&

L,
ZKTHS

% VETENSKAP g‘[}
39 OCH KONST 2%
9 9

Q%X%b

KTH Information and
Communication Technology

Instant Simulator

A tool for generating simulators from machine-readable descriptions

KARL JOHANSSON

Master Thesis at ICT
Supervisor: Frej Drejhammar (SICS)
Examiner: Christian Schulte (School of ICT)

TRITA-ICT-EX-2014:106

Abstract

This thesis presents Instant Simulator, a tool for
simulating digital signal processors (DSPs) to allow
cycle-accurate benchmarking of programs. The
purpose of the tool is to assist the Unison compiler
when comparing generated machine code between
Unison and industrial strength compilers

Instant Simulator is designed to reuse parts of
Unison and strike a balance between performance and
ease of use. DSPs are described in machine-readable
specifications and compiled into simulators, partly
with the help of tools developed for Unison.

A case study is conducted to evaluate Instant
Simulator, where the C67x DSP from Texas
Instruments is simulated during execution of small
test programs. The case study ensures the correctness
and completeness of the tool and the simulations
executes at a clock rate between 2.6 MHz and
9.7 MHz on a modern mid-tier laptop, depending on
the level of detail in simulation.

Acknowledgments

I want to express my deepest gratitude to my supervisor, Frej Drejhammar.
Frej has been encouraging and supportive, not only throughout the work for
this thesis, but also during my time working at SICS. Frej authored several key
components in Instant Toolsmith, for which the work in this thesis is heavily
dependent on.

[am very grateful for the opportunity Christian Schulte gave me by hiring me
at SICS. Christian’s two courses at KTH and his guidance at SICS has truly
been valuable. I consider my time working at SICS as more rewarding than
the last two years of studying at KTH.

I want to thank Mattias Jansson for his collaboration during the last two
years, for his support in general and the sound advice he provided during the
work on this thesis. Mattias’ ability to detect irrelevant text helped this report
become more concise.

Lastly, I am thankful to my family for their support. In particular my
girlfriend Irini, who has endured unsolicited monologues about computers,
among other eccentricities during the past few months.

Contents

Contents

1

Introduction

1.1 Motivation
1.2 Solution
1.3 Contribution
1.4 FEthics and Sustainability oL
1.5 Thesis Structure.

Background

2.1 A Metaphor for Computers
2.2 The Internals of a Processor
2.3 Simulating Processors. o0
2.4 Instant Toolsmith ADL
2.5 Digital Signal Processors
2.6 Related Work in Architecture Description Languages

System Design

3.1 System Overview
3.2 Generic Simulatoro
3.3 Build Scripts

The Generic Simulator in Detail

4.1 Executinga Cycle. oo
4.2 Decoding Bundles of Instructions and Conditions
4.3 Maintaining Bundles in the Pipeline.
4.4 Executing Instructions and Conditions
4.5 Data Structureso

The Build Scripts in Detail
5.1 Building Simulator State

~N 3 3 O ot 3

10
16
19
20
23

25
25
26
27

29
29
30
31
34
36

41

5.2 Building Executable Instructions and Conditions
5.3 Building Register Functions
5.4 Building a Decoder

6 Evaluation by Case Study: C67x DSP
6.1 Evaluation Methodology
6.2 A Brief Overview of the C67x DSP
6.3 Limitations and Work-arounds
6.4 Describing the C67x DSP in Instant Toolsmith ADL
6.5 Testing the C67x DSP with Fibonacci.
6.6 Extending the C67x DSP for Recursive Factorial
6.7 Performance Results,
6.8 Analysis

7 Conclusions
7.1 Key Properties of Instant Simulator
7.2 Future Work

Bibliography
Appendices

A Instant Toolsmith ADL
A.1 Describing Registers
A.2 Describing Instructions
A.3 Describing Conditions
A.4 Miscellaneous Information

List of Algorithms

S T W N =

A procedure for retrieving a register by alias.
A procedure for retrieving a bitfield of a register.
A procedure for updating the value of a register.
A procedure for updating a bit field in a register.
A procedure for updating the value of a aliased register.
An non-recursive version of Fibonacci

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

6.1

A model of the needed functionality when preparing a meal.
A model of the core functionality that make up a processor.

An example of an instruction format in machine code
Executing software versus simulating execution of software
The processor-specific parts and the generic parts of a simulator .
A model of a simulator supporting predicated execution.

The design of Instant Simulator.

The steps taken during execution of a pipelined simulator.

The initial decoded information needed by the generic simulator .
An extension to the initial decoded information.
Pipeline state during five cycles of execution.
The stages of a typical five-stage pipeline.
All of the decoded information needed for simulation.
A small register hierarchy.

Instruction path for single-cycle instructions in the C67x DSP. . .

1

10
11
12
16
18
22

26

30
31
32
32
34
35
37

68

List of Figures

6.2 Instruction path with four delay slots in the C67x DSP. 68
6.3 Instruction path of branch instructions for the C67x DSP 69

Listings

2.1
4.1
4.2
4.3
5.1
5.2
5.3
5.4
9.5
5.6
5.7
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
Al
A2
A3
A4
A5
A6
AT
A8
A9

An example of a description in Instant Toolsmith ADL.
Construction of a small register hierarchy.
Allocating functional units. 0oL
The construction of an instruction.
The generated source code for creating simulator state.
Example instruction for showing semantics transformation. . .
Example instruction with an inlined utility function.
Example instruction with flattened semantics.
Example instruction with type information.
Example instruction, expressed in C source code.
An instruction trie, created by Instant Disassembler.
Register definitions for the C67x DSP.
Declarations of functional units for the C67x DSP.

A utility function that checks the conditions for the C67x DSP.

The C67x DSP assembly source code for iterative Fibonacci. .
C67x DSP assembly of recursive factorial.
Declarations of custom C67x DSP primitives.
Definitions of custom C67x DSP primitivesin C..

Assembly of recursive factorial with implicit data dependencies.

C67x DSP assembly of recursive factorial (optimized).
The most basic register definition.
Register with a defined size
Ax and PC declared with different access properties.
Sub-registers with specified overlap.
Sub-registers extended with sibling references.
Syntax of register class definition.
Example of register class definitions.
Registers defined using abstract registers.
An initial and empty instruction.

A.10 Instruction with a specified bit width.
A .11 Instruction with valid functional units.

List of Figures

A.12 Instruction with valid issue-slots specified. 89
A.13 Instruction with input operands. 90
A.14 Instruction with an assembly representaion. 91
A.15 Instruction with encoding added. 91
A.16 Instruction with semantics added. 93
A.17 The definition of an abstract base instruction. 94
A.18 An example of a condition. 94
A.19 A definition of two primitives. 95
A.20 An example of a utility function. 96
A.21 An example of a macro function. 97
A.22 Declaration of functional units. 97
A .23 Declaration of issue slots. 98

Chapter 1

Introduction

This thesis presents the implementation and evaluation of Instant Simulator.
Instant Simulator is a tool providing simulation of digital signal processors
(DSPs), capable of providing cycle-accurate benchmarking of simple programs.
The tool is designed to quickly support new DSP architectures (and revised
DSP architectures) without needing to update complex underlying source
code. Furthermore, its design balances ease of use with performance
considerations.

1.1 Motivation

Instant Simulator is created to support the development of the compiler
Unison [17]. Generated machine code from Unison will be compared to
generated machine code from industrial-strength compilers on simulated
DSPs. The following is required of Instant Simulator:

Support for Doing comparisons between compilers on multiple

multiple DSPs DSPs strengthens the evaluation of Unison. Instant
Simulator therefore needs to allow simulation of
multiple DSPs.

Completeness Unison is partly developed to effortlessly support new
DSP architectures and Instant Simulator must have
the same goals. In particular, Instant Simulator will
need to simulate DSPs at a sufficient level of detail.

CHAPTER 1. INTRODUCTION

Correctness Execution of programs on simulated computers must
be correct, both in program behavior and in cycle
accuracy.

Performance Although less essential than previous requirements, it

is important that simulation is as fast as possible to
increase the usefulness of the tool.

1.2 Solution

Instant Simulator reuse the tools developed to let Unison support multiple
DSPs. Unison allows the needed processor-specific details of DSPs to
be described in a user-friendly architecture description language (ADL),
named Instant Toolsmith ADL. These machine-readable descriptions will be
evaluated by a tool, generating the needed source code to make a complete
compiler. Section 2.3 expands further on the usage of an ADL. Instant
Toolsmith ADL is also used by Instant Simulator, allowing simulation based
on the same descriptions of DSPs made for Unison.

The design of Instant Simulator is optimized for performance, by
generating C source code based on the machine-readable descriptions, which
can be compiled into fast simulators.

Correctness, completeness, and performance are all evaluated by
conducting a case study in Chapter 6, simulating the C67x DSP from Texas
Instruments [7]. Completeness is evaluated by investigating how easily the
C67x DSP can be specified in Instant Toolsmith ADL and how well simulation
captures the relevant details of a DSP. Correctness and performance are
evaluated by running two test programs, observing at the results of execution
(both in program behavior and cycle-accuracy) and the time spent executing
the programs.

1.3. CONTRIBUTION

1.3 Contribution

The contributions of this thesis are the following:

1. The design and implementation of Instant Simulator. In particular how
the implementation reuse Instant Toolsmith ADL, developed for Unison
to support multiple DSPs.

2. The evaluation of Instant Simulator in a case study, demonstrating the
capabilities of the tool by simulating the C67x DSP [7].

Instant Toolsmith ADL (documented in Appendix A) is co-developed with
Mattias Jansson and Frej Drejhammar. Instant Simulator heavily benefits
from a currently nameless evaluation tool, also co-developed with Mattias
and Frej. In one part of its implementation (covered in Section 5.4), Instant
Simulator makes use of Instant Disassembler, a tool solely developed by Frej.

1.4 Ethics and Sustainability

No ethical quandaries, nor any effects on sustainability surfaced when
conducting the research for this thesis.

1.5 Thesis Structure

The details of simulating multiple DSPs, benefited from the use of an ADL, is
introduced in Chapter 2. This chapter describes the Instant Toolsmith ADL
and ends with a summary of related work in other ADLs.

Chapter 3 outlines the design of Instant Simulator, described in greater
detail in Chapter 4 and Chapter 5.

Instant Simulator is evaluated in a case study in Chapter 6. Conclusions
drawn from the evaluation and recommendations for future work are given in

Chapter 7.

CHAPTER 1. INTRODUCTION

Instant Toolsmith ADL, the ADL used in machine-readable specifications
of DSPs for Instant Simulator, is documented in Appendix A, co-authored
with Mattias Jansson.

Chapter 2

Background

The goal of this chapter is to explain the internals of a computer at a level of
detail, necessary for the purpose of computer simulation. Furthermore, this
chapter aims to lay a foundation for the design and implementation of Instant
Simulator. These goals are attempted by first demystifying the workings of
the central processing unit (hereafter referred to as a processor) of a computer
and then explain how they can be simulated in software programs. Simulation
is elaborated further by motivating the support of multiple processors and
introducing the benefits of an ADL. Finally, Instant Toolsmith ADL and the
class of processors supported by Instant Simulator (digital signal processors)
are introduced before ending this chapter with related work in ADLs.

2.1 A Metaphor for Computers

Imagine someone preparing a meal with the help of a recipe. Following the
cooking instructions found in the recipe, this person shares many similarities
with a computer executing a program. Figure 2.1 shows a model outlining
core components providing the functionality needed to prepare a meal, now
described in detail.

Cooking instructions are provided in textual form as input to a reader
component, which will read, understand and transform instructions into an

mental image of actions to be performed by an actor on some input.

The actor performs the actions needed to complete each cooking

CHAPTER 2. BACKGROUND

Cooking Instructions

Cooking Results

Mix milk and cracked eggs.
Mix flour with the melted butter.
Wait until the butter has cooled.

=W

Old results

Melt butter on the stove. New results

Reader Queue Actor

Figure 2.1: A model of the needed functionality when preparing a meal. The
reader components reads cooking instructions, which are planned in the queue before
being executed by the actor. The cooking results are repeatedly updated until the
preparation of the meal is completed.

instruction, using the necessary incomplete cooking results from earlier
operations. Cooking results are updated repeatedly for each cooking
instruction completed, until there are no more instructions to carry out, in
which case the preparation of the meal is complete.

Some cooking instructions have to be carried out before others because
instructions make use of previous results. This is managed in queue structure
where instructions await the completion of needed temporary results. Our
model in Figure 2.1 contains example input which first instructs the cook
to melt butter, then wait until the temperature drops before mixing it with
flour. People devoid of skills in the culinary arts might lack the capabilities
to handle this complexity, mixing flour and butter while the temperature is
still too hot, resulting in inedible food. Others are skillful enough to reorder
the instructions, not only preparing the meal correctly, but also reducing the
time it takes to prepare the meal. For instance, they might mix milk and eggs
while waiting for the melted butter to cool off.

2.2 The Internals of a Processor

Even though the metaphor used in Section 2.1 is an unnatural way of
describing a cook, it captures the essential functionality of a processor in
a computer. Processors receive instructions as input, which are scheduled

10

2.2. THE INTERNALS OF A PROCESSOR

Machine code
3.1010000001011100101011
2.1010110101010010101010
1.1010100111111111011010

Processor
Decoder s Pipeline] Executor
Address
Old results
New results

N

State

Figure 2.2: A model of the core functionality that make up a processor. The
decoder retrieves and decodes instructions at a specific address in the machine code.
The decoded instruction is then scheduled in a pipeline before being carried out by an
executor. State is repeatedly used as input to the instructions, while being updated
as the machine code is executed.

and carried out on previous results to get new results. This section describes
the core functionality of a processor in detail by use of the model shown in
Figure 2.2, based on our model of meal preparation shown in Figure 2.1. The
description of computer hardware in this section is based on Hennessy et al.

[6].

2.2.1 Decoding instructions

Unlike people, processors are incapable of interpreting and understanding the
meaning of given instructions. However, instructions can still be decoded from
one unambiguous representation into a sequence of actions. They are received
as machine code in form of binary strings. Different parts of these strings
represent needed information to perform an action, as shown in Figure 2.3.

Another difference between a decoder and the reader in the metaphor is the

11

CHAPTER 2. BACKGROUND

Action: Mix Butter Flour

111110110100000110111010010001111011

Figure 2.3: An example of an instruction format in machine code. One binary
substring is used to signify which action to take, while the rest of the binary string
is used to specify the input operands. Instructions are encoded stmilarly in machine
code (although cooking instructions are not executed in computers).

use of two inputs rather than one. The decoder is given a buffer of instructions,
similarly to the reader. The second input marks the position, or address in
the machine code where the next instruction resides. Results from performing
the actions corresponding to instructions may affect the address of the next
instruction to be decoded.

2.2.2 Execution of instructions

Instructions represent sequences of actions carried out on temporary results to
create new results, similarly to cooking instructions. One difference however,
is the granularity of the actions. For instance, the third cooking instruction in
Figure 2.1 involved mixing flour and melted butter. A processor would need
to handle this task in smaller bites. Below are three instructions collectively
achieving the same results in steps more suitable for a processor:

1. Move flour into bowl A.
2. Move butter into bowl B.

3. Add bowl A and bowl B into bowl C.

Processors require the input of instructions, known as operands, to explicitly
declare storage for temporary results. Values (ingredients) are put into some
form of storage (bowls) and are referred to in operations. As shown in the
first two of the three instructions above, instructions may also take constants
(flour and butter) as operands.

Processors do not perform computations using physical ingredients. Values
are instead stored identically to the instructions found in machine code.

12

2.2. THE INTERNALS OF A PROCESSOR

Section 2.2.1 described how these binary strings could represent actions, but
binary strings can in fact represent nearly anything. They can represent
integers, characters and even colors. The processor cannot interpret their
meaning more than what is necessary to carry out computations. Whether
the contents of storage A combined with storage B denotes adding 13 with 4
to create 17, or represents adding blue with red to create purple is irrelevant
to the processor. It is up to the author of the recipes to keep track of what
these values stand for.

2.2.3 State

Rather than bowls, pots, and pans, processors store results in a memory
hierarchy. The top of the memory hierarchy is made up of registers, providing
very limited storage but allow the processor to retrieve and store values
extremely fast. Memory further down the hierarchy will compromise speed
of usage for storage size and is called primary memory. Registers and primary
memory are all considered volatile because the stored results are lost when
the computer shuts down. Primary memory and memory components further
down the hierarchy are not considered part of a processor in practice. Memory
types further down in the hierarchy allow persistent storage, but are beyond
the scope of this thesis.

2.2.4 Classes of instructions

Instructions in a processor are often separated into three categories:

Arithmetic and logic instructions These instructions take constants and
registers as input and perform some operation, such as multiplication or
logical comparisons.

Move instructions Values sometimes need to be moved between registers or
between registers and primary memory locations, which is carried out
by these instructions.

Control flow instructions To allow execution to continue from another
position in the buffer of machine code, instructions of this type allow the

13

CHAPTER 2. BACKGROUND

address of successive instructions to be changed, either unconditionally
or based on some logic computation.

Instructions from different categories will use different resources in the
processor when being executed, as explained in the next section.

2.2.5 Functional units

Figure 2.2 shows that instructions are moved from a pipeline into an executor
component, performing the corresponding operations. In reality, this executor
is composed of many functional units capable of carrying out needed actions.
A cooking analogue to a functional unit is a stove or a mixer, used by the
actor for some specific demand.

Processors have at least one a unit performing integer arithmetic and
another logical operations. Other units perform actions required by control-
flow instructions and move instructions. The need for this extra level of detail
is motivated in Section 2.2.6, where dependencies between instructions are
depict.

2.2.6 Pipeline

Instead of a queue, processors issue instructions into a structure known as a
pipeline. A major difference between a pipeline and a queue is instructions
do not only wait until they are executed. Minor tasks are performed as
instructions progress through the pipeline, even after they finish executing.

Some processors are sophisticated enough to resolve dependencies between
instructions during execution to achieve better performance. For example,
instructions are reordered, and executed on functional units in parallel,
similarly to a skillful cook in the metaphor. Other processors are made
up of simpler hardware, relying on an input of instructions for which all
dependencies have already been resolved.

In the cooking metaphor, dependencies between cooking instructions are
defined as results from one instruction needing to be completed before being

14

2.2. THE INTERNALS OF A PROCESSOR

input in successive cooking instructions. Dependencies create unwanted
situations, known as hazards in processors. These hazards exist in three
shapes:

Data hazards These correspond to the instruction dependencies in the
cooking metaphor, where results from instructions needed in other
instructions are not yet ready.

Structural hazards The finite amount of resources in a processor, in
particular functional units, limits the rate at which instructions are
executed, creating these hazards.

Control hazards Instructions that change the control-flow of execution
create pipeline issues because when they finish executing, the pipeline
will contain successive instructions that are not meant to be executed.

To avoid issues with hazards being unsolvable during execution, processors
require delay slots. Delay slots are positions in machine code that need to
be filled with instructions (there cannot be empty fields in machine code and
instructions are decoded at a fixed rate), but where no useful instruction
fits. Processors fill these delay slots with so-called no operation (or NOP)
instructions that do not perform any actions. The notion of a delay slot is
needed for the evaluation of Instant Simulator in Chapter 6.

The depth of the pipeline, along with the small operations performed in
each step and the hazards that can occur, are collectively known as the pipeline
behavior.

2.2.7 Steps of Execution

Unlike a processor, cooks will read, plan, and execute cooking instructions
in continuous time steps. Processors, being less spontaneous, execute the
necessary steps of execution in (more or less) fixed time steps known as cycles.
Ideally in a single cycle, a processor will decode an instruction and issue it
into the pipeline, while letting all instructions currently residing in the pipeline
progress one step further, executing one or more of them. Unfortunately, this
view is oversimplified and naive for our purposes of understanding processors
and simulators. Instructions tend to require multiple cycles to finish executing

15

CHAPTER 2. BACKGROUND

and unresolved hazards force other instructions to wait until their input state
is ready.

2.3 Simulating Processors

Not only does our model of a processor, depict in Section 2.2, share similarities
with someone preparing a meal, but also with a typical software program.
Indeed, software programs are often created to receive a form of input and
perform computations. Figure 2.4 shows how a simulator is executed like any
other program. Essentially, all that is needed to create a simulator is to define
functionality for decoding instructions of machine code and how they update
program state.

One problem when simulating a computer is the extra computation needed
when a machine executes software intending to imitate a machine. Another
issue is the fact that capturing every little behavioral and physical detail of a
processor results in an extremely complex system which is redundant for many
purposes of simulation. Trade-offs are considered in their designs, influenced
by the intended usage. Even the brief overview of a processor in Section 2.2
is more detailed than necessary of some purposes.

Having established that the level of realism in a simulator is coupled to a
specific purpose, the intended usage of Instant Simulator is in need of being
recounted for in order to motivate its design, which was covered in Section 1.1.

[Software Program]

ExecutM Nxecutes

Computer [Simulated Computerj
Executes
Computer
Figure 2.4: Ezecuting software versus simulating execution of software.

Simulating a computer is no different from executing a software program. Software
programs are indicated by the rounded rectangles and physical machines have
rectangles with hard edges

16

2.3. SIMULATING PROCESSORS
2.3.1 Simulation with support for multiple processors

Developing a simulator supporting multiple processors requires software reuse
to avoid large amount of duplication program code. The possibilities of
avoiding repetition are found by observing our current model of a processor
in Figure 2.2.

Our current model of a processor contains processor-specific components:
The decoder, pipeline and executor. These components collaborate with
each other, maintaining processor-specific state and is thus changed between
simulators of different processors.

How these components collaborate with each other, indicated by the
directed paths between them, is independent of the specific details of a
processor for our purposes of simulation. The wiring between components may
remain unchanged between different simulators, thus allowing us to implement
a generic version of a simulator. This generic simulator can then be extended
with the following needed processor-specific details:

How state is defined.

How instructions of are decoded.

The semantics (actions) of the instructions.

The pipeline behavior.

Instead of interweaving processor-dependent components with the generic
parts of the simulator, a clear separation in the design reduces the problematic
of replacing components when supporting another processor. Figure 2.5 shows
how the generic parts are separated from the processor specific components.

The process of supporting multiple processors can be simplified further.
While our model of a processor contains a handful of details, in reality,
processors support hundreds of different instructions, maintaining state in
complex memory hierarchies. These highly repetitive and fine-grained details
of a processor can be specified using a higher-level language, known as an
architecture description language (ADL). Descriptions are then evaluated by
a tool in order to generate source code compatible with the generic components
of the simulator.

17

CHAPTER 2. BACKGROUND

Machine Code
Generic Simulator

N

' | Address ;
! Old results

~
N

1
1
1 1
1
1 7
7
7 1
1
1

Decoder Pipeline State Executor
Processor-specific Components

Figure 2.5: The separation of the processor-specific parts and the generic parts of
a simulator. This figure is based on Figure 2.2, where the two parts are combined.

2.3.2 Simulation based on an ADL

The purpose of an ADL is to help describe a system (a processor in our case)
to some desired level of detail [2]. These machine-readable descriptions follow

grammatical and semantic rules, allowing them to be transformed into a form

compatible with generic parts of various tools.
Section 2.3.1 summarized all the processor-specific parts of a typical
simulator based on our current model, which an ADL must allow a processor-
description to express in order to create simulators. All possible instructions
combined with all allowed operands must map to unique binary strings in
order for a decoder component to function. Possible hazards will also need
to be described, along with instructions passage through the pipeline. Each
instructions must map to a sequence of actions to perform on input. how
detailed this information is depends on the purpose of the tool to be generated.

Separating processor-dependent parts from generic parts, not only in

18

2.4. INSTANT TOOLSMITH ADL

design but also in use of language, comes at an initial cost. The generic part
of simulator has to be developed together with an ADL and a tool capable
of evaluating this ADL to generate compatible source code. However, the
amortized cost of creating simulators for an increasing number of processors is
reduced over time, compared to manually rewriting the fine-grained repetitive
details in source code.

2.4 Instant Toolsmith ADL

Instant Simulator follows the design principles outlined in Section 2.3.1,
allowing descriptions of processors for generating the necessary functionality.
These descriptions are written in Instant Toolsmith ADL, documented in
greater detail in Appendix A. This section aims to briefly show how the
different parts of a processor are described in Instant Toolsmith ADL with
the help of an example in Listing 2.1.

Instant Toolsmith ADL is implemented as a subset of the programming
language Scheme [12], where source code is structured by the (excessive) use
of parentheses. Listing 2.1 shows an example, which begins by defining state
in form of registers, capable of storing binary strings with a maximum bit

width of 32 bits.

The second part of Listing 2.1 defines an instruction add-regs, capable of
performing addition on values stored in registers. This instruction requires 32

(define-reg regl (size 32))
(define-reg reg2 (size 32))
(define-reg reg3 (size 32))

(define-instruction add-regs
((size 32)
(functional-unit (arith1l) (arith2))
(operands (reg dst r32) (reg srcl r32) (reg src2 r32))
(encoding P (22 #b11110000100110011010) srcl src2 dst)
(semantics (set-reg! dst (add 32 srcl src2)))))

Listing 2.1: An example of a description in Instant Toolsmith ADL.

19

CHAPTER 2. BACKGROUND

bits to be represented in machine code, declared with the size attribute. It
can be executed on one of two functional units, arithl and arith2, described
with the functional-unit attribute. It takes three registers as input (identified
as srcl, src2 and dst), storing the sum of two registers into the third register,
indicated by the operands and semantics attributes. Which registers are used,
is provided in the encoding attribute together with a constant binary string
with a bit width of 22 bits. A P bit, explained in Section 2.5.1, is also provided
in the encoding of the instruction.

Functional units carry out execution in a real processor according to
Section 2.2.5. However, they are only included in Instant Toolsmith ADL
to allow structural hazards to be detected. There is no way to describe the
details of a functional unit besides a unique name.

Listing 2.1 captures much of the needed information to generate the
processor-specific components. The definition of registers allow state to be
generated. The encoding attribute and the size attribute in instructions are
evaluated to generate the decoder. The semantics describes the actions taken
when executing an instruction, needed for an executor component.

Unfortunately, the current description of the instruction lacks the necessary
details for describing its pipeline behavior. Structural hazards are described
explicitly, and data-dependency hazards can be implied, but there is currently
no notion of control flow hazards. Moreover, there is no way of describing
which hazards are resolved by the processor, among other needed details.
Chapter 3 expands on this issue further, due to its influence on the design of
Instant Simulator.

2.5 Digital Signal Processors

Instant Simulator supports a specific class of processors, known as digital
signal processors, described in detail by Tan et al. [14]. Informally, a
digital signal processor (DSP) can be characterized as means for carrying
out numerically intensive and repetitive tasks for which there are real-time
constraints. The reasoning behind this choice is that the parts of these
processors (relevant to Instant Simulator) are simpler than what is found in
a general purpose processor (GPP). A real example of a DSP is characterized
in Section 6.2.

20

2.5. DIGITAL SIGNAL PROCESSORS
2.5.1 Very long instruction word

Section 2.2.6 briefly touched upon the notion of instruction-level parallelism
(ILP) by mentioning how independent instructions in the pipeline are
reordered and executed on functional units in parallel, to achieve better
performance. DSPs also execute instructions in parallel on functional units,
but will typically not reorder them due the high cost of power usage. The truly
simple DSPs cannot even handle any of the three types of hazards categorized
in Section 2.2.6.

DSPs achieve ILP with a technique known as very long instruction word
(VLIW). Rather than decoding one instruction at a time, bundles (also known
as packets) of instructions are decoded. Multiple instructions in the same
bundle progress through the pipeline and execute in parallel.

VLIW requires machine code expressing bundles of instructions.
Boundaries between bundles are set by letting the first bit of an instruction
encoding signify whether the instructions is bundled with the previous
adjacent instruction. Another variant is letting the last bit of the instruction
encoding signify whether the instruction is to be bundled with the adjacent
successive instruction. This indicator bit is often referred to as the P bit,
where P stands for packet.

2.5.2 Conditional execution

Instructions that might change control flow, depending on the current state
of computation, result in unwanted control hazards. GPPs reduce their
presence by predicting whether the control flow is changed and then continues
execution according to the prediction. Performance is not hurt by control
flow instructions when the processors predicts the outcome correctly. If the
prediction is wrong however, the results from the speculative execution are
discarded and loss in performance becomes inevitable.

DSPs abilities to handle control flow instructions tend to be less
sophisticated compared to GPPs. DSPs make use of a technique known
as predicated execution [10], also known as conditional execution (GPPs
also use this technique to a lesser extent). With conditional execution,
instructions may have predicates attached to them placed adjacently in

21

CHAPTER 2. BACKGROUND

Machine Code
l Generic Simulator

N

N

. | Address ;
! ' Old results

New results

N

! ‘

] U ’

1 U ’
! ’

Pipeline State Predicated Executor

1
1
1
1
1
! 1
1
1
1
1
1
1
1

Decoder

Processor-specific Components

Figure 2.6: A model of a simulator supporting predicated execution of instructions.
This figure is an extension to Figure 2.5, with the use of a predicate executor
component instead of an executor component, to indicate that instructions can be

executed conditionally.

machine code, mapping to operations that check the value of a specific register.
These predicates will not decide if an instruction is to be executed, but
whether the results of the instruction should be saved or discarded. While
executing redundant instructions is wasteful, the effect control hazards have

on performance is even worse [3].

Our current model of a processor, outlined in Figure 2.2, does not capture
the use of conditional execution, which is needed when this model used to
present the design of Instant Simulator. The model is therefore extended to use
a predicated executor instead of a executor, shown in Figure 2.6. Conditions
are described similarly to instructions in Instant Toolsmith ADL, documented

in Section A.3.

22

2.6. RELATED WORK IN ARCHITECTURE DESCRIPTION LANGUAGES

2.6 Related Work in Architecture Description
Languages

This section explores relevant work in creating ADLs for simulation purposes.
As the main focus is on generating simulators, only the ADLs that are relevant
to Instant Simulator are covered.

2.6.1 Expression

In the development of Expression [5], the authors recognized the need for
System-on-Chip designers to both rapidly explore hardware options and
accurately benchmark systems. Hence, the goal has been to cover both the
physical and behavioral attributes of processor descriptions in their ADL.
Furthermore, the description must not only be machine-readable but also
human readable. Expression therefore uses a friendly LISP-like structure, very
similar to Instant Toolsmith ADL. Another similarity to Instant Toolsmith
ADL is the target hardware. FExpression is suited for DSP hardware and
supports VLIW.

Expression’s physical description of processors is overly detailed for the
purposes of this thesis. This is evident in the way pipelines are specified by
the use of ports, latches and signal structures. Expression could provide a
basis for future work, if Instant Toolsmith ADL is to be extended to include
a more structural description.

2.6.2 Harmless

Harmless [8] is an ADL designed specifically for generating simulators. The
simulators can be used to cycle-accurately benchmark software programs and
to ensure their correctness.

The simulated pipelines are built statically as finite state machines,

optimized by categorizing instructions into more classes than found in
Section 2.2.4. Unlike with dynamically managed pipelines, used by Instant

23

CHAPTER 2. BACKGROUND

Simulator (described in Chapter 4), the authors claim there is less overhead
during execution.

Harmless targets embedded hardware with less complex pipeline structures
(compared to GPPs), hence the focus is put on performance rather target-
hardware scope. Describing deeply pipelined processors that utilize heavy
instruction-level parallelism could lead to a combinatorial explosion in the
used optimization algorithms. The authors provide a way to avoid this by the
use of less intuitive descriptions of the pipeline behavior.

Even though VLIW is not supported, the pipeline design in Harmless
should be examined further once Instant Toolsmith ADL becomes capable
of describing a pipeline.

2.6.3 MADL

Mescal Architecture Description Language (MADL) [11] is an attempt
to automatically generate quality simulators and compiler tools without
sacrificing the range of supported hardware types. MADL incorporates heavily
abstracted structures called operation stack machines (OSM). By using an
OSM, the execution flow is described using different (pipeline) states where
different resources are allocated and released. Expressing resource usage
helps generating constraints which then enables static generation of pipeline
hazards. Moreover, this can be done at simulator compile time, resulting in
a performance boost. Although a statically generated pipeline is beyond the
scope of this thesis, the resource acquisition is used in the naive pipeline of
Instant Simulator, covered in Section 4.3.

24

Chapter 3

System Design

This chapter provides an overview of the design of Instant Simulator.
Chapter 2 outlined a model for a DSP and described how it is simulated
in software. Usage of an ADL was motivated as a way of reducing
implementation complexity and code duplication when supporting simulation
of multiple processors. These concepts are now put to use in the design and
implementation of Instant Simulator.

3.1 System Overview

Instant Simulator achieves simulation supporting multiple DSPs, following the
design principles mentioned in Section 2.3.2, splitting the tool into two parts.
Figure 3.1 outlines the design, which consists of the following two parts:

1. A generic simulator that actively drives execution, but lacks the
necessary processor-specific details to simulate a concrete DSP.

2. A group of build scripts evaluating descriptions formalized in Instant
Toolsmith ADL, generating source code for the processor-specific
components. These components are reactive since their functionality
is requested when needed by the generic simulator.

25

SYSTEM DESIGN

N

CHAPTER 3.
Machine Code
l Generic Simulator
» Pipeline >
Address /
! Old results ;
‘.' New results

Dec‘oder Stafe Predicated' Executor

Build Script Output

Figure 3.1: The design of Instant Simulator. The generic simulator
provides general functionality and the build scripts generate the processor-specific
components. These components are plugged into the generic simulator to get a
complete simulator.

Once the source code that make up processor-specific components have
The notion

been generated, they are plugged into the generic simulator.
of Instant Simulator being a simulator is incorrect, because it is a tool for

generating simulators.

3.2 Generic Simulator

The first part of Instant Simulator is the generic simulator, covered in detail
in Chapter 4. The purpose of the generic simulator is to drive simulation in

each cycle in a sequence of steps:

1. Creating bundles filled with instructions and conditions using the
Results from the decoder component contain

decoder component.

26

3.3. BUILD SCRIPTS

necessary information for instructions and conditions to progress
through the pipeline and for the correct operations to be carried out.

2. Issuing bundles into the pipeline, maintaining their progress with the
help from the information given by the decoder. The pipeline was
considered a processor-specific component in Figure 2.2, but the design
of Instant Simulator takes a different approach. the generic simulator
provides a pipeline (as shown in Figure 3.1) in form of an interpreter,
maintaining the progress of instructions. The generic simulator does not
require the use of a pipeline for generated simulators, thus allowing the
paths of instructions through the pipeline to be omitted in simulation.

3. Allowing conditions and instructions in the pipeline to be executed when
ready by requesting actions from the predicated executor component.
This component is given the relevant state to update along with the
necessary information about the instruction (or condition).

Section 2.2.1 mentioned that a processor does not understand the meaning
of machine instructions and blindly maps them to actions. Furthermore,
Section 2.2.2 stated that a processor is indifferent to what input values and
computed results truly represent in a bigger picture. The same principles
apply to the generic simulator.

The information of decoded instructions and conditions, given from the
decoder, does not include the actions required to carry out execution.
Instructions are instead uniquely identified by a number, which is mapped
to their semantics within the predicated executor. This leap of faith, where a
decoded instruction is assumed to map to actions, allows the generic simulator
to only focus on driving simulation and ignore the concrete details of how
execution is accomplished.

3.3 Build Scripts

The second part of Instant Simulator is made up of scripts, described in
Chapter 5, generating source code for the processor-specific components. The
generic simulator performs actions demanding functionality from the following
components, generated by the build scripts, also shown in Figure 3.1:

27

CHAPTER 3. SYSTEM DESIGN

» State made up of registers, defined using data structures declared in the
generic simulator, described in Section 5.1.

o A predicated executor, provided with the current state and needed
operands, executing an instruction to update state or checking a
condition. How this component is generated is covered in Section 5.2.

o A decoder capable of receiving a buffer of machine code and a position,
returning the next instruction or condition, covered in Section 5.4. As
mentioned in Section 3.2, the results must capture enough information
to allow instructions to progress through the pipeline and be executed
with the correct operands.

There is no way of describing pipeline behavior in Instant Toolsmith ADL,
so the build scripts cannot generate the necessary information required by
the pipeline in the generic simulator. Once Instant Toolsmith ADL can
describe the pipeline of DSPs, the build scripts can be extended to generate
pipeline behavior. In the case study in Chapter 6, Instant Toolsmith ADL and
the build scripts are temporarily patched to generate the necessary pipeline
information.

28

Chapter 4

The Generic Simulator in Detail

This chapter describes how the generic simulator, outlined in Chapter 3,
carries out simulation by performing distinct steps of actions in each cycle
of execution. All steps are detailed in the following sections, along with
the communication with the processor-specific components, generated by the
build scripts (Chapter 5). This chapter ends with an implementation-focused
overview of the data structures, used within the generated simulators.

4.1 Executing a Cycle

The generic simulator performs execution in steps, mimicking an execution
cycle performed by a real DSP. Figure 4.1 shows how these steps can be
carried out in two different ways, depending on whether hazards exists within
the pipeline:

1. If the pipeline is free of hazards, the next bundle of instructions and
conditions are first decoded, covered in Section 4.2. This bundle is then
issued into the pipeline before the pipeline is updated to let the residing
instructions progress one step further. Pipeline management is outlined
in Section 4.3.

2. If hazards do exists within the pipeline, only the pipeline will updated
in a cycle of execution in an attempt resolve the issue. The pipeline
will signal its stall status and no more bundles can be issued until the
pipeline is free of hazards, which might be resolved in the next cycle or

29

CHAPTER 4. THE GENERIC SIMULATOR IN DETAIL

Decode

Not stalling

Stalling Update

Figure 4.1: The steps taken during execution of a pipelined simulator, which
depends on whether the pipeline is stalling or not.

after multiple cycles. How the pipeline detects and resolves hazards is
also covered in Section 4.3.

4.2 Decoding Bundles of Instructions and
Conditions

Bundles of instructions, some of which have conditions attached, are decoded
by repeatedly querying the decoder component. The decoder is given a buffer
of machine code and an address and it will return a structure containing
relevant information about an instruction or a condition.

Boundaries between bundles are distinguished by a VLIW flag in the result,
corresponding to the P bit explained in Section 2.5.1. The VLIW flag of
an instruction either signifies that it is bundled with the adjacent successive
instruction, or the previous adjacent instruction. Both ways are supported by
Instant Simulator and decided upon when creating a simulator. Letting the
VLIW flag signify the bundling of a previous instruction will however require
the generic simulator to always decode one extra instruction for each bundle
and then discard the result when the VLIW flag is not set.

When conditions are decoded, they are attached to a previous adjacent

instruction if their VLIW flag is set. If the VLIW flag is not set, they will be
attached to the whole bundle of instructions as a global condition.

30

4.3. MAINTAINING BUNDLES IN THE PIPELINE

Instruction Attributes

Condition
VLIW Flag

Bit Width Condition Attributes

VLIW Fl
Bit Wi dtﬁg }Generic Simulator

Generic Simulator

Figure 4.2: The initial decoded instruction (and condition) information needed by
the generic stmulator

More information is needed from the decoder result besides a VLIW flag.
Once an instruction is decoded, the generic simulator will need to know
the length of the binary substring in the machine code that represented the
result. This length is used to calculate the position of the next piece do be
decoded. Figure 4.2 shows the current information needed from the decoded
result. Subsequent sections will further extend the fields needed in order for
a simulator to work.

4.3 Maintaining Bundles in the Pipeline

Once a complete bundle has been decoded, the generic simulator will issue
the bundle into the pipeline (unless the pipeline is stalling). In order for the
pipeline to make use of the data representing instructions within the bundles,
the data structures will need to include more fields than what is shown in
Figure 4.2. These fields are now introduced in the rest of this section.

The pipeline is implemented as a small interpreter, receiving bundles of
instructions containing paths in form of linked list, filled with operations on
resources. The interpreter will traverse these paths, one step per cycle, and
perform the operations stored in them. One example of an operation is the
acquisition of a functional unit before execution. Figure 4.3 includes the path
field needed by the pipeline, where these operations are stored.

What resources are acquired (and returned), at any point during execution,
is maintained by the pipeline, thus allowing hazards to be detected. If a
hazard is detected, for instance when a path of an instruction attempts to use
a register as an input operand when another instruction has acquired the same

31

CHAPTER 4. THE GENERIC SIMULATOR IN DETAIL

Instruction Attributes

Condition
Generic Simulator{ VLIW Flag
Bit Width

Condition Attributes

VLIW Flag

Pipeline{ Pipeline Path
Bit Width }Generic Simulator

Figure 4.3: An extension to the initial decoded information. The pipeline in the
generic simulator needs the pipeline behavior of individual instructions.

i1 2 13
K R)
Cycle1l 1 1 1] tq iy tg 7
A A I N N N N
Cycle2 (12)(2)(2 1 1 1 1
1 1 1 1
Cycle 3 = 3 3 3 l X l l ig g
1 1 1 1))
Cycled [4 | 4) 4 2 2 2 2 1 1
A A 1 1 1 1 1 1 1
Cycle 5 | 5 5 5 3)(3)(3)3 2 2
NA + + NA NA NA

Figure 4.4: Pipeline state during five cycles of execution, where three bundles
and a total of nine instructions (squares) are issued. The pipeline updates path
steps (circles) left to right (according to the figure). In the second bundle, the fifth
instruction (i5) causes the pipeline to stall one cycle. No instructions in that bundle,
nor any succeeding instructions, will update state during stall cycles.

register for updating state, the pipeline will stall. The path of the instruction
where the hazard is found will not be updated in the pipeline during that cycle,
along with all the instruction in the same bundle, as shown in Figure 4.4.

The following operations contained in the steps of the paths of instructions,
are handled by the pipeline:

32

4.3. MAINTAINING BUNDLES IN THE PIPELINE

Nothing

Lock

Release

Read register

FExecute

Lock pipeline

Release pipeline

Flush pipeline

Path steps that do nothing are needed to simulate
events the simulator does not really care about. For
instance, fetching instructions is not really done from
the pipeline, so the simulator does nothing instead.

This operation provides mutually exclusive use of
registers and functional units. Instructions that
write to registers need to lock them so that data-
dependency hazards are detected. Non pipelined
functional units also need to be locked to allow for
structural hazards. Already locked units and registers
result in stall cycles.

Registers and functional units that have been locked
need to be released when instructions have passed
through the pipeline.

When this operation is carried out, a read of a specific
register is attempted. If the register is locked from a
preceding operation, the pipeline stalls.

This operation carries out the real execution of
instructions. If an instruction contains a condition,
the result of first executing the condition decides if
the instruction is to be executed. Instructions within
a bundle need not all do execution in the same cycle.

Sometimes, DSPs require their pipeline to stall for
various reasons. A classic example is when an DSP
lacks speculative execution. A decoded conditional-
jump instruction will then create a control hazard
because the processor cannot feed the pipeline with
more instructions until the result of the conditional-
jump instruction is known.

This operation will allow the pipeline to be fed
instructions again, after a forced stall.

DSPs lacking branch prediction sometimes require
the pipeline to be flushed after executing jump
instructions. This operation removes all successor
instructions in the pipeline.

33

CHAPTER 4. THE GENERIC SIMULATOR IN DETAIL

Real pipeline

Execute
Fetch — Decode — Read srcl — Write dst — Memory

\ \

\ Read src2 \ \

\ \ \

! \

|

|

! \

) \ \ \ \
|

|

|

\
\ \ \

‘ Lock dst \ \ \

\ \

Nothing — Read srcl — Execute — Release dst — Nothing
Read src2

Simulator pipeline

Figure 4.5: The stages of a typical five-stage pipeline. The version at the top
illustrates how a (very simple) pipeline is organized in hardware. The version
beneath outlines how this pipeline would function in a simulator created by Instant
Simulator. The dashed paths connect the corresponding stages of the pipelines.

The pipeline in the generic simulator differs from what is seen in a real
processor. Making the pipeline overly realistic would introduce redundancies
(for example an explicit write-back stage). A more realistic description can
still be expressed with an ADL and then compiled into the format used by
the generic simulator.

To end this section, an example is now presented to show how different the
pipeline is in the generic simulator compared to what is found in real hardware.
Figure 4.5 shows two different versions of a simple and ideal five-stage pipeline
model usually associated with a Mips architecture [6]. The version above is
a typical illustration and the version below shows how it would be structured
in a simulator generated by Instant Simulator.

4.4 Executing Instructions and Conditions

One of the operations used in the paths, interpreted by the pipeline, is the

execution of an instruction. This operation is now covered in this section.
Before execution of an instruction takes place, a check is made to see

whether a condition is attached to the instruction. If that is the case, the
condition is provided to the predicated executor in a request to evaluate the

34

4.4. EXECUTING INSTRUCTIONS AND CONDITIONS

Instruction Attributes

Condition
Generic Simulator{ VLIW Flag
Bit Width

Pipeline{ Pipeline Path Condition Attributes

VLIW Flag Lo
- Bit Width }Generlc Simulator
Predicated Executor{ Registers
Constants 1D . }Predicated Executor
Register

Figure 4.6: All of the decoded information needed for simulation. The predicated
executor requires a unique ID to map to actions and input operands for updating
state.

condition. The current fields in the structure representing a condition, shown
in Figure 4.3, cannot help identify which condition is to be evaluated. The
structure will therefore need to include a unique ID number for each condition.
Furthermore, conditions are evaluated by using the content of a register which
must also be provided. Figure 4.6 shows extended condition structure with
the additional attributes.

Result given from evaluating a condition help the generic simulator
decide whether the instruction the condition belongs should be carried out.
Section 2.5.2 mentioned that in real DSPs, instructions will always be executed
and the condition decides whether the results will be discarded. The generic
simulator will instead skip the execution of instructions if the predicate turns
out to be false.

If the predicated executor returns a positive value, the instruction will be
executed. Similarly to the condition, the instruction data structure will need
to be extended with an ID and operands. Instructions allow multiple registers
as operands, unlike conditions, along with multiple integer constants. These
fields are added to the extended data structure for an instruction, as shown
in Figure 4.6.

Instructions are executed by being given to the predicated executor,

together with the current state of the simulator, in a request by the generic
simulator to update state. The current state is needed because some

35

CHAPTER 4. THE GENERIC SIMULATOR IN DETAIL

instructions modify more state beyond the provided operands (for example,
move instructions load data from primary memory). The actions performed
within the predicated executor is beyond the scope of the generic simulator
and instead covered by the build scripts in Chapter 5.

4.5 Data Structures

The generic simulator provides a set of data structures for storing information
and communicating with the processor-specific components. An example of
such information is the data structures for instructions and conditions in
Figure 4.6. These structures are utilized both internally within the generic
simulator and by the processor-specific components generated by the build
scripts.

Concrete implementation details will now be in focus, unlike in previous
language-agnostic sections. The rest of this section presents relevant data
structures using C code, the programming language simulators are generated
in by Instant Simulator.

4.5.1 Registers

Registers are represented with a simple data structure containing information
about the bit width, a current value and a unique identifier. Figure 4.7
shows a very basic register hierarchy and Listing 4.1 presents the constructed
result. The overlaps between the registers, documented in Section A.1.4, are
not captured by the data structure in the generic simulator. Instead, this
is managed by register functions, which are generated by the build scripts
(described in Section 5.3).

4.5.2 Functional units

Functional units are made up of the least complicated data structure in
the generic simulator. They only need a unique (numeric) identifier for
representation. Their purpose is not to simulate execution of operations.

36

4.5. DATA STRUCTURES

64 bits
I A I
Ty e LS
32 bits

32 bits

Figure 4.7: The register hierarchy of the three registers created in code listing 4.1,
one 64 bit register A and two overlapping 32 bit registers B and C. The dashed
arrows indicate the sections where an overlapping register shares data with a base

register.

sim_register_t* a_64
sim_register_t* b_32
sim_register_t* c_32

a_64->id 0;
b_32->id = 1;
c_32->id 2;

N O TR W N

alloc_reg(64);
alloc_reg(32);
alloc_reg(32);

Listing 4.1: Construction of three registers from the hierarchy shown in Figure 4.7.
32 bit registers B and C both overlap 64 bit register A, but this information is lost.

1 /* the literal parameter 1 represents
2 the <dentity of the allocated unit */

3 sim_unit_t* MAC =

alloc_unit (1);

Listing 4.2: The uneventful allocation of a functional unit, to be identified by the

value 1.

Instead, they are used by the pipeline to account for structural hazards.
The generic simulator provides means for declaring a unit type that, besides
including an identifier, could include run time statistics in future extensions
of the tool. Listing 4.2 shows how a unit is allocated.

37

0 g O U i Wi

O S S G gy S
TUR W N~ OO

16

CHAPTER 4. THE GENERIC SIMULATOR IN DETAIL

instr_info_t* instr = alloc_instr();

// Needed by Predicated Ezecutor to map to the
// correct actions.

instr->id = ADDI;

// This instruction took 32 bits to decode.
instr->size = 32;

// Operands for Predicated Ezecutor
instr->regs [0] = state->regs[0];

instr->regs[1] = state->regs[1];

instr->imms [0] 42;

// Flag for generic stimulator

instr->vliw = SIM_TRUE;
Listing 4.3: The construction of an instruction performing addition on a register
and an immediate value.

4.5.3 Instructions

Throughout this chapter, the needed fields in the data structure representing
instructions have been extended to cover the needs of different parts of a
simulator, fully shown in Figure 4.6. Listing 4.3 shows how some of this
information is stored in C for a simple add immediate instruction. The
pipeline path of the instruction is omitted to avoid clutter. The data structures
that make up these paths are not implemented graciously, because they are
intended to be utilized via generated code rather than hand-written code.

4.5.4 Primary memory

Although a complete memory model is beyond the current scope of Instant
Simulator, the effort required to implement primary memory is small enough
to include it. The simulator state contains a reference field which can be used
to manually allocate a chunk of data. By referencing a memory area from the
simulator state structure, instructions (which are passed the simulator state
during execution) can manipulate this area and implement the processor stack

38

4.5. DATA STRUCTURES

behavior. This is is done in the case study in chapter 6.

4.5.5 Memory management of data structures

Internally, simulators will dynamically allocate and deallocate memory for
the data structures presented in this section (and other internal structures as
well), repeatedly during execution. A minor optimization has been made in
the generic simulator to reduce memory allocation overhead.

All data structures are created and destroyed in a memory-management
layer via allocation- and deallocation functions. In the current version of
Instant Simulator, this layer utilizes an array-based free list to avoid constant
invocations of system calls. Test results show a significant speedup for a small
development effort.

39

Chapter 5

The Build Scripts in Detail

This chapter describes how the build scripts of Instant Simulator generate the
missing processor-specific components, outlined in Chapter 3. Descriptions
of DSPs, formalized in Instant Toolsmith ADL (briefly presented in 2.4 and
documented in Appendix A) are provided to a group of scripts. These scripts
evaluate the content and generate the needed components in compatible C
source code. The following components are generated by the build scripts:

 Simulator state (Section 5.1).
» A predicated executor (Section 5.2).
» A decoder (Section 5.4).

The build scripts will also generate smaller functions to simplify the
implementation details of the generated components. One example is a group
of register functions, described in Section 5.3, for updating the values in
registers while ensuring consistency among register overlaps.

5.1 Building Simulator State

The build scripts need to initiate the data structures that contain the state
in the simulator so that state can be updated when executing instructions.
Furthermore, the state will be used by the pipeline to detect hazards (covered
in Section 4.3).

41

1
2
3
4
5
6
7
8
9
10
11
12

CHAPTER 5. THE BUILD SCRIPTS IN DETAIL

#define SIM_NUM_REGS
#define SIM_NUM_UNITS
sim_state_t* get_state ()
{
sim_state_t* state = alloc_state(get_registers(),
SIM_NUM_REGS,
get_units (),
SIM_NUM_UNITS,
alloc_pipeline ());
return state;
}

Listing 5.1: The generated source code for creating simulator state. Constants
SIM_NUM_REGS and SIM_NUM__UNITS are extracted from the specification.
The pipeline is allocated via the generic simulator directly because no processor-
specific initialization is needed

The only two parts requiring processor-specific initialization are the
registers and the functional units (the initial construction of a pipeline does
not rely on a specification). Registers and functional are evaluated in a
specification documented in Section A.1 and Section A.4.5 respectively, and
then transformed into C source code, as described in Section 4.5.

Once the C source code for creating registers and functional units is
generated by a build script, the last step is to generate a procedure linking
everything together and constructing the state. This procedure is shown in
Listing 5.1.

5.2 Building Executable Instructions and
Conditions

This section describes how the predicated executor (outlined in Chapter 3)
is generated into C source code, capable of carrying out the actions of
instructions and conditions. The semantics of instructions and conditions are
transformed from a Instant Toolsmith ADL specification into C source code
in a handful of stages. Once all instructions and conditions have had their

42

5.2. BUILDING EXECUTABLE INSTRUCTIONS AND CONDITIONS

(define-util-fun (update-msb-flag! reg)
"updates the most-significant-bit flag of
the provided 32 bit register"
(set-reg! (reg-ref reg 'msb) (icmp 32 'slt reg 0)))

(define-instruction MAX
((operands (reg rs r32) (reg rt r32) (reg rd r32))
(semantics

(begin

(set-reg! rd (rif (icmp 32 'sgt rs rt)
rs
rt))

(update-msb-flag! rd)))))
Listing 5.2: A made-up instruction which serves an example throughout the stages
of transformation described in this section. The instruction stores the largest value
out of two registers into a target register. A flag that signifies the most significant
bit of the target register is then updated.

semantics transformed into source code compatible with the generic simulator,
they are wrapped into a function that maps the ID numbers of instructions
and conditions to the correct actions.

To gain a better understanding of the incremental transformation of
instruction semantics, a made-up instruction is used as an example. The
relevant parts of the specification for this instruction is found in Listing 5.2.
Even though the instruction itself might seem contrived, it is designed to make
the most use out of the transformation stages while minimizing the amount
of generated source code.

When generating executable conditions, the same principles apply as when
generating executable instructions. The only difference is that the semantics
found in conditions return a boolean value. Conditions are therefore omitted
in this section to avoid repetition.

43

CHAPTER 5. THE BUILD SCRIPTS IN DETAIL

(define-instruction MAX
((operands (reg rs r32) (reg rt r32) (reg rd r32))
(semantics

(begin
(set-reg! rd (rif (icmp 32 'sgt rs rt)
rs
rt))

;; The wuttlity function ©s now <inlined into the

;; semantics. A let form takes care of the

;; argument binding.

(let ((reg rd))

(set-reg! (reg-ref reg 'msb)
(icmp 32 'slt reg 0))))

Listing 5.3: First transformation (out of four). The semantics of the example-
instruction (defined in Listing 5.2) after the utility function has been inlined.

5.2.1 Inlined semantics

Before transforming instruction semantics, described in Instant Toolsmith
ADL, some pre-processing is carried out. Each instruction and utility function
will have their semantics updated, with calls to macro functions and utility
functions (described in Section A.4) in-lined. Instant Toolsmith ADL disallows
any type of recursion, thus making this step possible by simply traversing the
semantics and applying the substitution model. After having a utility function
in-lined in its semantics, the new version example instruction is shown in
Listing 5.3.

5.2.2 Simplified static single assignment form

In this stage of source code transformation, the instruction semantics
are flattened into a simpler version of the static single assignment form.
Temporaries are introduced for variables that are not registers.

The result after this transformation is found in Listing 5.4. To characterize

the source code as being flattened might seem ironic. This form is best suited
for a more procedural language, for example the intermediate representation

44

5.2. BUILDING EXECUTABLE INSTRUCTIONS AND CONDITIONS

(define-instruction MAX
((operands (reg rs r32) (reg rt r32) (reg rd r32))
(semantics
(begin
(let ((tmpl rd)
;; Find the largest regtister out of rt and
rs.
(tmp2 (let ((tmp3 (let ((tmp4d 32)
(tmp5 'sgt)
(tmp6 rs)
(tmp7 rt))
(icmp tmp4 tmp5 tmp6
tmp7))))
(rif tmp3 rs rt))))
;; Store largest register im target register rd.
(set-reg! tmpl tmp2))

;; Update flag of target register rd omitted for
clartty

))))

Listing 5.4: Second transformation (out of four). The semantics for the example-
instruction after being flattened. The source code created in this pass still contains
valid Instant Toolsmith ADL expressions. The flag-update is omitted in the example
to minimize source code size.

used in LLVM [9], a just-in-time compiler framework.

5.2.3 Statically typed imperative representation

Once the semantics are flattened and filled with temporaries, an environment
is built by traversing the expressions while storing bindings in a key-value
structure. The usage of this environment is motivated below.

The source code is traversed yet again, but this time following a bottom-up
approach. Expressions that update state are searched for. These expression
include register updates, memory stores and control-flow updates. When
the relevant expressions are found, dependencies for the temporaries used in
these expressions are recursively added before including the state-modifying

45

CHAPTER 5. THE BUILD SCRIPTS IN DETAIL

;; Store the maz of 7Ts and 7Tt into rd
(if (number (icmp (number 32)
(symbol sgt)
(register rs)
(register rt)))
(then (set-reg (register rd) (register rs)))
(else (set-reg (register rd) (register rt))))
;; Update the most-significant bit flag for register rd.
(set-reg-ref (register rd)
(symbol msb)
(number (icmp (number 32)
(symbol slt)
(register rd)
(number 0))))

Listing 5.5: Third transformation (out of four) which is the final transformation
before C source code is generated. This representation is closer to C than Instant
Toolsmith ADL. The if-statement has been lifted out from the second argument of
the set-reg statement to top-level.

expression. To find these dependencies, the pre-built environment is put to
use.

Listing 5.5 presents the resulting representation of the semantics. This new
representation includes type information, needed for the next stage, where
C source code finally is generated. The current representation includes few
constructs allowing for simple interpretation of the values. For instance, when
the second operand of a set-reg construct is of the type register, the actual
value is extracted rather than a reference to the register itself.

Unlike Instant Toolsmith ADL (and functional languages in general), C

cannot make use of if-statements containing blocks of statements anywhere.
If-statements are therefore lifted to the current block-level in the source code.

5.2.4 C source code

The final transformation step creates C source code. The final version of the
instruction used as an example is shown in Listing 5.6. Any redundancies and
source code duplication are left to the mercy of a C compiler.

46

1

0O O U i W N

9
10
11
12
13
14
15
16
17
18
19
20
21

5.2. BUILDING EXECUTABLE INSTRUCTIONS AND CONDITIONS

void instrO(sim_state t* state,uint64_t
0ld_pc,instr_info_t* instr) {
sim_register_t* rd = instr->regs[0];

instr->regs [1];

instr->regs [2];

sim_register_t* rt
sim_register_t* rs

if(1lvm_icmp (32, SIM_SYMBOL_sgt, rs->value, rd->value))
{
set_register (state,rd,rs->value);
} else {
set_register (state,rd,rt->value);
}
set_register_ref (state,
rd,
SIM_SYMBOL_MSB,
llvm_icmp (32,
SIM_SYMBOL slt,
rd->value,
0));
}

Listing 5.6: Fourth transformation (out of four). The semantics has been
transformed into a C function. The function will be executed by the generic
simulator.

Some of the functions used in Listing 5.6 are prefixed with llvm. These
functions carry out operations corresponding to functions found in the LLVM
framework [9]. No other usage nor resemblance of LLVM is found in Instant
Simulator.

The generated C code does not modify the values of registers directly.

Updating registers is instead done in separate functions (set_register,
set_ register_ ref), described next in Section 5.3.

47

CHAPTER 5. THE BUILD SCRIPTS IN DETAIL

5.3 Building Register Functions

The generated functions executing instructions need to retrieve and update
values from registers to modify simulator state. This section describes the
needed functionality to achieve this.

5.3.1 Aliased register-retrieval

Registers related to instruction operands sometimes need to be referred to
in instruction semantics. For instance, assume an architecture where, if an
addition operation overflows, the overflow-flag belonging to the destination
register needs to be set. Different registers have different overflow-flags, but
the instruction semantics cannot specify which register the overflow-flag refers
to, unless only a single register can act as destination operand.

A build script builds a function for retrieving an aliased register during run-
time, based on a reference register and a unique symbol. For each possible
reference made from each register, a unique constant definition is created. The
definitions, together with a unique register identification number, provide the
necessary tools for finding the aliased register. A simplified version of the
result is shown in Algorithm 1.

Note that there is no error handling, as it is assumed that the evaluation
tools in Instant Toolsmith ADL checks for errors before the simulator is built.
The simulator will assume that references made in instruction semantics have
valid aliased registers for all registers that are allowed as operands.

5.3.2 Ranged register-value retrieval

Retrieving a bit field within a register is made possible by use of a
utility function from the generic simulator, presented in Chapter 4. The
implementation is presented in Algorithm 2. This function does not contain
any processor-specific components and could therefore be implemented once
in the generic simulator. For consistency, the build scripts will generate the
procedure, together with the other register functions.

48

5.3. BUILDING REGISTER FUNCTIONS

1: procedure REFVALUE(ref Register, symbol)

2 # Unrolled in the generated source code.

3 for all reg € registers do

4 if reg.id = ref Register.id then

5: # Unrolled in the generated source code.

6 for all (alias, target Register) € reg.references do
7 if alias = symbol then

8 return target Register

9:

end procedure

Algorithm 1: A procedure for retrieving a register by alias. The number of
registers and their references are known when generating the simulator, hence
the loops are unrolled into double-nested switch blocks.

1: procedure RANGEDREGISTERVALUE(register, from,to)
% return register.valuelfrom : to
3: end procedure

Algorithm 2: A procedure for retrieving a bitfield of a register.

5.3.3 Register value update

Updating the value of registers requires the largest and most complicated
implementation, compared to the other register functions described in this
section.

Relevant bit fields in overlapping registers need to be updated to ensure
consistency. When generating the function, information about overlaps of
each register is used so that the correct registers are updated. Algorithm 3
provides a high-level strategy for updating overlapping registers.

An unfortunate side effect of this implementation is that highly overlapped

registers contribute to a combinatorial explosion of register updates. This
function tends to be thousands lines long in source code.

49

CHAPTER 5. THE BUILD SCRIPTS IN DETAIL

1: procedure SETREGISTER(register, value)

2 # Unrolled in the generated source code.

3 for all reg € registers do

4 if reg.id = register.id then

B register.value < value

6 # Unrolled in the generated source code.

7 for all (targetRegister, Dy, D,, Ss, Se) € reg.overlaps do
8 targetRegister.walue[Ds : D,] <— value[Ss : Se]

9: return

10: end procedure

Algorithm 3: A procedure for updating the wvalue of a register, together
with overlapping registers. The registers and their overlaps are known when
the simulator is generated, so mo iterative source code exists in the generated
function. This algorithm makes use of for-constructs for clarity reasons only.

1: procedure SETREGISTERRANGE(register, from,to, value)
2 # Only update relevant bit field in register.
3 register.value| from : to] < value

4: # Propagate update on overlapping registers.

5 set Register(register, register.value)

6: end procedure

Algorithm 4: Ranged write to register. setRegister from Algorithm 8 is reused
to simplify the implementation, at the cost of performance. Propagating value
updates via setRegister could result in redundant register updates when the used
bit fields are not within the ranges of the register’s overlaps.

5.3.4 Ranged register value update

Updating a bit field within a register is achieved by first using bit operations
to only modify the relevant bits in the register. Once the new value is set,
the set register function is called to propagate the changes to overlapping
registers. Some register updates will be redundant, depending on how large
the range is.

50

5.4. BUILDING A DECODER

: procedure SETALIASEDREGISTER(re f Register, symbol, value)
aliasRegister < refValue(ref Register, symbol)
set Register(aliasRegister, value)

end procedure

e & BB

Algorithm 5: A procedure for updating the value of a register, referenced as an
aliased by another register. Previously described functionality is utilized create
this compound procedure. setRegister is found in Algorithm 3. refValue is found
in Algorithm 1.

5.3.5 Aliased register value update

Updating the value of a register, which is referred to by an alias from another
register requires no new functionality, as previous register-related functions
suffice. From the implementation in Section 5.3.1, retrieving an aliased register
is made possible. Section 5.3.3 described the implementation where registers
are updated. Using these two functions, the function can be implemented as
shown in Algorithm 5.

5.4 Building a Decoder

The last functionality generated by the build scripts, presented in this chapter,
is the decoder. Chapter 2 introduced the decoder as a component capable
of reading inputs of instructions, transforming them into a representation
understood by the simulator. The decoder is given a buffer of machine code
together with an address and is expected to return a data structure filled with
information (covered in Section 4.5.3).

Due to the existence of Instant Disassembler, a tool to developed by Frej
Drejhammar to aid the process of decoding instructions and conditions, a
large part of the work required to build a decoder is already done. Decoding
of instructions is carried out in three steps. First the correct instruction is
found. The needed information is extracted, detailed in. Finally, the extracted
information is returned, together with a tag indicating what was decoded.

o1

CHAPTER 5. THE BUILD SCRIPTS IN DETAIL

(match 6
((0 (skip 15 (match 11
((32 (instruction ADD))
(34 (instruction SUB))))))
(4 (instruction BEQR))
(5 (instruction BNE))
(8 (instruction ADDI))))

Listing 5.7: A small trie from a subset of MIPS instruction set, created by Instant
Disassembler. The first match construct in this example evaluates the siz next bits
to one of the four values. The position in the machine code buffer is then moved 6
bits if the value 0 was matched. The skip construct increment the buffer position 15
bits. The instruction construct signifies that a matching instruction is found.

5.4.1 Finding the right instruction

The first step, finding out the next instruction, requires little work. Instant
Disassembler generates a large trie in form of symbolic expressions, which are
transformed into nested switch blocks in C source code. Listing 5.7 shows an
example for a subset of instructions for the MIPS architecture [6].

Machine code is supplied to the generic simulator in form of a buffer,
as seen in the design of Instant Simulator in Chapter 3. The transformed
trie is traversed via a 64 bit chunk of data found of the provided address in
this buffer. Because the encoding of instructions may vary in bit width, the
provided address might not be aligned to 64 bits. Thus, in order to get the
next 64 bits, the endianess of both the machine code and the host computer
requires consideration. Currently, the build scripts only supports instructions
with bit widths of 16 bits through 64 bits.

5.4.2 Decoding instruction operands and flags

Once an instruction is found, the needed information will need to be decoded.
Constants are encoded as their binary value. Register operands are based on
register classes. As presented in Section A.1.6, register classes contain registers
and their corresponding encoding. This allows a single register to have
multiple encoding depending on which instruction it occurs in. An example of
where this is useful is found in the Qualcomm Hexagon architecture [15], where

92

5.4. BUILDING A DECODER

some instruction encodings are allowed to be compressed. These compressed
encodings allow fewer bits for representing register operands. Each register
class is transformed to a register decoder, in the form of a function containing
a large switch block.

As mentioned in Chapter 3, the pipeline paths cannot be decoded from the
decoders generated by the build scripts, since Instant Toolsmith ADL cannot
capture pipeline behavior.

5.4.3 Returning the decoded result

In the last step, if found, an instruction (or condition) has been decoded and
its information extracted. The instruction is returned together with a tag,
describing whether the result was a condition, an instruction or something
unrecognizable. A result indicating neither a instruction nor a condition will
halt execution in a simulator.

93

Chapter 6
Evaluation by Case Study: C67x DSP

This chapter presents an evaluation of Instant Simulator, to assert whether
the tool fulfills its purpose and also to explore possibilities for future research.
The C67x DSP is described in a machine-readable specification, using Instant
Toolsmith ADL. Simulators are then generated by Instant Simulator. Results
from running simple programs in these simulators are analyzed with respect
to relevant aspects. The information needed to describe the C67x DSP in
Instant Toolsmith ADL is retrieved from the instruction-set manual [7].

6.1 Evaluation Methodology

This section motivates the criteria used for evaluation. Important assumptions
are provided, together with a description of the environment in which
generated simulators are evaluated.

6.1.1 Key aspects

Instant Simulator provides means for comparing the quality of generated
machine code from different compilers. The tool is therefore evaluated with
respect to three key aspects relevant to its purpose. The following aspects are
considered:

Correctness Machine code needs to be executed correctly, but also

95

CHAPTER 6. EVALUATION BY CASE STUDY: C67X DSP

measured correctly (in cycles). Correctness of Instant
Simulator is therefore validated by running two small
programs in this evaluation. Their output (for a
specific input) is checked to ensure that the behavior
of generated simulators reflects what is expected.
One of the programs will be used to evaluate cycle-
accuracy.

Performance Generated simulators might have performance constraints
for some use cases. Execution time (in form of
cycles per second) is therefore measured. This
measurement is often referred to as the clock rate,
or clock frequency.

Completeness It is important to understand how complete Instant
Simulator is in order to make use of the tool and
to establish future work. Attempting to describe
and simulate real hardware allows the most relevant
limitations to be exposed.

6.1.2 Assumptions

A few assumptions are made in this evaluation. Implementing a subset of the
C67x DSP, rather than trying to capture as much as possible, is partly done
by choice. It is assumed that if a subset of the instruction set works, then the
whole instruction set will work. For instance, there might be over ten versions
of addition in the instruction set, all with small variations. Explicitly showing
that they all work is considered redundant.

The speed at which generated simulators execute is highly dependent of
their host systems. The computer which is used for this evaluation, presented

in the Section 6.1.3, will act as a reference. That is, the performance evaluation
is relevant to modern mid-end computers.

6.1.3 Testing environment

GCC [4] is used with optimization flags -O2 for compiling the source code of
the generated simulators. Testing during development of Instant Simulator has

o6

6.2. A BRIEF OVERVIEW OF THE C67X DSP

shown that using optimization is especially important for performance because
the C source code is generated from scripts. These scripts are designed under
the assumption that a compiler will clean up naive source code.

The host system used in this evaluation is a Macbook Air (model year
2013). This laptop has a dual-core Intel Core i5, model 15-4250U with default
clock frequency. Primary memory consists of 8 GB of 1600 MHz LPDDR3
SDRAM.

When measuring execution time, the UNIX program time [16] is used and
wall-clock time is noted. Programs are run a handful of times, until the margin
of error converges to a point where the results are statistically significant. The
median value is then chosen as the resulting value.

6.2 A Brief Overview of the C67x DSP

The C67x DSP [7] possesses interesting characteristics affecting its
specification in Instant Toolsmith ADL. This section attempts to capture the
most interesting features.

Registers are spread out over three register files. Two of these files each
contain an identical set of general-purpose registers and are referred to as side
1 (or A) and side 2 (or B). These registers can be used as 16 pairs of 64 bit
registers or 32 single 32 bit registers. The third file contains registers handling
control flow (program counter, interrupts.).

Functional units are more exposed to programmers in the C67x DSP
than what is seen in other architectures. They are named M, L, S and D
and carry out different operations (with some functionality overlap). The
aforementioned general-purpose register files are both constrained to their
own set of these functional units. There are therefore eight of them in total:
M1, M2, L1, L2 and so on. The register file for program-flow shares the two
versions of the functional unit D with the other register files.

Assembly-programmers need to explicitly state which functional units are
to be used in their source code. Furthermore, there are constraints on how a
register can be read. Typically, when using a functional unit on side 1, only
registers from side 1 are used, though exceptions are allowed via so-called

o7

CHAPTER 6. EVALUATION BY CASE STUDY: C67X DSP

cross-paths between the register files. However, the number of allowed value-
retrievals from the register file is very limited in each instruction bundle.

The instruction-set is sparse, both in quantity and in creativity (which is
viewed as a positive property). Instructions that require significantly more
cycles than basic arithmetic are implemented at the software level rather than
at the hardware level. Two examples where a lack of instructions stand out
are division- and modulus operations. Neither call instructions, nor explicit
instructions for stack manipulation exists.

Conditions are embedded into instructions in the form of a register and
a flag that dictates whether the register is checked for a zero or a non zero
value.

The simple pipeline behavior of the C67x DSP, compared to other DSPs,
such as the Qualcomm Hexagon DSP [15], almost removes any need to
simulate it. No mechanisms allowing pipeline stalling are found in the
hardware. Instead, any structural, control flow, or data-dependency hazards
not resolved during compilation (or assembling) result in undefined behavior
during execution.

6.3 Limitations and Work-arounds

A few major issues have been discovered when describing the C67x DSP in
Instant Toolsmith ADL, which reduce the quality of case study. These issues
now summarized.

6.3.1 Encoding issues

Unique bit field values helping decoders identify the correct instructions (also
known as operation codes) are placed among the least significant bits of an
encoded instruction in the C67x DSP. Instant Disassembler, used by the build
scripts to generate the decoder (Section 5.4.1), cannot handle this format
well. All operation codes (and the VLIW flag) are therefore moved to the
most significant bits in the specification of the DSP to allow the C67x DSP
to be simulated. Machine code for the real C67x DSP differ for the machine

o8

6.3. LIMITATIONS AND WORK-AROUNDS

code compatible with generated simulators for C67x DSP, as a result of this
change.

6.3.2 Lack of assembler

By changing the encoded representation of instructions to cope with encoding
issues in Section 6.3.1, the vendor assembler for the C67x DSP will not work
(Instant Assembler is being developed by Mattias Jansson in parallel with
Instant Simulator). To avoid having to hard code bits, a small program has
been written for assembling a symbolic representation of code to executable
machine code.

6.3.3 Test programs

Due to a lack of a full-fledged assembler, new test programs will need to be
written instead of reusing programs. Texas Instruments provides a set of test
programs which they run in product benchmarks [1]. These programs are
applicable to the real world tasks for the C67x DSP, but they are currently
provided in C source code, not assembly source code.

When comparing the test programs used in this case study to assembly
code provided by Texas Instruments for different DSP architectures, it appears
that the numeric intensity in their code is higher. Their machine code consists
of more arithmetic and logic instructions and less move instructions (explained
in Section 2.2.4). The two test programs in this case study might therefore
not truly reflect typical execution in the C67x DSP.

6.3.4 Lack of pipeline complexity

A more convenient issue lies in the simplicity of the pipeline behavior of the
C67x DSP. A lack of complexity in the hardware (that is relevant to this
project) means Instant Simulator’s features cannot be shown to the fullest.
This is redeemed by utilizing one of the key-points behind the motivation
for Instant Simulator: Changing the specification of the hardware and quickly
generating a new simulator. After evaluating a basic version of the C67x DSP,

99

CHAPTER 6. EVALUATION BY CASE STUDY: C67X DSP

the specification will be extended with new pipeline features and explicit stack
manipulation instructions.

6.4 Describing the C67x DSP in Instant
Toolsmith ADL

This section summarizes the specification of the C67x DSP, formalized in
Instant Toolsmith ADL, together with some of the issues that were discovered
during the process. The final specification of the C67x DSP, allowing
simulators to be generated for the two test programs in Section 6.5 and
Section 6.6, has a size of nearly 300 lines of (Instant Toolsmith ADL) code.

6.4.1 Registers and register classes

Registers are defined in a straight-forward manner, as shown in Listing 6.1.
Some registers appear in two register classes because they are also allowed as
operands for instruction conditions.

(define-abstract-reg general-purpose
((size 32)
(access "rw")))

(define-reg A1AO
((extends general-purpose)
(size 64)
(asm "A1:A0")))

;; ... More 64 bit Tegisters omitted

(define-reg AO
((extends general-purpose)

(asm "AO")
(overlap (A1A0 0 31))))
;5 ... More 32 bit registers omitted

Listing 6.1: A few of the register-definitions for one of the three register files in
c67z. The other register-file uses the letter B as a prefix for the register names.

60

6.4. DESCRIBING THE C67X DSP IN INSTANT TOOLSMITH ADL

(declare-functional-units (L1 L2 S1 S2 M1 M2 D1 D2))

Listing 6.2: The declaration of functional units in the architecture. There are two
groups of four functional units identified by a suffix.

(define-util-fun (check-condition Z reg)
"Checks if a condition holds. returns 1 (true) if both
Z is set and reg is cleared or vice versa.
Otherwise 0 (false) is returned"
(rif (icmp 1 'eq Z 1)
(icmp 32 'eq reg 0)
(icmp 32 'me reg 0)))
Listing 6.3: A wutility function that checks the condition for conditional
instructions. Conditions are embedded in instructions and do not require explicit
definitions. This utility function is called in the semantics of all instructions before
updating the state.

6.4.2 Functional units

Listing 6.2 presents the declaration of functional units. Units suffixed with the
number 1 can use the first register file while the units suffixed with the number
2 use the second. There exists some limited functionality to allow execution of
instructions where both register files are used. The register-usage constraints,
noted in Section 6.2, are not coupled to the declaration in Instant Toolsmith
ADL. Instead, the constraints will be exposed in the definitions of all the
instructions.

6.4.3 Conditions

Since conditions are embedded into instructions in form of operands, no
external conditions are defined for the basic version of the C67x DSP. A utility
function is defined (Listing 6.3) and then used in every instruction to check
whether state should be updated.

61

CHAPTER 6. EVALUATION BY CASE STUDY: C67X DSP

6.4.4 Instructions

When defining instructions for the C67x DSP, the constraints of the functional
units and how they are coupled to register files reveal an ugly side of Instant
Toolsmith ADL. Each instruction needs to be defined twice to cover both
functional units. The instruction field describing which functional units are
usable cannot help us because a different functional unit requires a different
register file. Moreover, the use of cross paths (when applicable) requires that
the instruction count doubles again.

6.4.5 Pipeline

The seven-stage (for single-cycle execution) pipeline of the C67x DSP cannot
be described in standard Instant Toolsmith ADL due to the incompleteness of
the ADL. Instead, instructions will include meta-data containing temporary
pipeline behavior. The build scripts of Instant Simulator are patched to
parse the meta data and create pipeline information the generic simulator
can interpret.

Since hazards are managed during compile time, all path steps except
the ones executing the instructions are empty. There is no need to acquire
and release resources. A pipeline is still required however, so that delay-slots
are executed correctly. The specification of the C67x DSP is extended in
Section 6.6 to utilize pipeline paths with register acquisitions and pipeline
interlocking.

6.5 Testing the C67x DSP with Fibonacci

This section presents how a small implementation calculating the Fibonacci-
sequence is used to assert correctness of a generated simulator for the C67x
DSP. The program is chosen to be as simple as possible, while trying to avoid
being dull. Describing the C67x DSP means there are no hazards detected
during execution. Unused delay slots are filled with NOP instructions, not
carrying out any actions.

62

6.5. TESTING THE C67X DSP WITH FIBONACCI

1: procedure FIBONACCI(N)
2 a0

3 b+ 1

4: for all i + 0..N do
5 a,b<b,a+b
6 return a
7: end procedure

Algorithm 6: An non-recursive version of Fibonacci, from Sussman et al. [13],
which serves as a initial example due to its simplicity.

6.5.1 Program description

Algorithm 6 provides a high-level description of how Fibonacci sequences are
calculated and Listing 6.4 presents the corresponding assembly source code.
The algorithm is taken from Sussman’s et al.[13].

The source code consist of nine bundles, four of which are single NOP
instructions. Since the pipeline has a depth of seven stages, six extra cycles
are executed after the last instruction is fetched. A total of 15 cycles is
therefore needed for fibonacci(0). Each iteration in the loop executes three
bundles of arithmetic and moves, and then five bundles of delay slots. This
means that every iteration increases the number of cycles with eight and
cycles(fibonacci(N)) =15+ 8 - N cycles.

6.5.2 Results

The number of cycles executed, relative to the number of iterations, are shown
in Table 6.1. These results reflect what was expected from the previously
calculated numbers. Section 6.7 provides the results from running the test
program on a large input and measuring cycles per second.

63

© 00 J O U i W N~

CHAPTER 6. EVALUATION BY CASE STUDY: C67X DSP

ADDK .S2 N, Bl
| ADDK .S1 1, A2
ITER
MV .L1 A4, A3
[B1] MV .L1 A2, A4
ADD .D1 A3, A2, A2
|l [B1] B .S2 ITER
[B1] ADDK .S2 -1, B1
NOP 4

Listing 6.4: . The C67x DSP’s assembly source code for iterative Fibonacci.
No hazards will be detected and all instructions, except for the program jump, are
executed in a single cycle. The N:th Fibonacci number is allocated to register B1
and the final value is stored in A4.

fibonacci(N) Result Cycles
fibonacci(0) 0 15
fibonacci(1) 1 23
fibonacci(1) 1 23
fibonacci(2) 1 31
fibonacci(3) 2 39
fibonacci(b) 5 55
fibonacci(8) 21 79
fibonacci(13) 233 119
fibonacci(21) 10946 183

Table 6.1: The results from calculating different Fibonacci numbers and the
corresponding number of executed cycles.

6.6 Extending the C67x DSP for Recursive
Factorial

This section tests a more complex program than Section 6.5. The aim is
to show how the C67x DSP can be extended so that the assembly code is
simplified.

A stack is first implemented to allow for recursion. The nearly non

existent pipeline behavior is then extended by enhancing the pipeline paths of
instructions to allow for stalls. Assembly source code will thus be simplified

64

6.6. EXTENDING THE C67X DSP FOR RECURSIVE FACTORIAL

by removing explicit NOP instructions.

6.6.1 Program description

To test a program that calculates factorial recursively, an example is taken
from Sussman et. al [13] again. Their book provides both a high-level
implementation (using their symbolic assembly language) and a thorough
description.

Assembly source code for this program is found in Listing 6.9. How the
program manages to calculate factorial is not crucial to this evaluation. The
most important instructions in this example are the NOP instructions filling
out all delay slots to avoid issues with hazards, because these will be removed
as the specification of the C67x DSP is revised.

6.6.2 Adding stack manipulation

The test program is recursive and therefore requires a stack for saving state in
primary memory (lines 9 through 12 in Listing 6.5) and restoring state (lines
19 through 22 in Listing 6.5). As described in Section 4.5.4, Instant Simulator
partially provides means for implementing a stack, but the primitives for
load and store instructions need to be supplied manually. Primitives are
documented in Section A.4.1. The needed primitives are declared as shown in
Listing 6.6. Their definitions need to be supplied in C source code, presented
in Listing 6.7. These declarations and definitions allow the two primitives to
be used in the semantics of instructions.

6.6.3 Managing data hazards

The first extension to the C67x DSP is to introduce detection of data-
dependency hazards. By introducing mutual exclusion of registers that are
updated, the pipeline will detect instructions attempting to read registers
before their values have been stored. The path steps that belong to the
instructions, which previously did nothing, are updated to include locking,
releasing, and reading of registers.

65

PROLOGUE:
MVK
ADDK

1
2
3
4
5 FACT_LOOP:
6
7
8

CMPEQ
[B2] B
NOP
9 STW
10 ADDK
11 STW
12 ADDK
13 ADDK
14 MVK
15 B
16 NOP
17
18 AFTER_FACT:
19 ADDK
20 LDW
21 ADDK
22 LDW
23 NOP
24 MPY
25 || B
26 NOP
27
28 BASE_CASE:
29 ADDK
30 B
31 NOP
32

33 FACT_DONE:

Listing 6.5: C67x DSP assembly source code for recursive factorial.

CHAPTER 6. EVALUATION BY CASE STUDY: C67X DSP

.82
.82

0 12
.52

.D2
.82
.D2
.82
.82
.82
.32

.82
.D2
.82
.D2

.Mix
.S2

.51
.82

FACT _DONE, B3
N, B1

1, B1, B2
BASE CASE

5

B3, *B15(0)

4, B15

Bl1, *B15(0)

4, B15

-1, B1
AFTER_FACT, B3
FACT LOOP

5

-4, B15
*B15(0), Bi1
-4, B15
*B15(0), B3
4

B1, A1, Al
B3

5

1, Al
B3
5

The aim

of Section 6.6 is to remove as many of the NOP instructions and instead let the

pipeline detect hazards and stall.

66

0O 3 O U i W N

S e S
Y TR W NN~ OO

6.6. EXTENDING THE C67X DSP FOR RECURSIVE FACTORIAL

(define-primitive
true (ldw addr offset) "custom_ldw" O0)
(define-primitive
false (stw addr offset value) "custom_stw" 0)
Listing 6.6: Declarations of custom C67x DSP primitives which will allow their
usage in instruction semantics. Their definitions are found in Listing 6.7.

uint32_t
custom_ldw(sim_state t* state,
uint64_t addr,
uint64_t offset)
{
return state->memory[(addr/4)+offset];
}
void
custom_stw(sim_state_t* state,
uint64_t addr,
uint64_t offset,
uint32_t value)
{
state->memory [(addr/4)+offset] = value;
}

Listing 6.7: Definitions of custom C67r DSP primitives in C. These are needed
to implement stack operations in the test source code.

Instructions with no delay slots will utilize the path shown in Figure 6.1.
Load instructions have four delay slots and require a longer path, shown in
Figure 6.2. These different paths helps us eliminate the explicit delay slots
that are inserted after restoring the stack, found on line 23 in Listing 6.5.
Listing 6.8 shows an updated version of the block of assembly code, where
this data-dependency hazard will occur and be handled by the pipeline during
execution.

Removing some of the explicit delay slots simplified the assembly source
code. However, the five delay slots following control flow instructions are still
needed because they are there to avoid possible control flow hazards. The next
section will reduce the assembly source code complexity further by eliminating

67

CHAPTER 6. EVALUATION BY CASE STUDY: C67X DSP

Lock dst
Execute

Nothing x 5 — Read srcl —
Release dst
Read src2

Figure 6.1: Instruction path for single-cycle instructions in the C67x DSP.

Lock dst
Nothing x 5 — Read srcl — Execute —> Nothing x 3 — Release dst

Read src2

Figure 6.2: Instruction path with four delay slots in the C67cx DSP.

1 PROLOGUE:

2

3

4 FACT_LOQP:

)

6

7 AFTER_FACT:

8 ADDK .82 -4, B15

9 LDW .D2 *B15(0), Bl
10 ADDK .82 -4, B15

11 LDW .D2 *B15(0), B3
12 ;; 4 NOP instructions removed here
13 MPY .Mix B1, A1, A1l
14 11 B - 2 B3

15 NOP 5

16

17 BASE_CASE:

18

19 FACT _DONE:

Listing 6.8: Assembly of recursive factorial with implicit data dependencies. The
four NOP instructions that followed stack restoration are removed. They are instead
handled by stalling the pipeline at run time.

most of the remaining explicit delay slots filled with NOP instructions.

68

6.6. EXTENDING THE C67X DSP FOR RECURSIVE FACTORIAL

Execute
Nothing x 4 — Lock pipeline — Nothing — Release pipeline
Flush pipeline

Figure 6.3: Instruction path of branch instructions for the C67x DSP
6.6.4 Managing control hazards

The five delay slots following branch instructions require five NOP instructions
(if nothing else can fill the void). By adding pipeline locking in the decode-
phase of control flow instructions, only three delay slots are needed. The three
delay slots are left because an instruction is not decoded (and is therefore
unknown) until the fourth pipeline stage.

After incorporating pipeline interlocking for control flow instructions, more
extensions can be introduced to avoid NOP instructions. Flushing the pipeline
on unconditional program jumps removes the last three delay slots. Figure 6.3
shows the final path for control flow instructions.

Conditional control flow instructions cannot utilize pipeline flushing
because the current pipeline implementation will flush unconditionally, thus
removing relevant instructions if a jump would not be carried out. While the
flush command is still in conditional control flow instructions, three delay slots
are needed to avoid the change in program behavior.

Listing 6.9 shows the updated assembly source code, after incorporating

the means for detecting control hazards. The first branch still needs the three
delay slots because it is conditional.

69

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

CHAPTER 6. EVALUATION BY CASE STUDY: C67X DSP

PROLOGUE:
FACT_LOOQOP:
[B2] é.. .82 BASE_CASE
NOP 3, r8
B .82 FACT LOOP
AFTER_FACT:
] B .52 B3
BASE_CASE:
é.. .82 B3
FACT_DONE:

Listing 6.9: Optimized and partially folded assembly source code for the C67r
DSP’s recursive factorial. All unconditional branches have had their delay slots
removed. Only three delay slots (down from five) are left after the conditional
branch.

6.7 Performance Results

This section gives the performance results from executing the two test
programs. Two versions of the two test programs are used to measure
execution speed in form clock rate. Table 6.2 provides the results for the
different versions.

For the first test program (fibonacci), a generated simulator manages
to execute 2.6 million cycles per second when calculating larger Fibonacci
numbers. Since no run-time hazard exist, all the pipeline contributes with
is extra overhead in execution time. To compare, the simulator executes 9.7
million cycles per second without a pipeline. The NOP instructions are moved
in front of the jump instruction to include the delay slots in the execution time
when a pipeline is not used.

70

6.8. ANALYSIS

Program Pipeline Million cycles/second Coeff. of variation
fibonacci No 9.7 0.39%
fibonacci Yes (no stalling) 2.6 0.35%
factorial ~ Yes (no stalling) 4.0 0.37%
factorial Yes 4.8 0.36%

Table 6.2: The number of cycles per second during execution of the test programs.
The first test is executed om simulator without a pipeline. Pipelined simulators
with no stalling mechanisms use explicit NOP instructions, as presented in previous
sections.

The number of cycles rise to four million cycles per second when measuring
factorial in a pipelined simulator. Performance benefits from the lack of
instruction level parallelism (explained in Section 2.5.1) in in the source code,
compared to the previous test program. After extending the pipeline to detect
hazards and use stalling, performance increases further as the cycle count rise
to 4.8 million cycles per second.

6.8 Analysis

This section provides an analysis of the results from describing the C67x DSP
and testing the two programs with generated simulators, with respect to the
key aspects provided in Section 6.1.1.

6.8.1 Correctness

While the results given from running the fibonacci program were as expected,
the program itself might be too simplistic to draw any major conclusions
on correctness with respect to cycle-accuracy. The program that calculates
factorial is deemed too complex to calculate cycles manually (and comparing
with the execution results).

Manually calculating the number of cycles required to execute a program
(for some specific input) is tedious and error prone. Benchmark suites

71

CHAPTER 6. EVALUATION BY CASE STUDY: C67X DSP

from hardware manufactures tend to include this information, which further
motivates the usage of their source code over small hand-made examples.

6.8.2 Performance

An unflattering side of the generated simulators is shown during
benchmarking, as low throughput means less work per cycle and therefore
more cycles per second are executed. From a performance perspective,
simulators prefer as little parallelism as possible in order to achieve a high
cycle count per second.

A similar problem lies in the pipeline, which slows down execution time
when used in the Fibonacci program. Performance increased when pipeline
stalls were introduced in the second test program (recursive factorial).

The influence from parallelism in programs and the behavior of a pipeline
on execution time indicates that the performance of Instant Simulator is highly
dependent on the specification of the processor. The performance of simulators
generated by Instant Simulator might therefore be unstable when descriptions
of DSPs are updated frequently.

6.8.3 Completeness

When describing the C67x DSP in Instant Simulator ADL, a combinatorial
explosion of instruction variations turns out to be bittersweet, because it
reveals a lack of flexibility in how Instant Toolsmith ADL. However, it also
shows that Instant Toolsmith ADL can sometimes manage more structurally
focused specifications, where register files and functional units are exposed.

The pipeline extensions made for the recursive factorial program in
Section 6.6 reveal a lack of important features for realistic simulation. Modern
DSPs will not lock the pipeline, but instead use branch prediction and
speculative execution. However, this is the beyond the current scope of Instant
Simulator.

The most limiting problem in this case study is how instructions are
encoded. When moving the operation codes of instructions to the most

72

6.8. ANALYSIS

significant bits, the vendor assembler could not be used. No real assembler
means that no relevant testing programs could be executed on generated
simulators. Unfortunately, the quality of this evaluation is therefore reduced.

73

Chapter 7

Conclusions

This report presented a tool for generating simulators based on specifications
of DSPs formalized in Instant Toolsmith ADL, with the purpose of comparing
generated machine code from different compilers. The tool was evaluated in
a case study, where the C67x DSP [7] was specified and different simulators
were generated. These simulators were tested with small programs. Two main
contributions have been identified:

1. A tool for generating simulators from specifications of DSPs formalized
in Instant Toolsmith ADL.

2. Assertion of key properties that motivates the existence of Instant
Simulator for its purpose, but also reveal its limitations.

The rest of this chapter provides a more in-depth view of the conclusions drawn
from evaluating the Instant Simulator. This chapter ends with suggestions for
future research.

7.1 Key Properties of Instant Simulator

Several important properties of Instant Simulator were shown in the case study
in Chapter 6. These properties are now summarized.

75

CHAPTER 7. CONCLUSIONS

7.1.1 Correctness

The correctness of the generated simulators was tested by evaluating simple
programs. Problems with asserting cycle-accuracy highlighted the importance
of using real benchmark suites from manufactures, as they often include
vital information that otherwise need to be calculated by hand. While
using benchmark programs is currently impossible with Instant Simulator,
future evaluation will benefit greatly once Instant Toolsmith ADL support
specifications of DSPs with enough information to use real applications.

7.1.2 Performance

Drawing conclusions on performance is difficult when no concrete execution
speed constraints are coupled to the purpose of Instant Simulator.
Performance is still a relevant aspect of evaluation because it influences the
usefulness of the tool.

The case study revealed a potential issue as performance was heavily
affected by the specification of a DSP. This unpredictable performance might
be mitigated by a static pipeline, similar to the techniques presented in related
work (Section 2.6).

7.1.3 Completeness

Instant Simulator’s level of completeness was shown in the process of specifying
areal DSP (albeit a subset) in Instant Toolsmith ADL. Using a real-world DSP
motivated the potential in Instant Simulator as a real tool, rather than being
an academic exercise.

The case study exposed some caveats when the more structural parts of
the C67x DSP were specified, leading to redundancies. However, within the
current scope of Instant Simulator, instruction-set simulation without pipeline
behavior has been shown to be supported.

76

7.2. FUTURE WORK

7.2 Future Work

The previous section presented both limitations and promising aspects of
Instant Simulator. These findings provide a basis for future research which is
now presented.

Focusing on the purpose of Instant Simulator (providing cycle-accurate
benchmarking with simulators), future work should focus on maximizing the
accuracy of these simulators. Two very beneficial features currently missing
in Instant Simulator are more detailed memory hierarchies and pipelines
generated from specifications in Instant Toolsmith ADL.

A realistic memory simulation is important for cycle accuracy, as execution
time is heavily affected by the latencies involved with moving data from
different regions in the memory hierarchy of a computer.

Once Instant Toolsmith ADL can capture descriptions of pipeline behavior,
the current naive pipeline implementation found in the generic simulator
(Chapter 4) should be replaced by an optimized version. The related work
presented Section 2.6 provides a starting point to achieve optimized cycle-
accurate simulation.

77

Bibliography

Benchmarks - C67x DSP - TI.Com. URL: http://www.ti.com/1lsds/
ti/dsp/c6000_dsp/c67x/benchmarks.page (visited on 04/17/2014).

Paul C. Clements. “A survey of architecture description languages”. In:
Proceedings of the 8th international workshop on software specification
and design. 1996, p. 16.

Antoine Colin and Isabelle Puaut. “Worst case execution time analysis
for a processor with branch prediction”. In: Real-Time Systems 18.2-3
(2000), 249-274.

GCC, the GNU Compiler Collection - GNU Project - Free Software
Foundation (FSF). URL: http : / / gcc . gnu . org/ (visited on
05/25/2014).

Peter Grun et al. “EXPRESSION: An ADL for system level design
exploration”. In: Department of Information and Computer Science,
University of California, Irvine, Technical Report (1998), 98-29.

John L. Hennessy and David A. Patterson. Computer architecture: a
quantitative approach. Elsevier, 2012.

Texas Instruments. TMS320C67x/C67x+ DSP CPU and Instruction Set
Reference Guide, November 2006.

Rola Kassem et al. “Harmless, a hardware architecture description
language dedicated to real-time embedded system simulation”. In:
Journal of Systems Architecture 58.8 (2012), 318-337.

LLVM Language Reference Manual — LLVM 3.4 documentation. URL:
http://11lvm.org/docs/LangRef .html (visited on 04/01/2014).

Scott A. Mahlke et al. “A comparison of full and partial predicated
execution support for ILP processors”. In: Computer Architecture, 1995.
Proceedings., 22nd Annual International Symposium on. 1995, 138-149.

79

http://www.ti.com/lsds/ti/dsp/c6000_dsp/c67x/benchmarks.page
http://www.ti.com/lsds/ti/dsp/c6000_dsp/c67x/benchmarks.page
http://gcc.gnu.org/
http://llvm.org/docs/LangRef.html

[11]

[15]
[16]

[17]

BIBLIOGRAPHY

Wei Qin, Subramanian Rajagopalan, and Sharad Malik. “A formal
concurrency model based architecture description language for synthesis
of software development tools”. In: ACM SIGPLAN Notices. Vol. 39.
2004, 47-56.

Michael Sperber et al. Revised [6] report on the algorithmic language
Scheme. Vol. 19. Cambridge University Press, 2010.

Gerry Sussman, Hal Abelson, and Julie Sussman. Structure and
interpretation of computer programs. Vol. 10. 1983.

Edwin J. Tan and Wendi B. Heinzelman. “DSP architectures: past,
present and futures”. In: ACM SIGARCH Computer Architecture News
31.3 (2003), 6-19.

Qualcomm Technologies Inc. “Hexagon V4 Programmer’s Reference
Manual”. In: (Aug. 2013).

time(1) - Linux man page. URL: http://linux.die.net/man/1/time
(visited on 05/25/2014).

Unison - Robust, Scalable, and Open Code Generation by Combinatorial
Problem Solving | SICS. URL: https://www.sics.se/projects/unison
(visited on 09/15/2013).

80

http://linux.die.net/man/1/time
https://www.sics.se/projects/unison

Appendix A

Instant Toolsmith ADL

This appendix describes the architecture description language (ADL) used in
the Instant Toolsmith project. Architectures are described using this ADL in
order for various tools to be generated. The appendix is written as joint work
by Mattias Jansson and Karl Johansson.

A.1 Describing Registers

The register specification is a model of the available registers in the
architecture. It describes their properties of as well as relationships between
registers such as overlap and grouping. This section describes the way to
describe a set of registers so that they can be referred to and used correctly.

This section will assume a simple processor architecture with 4 registers:
AX, AH, AL and PC. Registers AH and AL will be assumed to occupy the
same bits as the upper and lower half of AX, respectively. Register PC is a
read-only register.

A.1.1 Assembler syntax

The assembler syntax property is simply the name that the register will have
when referred to in assembly source code. In the specification, each register
will have an assembler syntax as well as a unique identifier for use by the

81

APPENDIX A. INSTANT TOOLSMITH ADL

(define-reg ax
((asm "AX")))

Listing A.1: The most basic register definition.

(define-reg ax
(Casm "AX")
(size 32)))

Listing A.2: Register with a defined size

toolset. The main difference between the identifier and the assembler syntax
is that the assembler syntax does not have to be unique (only unique within
the register class.) Listing A.1 will set the identifier and assembler syntax for
AX.

A.1.2 Size

The size property is simply the number of bits that the register consists of.
Listing A.2 shows an example by extending the specification for AX from
Section A.1.1.

A.1.3 Access

The access property tells the toolset whether a register can be written to, read

from, or both. This is specified using the strings "r", "w", "rw'. The registers
AX and PC are extended with the access property in listing A.3.

A.1.4 Overlapping registers

As mentioned in the beginning of this section, there are certain registers that
overlap others. Without this information in the specification, all registers
would be treated as independent and writing to one would not affect any
other. Using the overlap property, such dependencies can be specified as in

82

A.1. DESCRIBING REGISTERS

(define-reg ax
((asm "AX")
(size 32)
(access "rw")))

(define-reg pc
((asm "PC")
(size 32)
(access "r")))

Listing A.3: Ax and PC declared with different access properties.

(define-reg ax
((asm "AX")
(size 32)
(access "rw")))

(define-reg al
(Casm "AL")
(size 16)
(access "ruw"
(overlap (ax 0 15))))

(define-reg ah
(Casm "AH")
(size 16)
(access "rw")
(overlap (ax 16 31))))

Listing A.4: Sub-registers with specified overlap.

listing A.4. This specifies that AH overlaps the upper 16 bits of AX and AL
overlaps the lower 16 bits. Note how AX is referred to using its identifier in
the overlap property. Overlaps can be defined in an arbitrary way. A register
may overlap, and be overlapped by, several other registers.

83

APPENDIX A. INSTANT TOOLSMITH ADL

(define-reg ax
((asm "AX")
(size 32)
(access "rw")))

(define-reg al
(Casm "AL")
(size 16)
(access "rw")
(overlap (ax 0 15))
(ref (ah 'my-sibling) (ax 'my-parent))))

(define-reg ah
((Casm "AH")
(size 16)
(access "rw"
(overlap (ax 16 31))
(ref (al 'my-sibling) (ax 'my-parent))))

Listing A.5: Sub-registers extended with sibling references.

A.1.5 References

For some instructions, there may be a need to refer to registers via an arbitrary
relation to another one. For example, one could say that AL and AH are
sibling registers since they are part of the same larger registers. They are
related, but do not overlap. The ref property enables this type of arbitrary
relations. In listing A.5, sibling and parent relationships have been given clear
names.

The names of the relationships can be anything. In this case, they have
purposely been given the same names for all the 16 bit registers. This way,

when dealing with any of the 16 bit registers, one can refer to the sibling or
the parent of the register.

A.1.6 Register classes

Registers are normally grouped into classes. For example, some instructions
may operate only on 16-bit registers while others operate only on 32-bit

84

A.1. DESCRIBING REGISTERS

(define-register-class <id>
((<reg> (encoding (<width> <value>))) ...))

Listing A.6: Syntaz of register class definition.

(define-reg-class large-reg
((ax (encoding (1 0)))
(bx (encoding (1 1)))))

(define-reg-class small-reg
((al (encoding (2 0)))
(ah (encoding (2 1)))
(bl (encoding (2 2)))
(bh (encoding (2 3)))))

Listing A.7: Example of register class definitions.

registers. Some instructions only operate on a very select set of registers.
Moreover, the binary representation of a register might be different depending
on the instruction using it. To deal with this, the registers are grouped into
register classes. A register class is simply a list of all registers that are in
the class and how to binary encode each particular register in that particular
class. The syntax is described in listing A.6. Id is the unique identifier of the
register class, reg is an identifier of an existing register, width is the number
of bits that the register will be encoded with and value is the actual binary
encoding for the register in that register class.

Starting from the specification in Section A.1.5, listing A.7 how the register
classes could be defined. When defining an instruction, the operands for that
instruction can are specified by referring to a register class.

A.1.7 Abstract registers

In the examples given throughout this section there is some code duplication.
In a more advanced processor architecture, there would be much more. To
mitigate this, one can define abstract registers. These are registers which
can not be referred to or used except for when extending them into regular
registers. Listing A.8 shows a set of register definitions which are equivalent
to the example in Section A.1.5 (with the addition of PC').

85

APPENDIX A. INSTANT TOOLSMITH ADL

(define-abstract-reg large-reg
((size 32)
(access "rw")))

(define-abstract-reg small-reg
((size 16)
(access "rw")))

(define-reg ax
((asm "AX")
(extends large-reg)))

(define-abstract-reg ax-child
((extends small-reg)
(ref (ax 'my-parent))))

(define-reg al
(Casm "AL")
(extends ax-child)
(overlap (ax 0 15))
(ref (ah 'my-sibling))))

(define-reg ah
(Casm "AH")
(extends ax-child)
(overlap (ax 16 31))
(ref (al 'my-sibling))))

(define-reg pc
((asm "PC")
(extends large-reg)
(access "r")))

Listing A.8: Registers defined using abstract registers.

86

A.2. DESCRIBING INSTRUCTIONS

Some of the properties of AX are captured in the abstract register large-
reg. The small registers do not inherit directly from small-reg, but indirectly
via az-child. They inherit size and access properties from small-reg and also
a register reference from ax-child.

PC has its size set by extending large-reg, but overrides the access property
to make it read-only.

A.2 Describing Instructions

Instructions define the behavioural part of processors. Their operation-
semantics are described using a subset of Scheme [12] together with special
forms created for Instant toolsmith. Instructions also expose structural
constraints to some extent, by describing valid functional units, encoding size,
operands and other properties.

This section presents how instructions are described by use of an initially
empty example instruction, which is extended as more propterties are
introduced. We begin with the empty instruction shown in Listing A.9.

A.2.1 Size

The size field reflects the total size of the encoded instruction. This
information is also available in the field decribing how an instruction is
encoded. Our example instruction is extended to include the size property
in Listing A.10. The size describes how many bits are needed to encode the
instruction. Varying instruction-lengths are allowed and expected for the type
of architectures Instant Toolsmith targets.

(define-instruction add-max

)

Listing A.9: An initially empty instruction, which will be filled with properties as
they are introduced in this section.

87

APPENDIX A. INSTANT TOOLSMITH ADL

(define-instruction add-max
((size 32)))

Listing A.10: An instruction extended with the size property. The encoding of
this instruction is 32 bits long.

(define-instruction add-max
((size 32)
(functional-unit (arithil) (arith2))))

Listing A.11: An instruction extended with a property that describes which
functional units can execute it. In this example, there are two potential functional
units available.

A.2.2 Functional units

This property describes what combinations of functional units are capable
of executing an instruction. Listing A.11 shows how this property has been
added to the example instruction.

Only functional units that are declared, as described in Section A.4.5,
are available to an instruction. These combinations of functional units are
expressed as disjunctions of conjunctions. For instance, the combination ((4
B) (B C)) expresses that either both functional units A and B are used or
both B and C are used.

A.2.3 Issue slots

When combining several instructions into packets (or bundles), there may be
constraints on the order in which the instructions are to appear in the packet.
There may also be constraints on the number of different types of instructions
that can be issued in the same packet.

The concept of issue slots is a way to model some such constraints. The
available issue slots are globally declared as described in Section A.4.6 and
instructions will be issued in slots during packet reordering and encoding.

For example, if the two issue slots is1 and is2 are declared in that order.

88

A.2. DESCRIBING INSTRUCTIONS

(define-instruction add-max

((size 32)

(functional-unit (arithl) (arith2))

(issue-slot (isl) (is2))))
Listing A.12: An instruction extended with the issue-slot property. In this
example, the instruction can be issued in either is1 or is2.

Then, if there is an instruction packet with two instructions which use is2 and
is1 respectively, they will be reordered in the packet so that the instruction
using is1 occurs first in the packet.

Furthermore, if only those two issue slots are available, then no more than
two instructions can be issued in the same packet. Also, two instructions that
only support issue slot #s! can not be issued in the same packet.

An example of issue slot usage is given in Listing A.12.

A.2.4 Operands

Instructions are required to specify which operands are used in the semantics.
The example instruction has been extended with operands in Listing A.13.
All operands are defined by the name they are referred to in semantics
together with some type-dependent information. The required information
is documented below:

(reg <name> <register-class>)
The register class is needed in order encode and decode registers.

(imm <name> <min value> <max value>)
Immediates require information about the minimum and maximum
values. For encoding, immediate-operand sizes are implied based on
these two values.

(zimm <name> <min value> <max value>)
Non-zero immediates are similar to normal immediates, except a zero
value represents the larger value within the range instead. This allows
the maximum value allowed for non-zero immediates to be one higher
than normal immediates of same bitlength.

89

APPENDIX A. INSTANT TOOLSMITH ADL

(define-instruction add-max
((size 32)
(functional-unit (arithl) (arith2))
(issue-slot (isl) (is2))
(operands (reg dst r32) (reg srcl r64) (reg src2
r64))))

Listing A.13: An instruction that describes wvalid input operands. For this
instruction, only register operands are used.

(imm <name> ((<sub-name> <min-value> <max-value>) ...))
Immediates often function as input flags in instructions. An immediate
operand can be composed of more than one flag, which would require
bitmasking to extract relevant bits. With this composite operand,
the masking is no longer needed as sub-fields are bound to separate
identifiers.

(rel-address <name> <min value> <max value>)
Relative addresses are used in instructions that do flow control based
on offsets. They require a numeric minimum and maximum value, even
though they in assembly are given as labels.

(abs-address <name> <min value> <max value>)
Absolute addresses are similar to relative addresses, except program
jumps are not based on an offset but are absolute addresses.

A.2.5 Assembly syntax

The asm property describes how instructions are presented in assembly
source code. The currently supported format only allows for representations
beginning with a mnemonic, followed by the operands. Listing A.14 shows
how the example instruction is extended to include an assembly syntax.

Operands are prefixed with a % escape character to identify where to
insert their assembly representation. For registers, this representation is
found in their definition. Unlike registers, immediates are literals, hence their
syntactical representation is their value.

90

A.2. DESCRIBING INSTRUCTIONS

(define-instruction add-max
((size 32)
(functional-unit (arithl) (arith2))
(issue-slot (isl) (is2))
(operands (reg dst r32) (reg srcl r64) (reg src2 r64))
(asm "addmax Y%srcl, %src2, %dst")))

Listing A.14: An instruction after adding its assembly representaion. The %
prefix indicates that the assembly code string found in the operand should be inserted.

(define-instruction add-max
((size 32)
(functional-unit (arithl) (arith2))
(issue-slot (isl) (is2))
(operands (reg dst r32) (reg srcl r64) (reg src2 r64))
(asm "addmax Y%srcl, %src2, %dst")
(encoding P (16 #b0111100110101101) srcl src2 dst)))

Listing A.15: An instruction with encoding information added.

A.2.6 Encoding

Instructions need an encoded representation so that they can be both
assembled and disassembled. Listing A.14 shows how the example instruction
is extended with an encoding property.

The encoding property is a list containing an optional packet-flag,
constants, and operands that collectively contribute to a number of bits that
reflects the value of the size property. Operands are referred to by the alias
used in the semantics.

Register operands have their encoded representation based on the register
class they belong to. Immediates are simply constants and thus their numeric
value is used in the encoding. Constants require an extra field which specifies
their lengths. For VLIW architectures, a P symbol reflects a packet flag of 1
bit.

91

APPENDIX A. INSTANT TOOLSMITH ADL

A.2.7 Semantics

Semantics are defined using a subset of Scheme. Features that belong in the
functional-programming paradigm have been removed to simplify evaluation
of the semantics. Special forms that are not mentioned in this section are
disallowed.

The special-forms found in Scheme: let, let*, and begin are valid
expressions. The Lambda form cannot be used and high-order functions are
disallowed. Moreover, No form of recursion nor any type of iterative source
code can be used directly in the semantics (but similiar functionality can be
implemented using macro functions, described in Section A.4.3). There are
three special-forms used for retrieving and updating registers:

(set-reg! <register> <value>)
Updates a register with a new value. Both operands can be registers,
with the implication that the second operand refers to the value of the
register and not the register itself.

(reg-ref <register> <symbol>)
Retrieves a register based on the provided register and an alias.

(reg-range <register> <start> <end>)
Retrieves a subrange of a register which still contains its parent register’s
properties. This function can be used for either updating a register or
using its value.

Instant toolsmith cannot use the primitive if-expressions because a compiler
will need to know when predicates depend on runtime state and when the
outcome of predicates can be configured statically. There are two version
of this form instead, rif and cif for if-statements resolved at runtime and
if-statements resolved at configure-time respectively.

A.2.8 Abstract instructions

Instructions that share similar properties can use an abstract instruction as
a template, to avoid source code duplication. These abstract intructions
are defined with define-abstract-instruction, using properties identically to

92

A.2. DESCRIBING INSTRUCTIONS

(define-instruction add-max
((size 32)
(functional-unit (arithl) (arith2))
(issue-slot (isl) (is2))
(operands (reg dst r32) (reg srcl r64) (reg src2 r64))
(asm "addmax Y%srcl, %src2, %dst")
(encoding P (22 #b0111111111100001001100) srcl src2
dst)
(semantics
(letx*
;; Get the mazxzimum register of srcl and src2
((src (rif (icmp 64 'sgt srcl src2) srcl src2))
;; Retrieve the flag-register that dictiates
whether to saturate
(saturation-flag (reg-ref dst 'saturation)))

;; If saturation-flag set during configuration,
use saturated add.
(cif (icmp 1 'eq 1 saturation-flag)
(set-reg! dst (satadd 32 dst src))
(set-reg! dst (add 32 dst src)))))))

Listing A.16: The example instruction after adding instruction semantics. The
largest source register is first chosen. A saturation flag is retrieved to decide whether
the addition is saturing or if not.

those found in normal instructions. Listing A.17 shows an example where
the functional unit and size of instructions have been abstracted to a base
instruction, because so many instructions share these properties.

Unlike instructions, any property can be omittied, as long as sub-
instructions extend their implementations with the missing properties.
Similarly to macro functions, described in Section A.4.3, they are unhygienic
in the sense that they may provide semantics without providing operands.

93

APPENDIX A. INSTANT TOOLSMITH ADL

(define-abstract-instruction base-instruction
((size 32)
(functional-unit (arithl) (arith2))
(issue-slot (isl) (is2))))

(define-instruction add
((extends base-instruction)
...)) ;; omitted properties
Listing A.17: The definition of an abstract base instruction. The size and
functional-unit property is provided from this base instruction so the extending
instruction need not do so.

A.3 Describing Conditions

Conditions are described in a way nearly identical to describing instructions,
except that the special-form is define-condition. Furthermore, unlike
instructions, abstract conditions cannot be defined. Listing A.14 shows a
typical condition that checks whether a general-purpose register is non-zero.

Compared to instructions, there are less properties to provide when
defining conditions. Size, encoding, operands, and semantics are all valid
attributes. Semantics need to return a numeric value, although side effects
(such as register updates) can occur.

(define-condition reg-not-zero
(Casm "[Y%cond-regl")
(size 16)
(encoding P (9 #b1101001111) cond-reg)
(operands (reg cond-reg r32))
(semantics (icmp 'me 32 cond-reg 0))))))

Listing A.18: A condition that returns true if the only register operand is not
zero.

94

A.4. MISCELLANEOUS INFORMATION

A.4 Miscellaneous Information

This section provides important features of Instant Toolsmith ADL that did
not fit into previous sections.

A.4.1 Primitive functions

Primitive functions are used as building blocks by semantics to perform
computations. Typical examples of these operations are arithmetic and
program jumps. Besides common operations, custom primitive functions can
be supplied. Two examples of custom primitives are shown in Listing A.19.
The special form define-primitive takes three parameters. The first parameter
is a boolean value that signifies whether the primitive returns a value. The
second parameter is signature of the primitive function. The last argument is
the name of the function in C source code, so that a generated simulator can
utilize it.

A.4.2 Utility functions

Utility functions provide means for avoiding source code duplication. They
are defined as typical functions that perform operations and optionally return
a value. The same rules apply to utility functions as for instruction semantics.
An example of a utility function is provided in Listing A.20.

Utility functions can make use of previously defined utility functions and
macro functions, but recursion is disallowed.

(define-primitive true (load-byte addr offset)
"1lvm_1db")

(define-primitive false (store-byte addr offset value)
"llvm_stb")

Listing A.19: A definition of two primitives which allows semantics to assume
that these functions exist. The first definition will return a value while the second
definition will not.

95

APPENDIX A. INSTANT TOOLSMITH ADL

(define-util-fun (swap-halves! register)
"Swaps the lower 16 bits with the higher
16 bits in a 32 bit register"
;5 Need to do add because tmp should store a numeric
value, mnot a Tregister
(let ((tmp (add 16 (reg-range register 16 31) 0)))
(set-reg! (reg-range register 16 31)
(reg-range register 0 15))
(set-reg! (reg-range register 0 15) tmp)))
Listing A.20: A utility function that swaps the lower and upper halves of a 32 bit
register. Instructions defined after this utility function can make use of it. Utility
functions require a documentation string.

A.4.3 Macro functions

Macro functions help circumvent the strict rules associated with defining
instruction semantics. With macro functions, any valid Scheme source code
can be used as long as the functions return something that expands into valid
semantics. Two examples where macro functions shine are now presented:

1. Semantics that are best described iteratively within a constant range can
be defined in macro functions which will then unroll the source code.

2. Typically during saturating operations, register flags that signify
overflow need to be updated based on the result of the operation before
saturation takes place. This requirement, which is also needed by other
types of flags, can utilize macro functions to avoid large source code
duplication. A macro function that takes the operation, target register,
and the relevant flags as input can perform the unsaturating version
of the operation, update the flags and then perform the saturating
operation.

Listing A.21 shows an example of a macro function that can be invoked from
a instruction, condition or utility function.

96

A.4. MISCELLANEOUS INFORMATION

(define-macro-fun (random-set-r5!)
;;, Assume the random function 4s defined only 1in
Racket.
(let ((value (random #xdeadbeef)))
;; Ezxpanded wvalues are stored in an extra Llist.
‘((set-reg! r5 ,value))))

Listing A.21: A macro function for updating register r5 to a random value between
0 and hexadecimal value deadbeef. The value will be randomized everytime the
specification is loaded. The target register need not be provided to the macro function
because the macro-system in Instant Toolsmith is unhygenic.

(declare-functional-units
(MAC1 MAC2 Load-Store FP-Arith))

Listing A.22: Declaration of functional units for a hypothetical architecture. After
being declared, they can be put to use in the definitions of instructions.

A.4.4 Loading specifications

No form of recursion is allowed and specifications follow a flat module
structure. They are loaded top-down similar to the old load mechanics in
Scheme.

A.4.5 Functional units

The existence of functional units is declared in a simple statement, as shown in
Listing A.22. Their functionalities and constraints are not described explicitly,
but instead specified collectively in their usage, found in the definitions of all
instructions.

A.4.6 Issue slots

Issue slots are used for VLIW packet ordering as briefly described in
Section A.2.3. Instructions will be placed in packet slots in the order that

97

APPENDIX A. INSTANT TOOLSMITH ADL

(declare-issue-slots
(is1l is2 is3))

Listing A.23: Example declaration of issue slots. This example allows for packets
of three instructions, but only if the instructions themselves allow all the slots to be

used.

they appear in the issue slot declaration. Listing A.23 shows how issue slots
are declared.

98

	Contents
	Introduction
	Motivation
	Solution
	Contribution
	Ethics and Sustainability
	Thesis Structure

	Background
	A Metaphor for Computers
	The Internals of a Processor
	Simulating Processors
	Instant Toolsmith ADL
	Digital Signal Processors
	Related Work in Architecture Description Languages

	System Design
	System Overview
	Generic Simulator
	Build Scripts

	The Generic Simulator in Detail
	Executing a Cycle
	Decoding Bundles of Instructions and Conditions
	Maintaining Bundles in the Pipeline
	Executing Instructions and Conditions
	Data Structures

	The Build Scripts in Detail
	Building Simulator State
	Building Executable Instructions and Conditions
	Building Register Functions
	Building a Decoder

	Evaluation by Case Study: C67x DSP
	Evaluation Methodology
	A Brief Overview of the C67x DSP
	Limitations and Work-arounds
	Describing the C67x DSP in Instant Toolsmith ADL
	Testing the C67x DSP with Fibonacci
	Extending the C67x DSP for Recursive Factorial
	Performance Results
	Analysis

	Conclusions
	Key Properties of Instant Simulator
	Future Work

	Bibliography
	Appendices
	Instant Toolsmith ADL
	Describing Registers
	Describing Instructions
	Describing Conditions
	Miscellaneous Information

