukvara kan vara vacker, inte bara på algoritmers,
satsers eller uttrycks nivå, utan vacker på systemetnivå.

Denna tro utgjorde starten för vårt kandidatexjobb. Vårt mål var att
visualisera Erlangprogram. För att göra detta ville vi skapa ett program
som kan analysera spårningen ifrån en körning av ett Erlangprogram, och
skapa en visualisering om hur processerna från det spårade programmet
interagerar med varandra.

Mjukvaran som vi skapade har en framdel som körs i webbläsaren och
en bakdel som körs i Erlangs virituellamaskin. Framdelen är skriven i
JavaScript och använder tekniker som WebGL, WebSockets och SVG. Bakde-
len är skriven i Erlang och sköter all spårning och grundläggande analys av
programmet. Bakdelen har en inbyggd webbserver som används för kom-
munikationen mellan de två delarna.

I den här rapporten tar vi upp lite bakgrund om Erlang och mjukvaru-
visualisering. Vi beskriver två alternativa användningsmöjligheter som har
drivit utvecklingen vår mjukvara. Vi tittar på några designval vi har gjort
under utvecklingen och arkitekturen av den färdiga mjukvaran. Vi avslutar
med en utvärdering och med slutsatser.

Abstract

Most fields of engineering — save software engineering — have the advantage
of being able to physically look at the works of their labour. An engineer
working to create a bridge will eventually be able to see the fruits of his
work as a physical, and often awe-inspiring construct. The systems which
software engineers create are no less magnificent in their complexity, but
they are completely abstract.

It is a fascinating idea to be able to see the software system we have
created. We believe that software can be beautiful, not just on the level of
algorithms, statements or expressions, but beautiful on the system level.

This belief was the start of our degree project. Our goal was to visualise
Erlang programs. To do this, we wanted to create a program capable of
analysing the trace produced by running an Erlang program, and create a
visualisation of how the processes of the traced program interact with each
other.

The software we created has a front-end running in a web browser and a
back-end running on the Erlang virtual machine. The front-end is written
in JavaScript and uses technologies like WebGL, WebSockets and SVG. The
back-end is written in Erlang and does the sampling and basic analysis of
Erlang programs. The back-end has an embedded web server which it uses
to communicate with the front-end.

In this report we cover some background information about Erlang and
software visualisation. We describe two use-cases which we used in our devel-
opment efforts. We give an overview of the software and it’s implementation
details. We conclude with an evaluation and conclusions.

Contents
1 Introduction 5

2 Background 6
2.1 Erlang . 6

2.1.1 Concurrency model . 6
2.1.2 Process relationships 6
2.1.3 Tracing and debugging 6

2.2 Software visualisation . 7
2.3 Publish/Subscribe Design Pattern 7
2.4 Graph drawing . 8
2.5 HTML and CSS . 8
2.6 JavaScript and the Document Object Model 8
2.7 WebGL . 8
2.8 Computer graphics animations 9
2.9 Web page animations . 9
2.10 Asynchronous web communication 10
2.11 Data Exchange Formats . 10

2.11.1 BERT . 10
2.11.2 JSON . 10

3 Use cases 12
3.0.3 Student use case . 12
3.0.4 Teacher use case . 12

4 Overview 14
4.1 Architecture . 14
4.2 Visualised properties . 14
4.3 The visualisation . 14

4.3.1 Process layout . 15
4.3.2 Processes . 15
4.3.3 Process origin . 15
4.3.4 Process state . 15
4.3.5 Life ranges . 15
4.3.6 Relationships . 16
4.3.7 Messages . 16

4.4 Usage . 16
4.4.1 Back-end usage . 16
4.4.2 Sampling of a program 16
4.4.3 Interacting with the visualisation 17
4.4.4 The galaxy view . 17
4.4.5 The presentation editor 18

2

5 Implementation of Conveyerl 21
5.1 Architecture . 21
5.2 Back-end . 21
5.3 Communication between front-end and back-end 22

5.3.1 Data format . 23
5.4 Front-end . 24

5.4.1 Front-end components 24
5.4.2 Conveyerl core . 26
5.4.3 Animations . 26
5.4.4 Subscription service 27
5.4.5 Galaxy view . 27
5.4.6 Presentation mode . 28
5.4.7 Event graph . 28
5.4.8 Timeline . 28

5.5 Tracing Erlang programs . 28
5.6 Normalised and Real Time 29

6 Evaluation 31
6.1 Student use case . 31

6.1.1 Interactivity . 31
6.1.2 Installation . 31
6.1.3 Automatic visualisation 31
6.1.4 Beauty . 31

6.2 Teacher use case . 32
6.2.1 How to create presentations 32
6.2.2 Editor . 32
6.2.3 Implemented design goals 33
6.2.4 Design goals not implemented 33

6.3 Visualised properties . 34
6.4 Usability . 35
6.5 Normalised and Real Time 35
6.6 Live visualisation vs. post-mortem 35

6.6.1 Live visualisation . 36
6.6.2 Post-mortem visualisation 36

6.7 Animation framework . 37

7 Related Work 39
7.1 Erlang trace analysis . 39
7.2 Software Visualisation in Education 39
7.3 Process Visualisation . 39

3

8 Future work 40
8.1 Other Properties to visualise 40
8.2 Other use cases . 41

8.2.1 Development . 41
8.2.2 Art . 42
8.2.3 Going further . 42

9 Conclusions 43

10 Acknowledgements 44

4

1 Introduction
The goal of this project has been to create a tool for visualising Erlang
programs in order to assist teachers and students in the process of learning
Erlang. To do this we have created the Conveyerl visualisation tool. It
samples the trace of an Erlang program. After a program has been sampled,
Conveyerl does a post-mortem analysis of the trace and visualise the result
in a web browser.

We wanted to create a system which gives a clear and attractive visual-
isation of what is happening in an Erlang program. In order to achieve this
we focused on the visualisation of processes and messages. We wanted our
visualisation to be simple and easily extensible. We also wanted the visual-
isation to be useful as an aid in lectures, and have extended the software to
allow teachers to define presentations based on the visualisation.

The field of software visualisation tries to help us understand the com-
plexity of computer programs, using visual and auditory aids. Imagine that
the instructions of a program are like the intricate streets of a city. Software
visualisation is the attempt to produce a map over the twisting paths, to
help us navigate through the complexity. Unlike the map of a city, software
visualisation has to make choices of what to visualise and how to do it.

An important starting point for this projects was the question What does
a computer program look like?

Other fields of engineering have the advantage of being able to physically
look at the works of their labour. An engineer working to create a bridge
will eventually be able to see the fruits of his work as a physical, and often
awe-inspiring construct. The systems software engineers create are no less
magnificent in their complexity, but they are completely abstract.

We believe it is a fascinating idea to be able to see the software system
we have created. We believe that software can be beautiful, not just on the
level of functions or statements, but beautiful on the system level. It is this
beauty we would like to show to it’s creator.

In this report, we present the Conveyerl visualisation tool and describe
it’s development. In section 2, we describe the Erlang programming lan-
guage, software visualisation, web programming and general concepts re-
ferred to later in the report. Section 3 describes the use cases which served
as design criteria. Section 4 gives an overview of Conveyerl and how it is
used to sample and visualise a program. In section 5 we describe the archi-
tecture and technical details of our software. Section 6 discusses the result
of Conveyerl in relation to the use cases. We also describe some of the
choices we made during the development. In section 7 we describe related
work. Section 8 presents ideas for future work. In section 9 we draw our
conclusions.

5

2 Background
2.1 Erlang
Erlang is a programming language created at Ericsson in the 1980s and was
released under an open source licence in 1998. It is a functional language
with a strong focus on concurrency and high availability.

Programs in Erlang are organised in modules. A module is a collection
of function definitions. Functions which are explicitly exported from the
module are available from the outside, while those not exported are private
and only available for calls from inside the module.

2.1.1 Concurrency model

Erlang’s concurrency model is based on lightweight processes. A process is
an isolated thread of execution with it’s own isolated state. In a single node,
millions of such processes can coexist. Processes interact with each other
by sending messages. This design maps intuitively to how we as humans
understand concurrency [2].

Every process in Erlang is associated with a Process Identifier (PID for
short). A PID is automatically generated for a process when it is spawned.
To communicate with a process it’s PID is used as an address. Processes
can register themselves under a global name, in which case the name can be
used instead of the PID.

Communication is asynchronous, which means that as soon as a process
has sent a message it continues with it’s own execution. When a message is
sent to another process it’s placed in a mailbox which the receiving process
checks when it evaluates a receive expression.

2.1.2 Process relationships

Erlang is designed for writing fault tolerant and robust systems. To simplify
failure handling of processes, the programmer can create relations between
processes. Processes can be linked, which means that if one of the processes
exits, the other will be sent an EXIT signal. This way, processes which depend
on each other can be linked together and stopped as a whole. Processes can
also monitor other processes, in which case they receive signals when a
monitored process exits. This is used to create processes which supervises
others to automatically handle partial failures of the system.

2.1.3 Tracing and debugging

Erlang has a set of built in functions (BIFs for short) for tracing the exe-
cution of programs on a per process level. The function erlang:trace/3 is
used to enable or disable tracing. A process is set up as a receiver of trace

6

messages and will continuously get information about the other processes
as messages. Properties which can be traced are:

• The sending and receiving of messages.

• Function calls and returns. Trace patterns can be defined to filter what
function calls will be traced.

• Exceptions.

• Process spawn and exit events.

• Process links and unlinks.

• Process registering and unregistering a name.

• Processes being context switched in and out of execution.

• Garbage collection.

2.2 Software visualisation
Software visualisation creates visual aids for conveying information about
software systems. The field is generally broken down into two main cate-
gories [24]:

Algorithm visualisation uses graphics and animations to show how al-
gorithms work. They are often used in education, while teaching the
fundamentals of computer science [20]. Algorithm visualisation often
focuses on visualising the general behaviour of an algorithm on a high
level of abstraction.

Program visualisation delves into the more detailed behaviour of com-
puter programs, on a low level of abstraction. It concerns itself with
actual program code, data structures and the execution of instructions.

2.3 Publish/Subscribe Design Pattern
Design patterns are formulated “best practice” solutions for commonly oc-
curring problems in software engineering. The concept is originally at-
tributed to the architect Christopher Alexander [1]. The concept was ap-
plied to software engineering by Kent Beck and Ward Cunningham, later
popularised by the so called “gang of four” [11].

The publish/subscribe design pattern is a system for handling commu-
nication between parts of a system. The pattern defines channels, which
different entities in the system can subscribe to. When events are published
to a channel, all subscribers are notified. The pattern introduces a level of
indirection between publishers and subscribes of events, and makes them
independent of each other.

7

2.4 Graph drawing
Graphs play a major role in a lot of scientific fields (Computer Science in
particular), many methods to automatically create pictures of graphs have
been developed. Di Battista et. al. provides a thourough bibliography of
the subject [12].

A commonly used approach is a force based layout, where edges between
nodes are treated as springs, and all nodes are given a repellent force towards
each other. The springs will cause connected nodes to move towards each
other, while the repellent force will push unconnected nodes apart. This
system is simulated iteratively until it stabilises. The result will be a layout
of the nodes where connected nodes are close to each others.

2.5 HTML and CSS
Hyper Text Markup Language (HTML) is the standardised language for
structuring content for a web browser. It is based on nestable element tags,
which is used to create a tree-structured document. HTML is often used
together with Cascading Style Sheets (CSS). CSS is a language for describing
the layout and style properties of the elements in the HTML document. A
new version of HTML is in the process of being standardised, and introduces
a number of new features [26].

2.6 JavaScript and the Document Object Model
JavaScript is a object-oriented, dynamically typed scripting language. It was
originally designed for creating client side interaction in web pages. When
used in a web browser, it is closely tied to the Document Object Model
(DOM), which is a platform- and language-neutral model for programati-
cally interfacing with documents [25]. It is the model used by JavaScript to
access and modify content of a HTML document in a web browser.

2.7 WebGL
WebGL is an API for creating hardware accelerated 3D graphics in a web
browser [17]. The standard is based on the OpenGL ES 2.0 API, which
was originally designed for embedded systems such as mobile phones. We-
bGL extends the HTML5 specification and provides a 3D graphics rendering
context for the HTML Canvas element.

The WebGL API is of a low level, and a number of libraries exist which
makes it easier to use. Conveyerl uses the library Three.js as a framework
for 3D graphics.

WebGL is supported in Mozilla Firefox from version 4.0 and Google
Chrome from version 9.0 . Apple’s Safari version 5.1 and Opera version
12 had has experimental support which is disabled by default. Microsoft

8

Figure 1: Key frames

Internet explorer has no support, and no plans have been announced of it
being implemented in the future [18].

2.8 Computer graphics animations

Many computer animation techniques uses so called key frames to define the
state of the graphics at a certain time (see figure 1). Key frames in classical
animation were drawn by the lead artist to describe a scene. They often
pictured the extremes of an animation. An assistant would take the key
frames and fill in the frames in between them to create smooth transitions.

The same concept is used in computer animation, but the laborious work
of the assistant is taken over by the computer which calculates positions for
the animated objects at times in between the key frames, using different
kinds of interpolations.

2.9 Web page animations

There are two ways of animating elements on a web page. One way is by
the use of CSS animations which is a new feature in modern browsers. The
other is by using JavaScript to change attributes over time.

CSS animations gives browsers a way to accelerate the animations on
supported hardware. A major limitation is that it only works with the CSS
style attributes of HTML elements. It can not be used to animate WebGL
objects.

There are many JavaScript libraries for animation. Many of the most
popular ones are not based on key frame animations, but instead uses chains
of callback functions with timers to create complex animations. This limits
the ability to pause and skip to different times in the animations. Another
common limitation is that in general they are written solely for animating
properties of DOM elements.

9

2.10 Asynchronous web communication

There are two general techniques for exchanging data between the web
browser and web server without reloading the page:

AJAX Is an acronym for Asynchronous JavaScript And XML. It’s a diverse
collection of techniques for using JavaScript to communicate with the
server in the background and manipulate the content of web pages
without reloading the page. Ajax uses standard HTTP requests such
as POST and GET to communicate with the web server. This in-
troduces a header overhead, which becomes more significant if a lot
of small messages are exchanged between the server and browser. To
enable a server to push data to the browser, a technique called long
polling is often used. With long polling, the browser makes a new
request to the server whenever it gets a response. The server waits
with responding until it has new data to send to the browser.

WebSockets A web socket gives the browser a direct stream-based con-
nection to the server. The technology is still in the process of being
standardised. WebSockets creates a communication channel which
resembles a TCP socket, which can be used for arbitrary two way
communication between the web browser and server. It removes a lot
of the shortcomings of AJAX, such as HTTP header overhead and the
need for long polling [19].

2.11 Data Exchange Formats

To exchange data between different representations (eg. Erlang terms to
JavaScript values) a way of encoding and serialising the data is needed. The
following formats were used in Conveyerl:

2.11.1 BERT

BERT is a binary data format based on how Erlang encodes its terms with
the term_to_binary/1 BIF, the external term format [9].

The format makes it easy to serialise Erlang data, and there are many
libraries for encoding and decoding data to/from BERT. The objects act
as representations for Erlang terms, and are annotated with the type (e.g.
tuple) they represent.

2.11.2 JSON

JSON (JavaScript Object Notation) is a data format which is derived from
how JavaScript encodes its data structures [7]. It provides an almost one-to-
one mapping from JavaScript objects to a serialised character representation.

10

It is often used in web application together with Ajax to send and receive
data between a web browser and server.

There are libraries for doing JSON encoding/decoding for most major
programming languages. In Erlang there are a couple of different libraries,
none of them official.

11

3 Use cases
Our goal was to create a visualisation tool for use in education. We defined
design criterias and divided them into two different use cases: a student and
a teacher perspective.

3.0.3 Student use case

The main purpose of the tool was to help students when learning how to
program Erlang. We believed a visualisation could be a good aid when
they start to understand how the Erlang programming model works, with
processes interacting through messages. We also believed it could be useful
for understanding the principles of distributed systems.

Interactivity For a student to be able to explore a program, the visual-
isation should be interactive [24]. A user should be able to interact
with it to discover what happened in the program. Examining what
the program is doing at different times was something we considered
important, and the user should be able to easily navigate the time of
the visualisation.

Ease of installing Installing the software should be easy, and require a
minimal amount of extra steps. One way to simplify installation is
by reducing the number of dependencies. The visualisation should
be independent of operating system, ideally supporting the operating
systems where Erlang is available.

Automated visualisation To simplify the usage of the tool, we wanted
the visualisation to be automated. The user should have to do as little
as possible to get to the visualisation from the analysed program. The
visualisation should be able to visualise Erlang programs without the
user having to change the program.

Beauty An important inspiration for the visualisation was the beauty of
software systems. We wanted the visualisation to be attractive and
pleasing. It should give the viewer a sense of wonder.

3.0.4 Teacher use case

The teacher use case is an extension to the requirements of the student use
case. With the teacher use case, we focus mainly on the use of software
visualisation as an visual aid for lectures. To use the the tool in lectures the
teacher should be able to create presentations by tuning properties of the
visualisation and add information to it. The following is a set of features we
used as design criteria for a presentation tool:

12

Positioning processes The user should be able to edit the layout of pro-
cesses at different times.

Positioning the view The user should be able to define what the visual-
isation is displaying at different times.

Breakpoints The user should be able to define breakpoints where the pre-
sentation should pause and await interaction before it continues play-
ing.

Source code display To emphasize the connection between the source
code of the program and the events of a run, the user should be able
to display the source code and define highlights at different times to
connect it to the visualised program.

Annotations The user should be able to annotate the visualisation with
labels and text, and decide when and where they will appear and
disappear.

Store and load presentations The tool has to be able to store and load
presentations which a user has created.

Distribute visualisations The teacher should have a simple way of dis-
tributing presentations to students, allowing them to view and exper-
iment on their own.

13

4 Overview
In this section we give an overview of Conveyerl. We give a brief description
of its architecture followed by a description of its features and usage.

4.1 Architecture

The program is divided into two general parts: a back-end doing the sam-
pling of programs and a front-end used for the visualisation. The back-end
is controlled through an Erlang shell, while interaction with the front-end is
done in a web browser. The term we used for a sampled program was a run.
This term is used for all the data associated with one particular recording
such as the trace data, the analysed data and the presentations.

Conveyerl creates a post-mortem visualisation, which means that the
visualisation is created from a previously recorded sample of a program. The
opposite is live visualisation where a visualisation is created continuously
from a running program. Conveyerl does not support live visualisation.

A detailed description of the architecture and implementation details of
Conveyerl is given in section 5.

4.2 Visualised properties

Conveyerl visualises the following properties of Erlang programs:

Process origin All processes are spawned with a specific start function.
Conveyerl differentiates between processes depending on which func-
tion they were spawned with, giving processes with the same origin
the same visualisation.

Process state Conveyerl visualises the running state of a process, if they
are context switched in or out.

Life ranges Conveyerl visualises the life ranges of a process, it’s spawn and
exit events, and shows which process is the spawner.

Relationships Conveyerl visualises which processes are linked.

Messages Conveyerl visualises messages and their contents. It also shows
which processes are the sender and receiver.

4.3 The visualisation

The front-end uses 3D graphics to visualise the sampled program. The
visualisation works like a movie, where the trace of the program can be
played like a recording of events by a video camera.

14

We wanted the visualisation to be attractive and recognisable. We con-
sidered astronomical imagery to be awe-inspiring, and wanted our visuali-
sation to capture some of their sublime beauty. The two primary graphical
entities are processes and messages. The program is visualised as a star
system or a star cluster, where the processes are the stars. They shine
in different hues and brightness depending on their properties at different
times. Messages sent between them are visualised as projectiles.

4.3.1 Process layout

The layout of processes are used as a part of the visualisation. Conveyerl
uses a force based graph layout to position processes. They are positioned
according to which other processes they communicate with. The layout
defines repelling and attracting forces between processes. All processes repel
each other and the more they communicate the stronger the attracting force
between them becomes.

4.3.2 Processes

Processes are visualised as stars. They have different colours and bright-
nesses depending on their origin and state (described below).

4.3.3 Process origin

To quickly give and idea of which function a process was spawned with, we
assign colours to the processes. Processes spawned with the same function
have the same colour. This way a user can get a quick idea of which processes
make up different parts of a system.

4.3.4 Process state

To visualise the running state of processes we use the brightness of their
colour. When a process gets context switched in it is set to maximum
brightness. When it gets context switched out it’s set to a lower brightness.

4.3.5 Life ranges

The life ranges of processes are determined by when they spawn and exit.
Spawn events are visualised as a sphere travelling from the spawner to where
the process is spawned. The sphere is the same colour as the spawned
process. Exit events are shown as an explosion in the colour of the exiting
process.

15

Eshell V5.9 (abort with ^G)
1> conveyerl:start().
<0.35.0>
2> conveyerl:start_sampling(ring, test, []).
<0.112.0>

[...]

3> conveyerl:stop_sampling().
{stop_sampling,default_naming}

Figure 2: Example usage of the Erlang sampling interface

4.3.6 Relationships

Link relationships are shown as lines connecting processes. The line is
coloured based on the processes which it links, with a gradient from one
to the other.

4.3.7 Messages

Messages are visualised as projectiles going from the sender to the receiver.
They are conical and aligned along the path they travel to clearly show their
direction when the visualisation is paused.

4.4 Usage

4.4.1 Back-end usage

The user adds the program which should be analysed to the Conveyerl direc-
tory structure, by copying or creating a file system link. The user then runs
conveyerl:start/0 in an Erlang shell. This starts the back-end systems,
including the web server.

Once the back-end is started, a user can interact either through the shell
or via a web browser. Interaction through the shell is mainly for sampling
programs, exporting sample data and stopping the system. The web browser
is used for viewing the sampled run as a visualisation.

4.4.2 Sampling of a program

To start a sampling, the user runs conveyerl:start_sample(Module,
Function, Arguments). When the user wishes to end the sampling, the
function conveyerl:stop_sampling/0 is run. See figure 2 for an example.

16

This creates a new sample-file in the runs directory. The file is a binary
dump of the traces and process-info data gathered during the sampling.

4.4.3 Interacting with the visualisation

Figure 3: The listing of runs

To visualise the sampled program, the user connects to the web server
with a browser (the default address is http://localhost:8080). A list of
all performed samplings will be displayed. The user can choose either the
main visualisation view, called the galaxy view or edit the visualisation as a
presentation in the editor view.

4.4.4 The galaxy view

The main view concentrates on the processes. It’s divided into three main
areas; the galaxy view, the event graph and the controls. See figure 4.

The galaxy view is the main visualisation. It’s an interactive 3D view
which can be zoomed, panned and rotated to view different processes of the
sampled program. When the user hovers the mouse pointer over a process
or message, the visualisation displays a tool tip with information about the
object. For processes, the PID and spawn functions are displayed. For
messages, the sender, receiver and payload are displayed.

Conveyerl provides different ways for a user to navigate the time of the
visualisation. The event graph displays normalised time (see section 5.6),
were periods of idleness are compressed, and eventful periods are expanded.
The controls has a timeline which displays the time as real time, and most
events are clustered with long gaps of idleness between them. Events are
displayed as vertical bars.

The event graph is a sequence diagram which shows the processes of the
program and the messages sent between them. It shows processes as vertical
lines plotted over time. Messages are shown as arrows going between the
process lines. The event graph is based on the compressed time described in
section 5.6. The graph works like a time navigation tool and can be clicked
in order to jump to different times.

17

http://localhost:8080

Figure 4: The galaxy view, Conveyerl main visualisation view. The sidebar
to the right shows the event graph, and the bottom area shows the controls.
The main area is the 3D-graphics visualisation of the running program.

The controls have a play and stop button, a time line and a presentation
selection menu. The play and stop buttons control the animated visuali-
sation. The timeline displays the uncompressed real time of the recorded
events and can also be clicked to jump to different times. The presentation
selection menu can be used to load previously saved presentations.

4.4.5 The presentation editor

By using the presentation editor, the user can define presentations which
can be saved to the back-end for later use. Figure 5 shows the editor view.

Positions of processes and the camera can be defined by using key frames.
The user can reposition processes by dragging them into position with the
mouse, and then record where they are at specific times. The animation
framework will interpolate the positions smoothly at times between key
frames.

The camera position and rotation can also be recorded, which allows
a user to zoom in at different processes, or rotate the camera for a visual

18

Figure 5: The editor view, used for creating presentations from a visualisa-
tion. It is similar to the galaxy view, but the main visualisation window is
smaller and the interface is dominated by the presentation editor controls
and timelines.

effect.
An important feature of presentations is breakpoints. They allow a user

to define specific times at which a playing animation will pause and wait for
the user to continue playing. This works similar to how a slide show is used
with transitions between slides. It allows a lecturer to key the visualisation
to a presentation.

The editor is based on three different time lines for the properties which
can be controlled: process positions, breakpoints and camera. The time
lines are synchronised to the current time of the visualisation which means
the user can use the event graph to navigate to a time (eg. a message being
sent) and insert key frames for that time.

To insert a key frame the user first goes to the desired time, arranges
the visualisation as desired and manually saves a key frame for the state by
pressing the corresponding “Insert key frame” button. Key frames are added
as vertical bars to the corresponding time line. The bars can be selected and
moved to tweak the animation. They can also be removed.

19

To save the presentation, the user names it and presses the “Save presen-
tation” button. This will save the presentation to the back-end. Multiple
presentations can be defined for every run, and does not alter the sampled
data for the run.

20

Conveyerl

Erlang shellWebbrowser

Front end Back end

Javascript Erlang

WebSocket

Figure 6: Conveyerl architectural overview.

5 Implementation of Conveyerl
In this section, we explain the different parts of Conveyerl in detail. The
section starts by giving an overview of the architecture of the back-end and
front-end, and continues with a discussion of some of the technical details.

5.1 Architecture
Conveyerl is divided into a back-end running in Erlang and a front-end
running in a web browser. See figure 6. The back-end is used to sample
programs, analyse samples and serve them to the front-end. The front-end
runs in a web browser. It is made up of HTML which is generated by the
back-end coupled with JavaScripts which runs in the browser.

5.2 Back-end
The back-end is divided into separate parts, see figure 7. It has a user
interface module through which the program is used. Below is a description
of the back-end modules:

conveyerl This is the module the user interacts with. It wraps the other
modules in a single, easy to use interface. It’s the main process and

21

controls the other parts of the program.

runs Takes care of abstracting away the file system interaction and the
organisation of runs - a run is one particular sampling of a given pro-
gram. The runs module organises all the data for the run: the trace
data, the analysed trace data and presentations saved for the run.

sampler Handles starting, tracing and stopping of the program the user
wants to analyse. The sampler has a filter stack used to transform
and filter the trace messages received. When the sampling stops, the
sampler saves the trace data to secondary storage with the help of the
runs module.

data_server The data server provides the web server with data. It runs
the analysing filters on the trace data to build the data used for the vi-
sualisation. It has a clearly defined filter stack which is easily extended
with new filters.

data_wrapper Acts as a wrapper for the data used by the data_server.
It has interface functions to manipulate the data_wrapper record and
functions for serialising the data to JSON.

web_server Is the interface to the front-end. It uses the embedded Erlang
web server misultin to serve HTTP requests to the front-end. JSON
is used to encode the analysed run-data from the back-end to the
front-end. The web server uses a third party library called erlydtl to
generate the HTML for the front-end user interface. A WebSocket is
used to store and load presentations for the front-end.

5.3 Communication between front-end and back-end

Our decision to use a web browser as the platform for the front-end presented
us with different ways of handling communication between the front-end and
back-end.

Since the system we were building should be interactive we did not want
to reload the whole web page when the user requested data from the server.
The data for a run is sent to the client with the initial response when a
visualisation is shown.

Early on we used WebSockets to be able to continuously push data to
the client. One important factor in the decision was live visualisation. Using
WebSockets at that stage meant that parts of the architecture could remain
unchanged if we wanted to introduce live visualisation in the future.

Pushing all data over a WebSocket created difficulties since all compo-
nents had to wait until the data was available until they could be initialised.

22

Figure 7: Back-end architectural overview.

To remove this problem we embedded the run-data in the HTML response
sent to the client.

WebSockets are used for storing user data, such as presentations. These
can be stored and loaded without having to reload the page. It also allowed
a user to create a presentation in one place and access it from a different
browser at a later time.

5.3.1 Data format

For the inherently different back-end and front-end to communicate with
each other, we had to choose a data serialisation format. In the back-
end, all data were Erlang terms. We wanted this encoding to add as little
complexity as as possible. We considered BERT and JSON.

We chose to use JSON to encode the data between the front-end and
back-end. A major reason for the choice was that JSON translates almost
directly to JavaScript objects, which meant the JavaScript programs could
be less complicated. We used BERT to encode message payloads since it was
important to know exactly which Erlang terms were used when processes
communicate.

The back-end uses rfc4627 to encode the analysed data of the run [22].

23

We wrapped rfc4627 in our own module to make it easier to replace in the
future. Message payloads are encoded using Erlang’s term_to_binary/1,
followed by a base 64 1 encoding so it can be sent together with the JSON
data. The front-end uses BERT-JS [23] to decode these message payloads.

5.4 Front-end
The front-end is written in JavaScript. We had to make decisions on how
to structure the code and chose to mimic an class-based organisation with
special functions used to create new instances of objects with the required
properties. We enforced a strict separation of different parts of the front-end.
The parts are loosely coupled together with a publish/subscribe system.

JavaScript libraries

We used a number of third party libraries:

jQuery We use jQuery mainly to interface with DOM elements and event
handling. At first we tried to do all handling of the DOM on our own
but we ran into cross browser issues and decided to use jQuery.

raphaël Is used for basic graphical elements such as the time navigation
widget and event graph.

Three.js A library to simplify working with webGL. We use it in the central
visualisation component.

underscore.js Utility library which we use to simplify general JavaScript
programming.

BERT-JS A JavaScript library to parse Erlang’s external format. We use
it to be able to visualise the data structure of Erlang messages.

Twitter Bootstrap We use the JavaScript components of the bootstrap
toolkit for the user interface.

5.4.1 Front-end components

We divided the front-end into several modules, see figure 8. The main com-
ponents of the front-end were:

conveyerl core The core component is responsible for setting up a Web-
Socket to the back-end and control the analysed data, which the other
components can request. One important component of the core is the
model object which has functions for normalising time.

1Base 64 is a way of encoding binary data using ASCII characters. This makes it
possible to send binary data over a text-only protocol.

24

Figure 8: Front-end architectural overview.

Animations A general purpose key-frame based animation framework which
allows any attribute of any object to be animated. The framework is
small, flexible and powerful.

Subscription service A central service which other components can define
channels to subscribe to. The components can publish arbitrary events
to the channels, which all subscribers will receive.

Galaxy view The galaxy view is the main visualisation component. It uses
3D graphics to visualise the programs execution. The name comes
from the fact that it uses imagery from astronomy to visualise a pro-
gram. Processes are displayed as star-like objects and messages are
sent as capsules.

Event graph The event graph plots events between processes over time.
It shows spawn events, exit events and messages.

Timeline The timeline is a control widget which can be used to navigate
the time of the visualisation.

Player A small widget which can be used to control the play-back of the
visualisation as a movie.

25

Presentation Tools to define a presentation. The user can insert key
frames for the processes positions in the galaxy view. It also gives
the user the ability to define breakpoints in the visualisation so the
visualisation can be incremented between specific chapters, which a
lecturer can use to key his presentation.

5.4.2 Conveyerl core

The core handles the communication with the back-end. It’s responsible for
parsing and controlling the data of the visualisation. It has a model object
which encapsulate the data of the run received from the back-end.

Other components can request the data from the model in different for-
mats. An important feature is the ability to get the events of the run in a
time-normalised format. This means that interesting events are expanded
in time, while uninteresting (such as the huge time spans when nothing
happens in a program) are compressed.

5.4.3 Animations

Our animations framework consists of two separate classes AnimationData
and AnimationChannel. AnimationData is the main class that a user of
the framework will be using. AnimationData works on objects and lets you
define channels on either attributes or on functions.

If key-frame K1 exists at time 1 with value 1 and key-frame K2 exists at
time 2 with value 2. The framework can interpolate values for the channel for
all times between 1 and 2. Currently it supports two different interpolation
types — or “tweens” as they are typically called — boolean and linear. The
boolean type has a discrete behaviour and only changes the values on the
specified key-frames. The linear type creates a linear interpolation between
the values of the last and the next key-frame.

This lets us define an animation that changes the value of attribute x on
object A first from 10 to 20 and then from 20 to 10. At the same time the
property y on A can change from 0.4 to 1. The attributes x and y would
both have a separate channel.

Defining an animation is really easy: first create a AnimationData object,
then create the channels that you need on that object, and fill the channels
with key-frames:

1 var animationData = new CONVEYERL.AnimationData(object);
2 animationData.addAttributeChannel('attr1');
3 animationData.addAttributeChannel('attr2');
4
5 animationData.insertKeyFrame('attr1', 0, 0);
6 animationData.insertKeyFrame('attr1', 10, 1);
7 animationData.insertKeyFrame('attr1', 25, 2);

26

For the animation to play you need to repeatedly call AnimationData.
update with the current time.

1 function update(time) {
2 animationData.update(time);
3 }

5.4.4 Subscription service

The subscription service is used to transmit messages among the different
components. In order for a component to subscribe to a particular type of
message all messages are transmitted over channels. A channel is defined
and identified by a string for instance “time” or “current_frame”.

When you — as an object — want to subscribe to a channel you do so
by calling the SubscriptionService.subscribe method with the channel
name as the first parameter, your self as the second parameter, and the
callback function as the last parameter. The reason that you must pass
yourself along is so that in the callback function this still points to this.
Passing yourself along also lets us avoid cycles when you are publishing to
a channel that you also are subscribing to. In order to break these cycles
you can publish messages and specifically say that you don’t want those
messages published to your self.

Internally the subscription service contains one object which serves as
a dictionary where channels are bound to their names. A channel in that
dictionary is simply an array with callback objects that contain the callback
function and the object that function is called on.

When you — the object — want to publish a message you do so by
calling the SubscriptionService.publish method with the channel name
as first parameter and the message as the second parameter. If you don’t
want to publish the message to yourself you pass yourself as third parameter
and true as the fourth parameter.

Internally the subscription service loops over the channel’s array and
then calls each callback function.

5.4.5 Galaxy view

The galaxy view is a 3D graphics component which takes the analysed data
and builds a 3D world from it.

It has its own representation of the data, where processes and messages
are assigned to 3D objects. The view can be interacted with by moving
processes and moving the camera.

The visualisation uses an automatic layout. It’s based on a force based
graph drawing algorithm to find good positions for the processes. The mea-
sure used to determine how strongly processes should be connected to each
others is the amount of messages they send to each other.

27

5.4.6 Presentation mode

The Galaxy view has a presentation mode in which the visualisation can
be controlled by using key frames. The user can define key frames for the
position of processes and the position of the camera. The user can also define
breakpoints, points on the timeline where the visualisation will pause and
wait for input before continuing. This can be used to design presentations.

5.4.7 Event graph

The event graph displays the processes as separate lines over time. Messages
are shown as arrows between lines over time. It uses raphaël to create SVG
graphics.

5.4.8 Timeline

The timeline is a navigational tool which displays the complete time of the
run and shows at what times events occur. The currently selected time is
shown as a marker and the user can jump to different times by clicking the
timeline.

5.5 Tracing Erlang programs

To be able to follow the execution of a program we used Erlang’s built in
trace-functions described in section 2.1.3. The trace functions worked very
well for getting most of the information we wanted but there were some
properties which we were not tracable:

Process state The tracer gave us context switching, but could not give
us information of when a process was waiting in a receive statement
nor could it tell us which expression in the source code a process was
executing.

Mailbox We couldn’t get the contents of the mailbox by using the tracing
and could not get informed of when a process retrieved a message from
the mailbox.

Memory usage The trace messages gave us garbage collection messages,
which in turn gave the size of the process heap and stack, but we would
have to rely on the garbage collector to actually run, which would not
necessarily reflect the actual memory use of a process.

Monitors The trace functions clearly show spawn and link events, but not
monitor events.

28

Figure 9: Illustration of the time normalisation.

To get this information, we periodically poll the traced processes by
using the erlang:process_info/2 function. This gave us the information
the erlang:trace/3-function didn’t.

One problem with the tracing of function calls was that it made the trace
data explode in size. A source of this was the use of function calls in list
comprehensions. If a program made heavy list processing, a function would
get called for every element in a large list, which in turn made the number
of trace-messages for calls increase dramatically.

We opted to using polling instead, where we simply check where a func-
tion is at a certain time. This way we can reduce the amount of information
at the cost of exact knowledge of what functions a process calls. If the user
knows that the number of function calls in a program is manageable, the
user can easily switch on the call tracing.

5.6 Normalised and Real Time

Since the goal was to visualise events such as messages being sent and pro-
cesses spawning or exiting, we discovered that a lot of time the program
was idle. Even relatively short periods of idleness proved to be long in
comparison with the time it takes for a message to be sent.

On a local node, sending messages between processes is in the order of
a couple of microseconds. This made it impossible to visualise events of the
system in real time. When we scaled up the time linearly, the idle periods
became unreasonably large. If the time was scaled up so that the time it
took to send a message were a couple of seconds, an idle time in the sample
of 1 millisecond would take a quarter of an hour of scaled time to play.

We realised that the real view of time was largely useless for visualising

29

the program since the short time-span of interesting events made it difficult
to distinguish between them in non normalised time.

We solved this problem by scaling time periods differently depending on
what occurred. Long periods of idleness were scaled down and periods when
interesting events occurred were scaled up in time. Figure 9 illustrates the
concept.

30

6 Evaluation
In this section we evaluate the software we created in relation to the design
criteria we defined. We also describe some of the decisions we made in while
creating the visualisation tool, such as how to handle time and animations.

6.1 Student use case
For the student use case refer to section 3.0.3 for our requirements.

6.1.1 Interactivity

An important design criteria was that the tool should be interactive, and
we concluded that being able to control the time of the animation was one
of the most important interactive features. Playing, pausing and jumping
in time was required to be able to really get information about a program
from the visualisation.

The user is able to reposition processes, but we believe this to be less
important from a learning point of view, and we used it mostly when the
processes were badly laid out by the automatic layout. Being able to control
the camera doesn’t convey information about the program and mostly gives
the user a sense of the space which the processes occupy.

6.1.2 Installation

To simplify installation, we used web browser for the front-end. Compatible
browsers are readily available for many different operating systems and many
users might already have one installed. We managed to keep the installation
relatively simple. Apart from Erlang and a web browser which supports
WebGL (see section 2.7, the user needs basho’s rebar build script which is
used by many Erlang projects [4]. Conveyerl also has some dependencies
on third party Erlang libraries, but these are installed transparently by the
rebar build process.

6.1.3 Automatic visualisation

After a sample has been created, the creation of the visualisation is fully
automatic, and the user doesn’t need to specify any special parameters to
get a visualisation. The automatic layout can give bad positions which could
be confusing. These can be rearranged by a user, but the automatic layout
should be improved.

6.1.4 Beauty

The main visualisation uses 3D-graphics. We also considered using 2D vector
graphics for the process visualisation. We chose 3D graphics since it allows

31

a lot more of flexibility when it comes to producing visual effects.
Beauty played a minor role in the development efforts. Some of the

visual effects (like the explosions when processes exits) can be captivating,
but not much effort has been put into tuning them for aesthetic effects. An
important question to evaluate in the future is what impact special effects
would have on the learning process, if and when they could be beneficial or
detrimental.

6.2 Teacher use case
For the teacher use case refer to section 3.0.4.

The main feature for the teacher use case was the ability to create pre-
sentations based on visualisations. As a presentation tool for the teacher
we made some headway but still have some way to go. Since we created
the presentation tool as an extension to the visualisation for the student use
case we did not have time to implement all the design criterias.

6.2.1 How to create presentations

When deciding how a user should create a presentation we saw two distinct
possibilities:

Source code annotations The lecturer could write programs annotated
with commands to control the visualisation. This would decouple the
lecturer from the visualisation tool actually used in the end.

What You See Is What You Get (WYSIWYG) With WYSIWYG, the
teacher would define the presentation inside the visualisation by mov-
ing objects into position, manipulating the camera and add key frames
for their values at different times.

We choose to implement a WYSIWYG solution. We saw a clear advan-
tage with being able to tune the visualisation post mortem, since a lot of
times it might not be obvious how the program you write should look and
be presented. Another important reason was that we extended the visual-
isation for the student use case. Going from a working visualisation to a
presentation editor tool was not a long step, since most of the framework
was already in place. We also believed that designing a language would be
outside the time scope of the project.

6.2.2 Editor

The editor for the presentation tool has a major usability drawback. The
time lines which are used to insert, reposition and remove presentation key
frames are based on real time. When creating a presentation, key frames

32

are often inserted at times with a lot of events, and these time-spans will
often be very short in real time. The timelines would be more useful if they
used the normalised time like the event graph.

6.2.3 Implemented design goals

The following is a list of the functionality we have implemented and some
notes on their implementation:

Positioning processes The processes positions can be changed at different
times, and the positions can be recorded as key frames. Processes
positions will smoothly interpolate between key frames.

Positioning the view The camera rotation and position can be recorded
as key frames. This allows the teacher to zoom in on different processes
at different times.

Breakpoints The teacher can define breakpoints which will pause the vi-
sualisation when it is played, and wait for the presenter to hit the play
button to continue playing.

Store and load presentations Presentations can be saved to the back-
end and be loaded at a later time. The presentations does not alter
the sampled and analysed data, and multiple presentations can be
recorded for the same run.

6.2.4 Design goals not implemented

Due to time constraints, a number of criteria for the presentation tool were
not implemented. Below is a list of the criteria which were not implemented,
and a short discussion about them:

Source code display This is a feature which we believe would be really
useful. It would allow the visualisation to work like an instructional
movie and could be used for students to learn Erlang on their own.

Annotations We believe this feature is of lower importance. A major issue
with implementing it is how to do it well from a user interface point
of view.

Distribute visualisations This is a feature we believe could be useful.
Distributing visualisation as static HTML/JavaScript files would be a
great way for a teacher to give teaching material to students. It could
completely remove Erlang as a dependency, and only require a WebGL
compatible web browser.

33

6.3 Visualised properties

Processes are central to our visualisation, and their visualisation has been a
important area of development. Below is a description of the properties we
visualise, how they are visualised and a short discussion of the visualisation:

Process identity We assign processes their colour based on the function
that the process was spawned with. Processes spawned with the same
function have the same colour. This worked out well as way to dif-
ferentiate processes from each other. Although the success may be
subject to the program that is visualised and may not work as good
on all programs. A case where this becomes less useful is when pro-
cesses are spawned with a call to apply/3 since it can call arbitrary
functions. We saw this is some of our test programs. The identity
can be discerned by highlighting the process with the tool tip which
gives the arguments to apply/3. A solution could be to add manual
exceptions to the algorithm which assigns colors, to handle apply/3.

Process state The process running state is based on whether it’s context
switched in or out. It is displayed as a change in the brightness of
that process’s colour. This gives a good overview of which processes
are running and which are idle. The visualisation gives a clear idea of
when processes execute, even on programs with about 50 processes.

Life ranges Life ranges are clearly displayed both in the event graph and in
the galaxy view. In the galaxy view processes are only visible as long as
they are alive and both the spawn and exit events are animated. The
spawn events are shown as a cloud of matter going from the spawner
to the place of the spawned process and the exit events are shown
as a colourful explosion. The spawn effect is useful for getting actual
information about which process spawns which, but the exit effect is
mostly a visual effect.

Messages Messages that are sent between processes are displayed as pro-
jectiles. When the user hovers the mouse pointer over one of the
messages, the message content is displayed as a tool tip. During the
development of Conveyerl we tested the tool with programs which
sends relatively few messages, for which it works well. For programs
where huge amounts of messages are sent frequently, using abstrac-
tions for the messages would probably be required.

Relationships We only visualise links between processes. They are visu-
alised as lines, using the color of the two processes. This gives a quick
overview of process link dependencies. The links does not influence
the automatic graph layout, which can create confusing layouts.

34

If we visualised more relationships than links, a more informative vi-
sualisation would be needed to differentiate between them. As it is
now, the visualisations for the links doesn’t contain strong semantic
properties, and could be mistaken for monitors or communication re-
lationships.

6.4 Usability
The focus of this bachelor thesis has been on creating the software founda-
tions for the visualisation. The usability has not been properly designed and
evaluated. Some examples of this is the layout of the visualisation controls
and the time lines in the presentation editor. We believe there is room for
improvement from a usability standpoint.

6.5 Normalised and Real Time
How time is handled proved to be an important factor in the visualisation.
We started by using a linear scaling, where all time was expanded so that
short-lived events would be visible. This led to event less periods being far
too long. We implemented a scaling of time, which compresses idle time
periods and expands eventful ones.

The time scaling led to a more informative visualisation. The major
drawback is that the visualisation becomes a false representation of time.
The events are still in the correct order, and the compression/expansion
does not violate causality. If the real time it takes for events is important
when using the visualisation, the scaling have to be turned off.

We used compressed time when playing the animation and creating the
event graph, but used real time for the main time navigation control which
we call the timeline. The timeline is useful to give a sense of the real relation
of events in time, but to understand the interaction of events the normalised
time is better. Trying to navigate to a time on the timeline when a message
is being sent is extremely hard, since it’s only a minuscule fraction of the
entire time. During development we found that we used the event graph
almost exclusively for navigating time.

While the normalised time present a false description of time, it’s more
useful when it comes to conveying meaning about the properties of programs
we wanted to visualise, especially messages and processes. We believe that
any visualisation which wants to visualise ephemeral properties of computer
programs will have to do something similar to normalise time.

6.6 Live visualisation vs. post-mortem
We had to decide whether to make the visualisation use data from a live
running system, or post-mortem. Live visualisation is when the visualisation
is created directly from a running system. Post-mortem visualisation is when

35

the visualisation is created from a recording of a program. Both types had
their advantages and disadvantages.

6.6.1 Live visualisation

Advantages

• Live visualisation gives us the opportunity to interact with a running
system and see the results of the actions. It could be very useful
for trying to provoke errors. It could also give students immediate
feedback on their actions.

• While live tracing, only a subset of all the traces has to be saved. This
could allow for much larger systems to be visualised for a longer time
(might even be indefinite).

• With live tracing, it would be possible to plug into a running system
without having to set up the system beforehand. (Could probably be
done with post mortem as well, just gather a trace and analyse it off
line).

Disadvantages

• Live tracing a program could become complicated, especially when
causality is important. Deciding when you’ve gathered all the messages
for a certain chain of events can be difficult.

• With a live visualisation, it might be more difficult to decide which
trace messages to use and see global trends in the data.

• A live visualisation might be non-reproducible. This could be solved
by saving a log of a live running system.

• A live visualisation will have difficulties in regards to time. Since
interesting events can be very short-lived, it is difficult to visualise
them properly and still keep the live nature of the system.

6.6.2 Post-mortem visualisation

Advantages

• Much easier to gather the data and decide on what events are causal.

• Simplifies experimenting with the data, testing different ways of pro-
cessing it or visualising it.

• Simplifies analysis, especially if different trace messages have depen-
dencies.

36

• Easier to visualise “global” behaviour of a system, properties spanning
the whole execution.

• A trace, once gathered, would always give the same visualisation, like
a recording. Useful for analysing the behaviour of the system. Also
important for an educator or public speaker who wants to prepare
animations beforehand.

• A post-mortem visualisation modify the time of the run. Short-lived
events can be expanded and uneventful periods can be shortened to
focus on visualising the interesting parts of a running program.

Disadvantages

• With post-mortem visualisation, it would be impossible to interact
with the visualisation.

• All the trace data has to be saved to disk. For large systems this could
be unfeasible.

We choose to work with post-mortem visualisation. During the develop-
ment phase this allowed us to gather a sample once. We could then work
with the same trace through the evolution of the implementation. It also
simplified the work on the front-end. By being completely aware of every-
thing that was going to happen, the front-end could pre-calculate positions
of processes and messages.

6.7 Animation framework
We created our own framework to handle animations, one of it’s strengths is
the ability to change any attribute on an arbitrary JavaScript object. The
framework defines animation channels, where every channel is tied to a spe-
cific attribute of an object. Key frames are defined for the channel to change
the attribute value at different times. For times in between key frames, an
interpolated value is calculated. See section 5.4.3 in the implementation
section for more details.

In our animations we needed to be able to pause animations at any time,
as well as skip to a specific time, and get the correct animated attributes
for that time.

A lot of the existing JavaScript animation frameworks use chains of
callback functions for animations. Once started they continue to play until
done. The only way to pause them is to stop the animation completely,
which means you can’t pause and later continue playing from where you
were.

Another limitation is that many of the frameworks only animates DOM
objects. In our case, most of the animations did not use the DOM at all.

37

Since our software was written in JavaScript, we wanted a framework which
could animate any arbitrary JavaScript value, regardless of it’s context.

38

7 Related Work
7.1 Erlang trace analysis
Previous Erlang trace analysis has been carried out by Thomas Arts and
Lars-Åke Fredlund [3]. They used Erlangs trace functions to analyse pro-
grams based on the generic OTP behaviours, gen_server and gen_fsm.
Their tool creates a state graph which can be visualised with tools like
graphviz and daVinci.

7.2 Software Visualisation in Education
Hundhauses et. al. performed a meta study of algorithm visualisation in ed-
ucation [14]. They studied the effectiveness of AV performed in 24 different
experimental studies. They conclude that how students use a visualisation
technology is what matters. Visualisation can contribute to learning, but
the form of the learning activities more important than the form of the
visualisation.

Urquiza-Fuentes and Velázquez-Itrurbide has performed a survey on the
success of software visualisation in education [24]. In their survey they con-
centrated on studies which had positive results when using software visual-
isation in education. They offer recommendations for different engagement
levels of software visualisation.

Bennedsen and Schulte performed an experiment using the BlueJ visual
debugger for Java programs [6]. They evaluated the effect the visual de-
bugger had on how well students learn object interaction. They found that
the visual debugger had a positive effect on understanding, but not that
students using it performed statistically better than those manually tracing
program execution.

7.3 Process Visualisation
The kind of process visualisation we have experimented with is close to
what’s used by Gustavo et. al. to visualise distributed systems [13]. In their
case, they use the visualisation tool OverView. They present two different
layouts, a force based and a hierarchical. Especially the force based shares
similarities with how Conveyerl visualises processes.

Björn-Egil Dahlberg has created visualisation of Erlang processes [8]
which is similar to Conveyerl. He uses Erlang and wxErlang to visualise the
processes of another Erlang node. The visualisation he creates is based on
live tracing and uses a force based graph layout similar to ours.

Kresten Krab Thorup created a software visualisation similar Conveyerl
called erlubi_tracer [15]. He created a live visualisation of processes run-
ning on a node, similar to fgraph. He created an Erlang module to interface
with the Ubigraph graph library. An example of the usage of the tool was

39

connecting the graph library to Erlangs trace tool, which gives a 3D graph
of all the running processes on an Erlang node.

Both fgraph and erlubi_tracer focus more on the structure between
processes. Since they both depend on live tracing, messages are not clearly
visualised. Time is a fundamental property where Conveyerl differs from
these visualisations, since it normalises time to visualise properties which
would otherwise be too short lived to be observable.

8 Future work
8.1 Other Properties to visualise
The properties of Erlang programs which Conveyerl visualises are limited.
In the future we would like to be able to visualise the following additional
properties:

Process state We would like to be able to show where (in the source code)
a process is currently running. This could be done with differing level
of coarseness. Being able to see exactly what function a process is
currently in is possible with Erlang’s trace tools, but increases the
sample data enormously (every call and return is traced). This would
probably have to be combined with trace patterns supplied by the
user, which was out of the scope for our use cases.
The processes could also be probed to get the actual line of code it’s
currently at, which is already done at the back-end, but not visualised
in the front-end.

Life ranges We would like to visualise the exit reason for processes. This
could either be as text or as different animations for the exit event.

Relationships We would like to visualise monitor relationships between
processes, but tracing this isn’t readily available by the tracing func-
tionality.

Resource usage We would like to visualise the memory usage of processes.
All the support is already available in the back-end and the sampled
data, but has not been implemented in the front-end.

Mailbox We would like to visualise how many messages are waiting in the
process mailbox. We would also like the user to be able to inspect the
contents of the messages.

Communication patterns We would like to show trends in communica-
tion between processes. For example, the volume of messages sent
between processes over time and how it changes. This would be useful

40

if a system sends a huge amount of messages, and the contents of in-
dividual messages isn’t important, but which processes communicates
with which is.

Data structures We would like to be able to visualise data structures,
allowing a user to explore them visually.

8.2 Other use cases
We envisioned two other use cases for this software: development and art.
These are use cases we never had time to look into due to time constraints.

8.2.1 Development

To create a visualisation useful in development we would need to do a lot
more research. We believe that development places higher demands on ex-
actly what is visualised, how it is visualised and how the visualisation fits
with the work flow of a developer. The visualisation could be used as a
visual debugger to quickly diagnose problems in a Erlang program.

Depending on the scale of the system, a developer might need different
types of information. We distinguish between two perspectives for develop-
ment:

Micro This perspective is focused on small systems or smaller parts of a
bigger system. It would be the scale that most current debuggers
covers. Things like CPU time, message queues and so on. The level
of detail would be high, and most interesting properties of individual
processes might be presented. An important question is whether a
visualisation of this level would actually provide the developer with
anything useful, or if the current text based debuggers cover this use
case better.

Macro In this perspective the developer analyses large systems with thou-
sands or millions of processes. It is difficult to predict what types
of patterns that might emerge. Therefore it would be important for
developers to easily modify the program so that it visualises the prop-
erties that the developer is interested in.
An important aspect of large Erlang programs is that they’re seldom
implemented only in Erlang. Getting information about where the
program spends time (even in Erlang-external parts) could be impor-
tant.
Another issue is how to model the system and the visualisation. What
would an analogy be for how a huge number of processes interact.
Would it behave similar to physical phenomenons like gasses, brownian
motion etc?

41

8.2.2 Art

Art was one of the starting points for this project. The inspiration came
from a desire to to see the complex systems programmers have created. Just
by trying to imagine the structure of a complex software system, we feel that
the structure can be truly awe inspiring.

This use case would be about giving programmers the ability to trans-
form their programs into works of art, visually echoing the structure of the
software. To do this, we would like the visualisation to be easily tweaked
and tuned. Aspect such as colour, graphical primitives and visual effect
should be easy to add and control.

We see the users of this kind of visualisation as being programmers with
an philosophical interest in computer programs. Programmers who wishes
to examine the questions: “what is a computer program?” and “what does
a computer program look like?”. Programmers such as ourselves.

8.2.3 Going further

The next step is to refine the usability of the tool, by evaluating its useful-
ness in education, working together with teachers who have experience in
teaching Erlang. For this step, we would need to conduct a more thorough
investigation into the studies done on the effectiveness of software visuali-
sation in education.

Extending the capabilities of the presentation tool would also be an im-
portant next step as discussed in the evaluation. We believe that giving
teachers the ability to easily couple visualisation to source code would be an
important addition. Another feature we would like to implement is the abil-
ity to export a visualisation to static HTML and JavaScript files, bundling
a visualisation in a portable, easy to install and use package. The only
requirement would be a web browser supporting WebGL and HTML5.

Scalability is also a desirable future goal. At it’s current state, the use-
fulness of the system is limited to about 50 processes. Experimenting with
visualising huge distributed systems would require sophisticated algorithms
for the layout and grouping of processes. Certain abstractions would likely
also be needed in order to get a grasp of the run. It would also require tech-
niques for storing huge amounts of data, since the system uses post-mortem
analysis.

42

9 Conclusions
The main outcome of our thesis project has been a software for analysing
and visualising Erlang programs in a browser. The focus of the project has
been on getting a basic framework in place. During the development, we
have had education in mind. The software created has a modular design
which is easily extended.

We have not evaluated the use of the visualisation tool in education and
can not draw any conclusion about its usefulness for new Erlang program-
mers. We have laid the foundations for a tool which students can use in
order to learn Erlang but we believe it still have some way to go before
being used in class rooms.

In this report we have presented the development of the Conveyerl visu-
alisation tool for visualising Erlang programs. Conveyerl uses post-mortem
analysis of Erlang trace data to create 3D visualisations in web browser.
While developing Conveyerl we have focused on features relevant for stu-
dents and teachers. The report has given an overview of the tool and con-
centrates on the architecture and implementation details of the software.
This bachelor thesis project has laid the foundation for the software visual-
isation tool. We have not evaluated the usage of Conveyerl in education.

43

10 Acknowledgements
We would like to thank Joe Armstrong without who’s enthusiasm and sup-
port this project would never have started.

Our thanks also goes out to Christian Schulte who continues to deliver
valuable insights and for helping us navigate the administrational maze of
KTH.

44

References
[1] Christopher Alexander, Sara Ishikawa, Murray Silverstein, A Pattern

Language: Towns, Buildings, Construction , Oxford University Press,
USA, 1977.

[2] Joe Armstrong, Programming Erlang: Software for a concurrent world,
The Pragmatic Bookshelf, Raleigh, N.C. 2007.

[3] Thomas Arts, Lars-Åke Fredlund, Trace Analysis of Erlang Programs,
ACM SIGPLAN Erlang Workshop ’02, Pittsburg, PA USA, 2002.

[4] basho, rebar — A sophisticated build-tool for Erlang projects that fol-
lows OTP principles, Retrieved June 25, 2012, <https://github.com/
basho/rebar>.

[5] Martin Beck, Jürgen Döllner, Towards Automated Analysis and Visual-
isation of Distributed Software Systems SOFTVIS’10, October 25–26,
ACM, Salt Lake City, Utah, USA, 2010.

[6] Jens Bennedsen, Carsten Schulte, BlueJ Visual Debugger for Learn-
ing the Execution of Object-Oriented Programs, ACM Transactions on
Computing Education, Volume 10 Issue 2, June 2010, Article No. 8
ACM New York, NY, USA, 2010.

[7] Douglas Crockford, The application/json Media Type for JavaScript
Object Notation (JSON), July 2006 Retrieved June 25 2012, <http:
//tools.ietf.org/html/rfc4627>

[8] Björn-Egil Dahlberg, fgraph — Physics engine for graph drawing written
in erlang for use in wxErlang or standalone, Retrieved May 25 2012,
<https://github.com/psyeugenic/fgraph>.

[9] Ericsson, Erlang Reference Manual: External Term Format, Re-
trieved May 25 2012, http://www.erlang.org/doc/apps/erts/erl_
ext_dist.html.

[10] Ericsson, Erlang Reference Manual: Data Types, Retrieved May
25 2012, <http://www.erlang.org/doc/reference_manual/data_
types.html>.

[11] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, Boston, USA, 1995.

[12] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, Ioannis G Tollis,
Algorithms for drawing graphs: an annotated bibliography, Computa-
tional Geometry, Volume 4, Issue 5, Pages 235-282, October 1994.

45

https://github.com/basho/rebar
https://github.com/basho/rebar
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
https://github.com/psyeugenic/fgraph
http://www.erlang.org/doc/apps/erts/erl_ext_dist.html
http://www.erlang.org/doc/apps/erts/erl_ext_dist.html
http://www.erlang.org/doc/reference_manual/data_types.html
http://www.erlang.org/doc/reference_manual/data_types.html

[13] Gustavo A., Guevara S., Travis Desell, Jason Laporte, Carlos A. Varela,
Modular Visualization of Distributed Systems, CLEI Electronic Journal,
14:1-17, April 2011.

[14] Christopher D. Hundhausen, Sarah A. Douglas, John T. Stasko, A
Meta-Study of Algorithm Visualization Effectiveness, Journal of Visual
Languages & Computing Volume 13, Issue 3, Pages 259–290, June 2002.

[15] Kresten Krab Thorup, Erlang Visualizer using Ubigraph, Retrieved
June 17 2012, <https://github.com/krestenkrab/erlubi>.

[16] Peter Liggesmeyer, Jens Heidrich, Jürgen Münch, Robert Kalcklösch,
Henning Barthel, Dirk Zeckzer, Visualization of Software and Systems
as Support Mechanism for Integrated Software Project Control , Pro-
ceedings of the 13th International Conference on Human-Computer In-
teraction. Part I: New Trends Pages 846 - 855, Springer-Verlag Berlin,
Heidelberg, 2009.

[17] The Khronos Group, WebGL Specification Version 1.0, 10 Febru-
ary 2011, Retrieved June 25 2012, <https://www.khronos.org/
registry/webgl/specs/1.0/>

[18] The Khronos Group, Getting a WebGL Implementation, Retrieved June
25 2012, <http://www.khronos.org/webgl/wiki/Getting_a_WebGL_
Implementation>.

[19] Peter Lubber, Frank Greco, HTML5 Web Sockets: A Quantum Leap
in Scalability for the Web, Retrieved June 25 2012, <http://www.
websocket.org/quantum.html>.

[20] Clifford A. Shaffer, Matthew L. Cooper, Alexander Joel D. Alon,
Monika Akbar, Michael Stewart, Sean Ponce, and Stephen H. Edwards.
Algorithm Visualization: The State of the Field Trans. Comput. Educ.
10, 3, Article 9 (August 2010), New York, NY, USA, 2010.

[21] John Stasko (ed), John Domingue (ed), Marc H. Brown (ed), Blaine
A. Price (ed), Software Visualisation: Programming as a Multimedia
Experience, The MIT Press, © 1998. Books24x7. Web. Mar. 1, 2012.

[22] Tony Garnock-Jones, Erlang RFC4627 (JSON) codec and JSON-RPC
server implementation, Retrieved June 25 2012, <https://github.
com/tonyg/erlang-rfc4627>.

[23] Rusty Klophaus, BERT-JS: Javascript implementation of BERT se-
rialization (Binary ERlang Term), Retrieved June 25 2012, <http:
//github.com/rustyio/BERT-JS>

46

https://github.com/krestenkrab/erlubi
https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
http://www.khronos.org/webgl/wiki/Getting_a_WebGL_Implementation
http://www.khronos.org/webgl/wiki/Getting_a_WebGL_Implementation
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
https://github.com/tonyg/erlang-rfc4627
https://github.com/tonyg/erlang-rfc4627
http://github.com/rustyio/BERT-JS
http://github.com/rustyio/BERT-JS

[24] Jaime Urquiza-Fuentes, J. Ángel Velázquez-Iturbide, A Survey of Suc-
cessful Evaluations of Program Visualization and Algorithmic Anima-
tion Systems, ACM Transactions on Computing Education, Vol. 9,
No.2, Article 9, New York, NY, 2009.

[25] W3C Document Object Model (DOM), January 19 2005, Retrieved May
24 2012, <http://www.w3.org/DOM>.

[26] W3C HTML Working Group, Retrieved June 25 2012, <http://www.
w3.org/html/wg/>.

47

http://www.w3.org/DOM
http://www.w3.org/html/wg/
http://www.w3.org/html/wg/

	Introduction
	Background
	Erlang
	Concurrency model
	Process relationships
	Tracing and debugging

	Software visualisation
	Publish/Subscribe Design Pattern
	Graph drawing
	HTML and CSS
	JavaScript and the Document Object Model
	WebGL
	Computer graphics animations
	Web page animations
	Asynchronous web communication
	Data Exchange Formats
	BERT
	JSON

	Use cases
	Student use case
	Teacher use case

	Overview
	Architecture
	Visualised properties
	The visualisation
	Process layout
	Processes
	Process origin
	Process state
	Life ranges
	Relationships
	Messages

	Usage
	Back-end usage
	Sampling of a program
	Interacting with the visualisation
	The galaxy view
	The presentation editor

	Implementation of Conveyerl
	Architecture
	Back-end
	Communication between front-end and back-end
	Data format

	Front-end
	Front-end components
	Conveyerl core
	Animations
	Subscription service
	Galaxy view
	Presentation mode
	Event graph
	Timeline

	Tracing Erlang programs
	Normalised and Real Time

	Evaluation
	Student use case
	Interactivity
	Installation
	Automatic visualisation
	Beauty

	Teacher use case
	How to create presentations
	Editor
	Implemented design goals
	Design goals not implemented

	Visualised properties
	Usability
	Normalised and Real Time
	Live visualisation vs. post-mortem
	 Live visualisation
	 Post-mortem visualisation

	Animation framework

	Related Work
	Erlang trace analysis
	Software Visualisation in Education
	Process Visualisation

	Future work
	Other Properties to visualise
	Other use cases
	Development
	Art
	Going further

	Conclusions
	Acknowledgements

