s

L,
EKTHS

VETENSKAP
S8 OCH KONST §¢

Rsed®

KTH Information and
Communication Technology

Performance benchmarking using real world
applications

An attempt to create a benchmarking tool for measuring software performance in
realistic scenarios.

MATTIAS JANSSON, KARL JOHANSSON

Bachelor Thesis at ICT
Supervisor: Frej Drejhammar (SICS)
Examiner: Christian Schulte (School of ICT)

TRITA-ICT-EX-2012:144

Abstract

A generic tool for creating and running benchmark tests
on existing software was designed and created. The purpose
of the tool is to simplify testing and tuning during the de-
velopment of an Erlang JIT compiler. The resulting tool is
implemented in Python and is based on a set of jobs running
sequentially or in parallel. This gives a simple way to de-
fine initialization, parallel runs and cleanup of a benchmark
run. This is achieved by inter-job dependencies. Logging
features are built into the tool for creating output data.
For data presentation, a simple plotting tool was created
specifically for reading the output format of the benchmark
tool and plotting with gnuplot. Another tool for running
benchmarks on remote computers was added as well. The
tools give a quick way of creating and running benchmarks
and also gathering data and presenting them.

All measuring is performed on application level only
and no profiling functionality is added. Therefore, the tool
should not be seen as a substitute for profiling but as a
complement to it.

Referat

Prestandatester med hjalp av verkliga
applikationer

Ett generiskt verktyg for skapande och kérning av bench-
marktester pa existerande programvara framtogs. Syftet
med verktyget dr att forenkla testning och optimering vid
utveckling av en JIT-kompilator for Erlang. Verktyget ar
implementerat i Python och ar baserat pa en uppséattning
jobb som kan koras sekvensiellt eller parallellt. Detta ger
ett enkelt séitt att definiera initiering, parallell exekvering
och avslut av benchmarktester. Detta mojliggjordes med
hjélp av beroenden mellan jobb. Loggningsfunktionalitet ar
tillgdnglig i verktyget for skapande av utdata. For presen-
tation skapades ett enkelt verktyg specifikt for ldsning och
uppritande av data. Ett annat verktyg implementerades for
fjarrstyrd korning av tester. Verktygen ger ett snabbt sétt
att skapa och kora benchmarktester samt lagring och pre-
sentation av data.

All méatning gors pa applikationsniva och ingen profile-
ringsfunktionalitet ar tillagd. Darfor skall verktyget ej ses
som ett substitut for profilering utan snarare som ett kom-
plement.

Contents

1 Introduction 1
2 Background 3
2.1 Problem 3
2.1.1 Benchmarking tool 0L 3

2.2 Python 4
2.2.1 Brief overview of Python 4

2.2.2 Backwards compatibility issueso 4

2.3 Measuring process resource Usageo e e a0 4
24 Erlang 4
2.4.1 OTP - Open Telecom Platform)

2.5 Statistical formulasusedo 5

3 The benchmark tool in detail 7
3.1 Executing tests 7
3.1.1 Structural Overview, 7

3.1.2 Jobs 7

3.1.3 Executors 9

3.1.4 TImplementation oL 9

3.2 Configuration Lo 11
3.2.1 Structure of the input settings 11

3.2.2 Handling settings that are missing or unknown 12

3.2.3 Summary of commands L 12

3.2.4 ID - Distinguishing jobs by unique identification 13

3.2.5 Tterations - Executing jobs iteratively 14

3.2.6 Cov - Adding precision bound 14

3.2.7 Dependencies - Having jobs depend on other jobs 14

3.2.8 Command - Specifying what is to be executed 14

3.2.9 Env - Extending the environment to fit specific tests 15

3.2.10 Logging - Required settings 15

3.3 Remote Executiono oo 15
3.3.1 Python libraries for remote objects (Pyro) 16

3.3.2 Transferring serialized objects 16

3.3.3 Transferring the whole working directory

3.4 Logging results L Lo
3.4.1 Storage
342 Using GNUPlot
4 Examples
4.1 Yawsexample
4.1.1 About Yaws
4.1.2 Testsetup
4.2 Dialyzer example Lo oL
4.2.1 About Dialyzer
422 Testsetup o
5 Analysis
5.1 Runscripts e
5.2 Configuration L
5.2.1 Content reuse
5.2.2 Iterating over multiple jobs
5.3 Resource usage measurement
5.4 Logging and plotting oL
6 Conclusion
6.1 Recommendations oo
6.1.1 Benchmark for comparison - profile for detail
6.1.2 Keep the scripts general
6.2 Futurework Lo
6.2.1 Error handling

6.2.2 Tterating over multiple nodes
Appendices
A Dialyzer configuration example
B Yaws configuration example
C OTP installation script example

D Yaws installation script example

19
20
20
20
23
23
23

25
25
25
26
26
27
27

29
29
29
29
29
30
30

30

31

33

35

37

Chapter 1

Introduction

An important aspect of software development is efficiency. To make software per-
form better, a good practise is to continously measure performance differences be-
tween versions, settings etc.

Performance measurements can be done by constructing a synthetic benchmark
scenario where a specific task is performed while performance is measured, similarly
to the method described in “UTS: A Portable Benchmark for Erlang/OTP” by
Ostberg [4]. However, using that method for evaluating a compiler or execution
environment raises an important question: do the results reflect the performance of
a "real world” application?

In the development of a JIT compiler for Erlang there was a need for performing
performance benchmarks in order to correctly tune the compiler.

This thesis is an attempt to create a benchmark utility suite where performance
of any kind of application can be measured. The goal is to easily be able to create
a test scenario out of a real application and run it with many different setups.
The tool will hopefully be of benefit during development of compilers, execution
environments, software libraries or other software. This could produce data that
helps in creating software that is efficient not only in synthetic tests but also in
practice.

Chapter 2

Background

2.1 Problem

2.1.1 Benchmarking tool

The benchmark tool is designed with the following criteria in mind:

General purpose functionality
A more general approach allows us to reuse the tool for other benchmarking
projects that require slightly more complex testing.

Measuring execution time and memory usage in multiple iterations
An important part of benchmarking is to measure execution according to some
attribute of interest. A typical usage is measuring how long it takes to run a
piece of code or how much memory is needed. Focusing on execution time, the
tool needs to be more specific and provide time spent with 10, on the kernel
level and so on.

Data storage and presentation
Handling benchmark results might require different techniques depending on
the user’s needs. For example, results to be used in a presentation might need
automated formating. There might also be situations where the results are
to be used by other scripts or programs. In that case, proper structure and
simplicity is preferred. The tool needs to either be able to cater to these needs
or be easily extended.

Automatic download and installation of test application
Manually installing programs and libraries needed for testing quickly becomes
tedious. Programs must therefore be downloaded and installed automatically
if needed.

CHAPTER 2. BACKGROUND

2.2 Python

The core of the benchmark tool is written exclusively in Python. Therefore, a small
overview of the language and related issues are brought up in this section.

2.2.1 Brief overview of Python

Python is an interpreted, general purpose script language, covering multiple paradigms [3].
Borrowing style from C, the language attempts to be as syntactically uncomplicated

as possible and familiar to most programmers [9]. The similarities end quickly how-

ever as Python is at the opposite extreme to the static languages. The dynamic

type system is strict [3]. Unless objects are initiated, variable types are implied.
Variables are only defined, never declared. Furthermore, classes can be defined at
runtime. The benchmark tool makes heavy use of this.

2.2.2 Backwards compatibility issues

Because of backwards compability issues, the decision had to be made on which
version to use. During the initial design there was an urge to make heavy use
of external libraries, thus the older version (Python 2.7) was chosen in favor over
Python 3.

When Python 3 was released, backwards compatibility was removed in order to
clean up the core [12].

2.3 Measuring process resource usage

In order to obtain reliable data from measurements, the resource usage data must
be both of high precision and detail. For example, measuring overall execution time
might not be sufficient without details about how the time is spent (waiting for
system calls, memory swapping etc).

In the POSIX standard there is a system call specified called getrusage [10].
This system call can be used for obtaining a variety of resource usage details about
either the calling process or child processes that have terminated and have been
waited for. The getrusage system call provides information that might be needed
in this benchmarking tool.

The system call is available not only as a C system call but also other lan-
guages such as Python [5]. The high detail, operating system integration and high
availability makes the call a good way to obtain resource usage information.

2.4 Erlang

The purpose of the project was to provide a tool that can be used to test and
tune a compiler for the Erlang programming language. The examples in Chapter 4

2.5. STATISTICAL FORMULAS USED

are therefore focused on Erlang. This section will give a very brief presentation of
Erlang as well as OTP.

Erlang is a functional programming language especially designed for concur-
rency, distribution and fault tolerance. According to Erlang FAQ, Erlang is partic-
ularly suited for ”distributed, reliable, soft real-time concurrent systems”, such as
telecommunication systems, Internet server applications, telecommunication appli-
cations and database applications. [2]

Erlang FAQ mentions that Ericsson is "the largest user of Erlang”, but it is
used by many others for different purposes. For example, Erlang is used for VoIP
comunication, web services, digital payment system, social networking and more.

2]

24.1 OTP - Open Telecom Platform

OTP (Open Telecom Platform) is a collection of libraries for Erlang provided by
Ericsson [2]. It is very commonly used as the main library collection for Erlang
application development. Despite what the name suggests, OTP is not only targeted
to the telecoms sector. It is distributed with a wide variety of tools and libraries
such as WWW server, database tools, analysis tools and much more.

In the examples in this report, OTP will be used for running all Erlang appli-
cations.

2.5 Statistical formulas used

The following formulas are used to calculate results:

Mean average:
n
_ im0 Xi

n

L \/ Yi(Xi —)2
n

Standard deviation:

Coefficient of variation (referred to as cov in this thesis) :

Cy = —

1

These are used by our logging module described in Section 3.4.

Chapter 3

The benchmark tool in detail

This chapter begins with a basic outline of our design of tests as well as the concrete
implementation in Section 3.1. In Section 3.2, how to configure tests are described.
The design and implementation of remote testing is presented in Section 3.3. Lastly,
how to store tests results are covered in Section 3.4.

3.1 Executing tests

This section describes the modules our tool consists of and how tests are run. We
begin by giving a structural overview of the modules before going into detail.

3.1.1 Structural Overview

Before focusing on the specific details, a brief overview is needed to see the full
picture. A complete test uses two abstractions:

Job contains specific details about what is to be executed, logging, and precision
and iteration constraints. A job runs a specific task, which does not have to
be something measurable.

Executor coordinates execution of multiple jobs according to their dependencies.

A test suite contains one or more executors, which contain one or more jobs. This
is shown in Figure 3.1. One needs to understand how these two abstraction layers
function in order to get the most out of the tool.

3.1.2 Jaobs

The configuration of a benchmark is defined by a set of jobs. Jobs may include
anything from running a bash command to a script or a program.

For example, when benchmarking an application, the first job can define how to
download and compile a specific version of the application. When finished, another

7

CHAPTER 3. THE BENCHMARK TOOL IN DETAIL

Executor Executor

Figure 3.1. The two execution layers used for running tests.

job starts, runs the application and measures performance. When the measuring
job terminates, a final job performs cleanup.

This way of structuring the benchmark process requires that jobs run in a cer-
tain order. Furthermore, there might also be a need for some jobs to run in parallel.
Combining these types of jobs would require a configuration that offers high flexi-
bility in job ordering and ensures that all jobs are run exactly when the user intends
them to.

Jobs with fixed number of iterations

Since nondeterministic factors make testing unprecise, there may be a need to run
tests multiple times. The user can specify how many iterations to use. If this is not
specified, a job will run only once.

Jobs with precision constraints

Running a test multiple times can enhance the precision of measurements, but we
cannot always be sure how many iterations are needed in order to get satisfying
results. A type of job that executes a command under two constraints has therefore
been implemented. The two constraints are the following:

¢ A maximum number of iterations.
e A precision boundary.

This job stops executing either when the maximum number of iterations has been
reached or when the precision is deemed good enough. In order to specify what is
considered good enough, we have chosen to let the user specify the coefficient of
variation. All statistical methods used are presented in Section 2.5.

Like the job only using fixed iterations, this precision bound job has a maximum
number of iterations to avoid nontermination. Unlike the fixed iterations job, this
job will run a command a minimum of two times. The reasoning is the following:
We cannot measure precision from a single run.

3.1. EXECUTING TESTS

Init

/N

Iterate Work Work Iterate

N/

Clean up

Figure 3.2. Example of jobs with dependencies. The ”work” jobs will execute
as soon as the init job terminates. Lastly, when both ”"work” jobs terminate, the
”cleanup” job will run.

3.1.3 Executors

A test suite is built of multiple jobs and these jobs need to be organized. This is
the task of an executor.

Keeping track of jobs with a dependency graph

For each job, a list of zero or more other jobs can be listed as dependencies. The
tool will check all dependencies and run all independent jobs first (jobs with zero
dependencies). The jobs that do have dependencies will postpone execution until
all jobs in it’s dependency list are done. For example, two jobs with the same
dependencies will be started roughly at the same time and run in parallel. This
way, quite complex executions can be specified.

When an executor is initialized, a graph is constructed to help keep track of all
the dependent jobs. This graph is called a dependency graph. Using the id numbers
of every job, each is modelled with a node containing the id of all dependent jobs.
Figure 3.2 shows what such a dependency graph might look like.

3.1.4 Implementation

We conclude the section on executing test with a more thorough description of how
tests are executed. Here, the focus lies on implementation of execution.

CHAPTER 3. THE BENCHMARK TOOL IN DETAIL

Executor

Unlike jobs, executors are not run in parallel, only sequentially. When an executor
starts, a reference to a signaling function (or notification function) is provided. This
function is invoked whenever the executor has finished executing all jobs.

Jobs

Running a job is nontrivial, because we need to make use of parallelism (in order
to enable setups such as in Figure 3.2); both by the use of fork and multithreading.
The need for fork stems from using getrusage when measuring runtime and memory
usage. Results from getrusage will include all child processes. Therefore, jobs are
always started in different process groups.

The first step is to use fork and let the child process execute the command. The
parent process needs to be notified when the child process finishes. When the child
process terminates, the job is considered finished and other jobs who depend on it
have to start. However, there might be other jobs scheduled to execute in parallel
with the one created.

One solution is to install a signal handler [6]. After the use of fork, more jobs
can be started in parallel if needed. When the child process has finished, the signal
handler function is invoked.

Instead of a signal handler, multiple threads can be used. After forking, a
thread starts and blocks execution, by using the system call waitpid [7]. Providing
the correct arguments, waitpid blocks until the child process has finished running,
and then notifiesp the executor. Due to the simplicity of threading in Python, the
solution using threads was chosen to wait for child processes to finish. This is shown
in Figure 3.3.

10

3.2. CONFIGURATION

Fork process

Parent proce‘s/\fhild process

Parallelize with threading Execute job

Created Thread

Block, using waitpid, to

See if there are more wait for the child process
jobs to execute to finish. Then signal the
executor.

Figure 3.3. Parallelization strategy when executing jobs.

3.2 Configuration

This section explains how to set up configurations for each job. All commands are
first briefly described in a summarized way, and the following sections describes
them in more detail. How unknown and missing settings are dealt with is explained
as well as the reason for the structure of the input files. What is needed to log
results is explained in depth because it requires knowledge of quite a few settings.
Examples of configuration files are found in Appendix A and Appendix B.

3.2.1 Structure of the input settings

Deciding on the structure of the input settings required consideration. We wanted
to find a perfect balance, where users could create tests without much effort and
knowledge of specific details. However, ongoing development needs to benefit from
easily parsed input. First, the two extremes will be described. Then, the compro-
mise used is presented

A structure that benefits the user

At one end of the spectrum, we have an input structure that benefits the user com-
pletely. The content would be language agnostic, avoiding any resemblance of a
programming language. Input files containing multiple jobs would never have any-
thing repeated and references to other jobs depends on a lot of implicit information
or formating of the file.

11

CHAPTER 3. THE BENCHMARK TOOL IN DETAIL

For input files, a parser would have to be incorporated into the benchmarker. For
the purposes of this tool, the inconvenience of implementing a parser overweights
the benefits.

A structure that benefits the developers

At the other end of the spectrum, we have a structure for the input file that benefits
the developers of the benchmark tool. The input would no longer be a simple text
file, but Python code defining everything needed using object oriented semantics.
Little would have to be done by the our tool other than to import the settings
and use them. Furthermore, using this design allows advanced extensions and cus-
tomizations done by the user.

Every user should not have to learn python in order to use our tool. This
benchmark tool has nothing to do with python other than being constructed in it.
Only catering to python developers would cripple the usability.

Finding a compromise

Incidentally, python’s flexibility allowed us to cover most of the benefits from both
extremes. No parsing is needed because the input settings are made out of python
code. However, only pythonistas will notice this because everything is stored in
nested lists and map structures (called dictionaries in python). There is no notion
of variables, class or function definitions, nor other complex terms that might scare
off unfamiliar users.

3.2.2 Handling settings that are missing or unknown

In an early development phase of the benchmark tool, it was decided that input
settings that are unknown to the tool are set as environment variables.

This caused spelling errors or other internal issues to be very hard to track and
correct. Working with a dynamic language like python, it was evident that requiring
more strict and explicit input was a blessing for error handling regardless of the small
cost of a larger and inconvienient configuration structure. Thus any unknown input
settings will result in a fatal error. More time consuming and deceptive pitfalls are
now avoided.

3.2.3 Summary of commands

A brief summary is given in Table 3.1, before they are described in more detail.
When a job is to be measured and the results need to be logged, specific settings

are required. These are described in Table 3.2. Note that either all the settings in

Table 3.2 have to be specified or none of them. Any other variation is not allowed.

12

3.2. CONFIGURATION

Command Section Description

id 3.24 A unique nonnegative integer id for each job. This allows
our jobs to have an easy to reference identity.

iterations 3.2.5 The number of iterations to run a command at a time. Also
sets the maximum number of iterations allowed for jobs with
precision constraints.

cov 3.2.6 the coefficient of variation (explained further in Section 2.5),
which is used as a constraint whenever a value between 0.0
and 1.0 has been set.

dependencies 3.2.7 contains the identification of other jobs to be run before this
one is to be run. if not specified, all previous jobs will be
set as the dependencies for the current job.

command 3.2.8 The actual command that is to be run and measured. This
is the only input required,

env 3.2.9 Contains environment variables to be used for a specific job.
These variables disappear when other jobs are done due to
the use of fork for each job.

logging 3.2.10 Provides multiple options for handling logging of results.
The different logging settings are described in Table 3.2 .

Table 3.1. Brief overview of the input settings and which section that describes

them in depth.

Command Description

name

log file
measuring

Sets a specific name to be used in the logfile and for plotting.
The need for this comes from the fact that the command the
job executes is not descriptive enough.

Contains the path of the logfile to store everything in.
Specifies what is to be measured; time, memory or both.

Table 3.2. Specific input settings for logging.These are described in depth in section

3.2.10.

3.2.4 ID - Distinguishing jobs by unique identification

Constructing a test suite is not just a matter of running a single command and then
looking at the results. While this might be the case for tiny scripts, testing large
systems requires more work. Often, the tester has to set up execution environments
first and clean up after. We therefore need a job execution hierarchy where jobs
depending on others are executed in a coordinated sequence.

The first step in achieving this hierarchal execution flow is to let each job get
a ungqiue identifier. This way, they can refer to other jobs they depend on. Non
negative integers have been chosen as identifiers.

Explicitly writing a unique id for each job is time consuming. Therefore, our
benchmark tool can assign unique ids to jobs automatically. This feature shows the

13

CHAPTER 3. THE BENCHMARK TOOL IN DETAIL

benefit of using integers over names as identifiers.

3.2.5 lterations - Executing jobs iteratively

Due to nondeterminism and lack of precision from multiple sources, running a pro-
gram once is not sufficient to get good results. The tester should therefore specify
how many repeated executions are to be done.

If not specified, the default value is to run a command once. If precision is used
to dictate when a test has run enough times, the lowest number of iterations is two
times. Otherwise it would be impossible to get any information about precision,
since we have nothing to compare the results with. If a tester has not specified the
number of iterations to use, or explicitly set it to run once, the benchmark tool will
automaticallly adjust to run it twice. This is indicated in the results logfile to avoid
any confusion.

3.2.6 Cov - Adding precision bound

When measuring execution time, a user might not be satisfied by the precision of
the results and decides to raise the number of iterations in hopes of lowering the
variance. The better way of doing this is to let the benchmark tool know what
the upper bound of desired precision is, and let it run until the results are precise
enough.

Unfortunately, achieving the desired precision is not always feasible. A test
cannot run forever, so the tester may also set the maximum number of repeated
executions allowed.

When using precision as a boundary for termination of a test, the specified
number of iterations becomes the maximum number of allowed executions. This
is shown in a resulting logfile regardless of what is specified. If the user has not
specified any logging and specified a single iteration run, it will run twice without
reporting it (because variation can not be calculated from one iteration).

3.2.7 Dependencies - Having jobs depend on other jobs

For jobs that need to wait until other jobs are finished, a list of ids needs to be
provided. There might be situations where multiple jobs share the same dependency
list, or their separate dependencies are finished executing. In this case, these will
be executed in parallel.

3.2.8 Command - Specifying what is to be executed

Setting the command to be run could either be a single bash statement or the
execution of a bash script containing multiple statements. Not only is this setting
arguably the most important one, but also the only one required by the user. Even
though there are quite a lot of usable settings when configuring a job, a user will
often only set the command to be executed.

14

3.3. REMOTE EXECUTION

3.2.9 Env - Extending the environment to fit specific tests

For more complex testing, involving multiple execution environment there is a need
for environment variables specifying specific paths. Using specified environment
variables also provides a way of having specific values for a group of jobs.

These additional environment variables are only visible locally, as each job runs
in its own process. Furthermore, there is no way to overwrite the environment
variables for any other job (or process).

3.2.10 Logging - Required settings

Providing settings for logging is more involved. All three options are mandatory
and therefore described below.

Name - Naming jobs for logging purposes

While an identifier helps us distinguish the jobs in a test, it is not descriptive enough
to use as information in a file containing the test results.

One way around this is to use the command to be executed. But the same
command can be executed using different environments in an input file. As a result,
that is not sufficient. This means that the tester needs to give a name to be used
when logging the results.

Log_ file - Storing results in a file for later use

In order to write output data to a file, a path must be given. If the given file already
exists, it will be overwritten.

Measuring - Deciding what to measure and log

The user must specify what is to be measured. Available options are "time", "mem-
ory" or both.

3.3 Remote Execution

In order to be able to run a high number of benchmarks in a reasonable amount of
time, a simple way to run benchmarks on several machines is needed. For instance,
a set of tests might be divided into several sets where each set is run on a different
machine. If such a thing is to be automated, it must include a minimal amount of
additional effort for the user or the additional effort might defeat the purpose.
The current solution to remote execution is to keep the entire set of tests on one
machine and use scripts to synchronize the working directory to other machines and
run them. After evaluating other ways to automate remote execution, this turned
out to be the least complicated and error prone way to do it. This chapter describes
some methods considered. Section 3.5.3 covers the currently implemented method.

15

CHAPTER 3. THE BENCHMARK TOOL IN DETAIL

3.3.1 Python libraries for remote objects (Pyro)

Pyro is an extensive library for communication between objects located on differ-
ent machines through sockets [11]. Once set up, objects can communicate through
simple method calls which simplifies programming. However, this requires that all
machines involved are set up beforehand and have server or client software running.
Therefore, this method was not used.

To run a benchmark remotely via this kind of library, the right python software
must be transferred, configured and started on a machine before benchmarking can
begin. This requires some extra effort by the user to set up.

Another drawback is that there is no good way to ensure that the programs or
scripts used by the tool are available on the remote machine. This could lead to the
user creating benchmarks that reference files which will not be available.

3.3.2 Transferring serialized objects

In python, an object can be serialized (called pickled) to text based formats and
loaded again [8]. The objects can be loaded on the same machine as well as another
one. This can be used to transfer an executor object to a remote machine for loading
and execution.

Tests were made where an SSH session was established through which a remote
python interpreter was started and objects loaded into that interpreter. Transferring
and loading simple objects proved to be simple and effective, giving the ability to
access pure python objects on remote machines. This could be done without effort
from the user and without requiring more than SSH access and python installed on
the remote machine.

Even though simple objects are easy to load, the process becomes more compli-
cated when dealing with non-standard python modules such as third party libraries
or user defined classes and modules. In this case, all such modules must be loaded
into the remote python interpreter before any instances to any class of those mod-
ules are loaded. This could be done either by transferring all files containing any
class definition that could be used or trying to transfer serialized versions of all
those classes. This could become quite hard to maintain.

Like in the previous section, external software which might be used in the bench-
marks might not be available on the remote machine. The user would have to make
sure that this is not the case before running the benchmarks.

3.3.3 Transferring the whole working directory

The solution selected and implemented was to transfer the whole working directory
to a remote machine and run the program itself remotely. This was done by writing
a bash script that uses rsync and ssh to synchronize the working directory, con-
necting to the remote machine and start the program with the same command line
arguments.

16

3.4. LOGGING RESULTS

A drawback of this method is that all files are transferred to a remote machine,
even those that will not be needed. If the working directory contains many files,
the file transfer might take some time.

Although simple and somewhat inefficient, this method offers several advan-
tages. First of all, the remote machine will automatically have the same modules
in the working directory as the local machine. Secondly, all external scripts are
automatically available as well as all software placed in the working directory. This
way, the user can place scripts and programs in the working directory and have
the benchmarking tool use them regardless of whether the actual benchmark will
be performed locally or remotely. The latter is the main reason why this method
was selected since this greatly reduces the effort required by the user when testing
many different pieces of software. As long as the software resides inside the working
directory, it will be copied to all machines that might use it.

3.4 Logging results

Printing out test results on the screen is not enough for longer test suites containing
a lot of data. By using a logger module, which isn’t too strongly coupled with the
rest of the system, logging can easily be extended with functionality for new needs.

3.4.1 Storage

For storing data, CSV format is used. CSV was chosen because of it’s simplicity
combined with the fact that data from tests are uncomplicated. This works par-
ticulary well in python because Python’s standard library contains a module for
writing and reading CSV.

3.4.2 Using GNUPIot

Developers who need to test different software versions in order to analyze improve-
ment should not have to look at numbers in a CSV formated text file. A plotting
script was therefore written, using gnuplot to plot results given by our tool.

Avoiding tight integration into the benchmarking tool

Even though the script is made to handle test results made by the tool exclusively,
we decided to implement it as a standalone tool. Extending the tool by the func-
tionallity that the plot script provides, the user would not have to plot the results
explicitly. However, doing so would make it less flexible.

Dependencies

Before development of the plotting script began, some research was made to find
Python libraries that would make development easier. As expected, a compatible
gnuplot library called gnuplot-py was found and examined.

17

CHAPTER 3. THE BENCHMARK TOOL IN DETAIL

The library turned out to carry a lot of weight in form of dependencies. The
author’s philosophy has been to keep it as simple as possible, and that means
minimizing the number of dependencies required by the tool.

While gnuplot is a given requirement besides Python, we made the decision to
skip any gnuplot bindings regardless whether it would have simplified the develop-
ment or not. As mentioned above, the number of dependencies rose. In addition,
this is a plotting script, not a complex program. The extra work was relatively
small in comparison to the project as a whole.

Input

The plotting script takes an arbitrary number of files containing results created
by the benchmark tool. In each file, each row with the following structure will be
considered as something to be plotted:

(measurement that does not begin with #), (result),(standard deviation)

Anything else will be ignored. Information such as number of iterations of exe-
cution and date all begin with a # so that those fields are ignored during parsing.

As these files containing data are in CSV format, some simple parsing is done and
a new datafile containing gnuplot data is created. However, looking at the format
requirement above, GNUplot does not do any calculations regarding precision. The
standard deviation is expected with every result.

Output

Output files are created after processing and plotting the input; each containing a
single plot. How many files are produced depends on the input. The script will
produce a graph for each measurement.

18

Chapter 4

Examples

To demonstrate the tool and the benchmarks that can be performed with it, bench-
marks were created and tested out of three applications from different categories.
Firstly, Yaws web server [13] was selected for event driven and network based ap-
plications. As a static analysis application with more computing involved, dialyzer
[1] was used.

The computer used for producing the example output has the following specifica-
tions:

Operating System: | Ubuntu 11.04 (GNU/Linux 2.6.38-13-server x86_ 64)
CPU: | 2x Six-Core AMD Opteron(tm) Processor 2435
CPU cores: | 12
CPU clock: | 2600 MHz
Memory: | 32 GB

The results of this report refer to the tool itself, not the data produced in the
examples. This chapter will show a few examples of tests and the kind of output it
creates. The data itself can vary depending on compiler settings, test environment
and setup of the tests themselves. Therefore, the data presented in this chapter
is intended to give a general overview of the capabilities of the tools rather than
making conclusions about the software tested.

For that reason, all software was compiled without manually set compiler set-
tings. All applications were installed with all settings set to default.

19

CHAPTER 4. EXAMPLES

4.1 Yaws example

4.1.1 About Yaws

Yaws is a web server entirely written in the Erlang programming language and is
developed with focus on performance with high concurrency [13]. Yaws uses Erlang
as it’s main script language for generating dynamic content. According to Yaws
- Yet Another Web Server [13], this gives high performance during dynamic page
generation.

In this example, yaws performance was tested with different Erlang virtual ma-
chines.

4.1.2 Test setup

The initialization part is to install a given version on Erlang and then Yaws. Au-
tomated scripts were created to perform the installations from arguments passed
from the configure file.

When initialization is done, the server is started and also a threaded load gener-
ator running simultaneously, making a high number of HT'TP requests to the server.
When a certain number of requests have been made and answered by the web server,
the server and load generator are shut down. While iterating this process, data can
be gathered.

The content of the web page being generated and fetched is the Yaws web server
home page [13], partly because it is included in the Yaws installation and partly
because it is a reasonably large page that also has some Erlang code that is being
run to generate the page.

When the measuring is done, the virtual machine as well as the server are deleted
so that any subsequent tests are not interfered with.

One of the configuration files used is found in Appendix B. Appendix D contains
the script used for installing Yaws. See Appendix C for an example of OTP install
script.

The load generator is run on the same machine as the server itself, which might
introduce a risk of the load generator itself using too much system resources and
affecting the results. To check whether this is the case, the processor load from
the server and the load generator were examinied. Figure 4.1 shows the relative
processor load from the two processes when running on our test system.

Figure 4.2 shows an example of user time measurement. Figure 4.3 shows an
example of system time measurement.

20

4.1. YAWS EXAMPLE

35x

CPU Load

1x

Yaws Load generator

Figure 4.1. Relative CPU load of Yaws web server compared to the load generator
on dual Six-Core AMD Opteron(tm) Processor 2435 (2.6 GHz)

444
TIME_USER —+—
442 |
440 |
438 |
436 |
434 |
432 |

430 r

428

426 +

424 L | | .
OTP_R15A OTP_R15B OTP_R15B01

Figure 4.2. Example user time measurement in seconds for Yaws web server with
10000 requests of the Yaws home page index. The bars show the mean average and
standard deviation (see Section 2.5).

21

30

28

26

24

22

20

OTP_R15A OTP_R15B

CHAPTER 4. EXAMPLES

TIME_SYS ——

OTP_R15B01

Figure 4.3. Example system time measurement in seconds for Yaws web server with
10000 requests of the Yaws home page index. The bars show the mean average and

standard deviation (see Section 2.5).

22

4.2. DIALYZER EXAMPLE

4.2 Dialyzer example

4.2.1 About Dialyzer

Dialyzer is a static analysis tool for program code in Erlang [1]. The tool analyzes
modules or applications to find errors such as type errors, unreachable code and
more.

Dialyzer is distributed with the Erlang OTP distribution and installation can
easily be done together with Erlang. However, when switching between versions of
OTP, the version of Dialyzer might change. Therefore, it is not necessarily safe to
compare Dialyzer from one version of OTP to another. The tests in this section can
therefore be very inaccurate and should only be seen as an example.

The tool and the example tests are developed with the development of an Erlang
JIT compiler in mind. If the JIT compiler is tested in many versions without
changing the Dialyzer version, this test would be more relevant.

4.2.2 Test setup

The initialization part consists of downloading and installing OTP. After that, Dia-
lyzer is started from the OTP distribution and set to perform analysis on two OTP
applications, namely erts and kernel.

The analysis is iterated and measured and when enough iterations have been
run, the OTP installation is removed in the cleanup phase.

One of the configuration files used is found in Appendix A. See Appendix C for
an example of OTP install script.

Figure 4.4 shows an example of user time measurement. Figure 4.5 shows an
example of system time measurement.

23

CHAPTER 4. EXAMPLES

190

TIME_USER +——

185 r

180 |

175 r

170 |

165 L | | {
OTP_R15A OTP_R15B01 OTP_R15B

Figure 4.4. Example user time measurement in seconds for dialyzer on OTP erts
and kernel. The bars show the mean average and standard deviation (see Section 2.5).

102
TIME_SYS ——
9.8
9.6

9.4

9.2 r

88 L

OTP_R15A OTP_R15B01 OTP_R15B

Figure 4.5. Example system time measurement in seconds for dialyzer on OTP erts
and kernel. The bars show the mean average and standard deviation (see Section 2.5).

24

Chapter b

Analysis

This chapter discusses the example benchmarks as well as the tool in general. Most
of the analysis comes from the authors’ experiences of the tool while creating and
running the example benchmarks. The chapter will mainly present these experiences
and pinpoint some strengths and weaknesses of the tool.

5.1 Runscripts

Although not needed for every job, runscripts turned out to be a crucial part of
creating a benchmark. In each of our examples, runscripts were used for software
installation and in some cases also for running software.

If the runscripts were written flexibly, they could be reused in many configuration
files. An example of this is the script that downloads and installs OTP, which is
used in all example configuration files.

By moving all application specific functionality to stand-alone scripts, the tools
themselves could be kept generic. The tool does not need altering in order to add
any benchmark tests.

5.2 Configuration

The configuration files turned out to be easy to work with. All examples have an
initialization phase where software is installed, a measurement phase where soft-
ware is run and measured, and a cleanup phase where the software is uninstalled.
Implementing this using inter-job dependencies turned out to work sufficiently well.

Since the configuration files are imported as lists of Python dictionaries, they
also have a couple of disadvantages. Below are the two disadvantages found during
creation and running of the example configuration files.

25

CHAPTER 5. ANALYSIS

5.2.1 Content reuse

The contents of the configuration files could not be reused for several tests. When
testing many versions of an application with the same test, each version required its
own configuration file with only very slight variations in their content. If there are
many configuration files for a benchmark, they could become difficult to maintain
since any change would have to be made on many files.

This can, to some extent, be reduced by moving much of the common content
to runscripts which can be reused. However, some configuration must stay in the
configuration file and will therefore be repeated in each file.

5.2.2 Iterating over multiple jobs

In the tool’s current state, there is no support for iterating over more than one job.
For example, if starting a server is implemented as a job, creating load as another
and Kkilling the server as a third, there is curretly no support for going back to the
first job again. Figure 5.1 illustrates such a scenario that currently can not be done
using only a configuration file.

Init

Work

Not currently

Tterate Work .
possible

Work

o
Clean up

Figure 5.1. Example of configuration that iterates over multiple nodes. This is not
currently possible to express using configuration files.

This can be worked around in most cases. In the example test for the Yaws web
server, running the server is implemented as one job that is iterated. Both creating
load and killing the server is implemented as a single job which is iterated in parallel
to the other job. This approach, with two jobs running i parallel and iterated the

26

5.3. RESOURCE USAGE MEASUREMENT

same number of times solved the problem for this specific scenario. Although, it
requires that there is no dependency between them.

5.3 Resource usage measurement

The resource usage measurement worked well for the example tests. Since all mea-
surement could be done using the system’s own resouce usage system call, all this
information was easy to obtain.

The drawback of this method was that resource usage could only be measured
per process. If more detailed information is needed, for example which parts of the
program is using the most resources, a profiling tool would be needed.

5.4 Logging and plotting

The logging and plotting features of the tool proved to be a fast and easy way to
get an overall performance measurement of an application. After a test had been
run, presenting the result was an easy task.

If the user requires a different output format or plot layout, this would require
a bit of extra work by the user. The logging and plotting was intended to provide
a quick and simple way of presenting data, which it turned out to be.

27

Chapter 6

Conclusion

This chapter summarizes conclusions drawn during development and testing of the
benchmark tool. Conlusions are based primarily on the analysis chapter.

6.1 Recommendations

This section aims to list the lessons learned when using the tool. In order to use
the tool efficiently and easily, the following tips are useful.

6.1.1 Benchmark for comparison - profile for detail

The tool itself does not come with any profiling features. The intention of this
tool is to perform comparisons of software in order to give an overview of relative
performance.

When optimizing software, overall performance usually gives too little detail
about bottlenecks and other performance problems. That is what a profiler is
intended for. Therefore, while a benchmark tool can give a good overview of per-
formance increase or decrease, profiling is still needed for the details.

Our recommendation for software optimization is therefore to use the bench-
marking tool together with a profiler.

6.1.2 Keep the scripts general

Since content reuse is limited in the configuration files, the scripts and applications
called from them should capture as much as possible of the common functionality.
This way, one can avoid updating every configuration file if the tests were to change.

6.2 Future work

The time allowed to be spent on the project required that some features were pri-
oritized away. This section describes what was skipped as well as reasons behind
the decisions.

29

CHAPTER 6. CONCLUSION

6.2.1 Error handling

Error handling is currently done by simple assertions, using python’s built in func-
tionality. When an incorrect inputfile is given, assertions will fail and our tool exits
unsuccessfully. The problem is that the user will not fully understand the issue
from the error messages provided by themselves alone.

We could implement custom made error classes. The benchmark tool is primary
constructed for internal testing and these user friendly features have thus not been
prioritized.

Efforts have been made to make sure that user input errors are exposed as early
as possible.

6.2.2 Iterating over multiple nodes

Flexibility has been the goal in the development of the tool. The current structure
allows complex test suites, but there is still room for improvement. One potential
flaw is the inability to iterate over multiple nodes. By implementing a new job, this
problem can be bypassed. The new job would not execute a command, but contain
an executor and run that multiple times. This hierachial functionality allows more
complex benchmarks.

30

Bibliography

Ericsson AB. Dialyzer manual. 2012. URL: http://www.erlang.org/doc/
man/dialyzer.html (visited on 05/10/2012).

Ericsson AB. Erlang FAQ. 1. What is Erlang. 2012. URL: http: // www .
erlang.org/faq/introduction.html (visited on 05/18/2012).

Ss Um An and Guido Van Rossum. “Python for Unix/C Programmers Copy-
right 1993 Guido van Rossum 1”. In: Proc. of the NLUUG najaarsconferentie.
Dutch UNIX users group. 1993.

Mikael Ostberg. “UTS: A Portable Benchmark for Erlang/OTP”. Bachelor
Thesis. Swedish Institute of Computer Science (SICS), The Royal Institute of
Technology (KTH), 2010.

Python Software Foundation. Python v2.7.3 documentation. 35.13. resource -
Resource usage information. 2012. URL: http://docs.python.org/library/
resource.html (visited on 04/22/2012).

Python Software Foundation. Python v2.7.3 documentation. 17.4. signal —
Set handlers for asynchronous events. 2012. URL: http://docs.python.org/
library/signal.html (visited on 06/07/2012).

Python Software Foundation. Python v2.7.3 documentation. 15.1 os - Miscel-
laneous operating system interfaces. 2012. URL: http://docs.python.org/
library/os.html (visited on 05/18/2012).

Python Software Foundation. Python v2.7.8 documentation. 11.1 pickle - Python
object serialization. 2012. URL: http://docs.python.org/library/pickle.
html (visited on 05/21/2012).

David Goodger. In: (July 2011). URL: http: //python . net / ~goodger /
projects/pycon/2007/idiomatic/handout.html (visited on 05/18/2012).

The IEEE and The Open Group. The Open Group Base Specifications Is-
sue 6. getrusage. 2004. URL: http://pubs . opengroup . org/onlinepubs/
009604599/functions/getrusage.html (visited on 04/22/2012).

Irmen de Jong. Pyro Manual 2012. URL: http://packages . python.org/
Pyro/ (visited on 05/21/2012).

31

[12]

[13]

BIBLIOGRAPHY

Guido van Rossum. A Brief Timeline of Python. 2009. URL: http://python-
history.blogspot.se/2009/01/brief-timeline-of-python.html (visited
on 05/18/2012).

Claes Wikstrom. Yaws - Yet Another Web Server. 2011. URL: http://yaws.
hyber.org/yaws.pdf (visited on 05/10/2012).

32

© 00O U WN -

== ==
B W= O

Appendix A

Dialyzer configuration example

{ "command"

{

"command "
"logging"
"name"

"log_ file"
"iterations"
I

{ "command"

"scripts/build _OTP_from git.sh https://github.com/erlang/otp. git

+ '"——working dir /tmp/x—bench —checkout OTP_R15B01 —disable —hipe"

"/tmp/x—bench/otp/bin/dialyzer ——build__plt —apps erts kernel",
{"measuring" : ["time"],

"dialyzer —R15B0l—erts —kernel ",

"dialyzer_ R15B01"},

10

"rm —rf /tmp/x—bench" }

33

© 00O U WN -

CO W W W WWNDDDNLLDNDNDNDDNDN N — e e =
QR WN R OO0 UER WNFE O OO U WwN O

Appendix B

Yaws configuration example

" id n
"command "

"dependencies"

vid "
"command "

+ "/tmp/x—bench/otp

"dependencies"

vid"
"command"
"dependencies"
"logging"

1

"scripts /build_ OTP_from git.sh https://github.com/erlang/otp.git "
+ "——working dir /tmp/x—bench —checkout OTP_RI15B01",

[l

3

b
"scripts/yaws/run_yaws.sh /tmp/x—bench/yaws",

[2]

{"measuring ":

2,

"scripts/yaws/build__yaws_ from__git.sh https://github.com/klacke/yaws. git
scripts /yaws/yaws.conf —working dir /tmp/x—bench ——disable—pam",

|1

)

"name": "OTP_RI15B01",

"log_ file": "log yaws RI15B01"},
: 100

"iterations"

"id" 4

"command "

"dependencies"
"iterations"

vid "
"command "
"dependencies"

[2] 2
100

5

"rm —rf /tmp/x—bench",

[3’

4]

["time",

"python scripts/yaws/run_load generator.py 12 10000 http://127.0.0.1:8000 && '
+ "scripts/yaws/stop_yaws.sh /tmp/x—bench/yaws",

35

0~ Uk WN

SR R R W W W W W WWWWWRNNNNNNNNNDNRFRF R =R =R
WNHFRF OO UERE WNFRF OO UERE WNHFH OO UUkR W - OO

Appendix C

OTP installation script example

#!/bin /bash

Script for fetching and building OTP from git

function print help and exit {

echo ’usage: ./build OTP_from_ git.sh <URL> [—-—checkout <commit/branch/tag>]\

[-—working dir <dir >] [<config_ arg>
exit
}

if [$# -1t 1]

then
print__help_and_ exit

fi

First parameter must be URL of git
URL=$1

WORKING_DIR=.

CHECKOUT=""

shift

while ["$1" I= ""]
do
case $1 in
——checkout)
CHECKOUT=$2

—working_ dir)
WORKING._DIR=$2

)

*)

esac
shift
shift
done

break

mkdir —p $WORKING_DIR
cd $WORKING_DIR

git clone SURL otp

cd otp

]

repo:

37

repository .

APPENDIX C. OTP INSTALLATION SCRIPT EXAMPLE

44 if ['$CHECKOUT' I= "' |

45 then

46 git checkout $CHECKOUT
47 fi

48

49 ./otp_build autoconf

50 ./otp_build configure —prefix=%(pwd) $x
51 ./otp_build boot

52 make install

38

Appendix D

Yaws installation script example

1 #!/bin/bash

2

3 # Script for fetching and building yaws from git repository.
4

5 function print help and exit {

6 echo ’usage: ./build_yaws_git.sh <URI> <OTP_ROOT> <CONF_TEMPLATE>\
7 |-—checkout <commit/branch/tag>]\
8 [-—working dir <dir>] [<config arg> ...]’
9 exit

10 }

11

12 if [$# -1t 3]

13 then

14 print__help__and_ exit

15 fi

16

17 # First parameter must be URL of git repo:
18 URL=$1

19 OTP=$2

20 CONF_TEMPLATE=$3

21 WORKING_DIR=.

22 CHECKOUT=""

23

24 shift

25 shift

26 shift

27

28 while ["$1" 1= "']

29 do

30 case $1 in

31 ——checkout)

32 CHECKOUT=$2

33 HH

34 —working dir)

35 WORKING_DIR=$2

36 i3

37 *)

38 break

39 esac

40 shift

41 shift

42 done

43

39

APPENDIX D. YAWS INSTALLATION SCRIPT EXAMPLE

OLD_DIR=$ (pwd)

mkdir —p $WORKING_DIR
cd $WORKING_DIR

git clone $URL yaws
cd yaws

if ['SCHECKOUT® != "' |
then

git checkout $CHECKOUT
fi

export ERL=30TP/bin/erl

export ERLC=30TP/bin/erlc
autoconf

./ configure —prefix=$(pwd) $=x
make

make install

cd $OLD_DIR
echo $(pwd)

sed s/’<YAWS DIR>’/$(echo $WORKING DIR/yaws \
| sed s/’\/’/’\\\/’/g)/g $CONF_TEMPLATE > $WORKING DIR/yaws/etc/yaws/yaws. conf

40

