
DEGREE PROJECT, IN SOFTWARE ENGINEERING OF DISTRIBUTED SYSTEMS
, SECOND LEVEL

STOCKHOLM, SWEDEN 2015

Optimizing Task Sequence and Cell
Layout for Dual Arm Robot Assembly
Using Constraint Programming

ZHENGYANG ZHAO

KTH ROYAL INSTITUTE OF TECHNOLOGY

INFORMATION AND COMMUNICATION TECHNOLOGY

Optimizing Task Sequence and Cell Layout
for Dual Arm Robot Assembly Using

Constraint Programming

Zhengyang Zhao

Supervisor:

Johan Wessén

(ABB Corporate Research, Sweden)

Advisors at KTH:

Prof. Christian Schulte

Gabriel Hjort Blindell

Examiner:

Prof. Christian Schulte

Master’s Thesis

September 9, 2015

School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

KTH ROYAL INSTITUTE OF TECHNOLOGY

I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

Abstract

Nowadays, assembly robots are increasingly used in the manufacturing industry to

replace or collaborate with human labors. This is the goal of the dual arm assembly

robot developed by ABB. With the rapid upgrading in consumer electronics products,

the lifetime of an assembly line could be only a few months. However, even for

experienced programmers, to manually construct a good enough assembly sequence

is time consuming, and the quality of the generated assembly sequence is not

guaranteed. Moreover, a good robot assembly sequence is important to the

throughput of an assembly line. For dual arm robots, it is also important to obtain a

balance between the two arms, as well as handling scheduling conflicts and avoiding

collisions in a crowded environment.

In this master thesis, a program is produced to automatically generate the optimal

assembly sequence for a class of real-world assembly cases. The solution also takes

the layout of the assembly cell into account, thus constructing the best combination

of cell layout, workload balancing, task sequence and task scheduling. The program is

implemented using Google OR-Tools – an open-source support library for

combinatorial optimization. A customized search strategy is proposed and a

comparison between this strategy and the built-in search strategy of Google OR-Tools

is done. The result shows that the used approach is effective for the problem study

case. It takes about 4 minutes to find the optimal solution and 32 minutes to prove its

optimality. In addition, the result also shows that the customized search strategy

works consistently with good performance for different problem cases. Moreover, the

customized strategy is more efficient than built-in search strategy in many cases.

Keywords:

Constraint Satisfaction Problem, Constraint Optimization Problem, Vehicle Routing

Problem, Dual Arm Robot Assembly, Search heuristics

Sammanfattning

Numera används monteringsrobotar alltmer inom tillverkningsindustrin för att

ersätta eller samarbeta med människor. Detta är måluppgiften för den tvåarmiga

monteringsroboten, YuMi, som utvecklats av ABB. Med den korta

produktlivslängden för hemelektronikprodukter kan livslängden för en

monteringslinje vara ett fåtal månader. Även för erfarna robotprogrammerare är det

svårt och tidsödande att manuellt konstruera en tillräckligt bra monteringsordning,

och dessutom kan resultatets kvalitet inte garanteras. En bra monteringsordning är

nödvändig för genomströmningen i en monteringslinje. För tvåarmiga robotar, är det

också viktigt att få en balans mellan de två armarna, samt hantering av

schemakrockar och undvika kollisioner i en trång miljö.

I detta examensarbete har ett program skrivits, som automatiskt genererar optimala

lösningar för en klass av verkliga monteringsfall. Lösningen tar hänsyn till

utformningen av monteringscellen och arrangerar cellen på bästa sätt, balanserar

arbetsbelastningen, ordnar och tidsbestämmer uppgifter. Programmet använder sig

av Google OR-Tools – ett öppet kodbibliotek för kombinatorisk optimering.

Dessutom föreslås en skräddarsydd sökstrategi, som jämförs med Google OR-Tools

inbyggda sökstrategi. Resultatet visar att den använda metoden är effektiv för

problemtypen. Det tar ungefär 4 minuter att hitta den optimala lösningen och 32

minuter för att bevisa optimalitet. Dessutom visar resultatet att den anpassade

sökstrategin konsekvent har en bra prestanda för olika problemfall. Dessutom är den

anpassade strategin effektivare än den inbyggda sökstrategin i många fall.

Nyckelord:

Constraint Satisfaction Problem, Optimeringsproblem med bivillkor, Ruttplanering,

Tvåarmad robotmontering, Sökheuristik

Acknowledgements

I would like to thank my supervisor at ABB Johan Wessén for all the help and

support throughout the thesis project, and for many instructive discussions. I would

also like to thank my academic examiner and advisors at KTH Professor Christian

Schulte and Gabriel Hjort Blindell for the invaluable feedback on the thesis work and

report. Another thank you goes to Frej Knutar for the inspiring discussions and

pleasant cooperation. In addition, I would like to thank everybody at ABB who has

helped me during the thesis work. Finally, I want to thank my family for their support

and encouragement.

1

Table of Contents

 Introduction .. 1 1

1.1 Overview ... 1

1.2 Problem ... 1

1.3 Purpose and Goal ... 2

1.4 Benefits, Ethics and Sustainability .. 2

1.4.1 Benefits .. 2
1.4.2 Ethics .. 2
1.4.3 Sustainability .. 2

1.5 Delimitations .. 3

1.6 Contributions ... 3

1.7 Outline ... 3

 Background ... 5 2

2.1 YuMi® Robot .. 5

2.2 Problem Input and Output .. 6

2.3 Problem Case .. 6

2.3.1 Assembly Cell and Robot Description ... 7
2.3.2 Assembly Graph ... 8
2.3.3 Assembly Tree ... 9
2.3.4 Travel Time Matrix and Task Durations ..10
2.3.5 Assembly Sequence and Assembly Cell Layout ..10

 Constraint Programming .. 13 3

3.1 CP Modeling ... 13

3.1.1 Constraint Satisfaction Problem ..13
3.1.2 Constrained Optimization Problem ...14
3.1.3 A classic problem: 4-Queens Problem ..14
3.1.4 4-Queens problem model in CSP ..14
3.1.5 The optimization version of 4-Queens problem ..15

3.2 CP Solving ... 15

3.2.1 Constraint Propagation ..16
3.2.2 Search ...17

3.3 CP Variables ... 20

3.4 CP Constraints .. 20

3.4.1 Global Constraints ..20
3.4.2 Reification...21
3.4.3 Deterministic Finite Automaton ..22

 Vehicle Routing Problem & Job Shop Problem 23 4

2

4.1 Vehicle Routing Problem ... 23

4.1.1 Travelling Salesman Problem ...23
4.1.2 Definition of Vehicle Routing Problem ..23
4.1.3 Variations of Vehicle Routing Problem ..24
4.1.4 Methods for Vehicle Routing Problem ...25

4.2 Job Shop Problem ... 27

4.3 VRP vs. JSP .. 27

 Model and Implementation.. 29 5

5.1 Problem Case Analysis .. 29

5.2 Constraint Programming Model .. 30

5.2.1 Problem Instance Data ...30
5.2.2 Variables ..34
5.2.3 Pre-Processing of Variable Domains ...36
5.2.4 Constraints ...37

5.2.4.1 Core constraints ... 37

5.2.4.2 One route per node constraint .. 39

5.2.4.3 Disjunctive constraint .. 39

5.2.4.4 Conjunctive constraint ... 40

5.2.4.5 Casting sequence for each route .. 40

5.2.4.6 Regular expression constraints.. 40

5.2.4.7 Distinct tray location constraint ... 44

5.2.4.8 Avoiding collision constraint ... 44

5.2.4.9 Compact-fixtures constraint .. 45

5.2.5 Objective function ...46

5.3 Search strategy.. 46

5.3.1 Structure of Search Tree ..46
5.3.2 Built-in Search vs. Customized Search ...47
5.3.3 Built-in Search Strategy ...47
5.3.4 Customized Search Strategy ..49

5.3.4.1 Branching Route .. 49

5.3.4.2 Branching Next .. 50

5.3.4.3 Branching Location ... 51

5.3.4.4 Branching makespan .. 52

5.4 Implementation ... 52

 Results .. 55 6

6.1 Experiment Settings .. 55

6.2 Experiment Results .. 56

6.2.1 Test on case 1 ...57

3

6.2.2 Test on case 2 and 3 ...59
6.2.3 Test on case 4 ..60
6.2.4 Test on case 5 ..61

6.3 Summary ... 61

 Conclusion ... 63 7

 Discussion & Future Work .. 65 8

References .. 67

Appendix ... 73

A1. Assembly tree of case 2 ... 73

A2. Assembly tree of case 3 ... 73

A3. Assembly tree of case 4 ... 74

Acronyms & Abbreviations

COP Constraint Optimization Problem

CP Constraint Programming

CSP Constraint Satisfaction Problem

CVRP Capacitated Vehicle Routing Problem

CVRPPD Capacitated Vehicle Routing Problem with Pickup and Delivery

DFA Deterministic Finite Automaton

JSP Job Shop Problem

TSP Travelling Salesman Problem

VRP Vehicle Routing Problem

VRPPD Vehicle Routing Problem with Pickup and Delivery

VRPTW Vehicle Routing Problem with Time Windows

1

 Introduction 1

This thesis work was carried out at ABB Corporate Research in Västerås, Sweden.

ABB is a global corporation mainly focusing on robotics and the power and

automation technologies. It provides solutions to improve the efficiency, productivity

and quality of its customers’ operations. The ABB Group of companies operates in

roughly 100 countries with about 140,000 employees. ABB Corporate Research

develops technologies for future products and services for ABB’s core businesses [1].

1.1 Overview

In recent years, due to the rising labor costs, assembly robots are increasingly used in

manufacturing industries from large vehicles to small electronics. Some assembly

work that requires high precision can only be done by robots. This brings a high

demand for robot assembly [2].

ABB is one of the leading manufacturers of industrial robots and robot systems [3].

Since its first commercial electric robot introduced in 1974, ABB has installed over

200,000 robots worldwide in a wide range of fields such as consumer electronics,

machine tools, metal fabrication, food and beverage industries, etc.

YuMi® is the latest dual arm assembly robot of ABB [4]. It is designed for small parts

assembly that was previously intended for manual labors. The robot is small in size

and suitable for the compact production environment.

A good assembly sequence and assembly cell layout is important to the throughput of

an assembly line. On the assembly line, a single product assembly is called a cycle. In

a common lean production [5] environment, due to the cumulative effect, even a

small improvement in a cycle will result in a significant improvement in the total

throughput and a large saving over the entire assembly line. Therefore, it is

interesting to find the optimal assembly sequence and assembly cell layout so as to

get the optimal cycle time.

1.2 Problem

In some manufacturing fields such as consumer electronics, an assembly line needs

to frequently reinstall due to the rapidly changing market demands and technique

upgrading. In some extreme cases, the assembly line could change every few months.

Meanwhile, the installation for the new assembly line often takes a comparatively

long time. Even an experienced programmer needs weeks to build up a new assembly

line and in most cases with non-optimized assembly sequence. Therefore, finding a

way to automatically and efficiently generate optimized assembly sequence becomes

important.

2

1.3 Purpose and Goal

The purpose of this project is to evaluate the suitability of optimizing dual arm robot

assembly using Constraint Programming. A Constraint Programming model and a

customized search strategy are proposed and tested in this thesis.

The goal is to produce a program to automatically generate high quality assembly

sequence for dual arm robot. This program can greatly shorten the installation time

for an assembly line and improve the throughput.

1.4 Benefits, Ethics and Sustainability

1.4.1 Benefits

The ultimate goal of this thesis project is to shorten the installation phase of an

assembly line meanwhile maximize the assembly throughput. If the outcome of this

project is successfully applied in industry, both manufacturers and customers will

enjoy the benefits.

With shorter installation time for robot assembly line and higher assembly

throughput, new products will be put into market faster. And with cleverer assembly

manner on the assembly line, the average energy consumption for each product will

be reduced. This will lead to cost savings for the manufactures and might in turn

lower the product price for customers.

1.4.2 Ethics

One important function of assembly robots is to free human from repetitive and

dangerous jobs. Robots can keep the assembly line running continuously and operate

on dangerous materials, such as toxic and radioactive substance, without worries.

However, there are concerns that the increasing use of robots raises unemployment

in the society [6]. With the development of technology, the advantage of robot over

human labor will become even more prominent. In the future, it is inevitable that

robots will replace human in more and more assembly work.

1.4.3 Sustainability

This thesis project aims to give the optimal assembly manner for a product assembly.

The best assembly manner brings a higher throughput for the assembly line, which

will in turn lower the number of robots needed, thus more sustainable.

In addition, since robots make less mistakes, the defect rate of robots is often much

smaller than that of human labors. Therefore, the increasing use of robot in product

assembly will reduce the waste of raw materials.

3

1.5 Delimitations

Although one important feature of YuMi robot is to work collaboratively with humans,

the problem case in this thesis only considers the assembly scenario that a robot

works autonomously without any interference from outside world.

In practice, the movement of robot arm is driven by the instant parameters of

kinematics and dynamics. In this thesis, instead of using the instant data, the

modeling uses the data of travel time and operation time collected off-line by

software simulation.

1.6 Contributions

The author’s contributions to this thesis project were as follows:

1. The author was highly involved in designing and implementing the CP model.

Particularly, the author proposed and designed the conjunctive constraint

and suction capacity DFA, and was highly involved in designing the

precedence order DFA.

2. The author designed and implemented the customized search strategy.

3. The author carried out the experiment and evaluation of this thesis report.

1.7 Outline

This thesis report is organized in eight Chapters. Chapter 2 presents the real world

problem case studied in this thesis. Chapter 3 gives necessary theoretical background

in Constraint Programming for the thesis. Chapter 4 introduces two important

problems related to the thesis – the Vehicle Routing Problem and Job Shop Problem.

Chapter 5 presents the details of the model and search strategy, as well as the

implementation. Chapter 6 and Chapter 7 present the evaluation results and

conclusion. Finally, Chapter 8 gives some discussion and suggests future work.

4

5

 Background 2

An industrial robot is an automatically controlled, reprogrammable, multipurpose

manipulator programmable in three or more axes [7]. A typical application of

industrial robots is production assembly. Generally, Assembly robots can increase

productivity, quality and eventually lower the costs for manufactures.

With the development of technology, the modern assembly robots become more

compact and highly flexible to meet the agile production scenarios. The state-of-the-

art assembly robots are designed as dual arm humanoids to perform tasks like human

beings.

In this chapter, I will introduce the latest dual arm assembly robot of ABB. A real

world assembly case of the robot will be introduced. This assembly case is the target

problem study case of the thesis.

2.1 YuMi® Robot

YuMi robot, as shown in Figure 2.1, is the latest collaborative, dual arm, small parts

assembly robot of ABB. It has flexible hands, parts feeding systems, camera-based

part location and robot control systems. One of the most important features of YuMi

robot is the human-robot collaboration i.e. human workers and robots work together

on the same assembly tasks. However, this thesis only focuses on the situation that a

robot works independently in an isolated working environment with dedicated

components input and assembly output.

Figure 2.1 YuMi dual arm assembly robot [4]

The robot takes a human size workplace. It has an accurate vision and two arms that

contain 7 rotating joints, which allows the robot to work in a very precise and flexible

way. In order to perform assembly like a human worker, the robot is provided with

several optional hands as shown in Figure 2.2.

6

Figure 2.2 Optional hands for YuMi robot [4]

The hands consist of gripper tool and suction tool. Suction tool is used for picking up

flat components. In addition to picking up, gripper tool is also used for the tasks such

as peeling the cover off a component and tapping a component to stabilize it on a

fixture. Since the tasks of peeling and tapping are performed on a fixture, this type of

tasks is called fixture operation.

2.2 Problem Input and Output

The goal of this thesis is to produce a program that automatically constructs the

optimal assembly sequence and assembly layout for the YuMi robot under a class of

real-world problem cases. The program takes a number of parameters and instance

data as input, and generates two outcomes.

The input parameters and instance data include:

 Assembly cell description

 Robot description

 Assembly Tree

 Travel time matrix

 Task durations

The outcomes include:

 Assembly sequence, including timing of each task

 Assembly cell layout

The input and output will be introduced in details together with the problem case in

the next section.

2.3 Problem Case

In this thesis, the problem case is the same as a previous work [8] regarding the cell

description, robot description, assembly graph, distance matrix, and task durations.

The main difference between the input data in this thesis and that in previous work is

that the assembly tree is proposed in this thesis and thus not used in previous work.

In this section, we will introduce the input and output of the thesis together with the

target problem case in details.

7

2.3.1 Assembly Cell and Robot Description

An Assembly cell is a limited workspace in which the robot works with product

assembly. Within the cell, the robot works autonomously without any interference

from outside. A cell contains several auxiliary apparatuses such as trays, cameras, air

gun, fixtures, and output buffer.

Figure 2.3 gives an overview of the assembly cell of the problem case in this thesis.

The assembly cell contains two fixtures, five trays, five cameras, one air gun, and one

output buffer. The output buffer is not shown in this figure but it is also a part of the

assembly cell.

Figure 2.3 The assembly cell of the problem case [9]

The trays provide new parts for the robot to assemble. In the rest of the thesis, the

parts to be assembled are also called components. After finishing the assembly, the

robot puts the final assembly of the product on the output buffer. The trays are filled

with components from outside of the cell. The final assembly on the output buffer is

also handled by another part of the assembly line out of the cell. In this thesis, we

only consider the operations performed in the assembly cell.

The components are initially laid on the trays. Each tray only provides one type of

component. At the beginning of an assembly cycle, the robot picks up a component

from a tray and places it on a fixture. The fixture is a stable place for the robot to

perform further assembly operations. The robot could tap or peel the component that

has been mounted on the fixture, put another component onto this mounted

component, or put one sub-assembly (which is a combination of several components)

onto another sub-assembly.

8

For each tray in the cell, a dedicated camera is used as a vision system for the robot to

locate the component on the tray. A camera is also needed when a component is

picked up by a suction tool. This is because a minor error exists in the placement

using suction tool. To deal with the error, the robot needs to take a photograph of the

component holding by the suction tool, and calculate the compensation angle of

placing it on the fixture.

If needed, the air gun is used to clean a component before it is mounted onto the

fixture.

Robot description contains the information of the hands used by the robot. In the

problem case, the robot has two hands, each with one gripper tool and two suction

tools, i.e. the second hand in Figure 2.2.

2.3.2 Assembly Graph

The Assembly Graph is used in previous work [8]. It describes how to assemble a

product. It gives the breakdown of the entire assembly and the order in which to

assemble the components. The assembly graph of the problem case is shown in

Figure 2.4. This graph also contains the process steps over the components such as

mount and sub-assembly.

Figure 2.4 Assembly graph of the problem case

There are five components to be assembled in the problem case. To achieve a

complete assembly, two subassemblies should be assembled beforehand. For the first

subassembly, component 2 should be assembled on top of component 1, and

component 3 should be assembled on the combination of component 1 and

component 2. For the second subassembly, component 5 should be assembled on top

of component 4. After obtaining the two subassemblies, the first sub-assembly should

be placed over the second subassembly to get the final assembly. Also, some of the

9

components require additional process operations such as taking a photo or cleaning

by the air gun, which need to be performed before they can be assembled.

2.3.3 Assembly Tree

In this thesis, in order to use more information of the assembly process, the assembly

graph is converted into an augmented tree structure description which is called

Assembly Tree. The assembly tree of the problem case is shown in Figure 2.5.

Figure 2.5 Assembly tree of the problem case

In the assembly tree, each node represents a task of the assembly process. The tree

contains totally 25 nodes. Tasks on different components are distinguished by the

color and texture. GPU represents picking up a component using gripper tool, and

SPU represents picking up with suction tool. DO represents dropping off a

component on a fixture. FO represents fixture operation which could be tapping or

peeling on a component mounted on the fixture. CAM represents taking the

component to a camera and taking a photograph. AIR represents taking the

component to an air gun to clean it. SUB represents sub-assembly. Output

represents placing the final assembly on the output buffer.

As shown in Figure 2.5, the left branch of node 5 is performed on fixture 1, and the

right branch is performed on fixture 2. Node 3, node 4 and node 5 are performed on

fixture 2, and node 2 is performed on the output buffer.

In the assembly tree, the precedence order of the tasks is easy to track. Each node

should be performed before its parent node. The nodes that are connected by a bold

10

line should be performed by a single arm. This is because if an arm picks up a

component, it should also drop the component off, as well as performing the

intermediate nodes between the pick-up and drop-off. The nodes that do not have

precedence order can be performed in parallel.

2.3.4 Travel Time Matrix and Task Durations

The Travel Time Matrix is a three dimension array. The array takes the start location

and end location as the first and second dimension, and arm ID as the third

dimension. The value in the array is the travel time of the corresponding arm from

start the location to end location. For example, indicates the travel

time of arm 1 from location s to location e is t.

In the problem case, there are 14 locations in the assembly cell including five trays,

five cameras, two fixtures, one output buffer, and a dummy location for modeling

start nodes and end nodes in routing problem.

Task Durations contain the performing time of each task. The time of performing the

same task by different arms could be different.

The data of travel time matrix and task durations is derived from the simulation of

the problem case in Robot Studio [9] which is a software environment used to

program and model ABB robot systems.

2.3.5 Assembly Sequence and Assembly Cell Layout

The outcome of the program produced in the thesis is the assembly sequence and the

assembly cell layout.

Assembly Sequence is the description of how to perform the tasks of the assembly.

First, for each node in the assembly tree, the sequence determines which arm to

perform this node. Second, for all nodes performed by a single arm, the sequence

determines in which order to perform the nodes. Third, the sequence also determines

the start time of each node.

Assembly Cell Layout describes the tray location of each component, i.e. which tray

provides which component, and the camera location of each camera node, i.e. which

camera to use when taking a photo.

A manual installation for the problem case was carried out by an experienced

engineer of ABB. The time of the entire installation was a couple of weeks and the

assembly sequence generated was good enough but non-optimal.

In this thesis with the same problem instance, the tray location of the five

components and the camera location of the three camera nodes are not fixed, which

brings 5! × 53 = 15,000 times more combinations than the problem without this

11

freedom. The total amount of combinations in the problem case makes it very

challenging to find the optimal assembly sequence and assembly cell layout.

12

13

 Constraint Programming 3

Constraint Programming (CP) is a programming paradigm for solving combinatorial

problems. It has been widely used in a number of fields including artificial

intelligence, computer science, and operations research. A powerful feature of the CP

paradigm is its declarative nature, which means the user states the problem and the

computer solves it [10].

To solve a real-world problem using CP, the problem needs to be translated into a

Constraint Satisfaction Problem (CSP). This step is called modeling. In the modeling

phase, the user needs to define a set of variables and post a set of constraints on these

variables. Each variable in CP has a domain which consists of the possible values that

can be set to this variable. Each constraint in CP describes a relation between the

variables. A solution to the problem must satisfy all the constraints in the CSP.

Sometimes, an objective function is defined over the variables to show a preference

between solutions. In this case, the problem becomes a Constraint Optimization

Problem (COP).

After the CP model is built, dedicated algorithms are used to prune and search the

domains of variables. This step is called solving. The algorithms in solving phase

could be either general or customized. The general algorithms are convenient to reuse

for different problems. The customized algorithms usually have better performance

in the specific problems. The program that implements these algorithms are called

solver.

This chapter aims to give an introduction of constraint programming with an

illustrative example. The necessary terminologies and definitions of CP will be given

as well. The content is mainly based on [11] [12], readers who want to get more

information are encouraged to read these literatures.

3.1 CP Modeling

As mentioned above, the real-world problem is converted into a CSP or COP in the

modeling phase. This section will first give the formulation of CSP and COP, and then

use a classic example to explain how to model a problem in constraint programming.

3.1.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is composed of a set of variables

{ } , a finite domain for each variable which consists of the

possible values that can be set to this variable, and a set of constraints { }

in which each is a relation on a subset of , i.e. where denotes

the variables involved in constraint .

14

3.1.2 Constrained Optimization Problem

A Constrained Optimization Problem (COP) is a CSP together with an objective

function ∏

 where and is the set of rational numbers. The

user is interested in finding an optimal solution ∏

 which minimizes (or

maximizes) the value of the objective function .

3.1.3 A classic problem: 4-Queens Problem

4-Queens problem is a classic combinatorial problem which is defined as to place

four queens on a chessboard such that no two queens can capture each other. In

another word, no two queens are allowed to be placed on the same row, the same

column or the same diagonal. A solution to the 4-Queens problem is shown in figure

3.1.

Figure 3.1 A solution to 4-Queens problem

3.1.4 4-Queens problem model in CSP

To convert the real-world problem into a CSP, the user needs to define variables,

domains, and constraints on the variables.

Variables and Domains

Since no two queens can be placed on the same column and the number of queens is

equal to the number of columns, we define a variable for each column to represent

the position of the queen on this column, thus totally 4 variables. The value of each

variable denotes the row of the corresponding queen. Figure 3.2 illustrates the

definition of the variables on the chessboard.

Figure 3.2 Illustration of the variables on chessboard

15

Under this definition, all variables have the same domain:

 { }

Constraints

According to the definition of 4-Queens problem, three constraints are needed in the

model. They are listed as follows:

C1: No two queens can be placed in the same row:

C2: No two queens can be placed on the same diagonal:

C3: Also, no two queens can be placed on the same back diagonal:

Solution

An assignment of a CSP is a function that maps each variable to a value in its

domain . If an assignment satisfies all the constraints in the CSP, this assignment is

called a solution.

As shown in figure 3.2, the assignment { } is a solution

to 4-Queens problem.

3.1.5 The optimization version of 4-Queens problem

Traditional 4-Queens problem is not an optimization problem. However, we can

define an objective function that we are interested in to make this problem as a COP.

For instance, the objective function is defined as follows:

An optimal solution to the optimization version of 4-Queens problem must satisfy the

three constraints mentioned above, meanwhile make the value of the objective

function minimum.

3.2 CP Solving

After the CP model is built, the constraint programming system will automatically

solve the problem mainly with two operations: constraint propagation and search.

The common process of solving a CP model is iteratively executing these two

operations. First, before starting the search, the constraint propagation is performed

to prune values, which violate the constraints, from the domain of variables. During

the search phase, the domains of the variables are explored in some specific order.

16

Each time when the domain of a variable is changed, the constraints that involve

 will perform propagation. If there is only one value left in the domain of a variable,

this variable is said to be bound. At any time when every variable in the problem is

bound, this group of values in the domains is recorded as a solution to the problem.

To solve COPs, the objective value is usually considered as an additional constraint.

This constraint enforces that the potential optimal solution must have a better

objective value than the current best objective value.

3.2.1 Constraint Propagation

Constraint propagation is an important part in constraint programming. During the

search, it efficiently prunes invalid values from the domain of variables to reduce the

search space. In a constraint programming system, the functions that perform

constraint propagation are called propagators. Each propagator can be considered as

an implementation of a specific constraint.

A store is a function that maps each variable to its domain . Before the search

and at the end of each step in the search, the propagators are called to check the

current store to prune the values that violate the constraints.

In the following, we use the 4-Queens problem as an example to illustrate how the

constraint propagation works. The three constraints in the 4-Queens problem can be

achieved by three propagators of AllDifferent constraints which will be introduced in

the later section. The three propagators are described as follows:

Propagator 1:

Propagator 2:

Propagator 3:

Propagator 1 guarantees that no two queens are on the same raw, propagator 2 and 3

enforce that no two queens are on the same diagonal or back diagonal. The process of

constraint propagation on the 4-Queens problem is as follows:

Step 0: { } { } { } { }

Step 1: { } { } { }

Step 2: { } { } { }

Step 3: { } { } { }

Step 4: { } { } { }

Let denotes the domain of . Step 0 is the initial store of the problem. In this store,

none of the propagators can prune any value. Suppose is set to 1 in step 1. In step 2,

17

propagator 1 removes 1 from the domain of the rest variables. In step 3, propagator 2

removes 0 from . In step 4, propagator 3 removes 2 from and 3 from .

3.2.2 Search

In general, constraint propagation is not adequate to find the solution to a CSP. The

solver needs to search through the domain of the variables that are not bound. At the

end of each step of the search, constraint propagation is performed on current store

to prune invalid values from the domains. In this way, the search space is reduced

continuously.

There are mainly two types of search approaches for solving CSPs – systematic search

and non-systematic search. Systematic search ensures that every solution to a CSP

will be found by going through all possible assignments. Such approach can be used

to find a provably optimal solution to a COP. A typical example of systematic search

is the backtracking tree search. Unlike systematic search, non-systematic search

cannot tell whether a CSP has solutions if any aren’t found, nor find provably optimal

solution to a COP. However, such approach is often efficient in finding a feasible

solution to a CSP, or an approximation to the optimal solution of a COP. Local search

is a well-known example of non-systematic search. This thesis only involves

backtracking search. Interested readers can read more about local search in [11] [12].

A backtracking tree search can be seen as performing an exploration on a search tree.

The search tree is a virtualized description of the search process. It is generate by

branching strategy together with constraint propagation.

Branching

Branching is the operation that decomposes the whole search into smaller sub search

branches. A branching strategy defines the structure of a search tree by giving two

orderings: the order in which the variables are selected for checking the domain

(called variable ordering), and the order in which the values in the domain of the

selected variable are explored (called value ordering).

Search Tree

The search tree is finite. At each node of the tree, the first unbound variable in the

variable ordering is selected. The first value in the value ordering of the selected

variable splits the search space into two disjoint partitions. Each partition is a

decision that adds a branch in the tree and defines the store of the corresponding

sub-trees. Under each decision, the affected propagators will do propagation on

current store to get a new store as the child node. The root of the tree takes the

resulting store of the initial propagation. Each leaf node is either a solution or a

failure.

18

The search tree is explored in some specific order. The most commonly used

exploring order is the depth-first left-most order. The solver first goes through the

left-most branch until the leaf of this branch. If finding a solution or detecting

infeasibility, the solver goes back and turns to the first untried branch on the right.

In the following, we use the 4-Queens problem to illustrate the process of search. The

variable ordering is from to , and the value ordering is to set the selected

variable to the minimum value in its domain.

Search for 4-Queens problem as CSP

First, we search for solutions to the 4-Queens problem without considering the

objective function. Figure 3.3 shows part of the search tree. The blue nodes are the

nodes where unbound variables exist and require further branching. The red nodes

are failed nodes where some variable has empty domain. The green nodes are

solutions

Figure 3.3 Search tree of the 4-Queens problem as CSP

At each node, the constraint propagation is done by the three propagators mentioned

in 3.2.1. The process of search with propagation as follows:

Node 1: { } { } { } { }

Node 2: { } { } { }

Node 3: { }

Node 4: { }

Node 5: { } { } { } { }

Node 6: { } { } { }

Node 7: { } { } { } { }

As shown in figure 3.3, node 3 and node 4 are failed nodes with empty domain. The

solver found a solution at node 6 and node 7 needs further search.

19

Search for 4-Queens problem as COP

As mentioned at the beginning of section 3.2, to solve COPs, the objective value can

be used as an additional constraint which enforce that the potential optimal solution

must have a better objective value than the current best objective value. During the

search, when a solution with better objective value is found, the solver will update the

current best objective value. At each step of the search, the additional propagator

checks the upper bound or lower bound of the objective value of the next branch to

explore. If the bound is worse than the current best objective value, prune this branch

and turn to the next branch.

Recall the objective function we defined in 3.1.5, which is . The search

tree for the 4-Queens problem as COP is shown as figure 3.4.

Figure 3.4 Search tree of the 4-Queens problem as COP

The process of search is as follows:

Node 1: { } { } { } { }

Node 2: { } { } { }

Node 3: { }

Node 4: { }

Node 5: { } { } { } { }

Node 6: { } { } { }

Node 7: { } { } { } { }

The search tree is almost the same as that of the 4-Queens problem as CSP. The only

different is that node 7 in this tree is a failed node. This is because a solution is found

at node 6 and the constraint regarding objective value becomes . When the

solver goes to node 7, it found that there will be no better solution under this branch

because { }. As a result, the branch under node 7 is discarded and the optimal

solution is { } found at node 6.

20

3.3 CP Variables

This section will introduce the four types of CP variables used in this thesis.

Integer Variable

Integer variable is the most common variable in CP. Such a variable has a finite

domain that consists of integers.

Boolean Variable

A Boolean variable is a variable whose domain only contains two Boolean values: true

and false. Note that Boolean variables are not integer variables because they usually

have a different optimized implementation.

Interval Variable

An interval variable represents an time interval which is often used for modeling

tasks in scheduling problems. An interval variable contains the start time, duration,

and end time of the time interval. Besides, the interval variable also takes a Boolean

variable performed indicating if the task has been performed or not.

Sequence Variable

A sequence variable is a variable whose domain consists of the possible orderings of a

set of intervals. This variable is often used in scheduling problems. Sequence

variables are created by posting disjunctive constraint on a set of interval variables.

The disjunctive constraint guarantees that no two intervals overlap, thus can be given

orderings.

3.4 CP Constraints

This section will introduce the general CP constraints used in this thesis.

3.4.1 Global Constraints

A global constraint is an expressive and concise constraint that implemented by

means of a special propagation algorithm [13]. Modeling with global constraints is

often more efficient than using the constraints with weaker propagation. The global

constraints can take a number of variables and be used to model complex problems.

The global constraints used in this thesis are listed below.

AllDifferent constraint [14]

 (3.1)

This constraint enforce all variables in the collection to be pairwise different, i.e.

 { } .

21

Element constraint [15]

 (3.2)

This constraint enforce that is equal to the item of the collection ,

i.e. . The element constraint is also written as

in the following chapters.

Disjunctive Constraint [16]

 { | } is a set of intervals where and are the start time and

end time of an interval. The posts constraint on the interval set I such

that

 () where or . (3.3)

(3.3) ensures that all intervals in the collection I do not overlap. This constraint is

often used in scheduling problems. As a result, the disjunctive constraint returns a

sequence variable which contains the possible orderings of the intervals in the

collection I.

MapDomain constraint [17]

 (3.4)

This constraint maps the domain of the variable onto the Boolean variable array

 such that { } , and

 .

Circuit constraint [14]

 (3.5)

This constraint is posted on a digraph consisting of the vertices collection , to

enforce covering the digraph with a circuit that visits each vertex in exactly

once. In routing problems, this constraint ensures that a route can only start and end

at the depot and eliminates possible sub-tours. Sometimes, this constraint is also

mentioned as No-Cycle constraint.

3.4.2 Reification

In a reified constraint (also known as meta constraint) where is a constraint

and is a Boolean control variable, the validity of the constraint is reflected to the

value of [18].

For example, for integer variables and and a Boolean control variable , the

reified constraint enforces the following rules:

 If the constraint holds, then is posted.

22

 If the constraint holds, then is posted.

 If is assigned to 1, then the constraint is posted.

 If is assigned to 0, then the constraint is posted.

3.4.3 Deterministic Finite Automaton

A Deterministic Finite Automaton (DFA) is a finite state machine that accepts or

rejects finite strings of symbols and only produces a unique computation for each

input string [19].

A DFA M is a 5-tuple 〈 〉 consisting of

 a finite set of states Q

 a finite set of input symbols Σ called the alphabet

 a transition function δ Σ

 a start state

 a set of accept states

A sequence of transitions is accepted by the DFA only if the sequence begins from the

start state and ends at an accept state, and all the transitions in the sequence satisfy

the transition function.

Figure 3.1 shows a simple example of DFA.

Figure 3.5 A simple example of DFA

In this DFA, the state set { }, the alphabet set { }, start state ,

accept set { }, and the transition set {〈 〉 〈 〉}. This DFA only

accepts the sequences with the form of (01)* which represents any non-negative

number of the symbols “01”.

One application of DFA is to implement regular expressions [20] that define search

patterns used for pattern matching with symbols.

23

 Vehicle Routing Problem & Job Shop Problem 4

Vehicle Routing Problem and Job Shop Problem are two theoretical problems related

to this thesis. A brief introduction for VRP and JSP will be given in section 4.1 and 4.2.

In section 4.3, a discussion about the similarity and difference between the two

problems will be presented.

4.1 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) proposed by Dantzig et al. [21] is an important

industrial problem in the fields of transportation, distribution and logistics.

4.1.1 Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is a special case of the Vehicle Routing

Problem. The problem is defined as finding the shortest path for a salesman to visit a

set of customers and return to the start point. TSP is an NP-hard problem and is well-

studied [22] [23] [24].

TSP can be modeled as a weighted complete graph [25]. The customers to be visited

are the vertices of the graph. As a complete graph, each pair of vertices is connected

with a weighted edge. If no edge exists between two vertices, add an edge with the

value of infinity. A solution is a path forming a circuit that visits each vertex exactly

once. The objective is to minimize the length of the circuit.

4.1.2 Definition of Vehicle Routing Problem

The VRP is a generalization of TSP. Consider a TSP in which a number of salesmen

are added, then the problem becomes Multiple TSP and is equivalent to VRP when

there is no constraint over the vehicle capacity. The problem is describes as to find

paths for a number of salesmen to visit a set of customers such that each customer is

visited exactly once, and the total length of the paths is minimized.

The Vehicle Routing Problem is defined as follows. A fleet of m vehicles are to serve a

set of n customers. Each customer must be visited exactly once. All vehicles start and

end their routes at a fixed depot. The traveling cost from customer i to j is . The

objective is to minimize the sum of traveling costs of all vehicle routes. Finding the

optimal solution for VRP is an NP-hard problem [26].

Figure 4.1 shows an example of VRP problem with 3 vehicles.

24

Figure 4.1 An example of VRP with 3 vehicles [27]

For different companies in industry, specific constraints can be added to respective

VRP problems. For example, only particular vehicles may be allowed to visit some

certain customers, or a customer may prefer the service of a particular driver. In

some cases, additional objectives may be required in the problem such as to minimize

the number of vehicles.

4.1.3 Variations of Vehicle Routing Problem

There exist a number of VRP variations with specific side constraints. The variants

related to this thesis are introduced below.

Capacitated Vehicle Routing Problem (CVRP)

In CVRP, each vehicle has a limited carrying capacity. Let denotes the demand of

customer i. In pure CVRP, the demand is a non-negative integer. The set of

customers that assigned to vehicle k is and the vehicle capacity is Q. Then the

constraint that ∑
 must be satisfied.

In the VRP with multiple resources, the customers are allowed to demand a number

of different resources and each vehicle has a specific capacity for each resource. For

example, the demand of customer i on resource l is
 and the vehicle k has a capacity

 on resource l. denotes the set of customers assigned to vehicle k, then the

constraint that ∑

 must be satisfied.

25

Vehicle Routing Problem with Pickup and Delivery (VRPPD)

VRPPD [28] [29] is another variation in which the goods are not only delivered from

the depot but also picked up and delivered during the travel. Therefore, the demand

of a customer can be either positive or negative. A positive demand indicates that the

customer needs the visiting vehicle to bring an amount of goods to him. A negative

demand means that the visiting vehicle picks up some goods at this customer and

delivers the goods later in the travel.

For CVRP with Pickup and Delivery (CVRPPD), rather than considering the total

demands of the customers assigned to a vehicle, the instant cumulative capacity of

the vehicle is considered. Let denotes the customers that vehicle k has

already visited at this moment, denotes the demand of customer i, and Q denotes

the capacity of vehicle k. Then the side constraint becomes that ∑
 must

hold for vehicle k at any time during the travel.

Vehicle Routing Problem with Time Windows (VRPTW)

In VRPTW [30] [31], a time window is specified for each customer i to be

served. In some cases, a customer may have multiple time windows. If a vehicle

arrives earlier than time , it has to wait at the customer’s location until the time

window starts. The additional time constraints make the VRP much more difficult,

even finding a feasible solution is NP-hard [32].

4.1.4 Methods for Vehicle Routing Problem

As a problem with a wide range of applications in industry, VRP has been well

studied [33] [34]. Some popular methods for solving VRP are introduced below.

Heuristic method

Because the VRP and its variations are NP-hard problems, the most common way for

solving large scale VRP is to use heuristic methods [35]. A common heuristic method

contains three phases – constructing an initial solution, improving the initial solution

through local search, and using meta-heuristic methods to escape from local optima

[36].

In the first phase, a construction method is used to create an initial solution. The

most well-known VRP construction method is the “Savings” heuristic method [37].

Another classic method is the “Sweep” heuristic method [38].

In the second phase, the local search method [39] [40] is used to look through the

neighborhood of current solution to find better solutions. For each local search

method, one or more move operators are defined to manipulate current solution to

get new solutions. The neighborhood of a solution is a set of solutions generated by

26

applying the move operators on this solution. Some move operators for routing

problems are listed in [34]. Typically, a local search method employs several of these

operators.

Because local search methods always look for better solutions by following the cost-

reducing trend, which often leads the search to being trapped in a local optimal

solution. Therefore, in the third phase, meta-heuristics are used to escape from the

local optima. Basically, the meta-heuristic method works in two alternative ways. The

first way is to allow cost-increasing moves and control the acceptance of the moves.

The second way is to expand the neighborhood to avoid local optimal. The most

famous meta-heuristic methods include Simulated Annealing [41], Tabu search [42]

[43], Genetic algorithms [44], and Variable Neighborhood Search [45].

Constraint Programming

Constraint Programming is a powerful programming paradigm for solving

combinatorial problems. Typically, the process of the Constraint Programming

method is to construct a solution by incrementally traversing the search tree,

backtracking when an infeasible branch is detected, until a feasible solution is found

or the problem is proved to have no solution.

Constraint Programming is also applied to COPs such as VRP [34]. Unlike the

heuristic method which focuses on efficiently finding cost-reducing solutions,

Constraint Programming considers the quality of the solutions. This method

performs a systematic search through a large number of feasible solutions to find the

optimal or near-optimal solution. Thus, Constraint Programming is often used to

prove the optimality.

Hybrid Method

Since the systematic search in Constraint Programming needs to explore every

possible solution, Constraint Programming is often a slower approach compared with

heuristic method. However, Constraint programming shows great advantages in

pruning infeasible solutions. A common way to solve large scale VRP problems is to

combine the two methods together [46] [47] [48].

There are mainly two ways to integrate Constraint Programming method with

heuristic method. The first way is to let heuristic method take charge of the search. In

this case, the constraint model only checks the feasibility of the solution. The second

way is to encapsulate the local search movements into a lower level operator, and run

the constraint system on top of the operator. In this case, the traditional systematic

backtracking search will not be influenced by the movement of the local search. A

well-known technique under this case is the Large Neighborhood Search [49].

27

4.2 Job Shop Problem

Job Shop Problem (JSP) is an optimization problem that has many similarities and is

closely related to VRP.

In the classic JSP [11], n jobs are needed to be processed on m machines. Each job

consists of a sequence of completely ordered activities. Each activity must be

processed during an uninterrupted period of time on a specific machine. The

ordering of the activities in a job must be preserved during processing, i.e. an activity

cannot start processing until its predecessor in the job has been done. For each

machine when processing an activity, no more activities can be processed on this

machine until the current process is finished. In real-world problems, sometimes

additional side constraints need to be considered, for example there could be

constraints on the transition time which represents the time between two processes

on the same machine.

The objective of JSP is to find a schedule for the activities to the machines that

minimizes the makespan of the whole process. The makespan is the duration between

the start time of the first activity among all machines and the finish time of the last

activity among all machines. Since the first activity usually starts at time 0, the

makespan is equivalent to the finish time of the last activity.

Both constraint programming and heuristic methods are applied for solving Job Shop

problem [50] [51].

4.3 VRP vs. JSP

There is a great similarity between VRP and JSP. Many real-world problems fall into

the gray zone between the pure VRP and pure JSP. Some criteria to distinguish the

two problems are suggested in [52]. The main differences are listed below.

 In VRP typically a customer can be visited by many vehicles, but in JSP an

activity can only be processed by a specific machine.

 In VRP the duration of a visit is much smaller compared to the travel time,

however, the durations are dominant in JSP.

 In VRP the objective is to minimize the total travel cost of all routes. In JSP

the objective is to minimize the makespan of the entire process which is the

duration between the start time of the first activity and the end time of the

last activity.

 In VRP the time windows of visiting different customers are usually

independent, but in JSP the time windows of processing different activities

are correlated in a precedence order.

28

29

 Model and Implementation 5

This chapter will introduce the CP model, search strategy and some implementation

details. The model will be described together with the problem case introduced in

Chapter 2. However, since the implementation of the model is generic to different

problem instances, some of the parameters, such as number of tasks and number of

components in the assembly, are presented in a general way.

5.1 Problem Case Analysis

The problem case has been described in section 2.3. The case contains 25 tasks, 2

fixtures, 5 components, 5 tray locations, 5 camera locations and an air gun. A dual

arm robot is working in the assembly cell with one gripper tool and two suction tools

on each arm.

The problem of finding optimal assembly sequence for the robot is analogized to a

Vehicle Routing Problem. In the VRP, each task in the assembly is considered as a

node (customer) to visit. The two arms of the robot are modeled as two vehicles. The

route for each vehicle is the ordering in which the arm performs the tasks assigned to

it. For each arm, a start node and an end node are added as the depot which does not

correspond to any task [53].

The problem in this thesis is a rich VRP which contains the features of a number of

VRP variants. First, the problem is a Capacitated VRP. Each arm (vehicle) has a

limited capacity – one gripper tool and two suction tools. Second, the problem is a

VRP with Time Windows. The tasks (nodes) have time windows to be performed

(visited). For example if a camera is occupied, the task of taking photographs on this

camera has to wait until the camera becomes free. Third, the problem is a VRP with

Pickup and Delivery. This is because a component needs to be picked up at some

node and delivered to another node. Moreover, the problem contains the

characteristics of Job Shop problem (JSP). This is because the task durations are

considerable compared to the travel time between nodes, and the objective value of

the problem is the makespan of the entire assembly which is also a typical objective

value of JSP. As modeled in JSP, the two arms are considered as two machines. The

tasks need to be scheduled on the machines disjunctively.

In addition to the restrictions discussed above, the problem contains a number of

precedence order constraints and collision avoiding constraints. The collision

avoiding constraints do not allow the two arms visiting the same location

simultaneously. The precedence order constraints enforce some tasks to be

performed in specific orders, for instance, the pick-up, camera, air-gun and drop-off

nodes of one component should be performed one after another, as shown in the

assembly tree of figure 2.5 with the bold lines.

30

The objective function of the problem is to minimize the makespan of the assembly

i.e. the total cycle time.

5.2 Constraint Programming Model

The general process of building a CP model is to define variables, post constraints on

the variables, and define search strategies. In this section, we will introduce the

variables and constraints.

As a convention in this report, the name of a set begins with a capital letter. The name

of a parameter in the problem case description begins with a capital letter. The name

of a single variable and the parameter of a single node begin with a lowercase letter.

5.2.1 Problem Instance Data

The problem instance data are the constant parameters derived from the input data

files describing the assembly tree, travel times for each arm and task durations for

each arm. The parameters give a description of the assembly cell and the process of

assembling a product.

In the model, a task node represents a task in the assembly tree and a start/end node

represents the depot in the VRP which does not contain any assembly task. Each

node has a unique integer identifier which is used to reference this node in the model.

 denotes the node with index of i.

The parameters of the assembly cell description are listed as follows:

 is the number of nodes in the model. The problem case

instance of this thesis contains 29 nodes including 25 task nodes, 2 start

nodes, and 2 end nodes.

 is the number of arms of the robot, i.e. the number of

routes to be scheduled in the VRP. In this thesis, is always

equal to 2.

 is the number of components to be assembled in

the assembly.

 is the number of trays in the assembly cell.

 is the number of cameras in the assembly cell.

 is the number of fixtures in the assembly cell.

 is the number of locations in the assembly cell. The

locations include tray locations, camera locations, fixture locations, output

buffer location, and a dummy location for start and end nodes.

31

 is the number of resource types on each arm. In this

thesis, there are two types of resources – gripper tool and suction tool.

 { } { }

denotes the capacity of resource j on route r. In this thesis, each arm

contains one gripper and two suctions.

 { } { } { }

is the travel time from node i to node j on route r.

The model contains three types of nodes: task nodes, start nodes, and end nodes. As

introduced above, start nodes and end nodes represent the depot in VRP which do

not correspond to any assembly task. The indices of the model nodes are organized as

follows:

 { } is the set of indices of the start nodes, one

start node for each route.

 { } is the set of

indices of task nodes.

 { } is the set of

indices of end nodes, one end node for each route.

 is the set of indices of all nodes in the model.

 is a dummy index indicates the dummy state

before start nodes or after end nodes. There is no model node

corresponding to this index. The dummy index is used in posting DFA

constraints on the task sequence.

For each node in the model, denotes the value of the corresponding attribute

of the node. A node has the following attributes:

 { } is a unique identifier used to reference a node in the model.

The id of a node is equal to the index of this node, i.e. . In the

rest of the report, node i also refers to the node with index of i.

 { } is an integer value that indicates which component

this node handles. For nodes that do not deal with any components, e.g.

start nodes and end nodes, the value is equal to 0.

 is an integer value which is the time takes to

perform the node on route r, i.e. the time for arm r to perform the

corresponding task. The value equal to -1 indicates arm r cannot perform

this node.

32

 { } is a Boolean value that specifies if the node requires

gripper tool.

 { } is a Boolean value that specifies if the node requires

suction tool.

 { } is an integer value that indicates the

index of the fixture on which this node is performed. If the node is not

performed on any fixture, the value is equal to 0.

 { } is a Boolean value indicating if the node is performed on a

tray, i.e. a tray pick-up node in the assembly tree.

 { } is a Boolean value indicating if the node is to take a

photograph, i.e. a camera node in the assembly tree.

 { } is a Boolean value indicating if the node is to visit the air

gun, i.e. an air-gun node in the assembly tree.

 { } is a Boolean value indicating if the node is sub-

assembly in the assembly tree.

 { } is a Boolean value indicating if the node is output in the

assembly tree.

 { } is a Boolean value indicating if the node is a

fixture operation node in the assembly tree, i.e. tapping or peeling.

 { } is a Boolean value indicating if the node is a drop-off in

the assembly tree.

Recall the assembly tree in Figure 2.5, denotes the parent of

in the assembly tree, and denotes the left/right child of

 .

Since the start nodes and end nodes are not involved in the assembly tree, the parent

and child of these nodes are defined as follows.

For ,

 (5.1)

The assembly tree shows the precedence order of performing the nodes. The symbol

“≺” represents the relation “should be performed before” between two nodes, i.e.

 ≺ denotes should be performed before . Apparently, this is a

partial order relation and is transitive. Figure 5.1 shows the assembly tree with

precedence order.

33

Figure 5.1 Assembly tree of the problem case with precedence order

As discussed in section 2.3.3, each node should be performed before its parent node

in the assembly tree, therefore, we have

 ≺ (5.2)

There exist some subtle precedence orders in the assembly tree. For example, if

 and are performed by the same arm, then ≺ . This is

because if the arm firstly performs node 21 (picking up component 2), due to the

gripper capacity, it cannot perform node 26 (picking up component 1) until release

the gripper tool at node 17. However, due to the transitivity of the relation “≺”,

 ≺ must hold, which makes a contradiction. This kind of precedence

orders is not obvious thus require careful analysis on the problem case and the

assembly tree.

According to the precedence order, two additional attributes for each node are

defined as follows:

For ,

 { | ≺ } { } (5.3)

 { | ≺ } { } (5.4)

For ,

 { } (5.5)

 { } (5.6)

34

These attributes are used to pre-process the domain of variables, which will be

introduced in the following section.

5.2.2 Variables

All variables are encapsulated in variable arrays. Each variable is mapped to a node in

the model and referenced by the node index.

The decision variables in this thesis are listed below:

 is the index of the arm which performs node i.

 is the index of the immediate successor of node i.

 is the location in the assembly cell where node i is performed.

 { } where ;

 { }

where ;

Otherwise, is a constant value.

In this thesis, only the tray pick-up nodes and camera nodes have unfixed

locations. For other nodes with fixed locations in the assembly cell, this

variable is set to a constant value corresponding to the fixed location.

The which is the objective value is also a decision variable. This decision

variable is used to push the start time of all tasks forward in order to make the task

sequence tight.

The other variables used in the model are listed below:

 { | { }}

{ } is an integer variable array derived from the next variables. It contains

the possible orders of the nodes assigned to route r.

We interpret this array under an example with 5 task nodes and 2 routes to

make it easier to understand. Suppose an assignment of the next variables:

 . The routes generated from this assignment are shown

in Figure 5.2.

35

Figure 5.2 The routes generated from the example assignment of

next variables

In this example, node 2, 3, 4, 5 and 6 are task nodes, node 0 and 1 are start

nodes, and node 7 and 8 are end nodes. Route 0 starts from node 0 and

passes through node 3, 5, 2, and 7. Route 1 starts from node 1 and passes

through node 6, 4, and 8. Both and is pointing to 9 which is the

dummy index indicating the routes end here. Then the assignments for the

 arrays for each route are

 ,

 .

In general, the next variables form one route for each arm. The variable

 { } is the index of the jth node performed on

route r. Then we have

 ,

,

… ,

. (5.7)

The arrays are connected to the next variables and are

used to post efficient constraints.

 is the location where the successor of node i is performed.

 { } is the time of arrival at node i.

 { } , is the time of starting the operation on

node i. The ����� and are used for modeling the

situation of waiting at each node.

 { } is the time of departure from node

i.

36

 is an interval variable representing the interval during

which node i is performed on route r. The interval variable is introduced in

section 3.3. Each node has two interval variables, one interval on each route.

A constraint is used to enforce only one interval is performed for each node.

 is the index of the immediate predecessor of node i. This

variable contains the same information with the next variable, however, it is

suggested to improve the model of VRP [34].

 is a sequence variable that contains the information

about possible ordering of the interval variables on route r. The sequence

variable is introduced in section 3.3.

5.2.3 Pre-Processing of Variable Domains

After defining the decision variables, the domain of some variables could be refined

according to the problem instance data and the assembly tree.

For each ,

 If , then remove r from the domain of .

According to assembly scenario, the duration equals to -1 indicates that arm r cannot

perform task i. Therefore, the value r should not appear in the domain of .

 If , then

 ,

 .

Since each arm has one and only one start node, the index of each start node is equal

to the index of its corresponding arm. Because a start node is the first node on its

route, its predecessor is modelled as a dummy node.

 If , then

 ,

 .

The index of each end node is also equal to the index of its corresponding arm. Since

an end node is the last node on its route, its successor is modelled as a dummy node.

 If , then

remove { } from the domain of ,

remove { } from the domain of .

37

Since an end node is the last node on a route, it cannot be the predecessor of any task

node. A start node is the first node on a route, thus it cannot be the successor of any

task node. For the same reason, the dummy node cannot be the successor or

predecessor of any task node. According to the definition of InvalidPrev and

InvalidNext in (5.3) ‒ (5.6), the nodes in ()

cannot be the predecessor (successor) of node i.

5.2.4 Constraints

In this section, the constraints posed in the CP model will be introduced.

5.2.4.1 Core constraints

The core constraints are the basic constraints in the model which establish the

connections between decision variables.

1) Connecting with

 ,

 { | { }} (5.8)

 (5.9)

The interval variable represents the time interval of performing node i on

route r. The Boolean variable in (5.8) indicates if is

performed or not.

(5.9) builds a connection between the variable and the Boolean variable array

 such that if is performed, the domain of

contains the value of r.

The MapDomain constraint [54] is introduced in section 3.4.1.

2) Connecting and with

 ,

 (5.10)

 (5.11)

The variable indicates which arm performs node i. The time of starting the

process of node i is equal to the start time of the interval variable
 and

the arm immediately leaves the node after finishing the process, as seen in (5.10) and

(5.11).

38

3) Connecting with

 , since , we get the following element constraints:

 (5.12)

 (5.13)

(5.12) and (5.13) make a connection between the next and prev variables to ensure

the consistency of the route. The two constraints are redundant to each other.

However, to post both can strengthen the propagation.

4) Connecting a node with its successor and predecessor

 ,

 (5.14)

Apparently for each node, its successor and predecessor should be on the same route

with this node. (5.14) connects a node with its successor and predecessor using

element constraint.

5) Connecting and with

 ,

 (5.15)

 ,

 (5.16)

(5.15) and (5.16) are element constraints. For a start node or task node, (5.15)

connects the of this node to the location of its successor. Since an end

node does not have a real successor, its is equal to the location of the

start node on the same route, as seen in (5.16).

6) Connecting , , and

 ,

 (5.17)

(5.17) post the constraint that the arrival time at the next node is equal to the

departure time of current node plus the travel time between current node and next

node.

 ,

 (5.18)

 (5.19)

39

(5.18) is posted because the depot is a dummy location, the travel time from a start

node to any other node is always 0. Since the start nodes do not contain any assembly

task, the durations of start nodes are 0, and the start time is the time 0, as seen in

(5.19).

 ,

 . (5.20)

(5.20) post the constraint that the durations of end nodes are 0.

 ,

 (5.21)

(5.21) post the fact that an arm might arrive early at a node and have to wait at this

node for starting the process.

5.2.4.2 One route per node constraint

 ,

∑
 . (5.22)

(5.22) post the constraint that each node should be performed by only one arm.

5.2.4.3 Disjunctive constraint

 { }, { | } denotes the interval variables on route r.

 { } (5.23)

(5.23) post disjunctive constraint on the intervals of each route such that no two

intervals on the same route overlap.

 ,

 (5.24)

The is a sequence variable derived from the disjunctive constraint

posted in (5.23) [55]. The sequence variable is introduced in section 3.3. (5.24) cast

the next variables from the variable with element constraint. The

 indicates on which route node i is performed and the method returns

the successor of node i on this route.

The disjunctive constraint and the sequence variable ensure that all successors of the

nodes on a route take distinct values, as well as implementing a No-Cycle constraint

for the next variables.

40

5.2.4.4 Conjunctive constraint

 , ,

 ≺ (5.25)

 ≺ (5.26)

 { | }, ,

 ≺ (5.27)

 ≺ (5.28)

(5.25) - (5.28) post the conjunctive constraint enforcing that each node in the

assembly tree should be performed before its parent node. (5.25) and (5.26) post

constraint on each single route. (5.27) and (5.28) post constraint on both routes.

Since the pick-up nodes, camera nodes and air-gun nodes are always on the same

route with their parent nodes, (5.27) and (5.28) are only needed for nodes performed

on fixtures and the output node.

Since (5.27) and (5.28) enforce that each node is always performed before its parent

node no matter on which route, this also implicitly posts a disjunctive constraint on

each fixture which guarantees that the two arms cannot access the same fixture

simultaneously.

5.2.4.5 Casting sequence for each route

 { },

 (5.29)

(5.29) cast the array for each route from the next variables with

element constraint.

The array is described in section 5.2.2. This variable array contains

the possible assembly sequences on a route. Regular expression constraints are

posted on this array to check the validity of the sequences.

5.2.4.6 Regular expression constraints

The regular expression constraints include capacity constraints for gripper load and

suction load, component order constraints, and fixture precedence order constraints.

The array for each route is derived from the next variables, as

shown in (5.29).

For { }, is a sequence

indicating which nodes are performed on route r and in what order.

41

The regular expression constraints are posted on the array for both

routes using Deterministic Finite Automaton (DFA). For simplicity, the problem case

shown in Figure 5.1 is used to illustrate the DFAs.

Note that the DFAs introduced below are posted on each arm respectively.

The alphabet set of the DFA is defined as

 { }. (5.30)

1) Component order constraint

As discussed in section 2.3.3, if an arm picks up a component, the arm should also

drop off the component, as well as performing the intermediate nodes between pick-

up and drop-off in a precedence order. The component orders are shown in Figure

2.5 with the bold lines.

Take component 3 as an example, the nodes handling on this component are 22, 18,

14 and 10, i.e. pick-up, camera, air-gun and drop-off. Once node 22 appears in

 , the sequence (22, 18, 14, 10) should also be part of this sequence

in the following precedence order:

 { }.

Figure 5.3 shows the state diagram of the component order DFA on component 3.

The start state and accept state is and the transition set { }.

Figure 5.3 Component order DFA of component 3

The component order DFA is posted on component 3 (node 22, 18, 14 and 10) and

component 5 (node 16, 12 and 9). For component 1, component 2 and component 4,

the component order constraint is taken charged by the fixture precedence order DFA

described in the later section.

This constraint is redundant because conjunctive constraint also takes the charge of

these orders. However, this constraint is posted for efficiency, as the times for

intervals are set at last but the regular expression constraints does propagation

earlier in the model.

42

2) Suction capacity constraint

In this thesis, each arm of the robot contains two suction tools. The suction capacity

constraint enforces that when both of the suctions are occupied on one arm, this arm

cannot pick up any more components that require suction tool until the suction load

is released. Figure 5.4 shows the state diagram of the suction capacity DFA.

Figure 5.4 Suction capacity DFA

+ci/-ci denotes the operation of picking-up/dropping-off component i. Each state

indicates which component(s) the arm is holding at this moment. For instance, the

state of (c3, c5) represents the arm is currently holding component 3 and component

5. The start state and accept state are the same state where both suction tools of the

arm are empty. The self-pointing transition sets are easy to follow according to the

assembly scenario. For example, set A contains the nodes that do not require any

suction tool.

3) Fixture precedence order and gripper capacity constraints

Since each arm only has one gripper, when the gripper is occupied, the arm can

neither pick up any more component using gripper, nor perform operations such as

tapping and peeling (fixture operation) with gripper. This is enforced by the gripper

capacity constraint.

43

The fixture precedence order constraint enforces that the components on the same

fixture should be assembled in the specific precedence order. For example, as shown

in Figure 5.1, the precedence order of fixture 1 is (node 24, 20, 17, 13, 10, 8, 6 and 5).

Figure 5.5 shows the state diagram of the DFA implementing the fixture precedence

order of fixture 1, the component order on component 1 (node 26, 24) and

component 2 (node 21, 17), and the gripper capacity constraint (node 26, 21).

Figure 5.5 The DFA implementing fixture precedence order on fixture 1,

component order on component 1 and 2, and gripper capacity constraint

In Figure 5.5, the key transition arcs on the main path are labeled. is the start state.

 represents the state that all tasks on component 1 (node 26, 24, 20) have been

accomplished. is the accept state in which all nodes assigned to this arm are

performed. The transition (transition arcs include 2, 3, 4, 27 and 28)

indicates that this arm is not assigned with any tasks preceding node 5 (sub-

assembly). Table 5.1 shows the transition arcs from state to other states in the DFA.

44

Table 5.1 Transition arcs from to other states

From state To state Transition arcs

S0 S0 7, 9, 11, 12, 14, 15, 16, 18, 19, 22, 23, 25

S0 S1 26

S0 S2

S0 S3 20

S0 S4 21

S0 S5

S0 S6 13

S0 S7 10

S0 S8 8

S0 S9 6

S0 S10 5

S0 S11 2, 3, 4, 27, 28

For the right sub-tree of Figure 5.1, since there is no component requiring gripper

tool, the DFA only implements the fixture precedence order on fixture 2 together with

the component order for component 4, which is (node 25, 23, 19, 15, 11, 9, 7, 5, 4, 3

and 2).

There are two reasons to integrate the component order DFA and the gripper

capacity DFA into the fixture precedence order DFA. The first reason is that a larger

DFA has less redundant arcs than three individual DFAs, hence brings a better

performance. The experiment result has confirmed this conclusion. The second

reason is that the complexity of integrating the DFAs for the problem case of this

thesis is acceptable.

5.2.4.7 Distinct tray location constraint

 { | }

 (5.31)

(5.31) post the constraint that all components should be placed on distinct trays such

that no two components have the same tray location.

5.2.4.8 Avoiding collision constraint

(5.27) and (5.28) implicitly post a disjunctive constraint on each fixture such that two

arms cannot access the same fixture location simultaneously. However, it would still

be possible that two arms visit the same camera at the same time. This is disallowed.

45

 , and ,

{

 (5.32)

(5.32) use reification to post the constraint that the two arms cannot visit the same

camera location simultaneously. In the reification, b5 reflects the validity of the

constraint that the intervals of node i and node j overlap, b1 reflects the constraint

that node i and node j are performed by distinct arms, and b2 reflects the constraint

that node i and node j have the same location. To avoid collision, these three

constraints are not allowed to hold simultaneously.

There is another location collision constraint that if one arm is visiting tray i, the

other arm is not allowed to visit camera i at the same time. This is because camera i is

used to monitor the action of picking up components from tray i. If the camera is

occupied, the task of tray picking-up cannot be performed correctly.

The and denote the tray index and

camera index of the given location respectively.

 , and ,

{

 (5.33)

(5.33) post the constraint to avoid the two arms visiting the tray and camera with

same index simultaneously.

5.2.4.9 Compact-fixtures constraint

In some real-world assembly cases, the two fixtures in the assembly cell could be too

close to each other such that the two arms are not allowed to visit the fixture area

simultaneously. In this situation, if one arm is visiting a fixture, the other arm cannot

access any fixtures until the former arm leaves the fixture area.

 { | { }}

 (5.34)

46

(5.34) post disjunctive constraint on the interval variables of fixture nodes on both

routes to enforce that only one arm can access the fixture area at a time. This is an

optional constraint which is only posted in some special situations.

When generating the travel time matrix between locations, we deliberately design the

data so that each arm has some unreachable locations. In this way, the situation that

two arms cross with each other during assembly is avoided.

5.2.5 Objective function

The objective function is to minimize the makespan of a single assembly. As shown in

Figure 5.6, the two arms both start from time 0. The makespan is equal to the

departure time of the last node in the assembly sequence.

Figure 5.6 Makespan of a single assembly

The objective variable is defined as follows,

 { | } . (5.35)

5.3 Search strategy

In this thesis, we are interested in finding and proving the global optimal solution for

the problem case. This is because in the lean production environment, even a little

improvement in the cycle time can significantly increase the total throughput of the

assembly line. In addition, the computational time for proving the optimality to the

problem case in this thesis is less than an hour and completely acceptable.

The search strategy is based on systematic tree search. As discussed in section 3.6,

systematic search is a good choice to find the provably optimal solution to a

constraint optimization problem. The decision variables to branch on are Route, Next,

Location, and makespan.

5.3.1 Structure of Search Tree

The first variable to branch on is the Route variables. The reason to put Route in the

first place is because for Vehicle Routing Problem, if the customers are assigned to

47

the vehicles, the problem becomes to build a route for each vehicle. This is basically a

Travelling Salesman Problem and comparatively easier than VRP problem.

The second variable to branch on is the Next variables, and the Location variables are

branched on after Next. This is because according to the experiment, branching on

Location before Next brings a worse performance.

The last variable to branch on is makespan which is the objective variable. Recall

from (5.35) that makespan is equals to the maximum value of the departure time of

all nodes. At this stage, the sequence and locations are set. The setting of makespan

will give the best possible resolving of the remaining time-window-conflicts, which is

basically equivalent to solving a constrained Job Shop Problem.

The problem in this thesis is a Constraint Optimization Problem with the aim of

finding the optimal solution and proving its optimality, thus requires a traversal of

the entire search tree. The idea of the search strategy is to find the optimal solution as

soon as possible, and then prune the rest branches of which the objective value bound

is worse than the objective value of optimal solution, as a result reducing the average

depth of branches in the search tree.

5.3.2 Built-in Search vs. Customized Search

Two types of search strategy are used in this thesis: the built-in search strategy of the

support CP library, and the customized search strategy specific to the problem case.

The built-in search strategy is applicable to general problems and handy to use. Users

do not need to consider the implementation details. However, when we talk about

performance and stability, the built-in strategy is not adequate. For a certain problem

case, different parameter settings usually make the performance of built-in search

strategy differ a lot. Due to this reason, the users have to frequently change the

parameter setting for different problem cases in order to get the best search

performance.

An important advantage of customized search strategy is that there is no need to

change the parameter settings from case to case. Customized strategy is based on

heuristics of given problems and usually provides a better performance than built-in

search strategy.

5.3.3 Built-in Search Strategy

Two built-in variable selection strategies are used in this thesis:

CHOOSE_FIRST_UNBOUND

This strategy selects the first unbound variable. Variables are ordered by the indices

of the variable collection passed to the selector.

48

CHOOSE_PATH

This is a dedicated strategy for building simple paths (paths with no repeated

vertices). It is described as follows [55]:

1. Try to extend an existing path. The strategy seeks the existing path by

looking for an unbound variable to which some other variable is pointing.

2. If there is no existing path, try to find a start node of a path to begin. To find

a start node, the strategy looks for an unbound variable to which no other

variable points.

3. If both rule 1 and rule 2 fail, pick the first unbound variable.

Here is an example to illustrate how the CHOOSE_PATH strategy works. Suppose

the variables to be ordered are , and a path exists among the

variables, as shown in Figure 5.7.

Figure 5.7 An example demonstrates CHOOSE_PATH strategy

The variable array where the symbol “-” means the variable at

this position is unassigned. The existing path in this figure is . Based

on CHOOSE_PATH strategy, the next variable to select is and the domain of

this variable is {2, 4, 5}. If is assigned with the value 2, the path is closed, and

the next variable to select will be another unbound variable which is 4 or 5.

The built-in value selection strategies used in this thesis are ASSIGN_MIN_VALUE

and ASSIGN_MAX_VALUE.

ASSIGN_MIN_VALUE

This strategy selects the minimum value in the domain of the selected variable.

ASSIGN_MAX_VALUE

This strategy selects the maximum value in the domain of the selected variable.

49

5.3.4 Customized Search Strategy

5.3.4.1 Branching Route

Route is the most important variable among the four variables to branch on because

it is on the top of the entire search tree. The search under an assignment of Route

consists of the sub search tree of Next, Location and makespan, which is a large

search space. If we are able to find a good or even optimal assignment to Route at the

early stage, the best objective value under this assignment will propagate the rest

branches with worse bounds of objective value, thus significantly reduce the entire

search space.

Variable selection

The Route variables are ordered by the length of the InvalidPrev list of each node.

Let denotes the index of in the variable ordering,

 (5.36)

 (5.37)

As shown in (5.36) and (5.37), if a node has a longer InvalidPrev list, its route

variable will be branched on earlier. If two nodes have the same length of InvalidPrev

list, the node with smaller index will be branched on first.

(5.36) and (5.37) reflect a general order of performing the assembly sequence. As

seen in Figure 5.1, the node with longer InvalidPrev list is closer to the leaf of the

assembly tree, and generally should be performed earlier in the sequence. To branch

on the Route variables in this order conforms to the assembly scenario.

Value selection

The value selecting strategy for Route is to balance the total durations of both routes.

In addition, a heuristics named “Fixture Succession” is used.

Suppose is unbound and to be assigned. The procedure is described as follows:

1. If node i is a fixture operation node, perform Fixture Succession heuristics.

The Fixture Succession heuristics works like this. Let prevNode denote a

child of node i which is drop-off or fixture operation or sub-assembly. If the

route of prevNode is bound, assign with the same route as prevNode.

2. If rule 1 is not applicable, perform the balance heuristics.

50

In rule 1, the prevNode of node i could be drop-off or fixture operation or sub-

assembly. For example, as seen in Figure 5.1, the prevNode of node 20 is 24, the

prevNode of node 11 is 15, and the prevNode of node 4 is 5. Assign a fixture operation

node with the same route as its prevNode is because the two nodes are at the same

location (on the same fixture), to perform the fixture operation node immediately

after its prevNode could save travel time.

Let denote the set of nodes that have already been assigned to route

r so far, denodes the current cumulative durations on route r. The

balance heuristics is described as follows:

1. Calculate the current cumulative durations on each route:

 { | }

 ∑

2. If , assign with route r of which

the is smaller.

3. If , assign node i to the arm which

performs this node in a shorter duration, i.e.

if , assign 0 to ,

else if , assign 1 to .

Balancing is an important feature of the optimal solution. With the effort of evenly

allocating workload to both arms, the total makespan could be reduced. In balance

heuristics, the Route variables are always assigned values according to the run-time

cumulative durations on both arms.

5.3.4.2 Branching Next

After the Route variables are bound, branching on Next is basically to create a simple

path for each route.

Variable selection

The variable selection strategy for Next is CHOOSE_PATH. As discussed in section

5.3.3, it is a dedicated strategy for building simple path.

Value selection

The values in the domain of are the indices of the candidate successors of node

i. Basically, the value ordering for a variable is to give a priority to each value in its

domain. The value with higher priority will be set to the variable earlier in the search.

51

The value selection strategy for Next is based on two heuristics: the length of the

InvalidPrev list of the candidate successors and a similar Fixture Succession

heuristics as that of the Route variables.

Suppose is unbound and to be assigned, the value ordering heuristic is

described as follows:

1. If node i is drop-off or sub-assembly,

 is fixture operation node, as shown in

Figure 5.1. Give the index of the highest priority among all

values in the domain of .

 For the rest values in the domain, give higher priority to the index of the

node with longer InvalidPrev list.

2. If node i is neither drop-off nor sub-assembly, give higher priority to the

index of the node with longer InvalidPrev list.

The idea of rule 1 is similar to the Fixture Succession heuristics of Route. Since a

drop-off node and its succNode are at the same location (on the same fixture), to

process the succNode immediately after finishing this drop-off node will save travel

time. The reason of giving higher priority to the node with longer InvalidPrev list is

because according to the assembly tree in Figure 5.1, the general trend of the

assembly is from leaf to root. The node with longer InvalidPrev list is closer to the

leaf of the assembly tree, thus should be performed earlier in the sequence in general.

5.3.4.3 Branching Location

At this stage, the Route and Next variables are assigned values. The next step is to

determine the locations of tray nodes and camera nodes. The idea of branching on

the Location variables is based on greedy strategy, as well as keeping the balancing

feature for both routes.

Variable selection

To keep balance on both routes, the tray locations and camera locations are branched

on both routes simultaneously. The variable ordering strategy is described as follows:

1. Calculate current cumulative time on both routes. The cumulative time

includes the total durations and the total travel time between the nodes with

bound locations (fixture, air-gun, output, as well as tray and camera nodes

that are assigned locations). For the route with longer cumulative time,

select the first unbound location on this route.

2. Select the first unbound location on the other route other than in step 1.

52

3. Repeat step 1 and step 2 until one route is exhausted. Then exhaust the rest

route.

Value selection

The value ordering for Location is based on greedy strategy [56]. The greedy strategy

means always selecting the location value that gives the shortest distance for each

step along the route.

Suppose is unbound and to be assigned. Let prevLocation denote the

location of the predecessor of node i. Since we start from the first unbound location

on a route and the prevLocation is always fixed or assigned along this route. The

strategy is described as follows:

1. If the predecessor of node i is a start node, calculate the minimum distance

between the possible locations of node i and the possible location(s) of its

successor (the location of the successor could be bound or unbound). Assign

 with the location value that leads to the minimum distance.

2. If the predecessor of node i is not a start node, calculate the minimum

distance between prevLocation and the possible locations of node i. Assign

 with the location value that leads to the minimum distance.

The reason of rule 1 is because the distance between a start node and any other node

is always 0. To avoid blind selection, the minimum distance between current node

and its successor is considered.

5.3.4.4 Branching makespan

The branching strategy for makespan is quite simple. Since there is only one variable,

no variable selection strategy is needed. The value selection strategy is to assign the

variable with the minimum value in its domain. Recall from (5.35) that makespan is

equal to the departure time of the last node in the assembly sequence. Assigning

makespan with the minimum value will tighten the entire sequence.

5.4 Implementation

The constraint programming support library used in this thesis is Google OR-Tools

[55] with repository of version 3756. Google OR-Tools is an open source project

developed by Google under the Apache License 2.0. The library contains a constraint

programming solver, an interface to several linear programming and mixed integer

programming solvers, as well as a set of dedicated algorithms such as Knapsack and

graph algorithms.

The library is written in C++ but is also available in Python, Java, and .NET through

SWIG [57] which is a software development tool that connects programs written in C

53

and C++ with a variety of high-level programming languages. In this thesis, we use

the .NET version of the library.

Google OR-Tools contains a set of global constraints including the constraints

described in section 3.5. The library also implements a couple of search algorithms,

such as systematic tree search, local search, and Large Neighborhood Search. The

library allows combining sequential searches in the order defined by users. At each

leaf of the current search tree, the next search tree is created.

In addition to the implemented constraints and search strategies, Google OR-Tools

offers full support for implementing customized constraints and search strategies.

54

55

 Results 6

In this chapter, the experiment settings will be introduced first. Then the results for 5

test cases will be presented.

6.1 Experiment Settings

The problem case in this thesis is the same as that in the previous thesis work [8]

regarding the task durations and travel time matrix, but with a slightly updated

assembly tree which makes the problem case a little larger. The detail of the problem

case is described in Chapter 2. The task durations and travel time matrix are collected

by simulating each operation and movement with both arms in Robot Studio.

The experiment is run on a computer with Windows 7 64-bit operating system, Intel

Core i7 2.7 GHz CPU, and 8 GB RAM. The CP library is Google OR-Tools of version

3756 for C#. In each test, the program is executed to solve a problem instance and all

solutions are recorded including the run-time of finding each solution. In addition,

the information of finishing the entire search tree is recorded at the end of each test,

including the run-time, branches and failures.

To compare the efficiency of the built-in search strategy and the customized search

strategy, we run the programs based on each search strategy under the same problem

instance. The run-time of finding the optimal solution and run-time of finishing the

whole search, i.e. proving the optimality are two major indicator for comparison.

The evaluation is based on four general test cases and a special case. The only

difference between the general case and the special case is that the special case is

under the additional compact-fixture constraint described in Section 5.2.4.9. Under

this constraint, the two arms are not allowed to access the fixture area simultaneously.

Case 1 to case 4 share the same task durations and travel time matrix, but with

different assembly trees. The assembly tree of case 2, case 3 and case 4 are shown in

Appendix.

Table 6.1 shows the settings of each test case. Case 1 to case 4 is general case and case

5 is the special case.

Table 6.1 Settings of test cases

Fixtures
compact

Number of
components

Tool usage
for components

Case 1 no 5 2 grippers, 3 suctions

Case 2 no 4 1 gripper, 3 suctions

Case 3 no 4 2 grippers, 2 suctions

Case 4 no 3 1 gripper, 2 suctions

Case 5 yes 5 2 grippers, 3 suctions

56

For the built-in search strategy, we test all possible combination of parameter

settings to find the configuration with best performance. The variable selection

strategy for Route is FIRST_UNBOUND and the value selection strategies are

ASSIGN_MAX_VALUE and ASSIGN_MIN_VALUE.

For the Next variables, the variable selection strategy is CHOOSE_PATH. The value

selection strategy is ASSIGN_MAX_VALUE. The reason not to consider

ASSIGN_MIN_VALUE is because when building a route regarding the assembly tree,

the general trend of the route is always from the leaf (nodes with larger indices) to

the root (nodes with smaller indices) in the assembly tree. Apparently,

ASSIGN_MIN_VALUE is not an appropriate strategy.

The variable selection strategy for Location is FIRST_UNBOUND and the value

selection strategies are ASSIGN_MAX_VALUE and ASSIGN_MIN_VALUE. For

makespan no variable selection strategy is needed, and the value selection strategy is

ASSIGN_MIN_VALUE.

Table 6.2 shows the four settings of value selection strategy for the Route and

Location variables.

Table 6.2 Value selection settings for Route and Location

 Route Location

Setting 1 MAX MAX

Setting 2 MAX MIN

Setting 3 MIN MAX

Setting 4 MIN MIN

As shown in the table, MAX denotes the strategy of ASSIGN_MAX_VALUE and MIN

denotes ASSIGN_MIN_VALUE.

6.2 Experiment Results

The experiment results showed that the CP model in this thesis has made a great

improvement over the model in the previous work [8]. For the same problem

instance and under similar hardware and software environment to that of the

previous work, the model and implementation in this thesis can find the optimal

solution in less than 20 minutes and prove the optimality in around 40 minutes.

However, the previous work can only find an approximately optimal solution but not

able to prove the optimality.

In the following, we will compare the performance of the customized search strategy

with the built-in search strategy under five test cases listed in Table 6.1.

57

6.2.1 Test on case 1

Case 1 is the general problem case with 5 components which is described in Chapter 2.

The assembly tree of case 1 is shown in Figure 2.5 and Figure 5.1. Table 6.3 shows the

run-time, branches and failures for finding optimal solution with the built-in strategy

settings and the customized strategy.

Table 6.3 Time, branches and failures of finding the optimal solution for

case 1

 Time (s)

(s)

Branches Failures

Setting 1 1085 1557675 778844

Setting 2 1080 1562427 781223

Setting 3 9856 9003944 4501990

Setting 4 9569 9002333 4501224

Customized 243 391237 195613

Table 6.4 shows the run-time, branches and failures for proving the optimality i.e.

completing the entire search.

Table 6.4 Time, branches and failures of proving the optimality for case 1

 Time (s) Branches Failures

Setting 1 2470 3611374 1805704

Setting 2 2466 3617326 1808683

Setting 3 11296 11174880 5587468

Setting 4 10991 11175249 5587692

Customized 1957 3036286 1518150

Figure 6.1 shows the performance comparison of each search strategy on case 1. The

vertical coordinate represents run-time. Grey rectangle denotes the run-time for

finding optimal solution, and black rectangle denotes the run-time for proving

optimality.

Figure 6.1 Performance comparison on case 1

58

As shown in Figure 6.1, the best setting for built-in strategy is setting 2. The

customized strategy has a better performance than setting 2. Specifically, the

customized strategy only took 22.22% of the time for finding optimal solution and

79.33% of time for proving the optimality compared to setting 2.

The diagram also shows that the performance of setting 1 and setting 2 are close to

each other, and the same with setting 3 and setting 4. In another word, difference

search strategies for Location do not bring a considerable influence on the overall

performance. This is because the search on Location is the last part of the whole

search, and its search space is fairly small compared with Next and Route. Therefore

in the following test, we only consider setting 1 and setting 3 for the built-in strategy.

Figure 6.2 shows the track of finding optimal solution with customized strategy and

with the best built-in strategy.

Figure 6.2 The track of finding optimal solution with customized and best

built-in strategy

In this diagram, each point labeled on the curves represents a solution. The value of

horizontal coordinate is the elapsed search time of finding the solution, and the value

of the vertical coordinate is the objective value of this solution.

In Figure 6.3, the horizontal coordinate is displayed on logarithmic scale so that we

can see more details in the beginning stage of the search.

59

Figure 6.3 Logarithmic scale of horizontal coordinate in Figure 6.2

Figure 6.2 and Figure 6.3 show that the customized strategy initially finds solutions

with much better objective values, thus reach the optimal solution faster.

6.2.2 Test on case 2 and 3

Case 2 and case 3 are both 4 component case but with different tool usage and

assembly tree. In case 2, one component requires gripper tool and three components

require suction tool. In this situation, the gripper capacity constraint and the suction

capacity constraint both have effects. On the contrary, case 3 contains two

components for gripper and two components for suction, and in this case the suction

capacity constraint has no effect but the gripper capacity constraint has a big effect.

Test on case 2

Table 6.5 shows the performance of the customized strategy and the built-in strategy

with setting 1 and setting 3 on case 2.

Table 6.5 Performance comparison on case 2

 Time for finding

opt solution (s)

Time for proving

opt solution (s)

Customized 51 65

Setting 1 56 77

Setting 3 2791 2808

The table shows that the customized strategy and setting 1 have much better

performance than setting 3. Furthermore, customized strategy performs slightly

better than setting 1.

60

Test on case 3

Table 6.6 shows the performance of the search strategies on case 3. For built-in

strategy with setting 3, we ran the program for more than 5 hours but did not find

any solution. Therefore, here gives the lower bound of the run-time.

Table 6.6 Performance comparison on case 3

 Time for finding

opt solution (s)

Time for proving

opt solution (s)

Customized 0.6 6.8

Setting 1 3191 3197

Setting 3 > 18000 > 18000

Table 6.6 shows that customized strategy has much better performance than built-in

strategy under case 3. There are two reasons for the significant advantage. The first

reason is because the constraint on the objective value has an extreme effect on this

case. After reaching the optimal solution, the objective value of the optimal solution

can propagate the rest of the search space in a very short time. As seen in table 6.6,

both customized strategy and built-in strategy with setting 1 proved the optimality in

6 seconds after finding the optimal solution. The second reason is that the solutions

clustered very intensively in the search space. We notice that setting 1 found the first

solution after 3178 seconds and setting 3 found no solution over 5 hours, as a result,

no objective value is collected to prune any branches in the search tree. On the

contrary, the customized strategy happened to find the optimal solution at beginning

with some luck.

6.2.3 Test on case 4

Case 4 contains one gripper picking-up component and two suction picking-up

components. Apparently, neither of the gripper nor suction capacity constraint has

effect on this case.

Table 6.7 shows the performance of the search strategies on case 4.

Table 6.7 Performance comparison on case 4

 Time for finding

opt solution (s)

Time for proving

opt solution (s)

Customized 3.23 3.72

Setting 1 2.56 4.05

Setting 3 21.62 23.46

61

From this table we can see that customized strategy and setting 1 have better

performance than setting 3. Setting 1 took shorter time for finding the optimal

solution, and customized strategy proved the optimality faster.

6.2.4 Test on case 5

Case 5 is the special 5 component case in which the two arms are not allowed to

access the fixture area simultaneously. This is achieved by posting an additional

constraint described in Section 5.2.4.9. Since this constraint affects the concurrency

of the operations on two fixtures, the objective value of the optimal solution to case 5

is a little larger than that of case 1. The performance of each strategy is shown in

Figure 6.4.

Figure 6.4 Performance comparison on case 5

In this test, setting 1 has the best performance in both finding optimal solution and

proving the optimality. Although the customized strategy did not win out, its

performance is much better than setting 3.

6.3 Summary

It needs to be stressed that setting 1 is not necessarily the best configuration for built-

in strategy in all problem cases. In some other cases with different task durations,

travel time matrix, and/or assembly trees, setting 3 would give the best performance

for built-in strategy.

Actually, the only difference between setting 1 and setting 3 is the value selection

strategy for Route. For setting 1, all nodes are assigned to arm 1 at beginning, and

then the route of each node alters iteratively until finding the optimal solution. For

setting 3, all nodes are initially assigned to arm 0. Basically, setting 1 and setting 3

define two symmetrical directions in the search space of Route. Hence, setting 3

should be the best setting for about half of the problem cases.

In practice, the parameter setting for built-in strategy always needs to change from

case to case in order to get good performance. However, since the search strategy for

62

Route in customized strategy is based on task durations and assembly tree which are

intrinsic properties of the problem case, customized strategy performs consistently

for all problem cases.

63

 Conclusion 7

In this thesis a real-world assembly case for dual arm robot is introduced. A

constraint programming model and a customized search strategy for optimizing the

assembly sequence and assembly cell layout of the problem case is proposed. The

model and search strategy are implemented using Google OR-Tools, an open source

constraint programming support library. The implementation is tested under a set of

problem instances sharing the same task durations and travel time matrix but with

different assembly tree and tool usage of components.

The results show that the model and search strategy are effective and efficient on the

problem case studied in this thesis. For the general 5 component test case in the

experiment, the implementation can find optimal solution with 4 minutes and prove

the optimality with 32 minutes. The results also show that with the increase of the

problem size, the run-time grows fast. However, since the common size of the real-

world assembly case is similar to the 5 component case, the time for solving the

problem is acceptable.

A performance comparison between the customized search strategy and the built-in

search strategy of Google OR-Tools is done. The results show that the customized

strategy has a better performance than the built-in strategy in many cases. For the

general 5 component case, the customized strategy only takes 22.22% of the time for

finding optimal solution and 79.33% of the time for proving optimality compared to

built-in strategy with the best setting. For the general test cases with 4 components

and 3 components, customized strategy also shows a performance advantage over

built-in strategy.

The results also indicate that the parameter setting for built-in strategy is highly

relevant to the problem case, therefore needs to change frequently according to

different cases. However, the customized strategy performs consistently in all

problem cases, thus no need to make changes.

64

65

 Discussion & Future Work 8

In this chapter, a further discussion on the CP model and the customized search

strategy will be conducted, and some future work is suggested.

An important part in the model is to post regular expression constraints on each

route to eliminate invalid assembly sequences. The regular expression constraints are

very efficient in propagation. When building these constraints, the integration of

smaller DFAs to a larger DFA often brings improvements in performance, but

meanwhile increases the implementation complexity. Therefore, a good balance

between performance and complexity need to be determined.

Currently, the information of assembly tree and task durations is used for the

customized search strategy. The strategy of balancing the total durations on both

routes plays an important role. Since the makespan on each route consists of total

durations and total travel time, it is advisable to find a way to utilize the travel time

matrix in search heuristics.

Instead of manually generating travel time matrix from Robot Studio, a program can

be developed to automatically generate the travel time from dynamic case models.

The travel time used now is the average travel time between two locations. To get

more accurate travel time, more configurations for the position of an arm could be

added into the model. With the increase of freedom in the model, searching for

optimal solution might become infeasible. Then the non-systematic search methods

such as local search and large neighborhood search are needed to get the

approximately optimal solutions.

66

67

References

[1] ABB. Introduction of ABB. [Online]. http://new.abb.com. Accessed on: 2015-

07-06.

[2] Robotics Industries Association. Robotic Assembly: Shrinking Footprint,

Expanding. [Online]. http://www.robotics.org/content-

detail.cfm/Industrial-Robotics-Industry-Insights/Robot. Accessed on:

2015-07-06.

[3] ABB. ABB Robotics. [Online].

http://www.abb.com/product/ap/seitp327/973e9073ef5d2787c12570b

9003563c7.aspx. Accessed on: 2015-07-06.

[4] ABB. YuMi Robot. [Online]. http://new.abb.com/products/robotics/yumi.

Accessed on: 2015-07-06.

[5] Matthias Holweg, "The Genealogy of Lean Production," Journal of Operations

Management, vol. 25, no. 2, pp. 420-437, 2007.

[6] Xinhuanet. Foxconn to replace workers with 1 million robots in 3 years.

[Online]. http://news.xinhuanet.com/english2010/china/2011-

07/30/c_131018764.htm. Accessed on: 2015-07-06.

[7] ISO 8373: 1994, Robots and robotic devices - Vocabulary.

[8] Joakim Ejenstam, "Implementing A Time Optimal Task Sequence For Robot

Assembly Using Constraint Programming," Uppsala University, Uppsala,

Master Thesis ISSN 1401-5749, 2014.

[9] ABB. ABB Robot Studio. [Online].

http://www.abb.com/product/seitp327/30450ba8a4430bcfc125727d00

4987be.aspx. Accessed on: 2015-07-06.

[10] Eugene C. Freuder, "In pursuit of the holy grail," Constraints, vol. 2, no. 1, pp.

57-61, 1997.

[11] Francesca Rossi, Peter Van Beek, and Toby Walsh, Eds., Handbook of

Constraint Programming.: Elsevier Science, 2006.

[12] Krzysztof Apt., Principles of Constraint Programming. New York, USA:

Cambridge University Press, 2003.

[13] Nicolas Beldiceanu, Mats Carlsson, and Sophie Demassey. Global Constraint

Catalogue. [Online]. http://sofdem.github.io/gccat/gccat/index.html.

http://new.abb.com/
http://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Robot
http://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Robot
http://www.abb.com/product/ap/seitp327/973e9073ef5d2787c12570b9003563c7.aspx
http://www.abb.com/product/ap/seitp327/973e9073ef5d2787c12570b9003563c7.aspx
http://new.abb.com/products/robotics/yumi
http://news.xinhuanet.com/english2010/china/2011-07/30/c_131018764.htm
http://news.xinhuanet.com/english2010/china/2011-07/30/c_131018764.htm
http://www.abb.com/product/seitp327/30450ba8a4430bcfc125727d004987be.aspx
http://www.abb.com/product/seitp327/30450ba8a4430bcfc125727d004987be.aspx
http://sofdem.github.io/gccat/gccat/index.html

68

Accessed on: 2015-07-06.

[14] J. L. Lauriere, "A Language and a Program for Stating and Solving

Combinatorial Problems," Artificial Intelligence, vol. 1, no. 10, pp. 29-127,

1978.

[15] P. Van Hentenryck and J. P. Carillon, "Generality vs. Specificity: an Experience

with AI and OR Techniques," in National Conference on Artificial Intelligence

(AAAI-88), 1988.

[16] J. Carlier, "The one-machine sequencing problem," European Journal of

Operational Research, vol. 11, pp. 42-47, 1982.

[17] P. Refalo, "Linear Formulation of Constraint Programming Models and Hybrid

Solvers," in Principles and Practice of Constraint Programming (CP'2000)

LNCS 1894.: Springer-Verlag, 2000.

[18] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and

Programming with Gecode. [Online]. http://www.gecode.org/doc-

latest/MPG.pdf. Accessed on: 2015-07-06.

[19] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata

Theory, Languages,and Computation, 2nd ed.: Addison Wesley, 2001.

[20] Ruslan Mitkov, The Oxford Handbook of Computational Linguistics.: Oxford

University Press, 2003.

[21] G. B. Dantzig and J. H. Ramer, "The Truck Dispathcing Problem,"

Management Science, vol. 6, no. 1, pp. 80-91, Oct. 1959.

[22] G. Gutin and A. Punnen, The Traveling Salesman Problems and its Variations.

Dordrecht, Netherlands: Kluwer Academic Publishers, 2002.

[23] M. Junger, G. Reinelt, and G. Rinaldi, "The traveling salesman problem," in

Annotated Bibliographies in Combinatorial Optimization (Wiley Interscience

Series in Discrete Mathematics).: John Wiley & Sons, 1997.

[24] G. Laporte, "The traveling salesman problem: an overview of exact and

approximate algorithms," European Journal of Operational Research, vol. 59,

pp. 231-247, 1992.

[25] Yves Caseau and Francois Laburthe, "Solving small TSPs with constraints," in

Proceedings of the 14th International Conference on Logic Programming,

1997, pp. 316-330.

http://www.gecode.org/doc-latest/MPG.pdf
http://www.gecode.org/doc-latest/MPG.pdf

69

[26] Paolo Toth and Daniele Vigo, Eds., The Vehicle Routing Problem.: Discrete

Mathematics and Applications, 2002.

[27] The blog of Logistics at MGEPS at UPV. Vehicle Routing Problem: It's There A

Perfect Solution? [Online].

https://logisticsmgepsupv.wordpress.com/2014/04/10/vehicle-routing-

problem-its-there-a-perfect-solution/comment-page-1/. Accessed on:

2015-07-06.

[28] Q. Lu and M. Dessouky, "An exact algorithm for the multiple vehicle pickup

and delivery problem," Transportation Science, vol. 38, no. 4, p. 503, 2004.

[29] Sophie N. Parragh, Karl F. Doerner, and Richard F. Hartl, "A survey on pickup

and delivery problems," Journal für Betriebswirtschaft, vol. 58, no. 2, pp. 81-

117, 2008.

[30] O. Braysy and M. Gendreau, "Vehicle routing problem with time windows, part

Ⅰ: Route construction and local search algorithms," Transportation Science,

vol. 39, no. 1, pp. 104-118, 2005.

[31] O. Braysy and M. Gendreau, "Vehicle routing problem with time windows, part

Ⅱ: Metaheuristics," Transportation Science, vol. 39, no. 1, pp. 104-118, 2005.

[32] M. Savelsbergh, "Local search in routing problems with time windows," Annals

of Operations Research, vol. 4, pp. 285-305, 1985.

[33] B. L. Golden, S. Raghavan, and E. A. Wasil, Eds., The Vehicle Routing

Problem: Latest Advances and New Challenges.: Springer-Verlag, 2008.

[34] Philip Kilby and Paul Shaw, "Vehicle Routing," in Handbook of Constraint

Programming, F. Rossi, P. V. Beek, and T. Walsh, Eds.: Elsevier Science, 2006,

pp. 799-834.

[35] Bruno De Backer, Vincent Furnon, Paul Shaw, Philip Kilby, and Patrick

Prosser, "Solving vehicle routing problems using constraint programming and

metaheuristics," Journal of Heuristics, vol. 6, no. 4, pp. 501-523, 2000.

[36] Judea Peal, Heuristics: intelligent search strategies for computer problem

solving.: Addison Wesley, 1984.

[37] G. Clarke and J. Wright, "Scheduling of vehicles from a central depot to a

number of delivery points," Operations Research, vol. 12, pp. 568-581, 1964.

[38] B. E. Gillett and L. R. Miller, "A heuristic algorithm for the vehicle dispatch

https://logisticsmgepsupv.wordpress.com/2014/04/10/vehicle-routing-problem-its-there-a-perfect-solution/comment-page-1/
https://logisticsmgepsupv.wordpress.com/2014/04/10/vehicle-routing-problem-its-there-a-perfect-solution/comment-page-1/

70

problem," Operations Research, vol. 22, pp. 340-349.

[39] Philip Kilby, Patrick Prosser, and Paul Shaw, "Guided local search for the

vehicle routing problem with time windows," in Meta-Heuristics.: Springer US,

1999, pp. 473-486.

[40] Bruno De Backer, Vincent Furnon, P. Kilby, P. Prosser, and Paul Shaw, "Local

search in constraint programming: Application to the vehicle routing problem,"

in Proc. CP-97 Workshop Indust. Constraint-Directed Scheduling.: Schloss

Hagenberg, 1997, pp. 1-15.

[41] E. Aarts, J. H. M. Korst, and P.J.M. Van Laarhoven, "Simulated annealing," in

Local Search in Combinatorial Optimization. Chichester, UK: John Wiley &

Sons, 1997, pp. 91-120.

[42] F. Glover, "Tabu search, part Ⅰ," ORSA Journal on Computing, vol. 1, no. 3,

pp. 190-206, 1989.

[43] F. Glover, "Tabu search, part Ⅱ," ORSA Journal on Computing, vol. 2, no. 1,

pp. 4-32, 1990.

[44] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning.: Addison Wesley, 1989.

[45] P. Hansen and N. Mladenovic, "Variable neighborhood search: Principles and

applications," European Journal of Operational Research, vol. 130, no. 3, pp.

449-467, 2001.

[46] Pascal Van Hentenryck and Laurent Michel, Constraint-Based Local Search.:

MIT Press, 2009.

[47] Philip kilby and Andrew Verden, "Flexible routing combing constraint

programming, large neighbourhood search, and feature-based insertion," in

Principles and Practice of Constraint Programming – CP96, 2011, pp. 43-49.

[48] Paul Shaw, "Using constraint programming and local search methods to solve

vehicle routing problems," in Fourth International Conference on Principles

and Practice of Constraint Programming - CP98.: Springer-Verlag, 1998.

[49] David Pisinger and Stefan Ropke, "Large Neighborhood Search," in Handbook

of Metaheuristics.: Springer-Verlag, 2010, pp. 399-419.

[50] J. C. Beck, T. K. Feng, and J. P. Watson, "Combining Constraint Programming

and Local Search for Job-Shop Scheduling," INFORMS Journal on Computing,

71

vol. 23, no. 1, pp. 1-14, 2011.

[51] Manuel Loth, Michele Sebag, Youssef Hamadi, Marc Schoenauer, and Christian

Schulte, "Hybridizing Constraint Programming and Monte-Carlo Tree Search:

Application to the Job Shop Problem," in LION7 - Learning and Intelligent

Optimization.: Springer-Verlag, 2013, pp. 315-320.

[52] J. Beck, P. Prosser, and E. Selensky, "Vehicle routing and job shop scheduling:

What’s the difference?," in 13th International Conference on Automated

Planning and Scheduling ICAPS'03, 2003.

[53] B. Kallehauge, J. Larsen, and O. B. Madsen, "Lagrangean duality applied on

vehicle routing with time windows," Technical University of Denmark, Lyngby

– Denmark, Technical Report IMM-TR-2001-9 2001.

[54] Google. Google OR-Tools reference manual. [Online]. http://or-

tools.googlecode.com/svn/trunk/documentation/reference_manual/or-

tools/. Accessed on: 2015-07-06.

[55] Nikolaj Van Omme, Laurent Perron, and Vincent Furnon. Google OR-Tools

User's Manual. [Online]. http://or-

tools.googlecode.com/svn/trunk/documentation/user_manual/index.ht

ml. Accessed on: 2015-07-06.

[56] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms.: MIT Press & McGraw-Hill, 1990.

[57] SWIG. Introduction to SWIG. [Online]. http://www.swig.org/index.php.

Accessed on: 2015-07-06.

http://or-tools.googlecode.com/svn/trunk/documentation/reference_manual/or-tools/
http://or-tools.googlecode.com/svn/trunk/documentation/reference_manual/or-tools/
http://or-tools.googlecode.com/svn/trunk/documentation/reference_manual/or-tools/
http://or-tools.googlecode.com/svn/trunk/documentation/user_manual/index.html
http://or-tools.googlecode.com/svn/trunk/documentation/user_manual/index.html
http://or-tools.googlecode.com/svn/trunk/documentation/user_manual/index.html
http://www.swig.org/index.php

72

73

Appendix

A1. Assembly tree of case 2

Assembly tree of case 2 (1 GPU, 3 SPU)

A2. Assembly tree of case 3

Assembly tree of case 3 (2 GPU, 2 SPU)

74

A3. Assembly tree of case 4

Assembly tree of case 4 (1 GPU, 2 SPU)

TRITA TRITA-ICT-EX-2015:201

www.kth.se

	Cover
	Content
	1 Introduction
	1.1 Overview
	1.2 Problem
	1.3 Purpose and Goal
	1.4 Benefits, Ethics and Sustainability
	1.4.1 Benefits
	1.4.2 Ethics
	1.4.3 Sustainability

	1.5 Delimitations
	1.6 Contributions
	1.7 Outline

	2 Background
	2.1 YuMi® Robot
	2.2 Problem Input and Output
	2.3 Problem Case
	2.3.1 Assembly Cell and Robot Description
	2.3.2 Assembly Graph
	2.3.3 Assembly Tree
	2.3.4 Travel Time Matrix and Task Durations
	2.3.5 Assembly Sequence and Assembly Cell Layout

	3 Constraint Programming
	3.1 CP Modeling
	3.1.1 Constraint Satisfaction Problem
	3.1.2 Constrained Optimization Problem
	3.1.3 A classic problem: 4-Queens Problem
	3.1.4 4-Queens problem model in CSP
	3.1.5 The optimization version of 4-Queens problem

	3.2 CP Solving
	3.2.1 Constraint Propagation
	3.2.2 Search

	3.3 CP Variables
	3.4 CP Constraints
	3.4.1 Global Constraints
	3.4.2 Reification
	3.4.3 Deterministic Finite Automaton

	4 Vehicle Routing Problem & Job Shop Problem
	4.1 Vehicle Routing Problem
	4.1.1 Travelling Salesman Problem
	4.1.2 Definition of Vehicle Routing Problem
	4.1.3 Variations of Vehicle Routing Problem
	4.1.4 Methods for Vehicle Routing Problem

	4.2 Job Shop Problem
	4.3 VRP vs. JSP

	5 Model and Implementation
	5.1 Problem Case Analysis
	5.2 Constraint Programming Model
	5.2.1 Problem Instance Data
	5.2.2 Variables
	5.2.3 Pre-Processing of Variable Domains
	5.2.4 Constraints
	5.2.4.1 Core constraints
	5.2.4.2 One route per node constraint
	5.2.4.3 Disjunctive constraint
	5.2.4.4 Conjunctive constraint
	5.2.4.5 Casting sequence for each route
	5.2.4.6 Regular expression constraints
	5.2.4.7 Distinct tray location constraint
	5.2.4.8 Avoiding collision constraint
	5.2.4.9 Compact-fixtures constraint

	5.2.5 Objective function

	5.3 Search strategy
	5.3.1 Structure of Search Tree
	5.3.2 Built-in Search vs. Customized Search
	5.3.3 Built-in Search Strategy
	5.3.4 Customized Search Strategy
	5.3.4.1 Branching Route
	5.3.4.2 Branching Next
	5.3.4.3 Branching Location
	5.3.4.4 Branching makespan

	5.4 Implementation

	6 Results
	6.1 Experiment Settings
	6.2 Experiment Results
	6.2.1 Test on case 1
	6.2.2 Test on case 2 and 3
	6.2.3 Test on case 4
	6.2.4 Test on case 5

	6.3 Summary

	7 Conclusion
	8 Discussion & Future Work
	References
	Appendix
	A1. Assembly tree of case 2
	A2. Assembly tree of case 3
	A3. Assembly tree of case 4

	Cover

