
DEGREE PROJECT, IN SOFTWARE ENGINEERING OF DISTRIBUTED SYSTEMS
, SECOND LEVEL

STOCKHOLM,  SWEDEN 2015

Optimizing Task Sequence and Cell
Layout for Dual Arm Robot Assembly
Using Constraint Programming

ZHENGYANG ZHAO

KTH ROYAL INSTITUTE OF TECHNOLOGY

INFORMATION AND COMMUNICATION TECHNOLOGY





 
 
 
 
 
 
 
 
 
 
 
 
 
 

Optimizing Task Sequence and Cell Layout 
for Dual Arm Robot Assembly Using 

Constraint Programming 
 

 

 

 

 

 

 

Zhengyang Zhao 

 

 

Supervisor: 

Johan Wessén  

(ABB Corporate Research, Sweden) 

Advisors at KTH: 

Prof. Christian Schulte 

Gabriel Hjort Blindell 

Examiner: 

Prof. Christian Schulte 

 

 

Master’s Thesis 

September 9, 2015 

 

School of Information and Communication Technology 

KTH Royal Institute of Technology 

Stockholm, Sweden



 

KTH ROYAL INSTITUTE OF TECHNOLOGY  

I N F O R M A T I O N  A N D  C O M M U N I C A T I O N  T E C H N O L O G Y  



Abstract 

Nowadays, assembly robots are increasingly used in the manufacturing industry to 

replace or collaborate with human labors. This is the goal of the dual arm assembly 

robot developed by ABB. With the rapid upgrading in consumer electronics products, 

the lifetime of an assembly line could be only a few months. However, even for 

experienced programmers, to manually construct a good enough assembly sequence 

is time consuming, and the quality of the generated assembly sequence is not 

guaranteed. Moreover, a good robot assembly sequence is important to the 

throughput of an assembly line. For dual arm robots, it is also important to obtain a 

balance between the two arms, as well as handling scheduling conflicts and avoiding 

collisions in a crowded environment. 

In this master thesis, a program is produced to automatically generate the optimal 

assembly sequence for a class of real-world assembly cases. The solution also takes 

the layout of the assembly cell into account, thus constructing the best combination 

of cell layout, workload balancing, task sequence and task scheduling. The program is 

implemented using Google OR-Tools – an open-source support library for 

combinatorial optimization. A customized search strategy is proposed and a 

comparison between this strategy and the built-in search strategy of Google OR-Tools 

is done. The result shows that the used approach is effective for the problem study 

case. It takes about 4 minutes to find the optimal solution and 32 minutes to prove its 

optimality. In addition, the result also shows that the customized search strategy 

works consistently with good performance for different problem cases. Moreover, the 

customized strategy is more efficient than built-in search strategy in many cases. 

Keywords:  

Constraint Satisfaction Problem, Constraint Optimization Problem, Vehicle Routing 

Problem, Dual Arm Robot Assembly, Search heuristics 



 

  



Sammanfattning 

Numera används monteringsrobotar alltmer inom tillverkningsindustrin för att 

ersätta eller samarbeta med människor. Detta är måluppgiften för den tvåarmiga 

monteringsroboten, YuMi, som utvecklats av ABB. Med den korta 

produktlivslängden för hemelektronikprodukter kan livslängden för en 

monteringslinje vara ett fåtal månader. Även för erfarna robotprogrammerare är det 

svårt och tidsödande att manuellt konstruera en tillräckligt bra monteringsordning, 

och dessutom kan resultatets kvalitet inte garanteras. En bra monteringsordning är 

nödvändig för genomströmningen i en monteringslinje. För tvåarmiga robotar, är det 

också viktigt att få en balans mellan de två armarna, samt hantering av 

schemakrockar och undvika kollisioner i en trång miljö. 

I detta examensarbete har ett program skrivits, som automatiskt genererar optimala 

lösningar för en klass av verkliga monteringsfall. Lösningen tar hänsyn till 

utformningen av monteringscellen och arrangerar cellen på bästa sätt, balanserar 

arbetsbelastningen, ordnar och tidsbestämmer uppgifter. Programmet använder sig 

av Google OR-Tools – ett öppet kodbibliotek för kombinatorisk optimering. 

Dessutom föreslås en skräddarsydd sökstrategi, som jämförs med Google OR-Tools 

inbyggda sökstrategi. Resultatet visar att den använda metoden är effektiv för 

problemtypen. Det tar ungefär 4 minuter att hitta den optimala lösningen och 32 

minuter för att bevisa optimalitet. Dessutom visar resultatet att den anpassade 

sökstrategin konsekvent har en bra prestanda för olika problemfall. Dessutom är den 

anpassade strategin effektivare än den inbyggda sökstrategin i många fall. 

Nyckelord: 

Constraint Satisfaction Problem, Optimeringsproblem med bivillkor, Ruttplanering, 

Tvåarmad robotmontering, Sökheuristik 
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 Introduction 1

This thesis work was carried out at ABB Corporate Research in Västerås, Sweden. 

ABB is a global corporation mainly focusing on robotics and the power and 

automation technologies. It provides solutions to improve the efficiency, productivity 

and quality of its customers’ operations. The ABB Group of companies operates in 

roughly 100 countries with about 140,000 employees. ABB Corporate Research 

develops technologies for future products and services for ABB’s core businesses [1]. 

1.1 Overview 

In recent years, due to the rising labor costs, assembly robots are increasingly used in 

manufacturing industries from large vehicles to small electronics. Some assembly 

work that requires high precision can only be done by robots. This brings a high 

demand for robot assembly [2]. 

ABB is one of the leading manufacturers of industrial robots and robot systems [3]. 

Since its first commercial electric robot introduced in 1974, ABB has installed over 

200,000 robots worldwide in a wide range of fields such as consumer electronics, 

machine tools, metal fabrication, food and beverage industries, etc. 

YuMi® is the latest dual arm assembly robot of ABB [4]. It is designed for small parts 

assembly that was previously intended for manual labors. The robot is small in size 

and suitable for the compact production environment. 

A good assembly sequence and assembly cell layout is important to the throughput of 

an assembly line. On the assembly line, a single product assembly is called a cycle. In 

a common lean production [5] environment, due to the cumulative effect, even a 

small improvement in a cycle will result in a significant improvement in the total 

throughput and a large saving over the entire assembly line. Therefore, it is 

interesting to find the optimal assembly sequence and assembly cell layout so as to 

get the optimal cycle time. 

1.2 Problem 

In some manufacturing fields such as consumer electronics, an assembly line needs 

to frequently reinstall due to the rapidly changing market demands and technique 

upgrading. In some extreme cases, the assembly line could change every few months. 

Meanwhile, the installation for the new assembly line often takes a comparatively 

long time. Even an experienced programmer needs weeks to build up a new assembly 

line and in most cases with non-optimized assembly sequence. Therefore, finding a 

way to automatically and efficiently generate optimized assembly sequence becomes 

important. 
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1.3 Purpose and Goal 

The purpose of this project is to evaluate the suitability of optimizing dual arm robot 

assembly using Constraint Programming. A Constraint Programming model and a 

customized search strategy are proposed and tested in this thesis. 

The goal is to produce a program to automatically generate high quality assembly 

sequence for dual arm robot. This program can greatly shorten the installation time 

for an assembly line and improve the throughput. 

1.4 Benefits, Ethics and Sustainability 

1.4.1 Benefits 

The ultimate goal of this thesis project is to shorten the installation phase of an 

assembly line meanwhile maximize the assembly throughput. If the outcome of this 

project is successfully applied in industry, both manufacturers and customers will 

enjoy the benefits. 

With shorter installation time for robot assembly line and higher assembly 

throughput, new products will be put into market faster. And with cleverer assembly 

manner on the assembly line, the average energy consumption for each product will 

be reduced. This will lead to cost savings for the manufactures and might in turn 

lower the product price for customers. 

1.4.2 Ethics 

One important function of assembly robots is to free human from repetitive and 

dangerous jobs. Robots can keep the assembly line running continuously and operate 

on dangerous materials, such as toxic and radioactive substance, without worries. 

However, there are concerns that the increasing use of robots raises unemployment 

in the society [6]. With the development of technology, the advantage of robot over 

human labor will become even more prominent. In the future, it is inevitable that 

robots will replace human in more and more assembly work. 

1.4.3 Sustainability 

This thesis project aims to give the optimal assembly manner for a product assembly. 

The best assembly manner brings a higher throughput for the assembly line, which 

will in turn lower the number of robots needed, thus more sustainable. 

In addition, since robots make less mistakes, the defect rate of robots is often much 

smaller than that of human labors. Therefore, the increasing use of robot in product 

assembly will reduce the waste of raw materials. 
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1.5 Delimitations 

Although one important feature of YuMi robot is to work collaboratively with humans, 

the problem case in this thesis only considers the assembly scenario that a robot 

works autonomously without any interference from outside world. 

In practice, the movement of robot arm is driven by the instant parameters of 

kinematics and dynamics. In this thesis, instead of using the instant data, the 

modeling uses the data of travel time and operation time collected off-line by 

software simulation. 

1.6 Contributions 

The author’s contributions to this thesis project were as follows: 

1. The author was highly involved in designing and implementing the CP model. 

Particularly, the author proposed and designed the conjunctive constraint 

and suction capacity DFA, and was highly involved in designing the 

precedence order DFA. 

2. The author designed and implemented the customized search strategy. 

3. The author carried out the experiment and evaluation of this thesis report. 

1.7 Outline 

This thesis report is organized in eight Chapters. Chapter 2 presents the real world 

problem case studied in this thesis. Chapter 3 gives necessary theoretical background 

in Constraint Programming for the thesis. Chapter 4 introduces two important 

problems related to the thesis – the Vehicle Routing Problem and Job Shop Problem. 

Chapter 5 presents the details of the model and search strategy, as well as the 

implementation. Chapter 6 and Chapter 7 present the evaluation results and 

conclusion. Finally, Chapter 8 gives some discussion and suggests future work. 
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 Background 2

An industrial robot is an automatically controlled, reprogrammable, multipurpose 

manipulator programmable in three or more axes [7]. A typical application of 

industrial robots is production assembly. Generally, Assembly robots can increase 

productivity, quality and eventually lower the costs for manufactures.  

With the development of technology, the modern assembly robots become more 

compact and highly flexible to meet the agile production scenarios. The state-of-the-

art assembly robots are designed as dual arm humanoids to perform tasks like human 

beings. 

In this chapter, I will introduce the latest dual arm assembly robot of ABB. A real 

world assembly case of the robot will be introduced. This assembly case is the target 

problem study case of the thesis. 

2.1 YuMi® Robot 

YuMi robot, as shown in Figure 2.1, is the latest collaborative, dual arm, small parts 

assembly robot of ABB. It has flexible hands, parts feeding systems, camera-based 

part location and robot control systems. One of the most important features of YuMi 

robot is the human-robot collaboration i.e. human workers and robots work together 

on the same assembly tasks. However, this thesis only focuses on the situation that a 

robot works independently in an isolated working environment with dedicated 

components input and assembly output. 

 

 

Figure 2.1 YuMi dual arm assembly robot [4] 

The robot takes a human size workplace. It has an accurate vision and two arms that 

contain 7 rotating joints, which allows the robot to work in a very precise and flexible 

way. In order to perform assembly like a human worker, the robot is provided with 

several optional hands as shown in Figure 2.2. 
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Figure 2.2 Optional hands for YuMi robot [4] 

The hands consist of gripper tool and suction tool. Suction tool is used for picking up 

flat components. In addition to picking up, gripper tool is also used for the tasks such 

as peeling the cover off a component and tapping a component to stabilize it on a 

fixture. Since the tasks of peeling and tapping are performed on a fixture, this type of 

tasks is called fixture operation. 

2.2 Problem Input and Output 

The goal of this thesis is to produce a program that automatically constructs the 

optimal assembly sequence and assembly layout for the YuMi robot under a class of 

real-world problem cases. The program takes a number of parameters and instance 

data as input, and generates two outcomes. 

The input parameters and instance data include: 

 Assembly cell description 

 Robot description 

 Assembly Tree 

 Travel time matrix 

 Task durations 

The outcomes include: 

 Assembly sequence, including timing of each task 

 Assembly cell layout 

The input and output will be introduced in details together with the problem case in 

the next section. 

2.3 Problem Case 

In this thesis, the problem case is the same as a previous work [8] regarding the cell 

description, robot description, assembly graph, distance matrix, and task durations. 

The main difference between the input data in this thesis and that in previous work is 

that the assembly tree is proposed in this thesis and thus not used in previous work. 

In this section, we will introduce the input and output of the thesis together with the 

target problem case in details. 



7 

 

 

 

 

2.3.1 Assembly Cell and Robot Description 

An Assembly cell is a limited workspace in which the robot works with product 

assembly. Within the cell, the robot works autonomously without any interference 

from outside. A cell contains several auxiliary apparatuses such as trays, cameras, air 

gun, fixtures, and output buffer. 

Figure 2.3 gives an overview of the assembly cell of the problem case in this thesis. 

The assembly cell contains two fixtures, five trays, five cameras, one air gun, and one 

output buffer. The output buffer is not shown in this figure but it is also a part of the 

assembly cell. 

 

 

Figure 2.3 The assembly cell of the problem case [9] 

The trays provide new parts for the robot to assemble. In the rest of the thesis, the 

parts to be assembled are also called components. After finishing the assembly, the 

robot puts the final assembly of the product on the output buffer. The trays are filled 

with components from outside of the cell. The final assembly on the output buffer is 

also handled by another part of the assembly line out of the cell. In this thesis, we 

only consider the operations performed in the assembly cell. 

The components are initially laid on the trays. Each tray only provides one type of 

component. At the beginning of an assembly cycle, the robot picks up a component 

from a tray and places it on a fixture. The fixture is a stable place for the robot to 

perform further assembly operations. The robot could tap or peel the component that 

has been mounted on the fixture, put another component onto this mounted 

component, or put one sub-assembly (which is a combination of several components) 

onto another sub-assembly. 
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For each tray in the cell, a dedicated camera is used as a vision system for the robot to 

locate the component on the tray. A camera is also needed when a component is 

picked up by a suction tool. This is because a minor error exists in the placement 

using suction tool. To deal with the error, the robot needs to take a photograph of the 

component holding by the suction tool, and calculate the compensation angle of 

placing it on the fixture. 

If needed, the air gun is used to clean a component before it is mounted onto the 

fixture. 

Robot description contains the information of the hands used by the robot. In the 

problem case, the robot has two hands, each with one gripper tool and two suction 

tools, i.e. the second hand in Figure 2.2. 

2.3.2 Assembly Graph 

The Assembly Graph is used in previous work [8]. It describes how to assemble a 

product. It gives the breakdown of the entire assembly and the order in which to 

assemble the components. The assembly graph of the problem case is shown in 

Figure 2.4. This graph also contains the process steps over the components such as 

mount and sub-assembly. 

 

 

Figure 2.4 Assembly graph of the problem case 

There are five components to be assembled in the problem case. To achieve a 

complete assembly, two subassemblies should be assembled beforehand. For the first 

subassembly, component 2 should be assembled on top of component 1, and 

component 3 should be assembled on the combination of component 1 and 

component 2. For the second subassembly, component 5 should be assembled on top 

of component 4. After obtaining the two subassemblies, the first sub-assembly should 

be placed over the second subassembly to get the final assembly. Also, some of the 
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components require additional process operations such as taking a photo or cleaning 

by the air gun, which need to be performed before they can be assembled. 

2.3.3 Assembly Tree 

In this thesis, in order to use more information of the assembly process, the assembly 

graph is converted into an augmented tree structure description which is called 

Assembly Tree. The assembly tree of the problem case is shown in Figure 2.5. 

 

Figure 2.5 Assembly tree of the problem case 

In the assembly tree, each node represents a task of the assembly process. The tree 

contains totally 25 nodes. Tasks on different components are distinguished by the 

color and texture. GPU represents picking up a component using gripper tool, and 

SPU represents picking up with suction tool. DO represents dropping off a 

component on a fixture. FO represents fixture operation which could be tapping or 

peeling on a component mounted on the fixture. CAM represents taking the 

component to a camera and taking a photograph. AIR represents taking the 

component to an air gun to clean it. SUB represents sub-assembly. Output 

represents placing the final assembly on the output buffer. 

As shown in Figure 2.5, the left branch of node 5 is performed on fixture 1, and the 

right branch is performed on fixture 2. Node 3, node 4 and node 5 are performed on 

fixture 2, and node 2 is performed on the output buffer. 

In the assembly tree, the precedence order of the tasks is easy to track. Each node 

should be performed before its parent node. The nodes that are connected by a bold 
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line should be performed by a single arm. This is because if an arm picks up a 

component, it should also drop the component off, as well as performing the 

intermediate nodes between the pick-up and drop-off. The nodes that do not have 

precedence order can be performed in parallel. 

2.3.4 Travel Time Matrix and Task Durations 

The Travel Time Matrix is a three dimension array. The array takes the start location 

and end location as the first and second dimension, and arm ID as the third 

dimension. The value in the array is the travel time of the corresponding arm from 

start the location to end location. For example,                indicates the travel 

time of arm 1 from location s to location e is t. 

In the problem case, there are 14 locations in the assembly cell including five trays, 

five cameras, two fixtures, one output buffer, and a dummy location for modeling 

start nodes and end nodes in routing problem. 

Task Durations contain the performing time of each task. The time of performing the 

same task by different arms could be different.  

The data of travel time matrix and task durations is derived from the simulation of 

the problem case in Robot Studio [9] which is a software environment used to 

program and model ABB robot systems. 

2.3.5 Assembly Sequence and Assembly Cell Layout 

The outcome of the program produced in the thesis is the assembly sequence and the 

assembly cell layout. 

Assembly Sequence is the description of how to perform the tasks of the assembly. 

First, for each node in the assembly tree, the sequence determines which arm to 

perform this node. Second, for all nodes performed by a single arm, the sequence 

determines in which order to perform the nodes. Third, the sequence also determines 

the start time of each node. 

Assembly Cell Layout describes the tray location of each component, i.e. which tray 

provides which component, and the camera location of each camera node, i.e. which 

camera to use when taking a photo. 

A manual installation for the problem case was carried out by an experienced 

engineer of ABB. The time of the entire installation was a couple of weeks and the 

assembly sequence generated was good enough but non-optimal. 

In this thesis with the same problem instance, the tray location of the five 

components and the camera location of the three camera nodes are not fixed, which 

brings 5! × 53 = 15,000 times more combinations than the problem without this 
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freedom. The total amount of combinations in the problem case makes it very 

challenging to find the optimal assembly sequence and assembly cell layout. 
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 Constraint Programming 3

Constraint Programming (CP) is a programming paradigm for solving combinatorial 

problems. It has been widely used in a number of fields including artificial 

intelligence, computer science, and operations research. A powerful feature of the CP 

paradigm is its declarative nature, which means the user states the problem and the 

computer solves it [10]. 

To solve a real-world problem using CP, the problem needs to be translated into a 

Constraint Satisfaction Problem (CSP). This step is called modeling. In the modeling 

phase, the user needs to define a set of variables and post a set of constraints on these 

variables. Each variable in CP has a domain which consists of the possible values that 

can be set to this variable. Each constraint in CP describes a relation between the 

variables. A solution to the problem must satisfy all the constraints in the CSP. 

Sometimes, an objective function is defined over the variables to show a preference 

between solutions. In this case, the problem becomes a Constraint Optimization 

Problem (COP). 

After the CP model is built, dedicated algorithms are used to prune and search the 

domains of variables. This step is called solving. The algorithms in solving phase 

could be either general or customized. The general algorithms are convenient to reuse 

for different problems. The customized algorithms usually have better performance 

in the specific problems. The program that implements these algorithms are called 

solver. 

This chapter aims to give an introduction of constraint programming with an 

illustrative example. The necessary terminologies and definitions of CP will be given 

as well. The content is mainly based on [11] [12], readers who want to get more 

information are encouraged to read these literatures. 

3.1 CP Modeling 

As mentioned above, the real-world problem is converted into a CSP or COP in the 

modeling phase. This section will first give the formulation of CSP and COP, and then 

use a classic example to explain how to model a problem in constraint programming. 

3.1.1 Constraint Satisfaction Problem 

A Constraint Satisfaction Problem (CSP) is composed of a set of variables   

{       } , a finite domain         for each variable    which consists of the 

possible values that can be set to this variable, and a set of constraints   {       } 

in which each    is a relation on a subset of  , i.e.           where         denotes 

the variables involved in constraint    . 
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3.1.2 Constrained Optimization Problem 

A Constrained Optimization Problem (COP) is a CSP together with an objective 

function   ∏      
 
      where     and   is the set of rational numbers. The 

user is interested in finding an optimal solution   ∏      
 
    which minimizes (or 

maximizes) the value of the objective function     . 

3.1.3 A classic problem: 4-Queens Problem 

4-Queens problem is a classic combinatorial problem which is defined as to place 

four queens on a     chessboard such that no two queens can capture each other. In 

another word, no two queens are allowed to be placed on the same row, the same 

column or the same diagonal. A solution to the 4-Queens problem is shown in figure 

3.1. 

 

Figure 3.1 A solution to 4-Queens problem 

3.1.4 4-Queens problem model in CSP 

To convert the real-world problem into a CSP, the user needs to define variables, 

domains, and constraints on the variables. 

Variables and Domains 

Since no two queens can be placed on the same column and the number of queens is 

equal to the number of columns, we define a variable for each column to represent 

the position of the queen on this column, thus totally 4 variables. The value of each 

variable denotes the row of the corresponding queen. Figure 3.2 illustrates the 

definition of the variables on the chessboard. 

 

Figure 3.2 Illustration of the variables on chessboard 
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Under this definition, all variables have the same domain: 

            {       } 

Constraints 

According to the definition of 4-Queens problem, three constraints are needed in the 

model. They are listed as follows: 

C1: No two queens can be placed in the same row: 

           

C2: No two queens can be placed on the same diagonal: 

               

C3: Also, no two queens can be placed on the same back diagonal: 

               

Solution 

An assignment of a CSP is a function that maps each variable    to a value in its 

domain   . If an assignment satisfies all the constraints in the CSP, this assignment is 

called a solution. 

As shown in figure 3.2, the assignment {                    } is a solution 

to 4-Queens problem. 

3.1.5 The optimization version of 4-Queens problem 

Traditional 4-Queens problem is not an optimization problem. However, we can 

define an objective function that we are interested in to make this problem as a COP. 

For instance, the objective function is defined as follows: 

              

An optimal solution to the optimization version of 4-Queens problem must satisfy the 

three constraints mentioned above, meanwhile make the value of the objective 

function minimum. 

3.2 CP Solving 

After the CP model is built, the constraint programming system will automatically 

solve the problem mainly with two operations: constraint propagation and search. 

The common process of solving a CP model is iteratively executing these two 

operations. First, before starting the search, the constraint propagation is performed 

to prune values, which violate the constraints, from the domain of variables. During 

the search phase, the domains of the variables are explored in some specific order.  
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Each time when the domain of a variable    is changed, the constraints that involve  

   will perform propagation. If there is only one value left in the domain of a variable, 

this variable is said to be bound. At any time when every variable in the problem is 

bound, this group of values in the domains is recorded as a solution to the problem. 

To solve COPs, the objective value is usually considered as an additional constraint. 

This constraint enforces that the potential optimal solution must have a better 

objective value than the current best objective value. 

3.2.1 Constraint Propagation 

Constraint propagation is an important part in constraint programming. During the 

search, it efficiently prunes invalid values from the domain of variables to reduce the 

search space. In a constraint programming system, the functions that perform 

constraint propagation are called propagators. Each propagator can be considered as 

an implementation of a specific constraint. 

A store is a function that maps each variable    to its domain   . Before the search 

and at the end of each step in the search, the propagators are called to check the 

current store to prune the values that violate the constraints. 

In the following, we use the 4-Queens problem as an example to illustrate how the 

constraint propagation works. The three constraints in the 4-Queens problem can be 

achieved by three propagators of AllDifferent constraints which will be introduced in 

the later section. The three propagators are described as follows: 

Propagator 1:                           

Propagator 2:                                   

Propagator 3:                                   

Propagator 1 guarantees that no two queens are on the same raw, propagator 2 and 3 

enforce that no two queens are on the same diagonal or back diagonal. The process of 

constraint propagation on the 4-Queens problem is as follows: 

Step 0:    {     }    {     }    {     }    {     } 

Step 1:         {     }    {     }    {     } 

Step 2:         {     }    {     }    {     } 

Step 3:         {   }    {     }    {     } 

Step 4:         { }    {   }    {     } 

Let    denotes the domain of   . Step 0 is the initial store of the problem. In this store, 

none of the propagators can prune any value. Suppose    is set to 1 in step 1. In step 2, 
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propagator 1 removes 1 from the domain of the rest variables. In step 3, propagator 2 

removes 0 from   . In step 4, propagator 3 removes 2 from     and 3 from   . 

3.2.2 Search 

In general, constraint propagation is not adequate to find the solution to a CSP. The 

solver needs to search through the domain of the variables that are not bound. At the 

end of each step of the search, constraint propagation is performed on current store 

to prune invalid values from the domains. In this way, the search space is reduced 

continuously.  

There are mainly two types of search approaches for solving CSPs – systematic search 

and non-systematic search. Systematic search ensures that every solution to a CSP 

will be found by going through all possible assignments. Such approach can be used 

to find a provably optimal solution to a COP. A typical example of systematic search 

is the backtracking tree search. Unlike systematic search, non-systematic search 

cannot tell whether a CSP has solutions if any aren’t found, nor find provably optimal 

solution to a COP. However, such approach is often efficient in finding a feasible 

solution to a CSP, or an approximation to the optimal solution of a COP. Local search 

is a well-known example of non-systematic search. This thesis only involves 

backtracking search. Interested readers can read more about local search in [11] [12]. 

A backtracking tree search can be seen as performing an exploration on a search tree. 

The search tree is a virtualized description of the search process. It is generate by 

branching strategy together with constraint propagation. 

Branching 

Branching is the operation that decomposes the whole search into smaller sub search 

branches. A branching strategy defines the structure of a search tree by giving two 

orderings: the order in which the variables are selected for checking the domain 

(called variable ordering), and the order in which the values in the domain of the 

selected variable are explored (called value ordering). 

Search Tree 

The search tree is finite. At each node of the tree, the first unbound variable in the 

variable ordering is selected. The first value in the value ordering of the selected 

variable splits the search space into two disjoint partitions. Each partition is a 

decision that adds a branch in the tree and defines the store of the corresponding 

sub-trees. Under each decision, the affected propagators will do propagation on 

current store to get a new store as the child node. The root of the tree takes the 

resulting store of the initial propagation. Each leaf node is either a solution or a 

failure.  
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The search tree is explored in some specific order. The most commonly used 

exploring order is the depth-first left-most order. The solver first goes through the 

left-most branch until the leaf of this branch. If finding a solution or detecting 

infeasibility, the solver goes back and turns to the first untried branch on the right. 

In the following, we use the 4-Queens problem to illustrate the process of search. The 

variable ordering is from    to   , and the value ordering is to set the selected 

variable to the minimum value in its domain. 

Search for 4-Queens problem as CSP 

First, we search for solutions to the 4-Queens problem without considering the 

objective function. Figure 3.3 shows part of the search tree. The blue nodes are the 

nodes where unbound variables exist and require further branching. The red nodes 

are failed nodes where some variable has empty domain. The green nodes are 

solutions 

 

 

Figure 3.3 Search tree of the 4-Queens problem as CSP 

At each node, the constraint propagation is done by the three propagators mentioned 

in 3.2.1. The process of search with propagation as follows: 

Node 1:    {     }    {     }    {     }    {     } 

Node 2:         {   }    {   }    {   } 

Node 3:                   { } 

Node 4:              { }      

Node 5:    {     }    {     }    {     }    {     } 

Node 6:         { }    { }    { } 

Node 7:    {   }    {   }    {     }    {     } 

As shown in figure 3.3, node 3 and node 4 are failed nodes with empty domain. The 

solver found a solution at node 6 and node 7 needs further search. 
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Search for 4-Queens problem as COP 

As mentioned at the beginning of section 3.2, to solve COPs, the objective value can 

be used as an additional constraint which enforce that the potential optimal solution 

must have a better objective value than the current best objective value. During the 

search, when a solution with better objective value is found, the solver will update the 

current best objective value. At each step of the search, the additional propagator 

checks the upper bound or lower bound of the objective value of the next branch to 

explore. If the bound is worse than the current best objective value, prune this branch 

and turn to the next branch. 

Recall the objective function we defined in 3.1.5, which is              . The search 

tree for the 4-Queens problem as COP is shown as figure 3.4. 

 

 

Figure 3.4 Search tree of the 4-Queens problem as COP 

The process of search is as follows: 

Node 1:    {     }    {     }    {     }    {     } 

Node 2:         {   }    {   }    {   } 

Node 3:                   { } 

Node 4:              { }      

Node 5:    {     }    {     }    {     }    {     } 

Node 6:         { }    { }    { } 

Node 7:    {   }    {   }    {     }    {     } 

The search tree is almost the same as that of the 4-Queens problem as CSP. The only 

different is that node 7 in this tree is a failed node. This is because a solution is found 

at node 6 and the constraint regarding objective value becomes     . When the 

solver goes to node 7, it found that there will be no better solution under this branch 

because     {   }. As a result, the branch under node 7 is discarded and the optimal 

solution is {                   } found at node 6. 
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3.3 CP Variables 

This section will introduce the four types of CP variables used in this thesis. 

Integer Variable 

Integer variable is the most common variable in CP. Such a variable has a finite 

domain that consists of integers. 

Boolean Variable 

A Boolean variable is a variable whose domain only contains two Boolean values: true 

and false. Note that Boolean variables are not integer variables because they usually 

have a different optimized implementation. 

Interval Variable 

An interval variable represents an time interval which is often used for modeling 

tasks in scheduling problems. An interval variable contains the start time, duration, 

and end time of the time interval. Besides, the interval variable also takes a Boolean 

variable performed indicating if the task has been performed or not. 

Sequence Variable 

A sequence variable is a variable whose domain consists of the possible orderings of a 

set of intervals. This variable is often used in scheduling problems. Sequence 

variables are created by posting disjunctive constraint on a set of interval variables. 

The disjunctive constraint guarantees that no two intervals overlap, thus can be given 

orderings. 

3.4 CP Constraints 

This section will introduce the general CP constraints used in this thesis. 

3.4.1 Global Constraints 

A global constraint is an expressive and concise constraint that implemented by 

means of a special propagation algorithm [13]. Modeling with global constraints is 

often more efficient than using the constraints with weaker propagation. The global 

constraints can take a number of variables and be used to model complex problems. 

The global constraints used in this thesis are listed below. 

AllDifferent constraint [14] 

                       (3.1) 

This constraint enforce all variables in the collection      to be pairwise different, i.e. 

      {                 }                    . 
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Element constraint [15] 

                                        (3.2) 

This constraint enforce that       is equal to the         item of the collection     , 

i.e.                  . The element constraint is also written as                 

in the following chapters. 

Disjunctive Constraint [16] 

  {        |            } is a set of intervals where    and    are the start time and 

end time of an interval. The                posts constraint on the interval set I such 

that 

          (     )    where             or      .   (3.3) 

(3.3) ensures that all intervals in the collection I do not overlap. This constraint is 

often used in scheduling problems. As a result, the disjunctive constraint returns a 

sequence variable which contains the possible orderings of the intervals in the 

collection I. 

MapDomain constraint [17] 

                                   (3.4) 

This constraint maps the domain of the variable     onto the Boolean variable array 

     such that     {                 } ,                         and 

                       . 

Circuit constraint [14] 

                   (3.5) 

This constraint is posted on a digraph consisting of the vertices collection      , to 

enforce covering the digraph with a circuit that visits each vertex in       exactly 

once. In routing problems, this constraint ensures that a route can only start and end 

at the depot and eliminates possible sub-tours. Sometimes, this constraint is also 

mentioned as No-Cycle constraint. 

3.4.2 Reification 

In a reified constraint (also known as meta constraint)     where   is a constraint 

and   is a Boolean control variable, the validity of the constraint   is reflected to the 

value of   [18].  

For example, for integer variables   and   and a Boolean control variable  , the 

reified constraint           enforces the following rules: 

 If the constraint       holds, then     is posted. 
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 If the constraint       holds, then     is posted. 

 If   is assigned to 1, then the constraint       is posted. 

 If   is assigned to 0, then the constraint       is posted. 

3.4.3 Deterministic Finite Automaton 

A Deterministic Finite Automaton (DFA) is a finite state machine that accepts or 

rejects finite strings of symbols and only produces a unique computation for each 

input string [19]. 

A DFA M is a 5-tuple 〈          〉 consisting of 

 a finite set of states Q 

 a finite set of input symbols Σ called the alphabet 

 a transition function δ   Σ    

 a start state      

 a set of accept states     

A sequence of transitions is accepted by the DFA only if the sequence begins from the 

start state and ends at an accept state, and all the transitions in the sequence satisfy 

the transition function. 

Figure 3.1 shows a simple example of DFA. 

 

 

Figure 3.5 A simple example of DFA 

In this DFA, the state set   {     }, the alphabet set   {   }, start state      , 

accept set   {  }, and the transition set   {〈       〉 〈       〉}. This DFA only 

accepts the sequences with the form of (01)* which represents any non-negative 

number of the symbols “01”. 

One application of DFA is to implement regular expressions [20] that define search 

patterns used for pattern matching with symbols. 
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 Vehicle Routing Problem & Job Shop Problem 4

Vehicle Routing Problem and Job Shop Problem are two theoretical problems related 

to this thesis. A brief introduction for VRP and JSP will be given in section 4.1 and 4.2. 

In section 4.3, a discussion about the similarity and difference between the two 

problems will be presented. 

4.1 Vehicle Routing Problem 

The Vehicle Routing Problem (VRP) proposed by Dantzig et al. [21] is an important 

industrial problem in the fields of transportation, distribution and logistics. 

4.1.1 Travelling Salesman Problem 

The Travelling Salesman Problem (TSP) is a special case of the Vehicle Routing 

Problem. The problem is defined as finding the shortest path for a salesman to visit a 

set of customers and return to the start point. TSP is an NP-hard problem and is well-

studied [22] [23] [24]. 

TSP can be modeled as a weighted complete graph [25]. The customers to be visited 

are the vertices of the graph. As a complete graph, each pair of vertices is connected 

with a weighted edge. If no edge exists between two vertices, add an edge with the 

value of infinity. A solution is a path forming a circuit that visits each vertex exactly 

once. The objective is to minimize the length of the circuit. 

4.1.2 Definition of Vehicle Routing Problem 

The VRP is a generalization of TSP. Consider a TSP in which a number of salesmen 

are added, then the problem becomes Multiple TSP and is equivalent to VRP when 

there is no constraint over the vehicle capacity. The problem is describes as to find 

paths for a number of salesmen to visit a set of customers such that each customer is 

visited exactly once, and the total length of the paths is minimized. 

The Vehicle Routing Problem is defined as follows. A fleet of m vehicles are to serve a 

set of n customers. Each customer must be visited exactly once. All vehicles start and 

end their routes at a fixed depot. The traveling cost from customer i to j is    . The 

objective is to minimize the sum of traveling costs of all vehicle routes. Finding the 

optimal solution for VRP is an NP-hard problem [26].  

Figure 4.1 shows an example of VRP problem with 3 vehicles.  
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Figure 4.1 An example of VRP with 3 vehicles [27] 

For different companies in industry, specific constraints can be added to respective 

VRP problems. For example, only particular vehicles may be allowed to visit some 

certain customers, or a customer may prefer the service of a particular driver. In 

some cases, additional objectives may be required in the problem such as to minimize 

the number of vehicles. 

4.1.3 Variations of Vehicle Routing Problem 

There exist a number of VRP variations with specific side constraints. The variants 

related to this thesis are introduced below. 

Capacitated Vehicle Routing Problem (CVRP) 

In CVRP, each vehicle has a limited carrying capacity. Let    denotes the demand of 

customer i. In pure CVRP, the demand    is a non-negative integer. The set of 

customers that assigned to vehicle k is    and the vehicle capacity is Q. Then the 

constraint that ∑       
   must be satisfied. 

In the VRP with multiple resources, the customers are allowed to demand a number 

of different resources and each vehicle has a specific capacity for each resource. For 

example, the demand of customer i on resource l is   
  and the vehicle k has a capacity 

  
  on resource l.    denotes the set of customers assigned to vehicle k, then the 

constraint that ∑   
 

    
   

  must be satisfied. 
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Vehicle Routing Problem with Pickup and Delivery (VRPPD) 

VRPPD [28] [29] is another variation in which the goods are not only delivered from 

the depot but also picked up and delivered during the travel. Therefore, the demand 

of a customer can be either positive or negative. A positive demand indicates that the 

customer needs the visiting vehicle to bring an amount of goods to him. A negative 

demand means that the visiting vehicle picks up some goods at this customer and 

delivers the goods later in the travel. 

For CVRP with Pickup and Delivery (CVRPPD), rather than considering the total 

demands of the customers assigned to a vehicle, the instant cumulative capacity of 

the vehicle is considered. Let       denotes the customers that vehicle k has 

already visited at this moment,    denotes the demand of customer i, and Q denotes 

the capacity of vehicle k. Then the side constraint becomes that ∑       
     must 

hold for vehicle k at any time during the travel. 

Vehicle Routing Problem with Time Windows (VRPTW) 

In VRPTW [30] [31], a time window         is specified for each customer i to be 

served. In some cases, a customer may have multiple time windows. If a vehicle 

arrives earlier than time   , it has to wait at the customer’s location until the time 

window starts. The additional time constraints make the VRP much more difficult, 

even finding a feasible solution is NP-hard [32]. 

4.1.4 Methods for Vehicle Routing Problem 

As a problem with a wide range of applications in industry, VRP has been well 

studied [33] [34]. Some popular methods for solving VRP are introduced below. 

Heuristic method 

Because the VRP and its variations are NP-hard problems, the most common way for 

solving large scale VRP is to use heuristic methods [35]. A common heuristic method 

contains three phases – constructing an initial solution, improving the initial solution 

through local search, and using meta-heuristic methods to escape from local optima 

[36]. 

In the first phase, a construction method is used to create an initial solution. The 

most well-known VRP construction method is the “Savings” heuristic method [37]. 

Another classic method is the “Sweep” heuristic method [38]. 

In the second phase, the local search method [39] [40] is used to look through the 

neighborhood of current solution to find better solutions. For each local search 

method, one or more move operators are defined to manipulate current solution to 

get new solutions. The neighborhood of a solution is a set of solutions generated by 
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applying the move operators on this solution. Some move operators for routing 

problems are listed in [34]. Typically, a local search method employs several of these 

operators. 

Because local search methods always look for better solutions by following the cost-

reducing trend, which often leads the search to being trapped in a local optimal 

solution. Therefore, in the third phase, meta-heuristics are used to escape from the 

local optima. Basically, the meta-heuristic method works in two alternative ways. The 

first way is to allow cost-increasing moves and control the acceptance of the moves. 

The second way is to expand the neighborhood to avoid local optimal. The most 

famous meta-heuristic methods include Simulated Annealing [41], Tabu search [42] 

[43], Genetic algorithms [44], and Variable Neighborhood Search [45]. 

Constraint Programming 

Constraint Programming is a powerful programming paradigm for solving 

combinatorial problems. Typically, the process of the Constraint Programming 

method is to construct a solution by incrementally traversing the search tree, 

backtracking when an infeasible branch is detected, until a feasible solution is found 

or the problem is proved to have no solution. 

Constraint Programming is also applied to COPs such as VRP [34]. Unlike the 

heuristic method which focuses on efficiently finding cost-reducing solutions, 

Constraint Programming considers the quality of the solutions. This method 

performs a systematic search through a large number of feasible solutions to find the 

optimal or near-optimal solution. Thus, Constraint Programming is often used to 

prove the optimality. 

Hybrid Method 

Since the systematic search in Constraint Programming needs to explore every 

possible solution, Constraint Programming is often a slower approach compared with 

heuristic method. However, Constraint programming shows great advantages in 

pruning infeasible solutions. A common way to solve large scale VRP problems is to 

combine the two methods together [46] [47] [48]. 

There are mainly two ways to integrate Constraint Programming method with 

heuristic method. The first way is to let heuristic method take charge of the search. In 

this case, the constraint model only checks the feasibility of the solution. The second 

way is to encapsulate the local search movements into a lower level operator, and run 

the constraint system on top of the operator. In this case, the traditional systematic 

backtracking search will not be influenced by the movement of the local search. A 

well-known technique under this case is the Large Neighborhood Search [49]. 
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4.2 Job Shop Problem 

Job Shop Problem (JSP) is an optimization problem that has many similarities and is 

closely related to VRP.  

In the classic JSP [11], n jobs are needed to be processed on m machines. Each job 

consists of a sequence of completely ordered activities. Each activity must be 

processed during an uninterrupted period of time on a specific machine. The 

ordering of the activities in a job must be preserved during processing, i.e. an activity 

cannot start processing until its predecessor in the job has been done. For each 

machine when processing an activity, no more activities can be processed on this 

machine until the current process is finished. In real-world problems, sometimes 

additional side constraints need to be considered, for example there could be 

constraints on the transition time which represents the time between two processes 

on the same machine. 

The objective of JSP is to find a schedule for the activities to the machines that 

minimizes the makespan of the whole process. The makespan is the duration between 

the start time of the first activity among all machines and the finish time of the last 

activity among all machines. Since the first activity usually starts at time 0, the 

makespan is equivalent to the finish time of the last activity. 

Both constraint programming and heuristic methods are applied for solving Job Shop 

problem [50] [51]. 

4.3 VRP vs. JSP 

There is a great similarity between VRP and JSP. Many real-world problems fall into 

the gray zone between the pure VRP and pure JSP. Some criteria to distinguish the 

two problems are suggested in [52]. The main differences are listed below. 

 In VRP typically a customer can be visited by many vehicles, but in JSP an 

activity can only be processed by a specific machine. 

 In VRP the duration of a visit is much smaller compared to the travel time, 

however, the durations are dominant in JSP. 

 In VRP the objective is to minimize the total travel cost of all routes. In JSP 

the objective is to minimize the makespan of the entire process which is the 

duration between the start time of the first activity and the end time of the 

last activity. 

 In VRP the time windows of visiting different customers are usually 

independent, but in JSP the time windows of processing different activities 

are correlated in a precedence order. 
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 Model and Implementation 5

This chapter will introduce the CP model, search strategy and some implementation 

details. The model will be described together with the problem case introduced in 

Chapter 2. However, since the implementation of the model is generic to different 

problem instances, some of the parameters, such as number of tasks and number of 

components in the assembly, are presented in a general way. 

5.1 Problem Case Analysis 

The problem case has been described in section 2.3. The case contains 25 tasks, 2 

fixtures, 5 components, 5 tray locations, 5 camera locations and an air gun. A dual 

arm robot is working in the assembly cell with one gripper tool and two suction tools 

on each arm. 

The problem of finding optimal assembly sequence for the robot is analogized to a 

Vehicle Routing Problem. In the VRP, each task in the assembly is considered as a 

node (customer) to visit. The two arms of the robot are modeled as two vehicles. The 

route for each vehicle is the ordering in which the arm performs the tasks assigned to 

it. For each arm, a start node and an end node are added as the depot which does not 

correspond to any task [53]. 

The problem in this thesis is a rich VRP which contains the features of a number of 

VRP variants. First, the problem is a Capacitated VRP. Each arm (vehicle) has a 

limited capacity – one gripper tool and two suction tools. Second, the problem is a 

VRP with Time Windows. The tasks (nodes) have time windows to be performed 

(visited). For example if a camera is occupied, the task of taking photographs on this 

camera has to wait until the camera becomes free. Third, the problem is a VRP with 

Pickup and Delivery. This is because a component needs to be picked up at some 

node and delivered to another node. Moreover, the problem contains the 

characteristics of Job Shop problem (JSP). This is because the task durations are 

considerable compared to the travel time between nodes, and the objective value of 

the problem is the makespan of the entire assembly which is also a typical objective 

value of JSP. As modeled in JSP, the two arms are considered as two machines. The 

tasks need to be scheduled on the machines disjunctively. 

In addition to the restrictions discussed above, the problem contains a number of 

precedence order constraints and collision avoiding constraints. The collision 

avoiding constraints do not allow the two arms visiting the same location 

simultaneously. The precedence order constraints enforce some tasks to be 

performed in specific orders, for instance, the pick-up, camera, air-gun and drop-off 

nodes of one component should be performed one after another, as shown in the 

assembly tree of figure 2.5 with the bold lines. 
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The objective function of the problem is to minimize the makespan of the assembly 

i.e. the total cycle time. 

5.2 Constraint Programming Model 

The general process of building a CP model is to define variables, post constraints on 

the variables, and define search strategies.  In this section, we will introduce the 

variables and constraints. 

As a convention in this report, the name of a set begins with a capital letter. The name 

of a parameter in the problem case description begins with a capital letter. The name 

of a single variable and the parameter of a single node begin with a lowercase letter. 

5.2.1 Problem Instance Data 

The problem instance data are the constant parameters derived from the input data 

files describing the assembly tree, travel times for each arm and task durations for 

each arm. The parameters give a description of the assembly cell and the process of 

assembling a product. 

In the model, a task node represents a task in the assembly tree and a start/end node 

represents the depot in the VRP which does not contain any assembly task. Each 

node has a unique integer identifier which is used to reference this node in the model. 

      denotes the node with index of i. 

The parameters of the assembly cell description are listed as follows: 

               is the number of nodes in the model. The problem case 

instance of this thesis contains 29 nodes including 25 task nodes, 2 start 

nodes, and 2 end nodes. 

                is the number of arms of the robot, i.e. the number of 

routes to be scheduled in the VRP. In this thesis,              is always 

equal to 2. 

                    is the number of components to be assembled in 

the assembly. 

               is the number of trays in the assembly cell. 

                 is the number of cameras in the assembly cell. 

                  is the number of fixtures in the assembly cell. 

                    is the number of locations in the assembly cell. The 

locations include tray locations, camera locations, fixture locations, output 

buffer location, and a dummy location for start and end nodes. 
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                   is the number of resource types on each arm. In this 

thesis, there are two types of resources – gripper tool and suction tool. 

         {                       }   {                    }  

denotes the capacity of resource j on route r. In this thesis, each arm 

contains one gripper and two suctions. 

        { }     {                 }   {                  }  

is the travel time from node i to node j on route r. 

The model contains three types of nodes: task nodes, start nodes, and end nodes. As 

introduced above, start nodes and end nodes represent the depot in VRP which do 

not correspond to any assembly task. The indices of the model nodes are organized as 

follows: 

   {                    } is the set of indices of the start nodes, one 

start node for each route. 

   {                                         }  is the set of 

indices of task nodes. 

     {                                        } is the set of 

indices of end nodes, one end node for each route. 

         is the set of indices of all nodes in the model. 

                       is a dummy index indicates the dummy state 

before start nodes or after end nodes. There is no model node 

corresponding to this index. The dummy index is used in posting DFA 

constraints on the task sequence. 

For each node in the model,         denotes the value of the corresponding attribute 

of the node. A node has the following attributes: 

      { } is a unique identifier used to reference a node in the model. 

The id of a node is equal to the index of this node, i.e.           . In the 

rest of the report, node i also refers to the node with index of i. 

             { } is an integer value that indicates which component 

this node handles. For nodes that do not deal with any components, e.g. 

start nodes and end nodes, the value is equal to 0. 

                      is an integer value which is the time takes to 

perform the node on route r, i.e. the time for arm r to perform the 

corresponding task. The value equal to -1 indicates arm r cannot perform 

this node. 
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           {   }  is a Boolean value that specifies if the node requires 

gripper tool. 

           {   }  is a Boolean value that specifies if the node requires 

suction tool. 

          {                    } is an integer value that indicates the 

index of the fixture on which this node is performed. If the node is not 

performed on any fixture, the value is equal to 0. 

        {   } is a Boolean value indicating if the node is performed on a 

tray, i.e. a tray pick-up node in the assembly tree. 

          {   }  is a Boolean value indicating if the node is to take a 

photograph, i.e. a camera node in the assembly tree. 

           {   } is a Boolean value indicating if the node is to visit the air 

gun, i.e. an air-gun node in the assembly tree. 

               {   }  is a Boolean value indicating if the node is sub-

assembly in the assembly tree. 

          {   } is a Boolean value indicating if the node is output in the 

assembly tree. 

                    {   } is a Boolean value indicating if the node is a 

fixture operation node in the assembly tree, i.e. tapping or peeling. 

           {   } is a Boolean value indicating if the node is a drop-off in 

the assembly tree. 

Recall the assembly tree in Figure 2.5,                  denotes the parent of       

in the assembly tree, and                            denotes the left/right child of 

     . 

Since the start nodes and end nodes are not involved in the assembly tree, the parent 

and child of these nodes are defined as follows. 

For      , 

                                                        (5.1) 

The assembly tree shows the precedence order of performing the nodes. The symbol 

“≺” represents the relation “should be performed before” between two nodes, i.e. 

     ≺       denotes       should be performed before      . Apparently, this is a 

partial order relation and is transitive. Figure 5.1 shows the assembly tree with 

precedence order.  
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Figure 5.1 Assembly tree of the problem case with precedence order 

As discussed in section 2.3.3, each node should be performed before its parent node 

in the assembly tree, therefore, we have 

                                    ≺         (5.2) 

There exist some subtle precedence orders in the assembly tree. For example, if 

       and        are performed by the same arm, then       ≺       . This is 

because if the arm firstly performs node 21 (picking up component 2), due to the 

gripper capacity, it cannot perform node 26 (picking up component 1) until release 

the gripper tool at node 17. However, due to the transitivity of the relation “≺”, 

      ≺        must hold, which makes a contradiction. This kind of precedence 

orders is not obvious thus require careful analysis on the problem case and the 

assembly tree. 

According to the precedence order, two additional attributes for each node are 

defined as follows: 

For    , 

                  {  |      ≺      }  { }    (5.3) 

                  {  |      ≺      }  { }    (5.4) 

For      , 

                  { }       (5.5) 

                  { }       (5.6) 
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These attributes are used to pre-process the domain of variables, which will be 

introduced in the following section. 

5.2.2 Variables 

All variables are encapsulated in variable arrays. Each variable is mapped to a node in 

the model and referenced by the node index.  

The decision variables in this thesis are listed below: 

              is the index of the arm which performs node i. 

             is the index of the immediate successor of node i. 

           is the location in the assembly cell where node i is performed. 

          {                   } where               ; 

          {                                         }  

where                 ; 

Otherwise,           is a constant value. 

In this thesis, only the tray pick-up nodes and camera nodes have unfixed 

locations. For other nodes with fixed locations in the assembly cell, this 

variable is set to a constant value corresponding to the fixed location. 

The          which is the objective value is also a decision variable. This decision 

variable is used to push the start time of all tasks forward in order to make the task 

sequence tight. 

The other variables used in the model are listed below: 

                  {                  |     {         }}   

{   } is an integer variable array derived from the next variables. It contains 

the possible orders of the nodes assigned to route r. 

We interpret this array under an example with 5 task nodes and 2 routes to 

make it easier to understand. Suppose an assignment of the next variables: 

                   . The routes generated from this assignment are shown 

in Figure 5.2. 
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Figure 5.2 The routes generated from the example assignment of 

next variables 

In this example, node 2, 3, 4, 5 and 6 are task nodes, node 0 and 1 are start 

nodes, and node 7 and 8 are end nodes. Route 0 starts from node 0 and 

passes through node 3, 5, 2, and 7. Route 1 starts from node 1 and passes 

through node 6, 4, and 8. Both       and       is pointing to 9 which is the 

dummy index indicating the routes end here. Then the assignments for the 

                arrays for each route are 

                              , 

                            . 

In general, the next variables form one route for each arm. The variable 

                    {   }  is the index of the jth node performed on 

route r. Then we have 

                       , 

                                       
, 

… , 

                                          
.   (5.7) 

The                 arrays are connected to the next variables and are 

used to post efficient constraints. 

               is the location where the successor of node i is performed. 

              {           }     is the time of arrival at node i. 

            {           }    , is the time of starting the operation on 

node i. The   �����     and             are used for modeling the 

situation of waiting at each node. 

                {           }      is the time of departure from node 

i. 



36 

 

 

 

 

                    is an interval variable representing the interval during 

which node i is performed on route r. The interval variable is introduced in 

section 3.3. Each node has two interval variables, one interval on each route. 

A constraint is used to enforce only one interval is performed for each node. 

             is the index of the immediate predecessor of node i. This 

variable contains the same information with the next variable, however, it is 

suggested to improve the model of VRP [34]. 

                    is a sequence variable that contains the information 

about possible ordering of the interval variables on route r. The sequence 

variable is introduced in section 3.3. 

5.2.3 Pre-Processing of Variable Domains 

After defining the decision variables, the domain of some variables could be refined 

according to the problem instance data and the assembly tree. 

For each    , 

 If                   , then remove r from the domain of       . 

According to assembly scenario, the duration equals to -1 indicates that arm r cannot 

perform task i. Therefore, the value r should not appear in the domain of       . 

 If    , then 

        , 

               . 

Since each arm has one and only one start node, the index of each start node is equal 

to the index of its corresponding arm. Because a start node is the first node on its 

route, its predecessor is modelled as a dummy node. 

 If    , then 

                                   , 

               . 

The index of each end node is also equal to the index of its corresponding arm. Since 

an end node is the last node on its route, its successor is modelled as a dummy node. 

 If    , then 

remove   {         }                    from the domain of      , 

remove   {         }                    from the domain of      . 
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Since an end node is the last node on a route, it cannot be the predecessor of any task 

node. A start node is the first node on a route, thus it cannot be the successor of any 

task node. For the same reason, the dummy node cannot be the successor or 

predecessor of any task node. According to the definition of InvalidPrev and 

InvalidNext in (5.3) ‒ (5.6), the nodes in                   (                 ) 

cannot be the predecessor (successor) of node i. 

5.2.4 Constraints 

In this section, the constraints posed in the CP model will be introduced. 

5.2.4.1 Core constraints 

The core constraints are the basic constraints in the model which establish the 

connections between decision variables. 

1) Connecting        with            

     , 

                   {                     |   {   }}              (5.8) 

                                         (5.9) 

The interval variable            represents the time interval of performing node i on 

route r. The Boolean variable                      in (5.8) indicates if            is 

performed or not.  

(5.9) builds a connection between the variable        and the Boolean variable array 

                   such that if            is performed, the domain of        

contains the value of r. 

The MapDomain constraint [54] is introduced in section 3.4.1. 

2) Connecting            and                with            

     , 

                               
                    (5.10) 

                           
                       (5.11) 

The variable        indicates which arm performs node i. The time of starting the 

process of node i is equal to the start time of the interval variable                 
 and 

the arm immediately leaves the node after finishing the process, as seen in (5.10) and 

(5.11). 
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3) Connecting       with        

     , since                , we get the following element constraints: 

         
                      (5.12) 

         
                      (5.13) 

(5.12) and (5.13) make a connection between the next and prev variables to ensure 

the consistency of the route. The two constraints are redundant to each other. 

However, to post both can strengthen the propagation. 

4) Connecting a node with its successor and predecessor 

     , 

                 
           

                 (5.14) 

Apparently for each node, its successor and predecessor should be on the same route 

with this node. (5.14) connects a node with its successor and predecessor using 

element constraint. 

5) Connecting           and               with       

       , 

                           
                  (5.15) 

     , 

                                                              (5.16) 

(5.15) and (5.16) are element constraints. For a start node or task node, (5.15) 

connects the              of this node to the location of its successor. Since an end 

node does not have a real successor, its              is equal to the location of the 

start node on the same route, as seen in (5.16). 

6) Connecting           ,               , and              

       , 

                                              
              (5.17) 

(5.17) post the constraint that the arrival time at the next node is equal to the 

departure time of current node plus the travel time between current node and next 

node. 

           , 

                                                 (5.18) 

                                                      (5.19) 
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(5.18) is posted because the depot is a dummy location, the travel time from a start 

node to any other node is always 0. Since the start nodes do not contain any assembly 

task, the durations of start nodes are 0, and the start time is the time 0, as seen in 

(5.19). 

     , 

                           .                (5.20) 

(5.20) post the constraint that the durations of end nodes are 0. 

     , 

                                         (5.21) 

(5.21) post the fact that an arm might arrive early at a node and have to wait at this 

node for starting the process. 

5.2.4.2 One route per node constraint 

     , 

∑                                   
     .               (5.22) 

(5.22) post the constraint that each node should be performed by only one arm. 

5.2.4.3 Disjunctive constraint 

    {   },           {           |    } denotes the interval variables on route r. 

                        {   }                (5.23) 

(5.23) post disjunctive constraint on the intervals of each route such that no two 

intervals on the same route overlap. 

     , 

                         
                         (5.24) 

The               is a sequence variable derived from the disjunctive constraint 

posted in (5.23) [55]. The sequence variable is introduced in section 3.3. (5.24) cast 

the next variables from the               variable with element constraint. The 

       indicates on which route node i is performed and the method         returns 

the successor of node i on this route.  

The disjunctive constraint and the sequence variable ensure that all successors of the 

nodes on a route take distinct values, as well as implementing a No-Cycle constraint 

for the next variables. 
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5.2.4.4 Conjunctive constraint 

     ,                      , 

           ≺                             (5.25) 

           ≺                             (5.26) 

    {    |                                  },                      , 

           ≺                                         (5.27) 

           ≺                             (5.28) 

(5.25) - (5.28) post the conjunctive constraint enforcing that each node in the 

assembly tree should be performed before its parent node. (5.25) and (5.26) post 

constraint on each single route. (5.27) and (5.28) post constraint on both routes. 

Since the pick-up nodes, camera nodes and air-gun nodes are always on the same 

route with their parent nodes, (5.27) and (5.28) are only needed for nodes performed 

on fixtures and the output node. 

Since (5.27) and (5.28) enforce that each node is always performed before its parent 

node no matter on which route, this also implicitly posts a disjunctive constraint on 

each fixture which guarantees that the two arms cannot access the same fixture 

simultaneously. 

5.2.4.5 Casting sequence for each route 

        {   }, 

                                          
 

                                        (5.29) 

(5.29) cast the                 array for each route from the next variables with 

element constraint. 

The                 array is described in section 5.2.2. This variable array contains 

the possible assembly sequences on a route. Regular expression constraints are 

posted on this array to check the validity of the sequences. 

5.2.4.6 Regular expression constraints 

The regular expression constraints include capacity constraints for gripper load and 

suction load, component order constraints, and fixture precedence order constraints. 

The                 array for each route is derived from the next variables, as 

shown in (5.29). 

For   {   },                                                       is a sequence 

indicating which nodes are performed on route r and in what order. 
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The regular expression constraints are posted on the                 array for both 

routes using Deterministic Finite Automaton (DFA). For simplicity, the problem case 

shown in Figure 5.1 is used to illustrate the DFAs. 

Note that the DFAs introduced below are posted on each arm respectively. 

The alphabet set of the DFA is defined as 

    {         }.                 (5.30) 

1) Component order constraint 

As discussed in section 2.3.3, if an arm picks up a component, the arm should also 

drop off the component, as well as performing the intermediate nodes between pick-

up and drop-off in a precedence order. The component orders are shown in Figure 

2.5 with the bold lines. 

Take component 3 as an example, the nodes handling on this component are 22, 18, 

14 and 10, i.e. pick-up, camera, air-gun and drop-off. Once node 22 appears in 

                , the sequence (22, 18, 14, 10) should also be part of this sequence 

in the following precedence order: 

                                                {   }. 

Figure 5.3 shows the state diagram of the component order DFA on component 3. 

The start state and accept state is    and the transition set     {           }. 

 

 

Figure 5.3 Component order DFA of component 3 

The component order DFA is posted on component 3 (node 22, 18, 14 and 10) and 

component 5 (node 16, 12 and 9). For component 1, component 2 and component 4, 

the component order constraint is taken charged by the fixture precedence order DFA 

described in the later section. 

This constraint is redundant because conjunctive constraint also takes the charge of 

these orders. However, this constraint is posted for efficiency, as the times for 

intervals are set at last but the regular expression constraints does propagation 

earlier in the model. 
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2) Suction capacity constraint 

In this thesis, each arm of the robot contains two suction tools. The suction capacity 

constraint enforces that when both of the suctions are occupied on one arm, this arm 

cannot pick up any more components that require suction tool until the suction load 

is released. Figure 5.4 shows the state diagram of the suction capacity DFA. 

 

 

Figure 5.4 Suction capacity DFA 

+ci/-ci denotes the operation of picking-up/dropping-off component i. Each state 

indicates which component(s) the arm is holding at this moment. For instance, the 

state of (c3, c5) represents the arm is currently holding component 3 and component 

5. The start state and accept state are the same state where both suction tools of the 

arm are empty. The self-pointing transition sets are easy to follow according to the 

assembly scenario. For example, set A contains the nodes that do not require any 

suction tool. 

3) Fixture precedence order and gripper capacity constraints 

Since each arm only has one gripper, when the gripper is occupied, the arm can 

neither pick up any more component using gripper, nor perform operations such as 

tapping and peeling (fixture operation) with gripper. This is enforced by the gripper 

capacity constraint. 
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The fixture precedence order constraint enforces that the components on the same 

fixture should be assembled in the specific precedence order. For example, as shown 

in Figure 5.1, the precedence order of fixture 1 is (node 24, 20, 17, 13, 10, 8, 6 and 5). 

Figure 5.5 shows the state diagram of the DFA implementing the fixture precedence 

order of fixture 1, the component order on component 1 (node 26, 24) and 

component 2 (node 21, 17), and the gripper capacity constraint (node 26, 21). 

 

 

Figure 5.5 The DFA implementing fixture precedence order on fixture 1, 

component order on component 1 and 2, and gripper capacity constraint 

In Figure 5.5, the key transition arcs on the main path are labeled.    is the start state. 

   represents the state that all tasks on component 1 (node 26, 24, 20) have been 

accomplished.     is the accept state in which all nodes assigned to this arm are 

performed. The transition        (transition arcs include 2, 3, 4, 27 and 28) 

indicates that this arm is not assigned with any tasks preceding node 5 (sub-

assembly). Table 5.1 shows the transition arcs from state    to other states in the DFA. 
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Table 5.1 Transition arcs from    to other states 

From state To state Transition arcs 

S0 S0 7, 9, 11, 12, 14, 15, 16, 18, 19, 22, 23, 25 

S0 S1 26 

S0 S2  

S0 S3 20 

S0 S4 21 

S0 S5  

S0 S6 13 

S0 S7 10 

S0 S8 8 

S0 S9 6 

S0 S10 5 

S0 S11 2, 3, 4, 27, 28 

 

For the right sub-tree of Figure 5.1, since there is no component requiring gripper 

tool, the DFA only implements the fixture precedence order on fixture 2 together with 

the component order for component 4, which is (node 25, 23, 19, 15, 11, 9, 7, 5, 4, 3 

and 2). 

There are two reasons to integrate the component order DFA and the gripper 

capacity DFA into the fixture precedence order DFA. The first reason is that a larger 

DFA has less redundant arcs than three individual DFAs, hence brings a better 

performance. The experiment result has confirmed this conclusion. The second 

reason is that the complexity of integrating the DFAs for the problem case of this 

thesis is acceptable. 

5.2.4.7 Distinct tray location constraint 

              {          |                   } 

                                           (5.31) 

(5.31) post the constraint that all components should be placed on distinct trays such 

that no two components have the same tray location. 

5.2.4.8 Avoiding collision constraint 

(5.27) and (5.28) implicitly post a disjunctive constraint on each fixture such that two 

arms cannot access the same fixture location simultaneously. However, it would still 

be possible that two arms visit the same camera at the same time. This is disallowed. 
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           ,                and               , 

{
 
 

 
 

                

                      

                            

                            

        

 

                             (5.32) 

(5.32) use reification to post the constraint that the two arms cannot visit the same 

camera location simultaneously. In the reification, b5 reflects the validity of the 

constraint that the intervals of node i and node j overlap, b1 reflects the constraint 

that node i and node j are performed by distinct arms, and b2 reflects the constraint 

that node i and node j have the same location. To avoid collision, these three 

constraints are not allowed to hold simultaneously. 

There is another location collision constraint that if one arm is visiting tray i, the 

other arm is not allowed to visit camera i at the same time. This is because camera i is 

used to monitor the action of picking up components from tray i. If the camera is 

occupied, the task of tray picking-up cannot be performed correctly. 

The                     and                       denote the tray index and 

camera index of the given location respectively. 

           ,              and               , 

{
 
 

 
 

                

                                              

                            

                            

        

 

                             (5.33) 

(5.33) post the constraint to avoid the two arms visiting the tray and camera with 

same index simultaneously. 

5.2.4.9 Compact-fixtures constraint 

In some real-world assembly cases, the two fixtures in the assembly cell could be too 

close to each other such that the two arms are not allowed to visit the fixture area 

simultaneously. In this situation, if one arm is visiting a fixture, the other arm cannot 

access any fixtures until the former arm leaves the fixture area. 

          {           |                   {   }} 

                                       (5.34) 
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(5.34) post disjunctive constraint on the interval variables of fixture nodes on both 

routes to enforce that only one arm can access the fixture area at a time. This is an 

optional constraint which is only posted in some special situations. 

When generating the travel time matrix between locations, we deliberately design the 

data so that each arm has some unreachable locations. In this way, the situation that 

two arms cross with each other during assembly is avoided. 

5.2.5 Objective function 

The objective function is to minimize the makespan of a single assembly. As shown in 

Figure 5.6, the two arms both start from time 0. The makespan is equal to the 

departure time of the last node in the assembly sequence. 
 

 

Figure 5.6 Makespan of a single assembly 

The objective variable is defined as follows, 

             {               |     } .               (5.35) 

 

5.3 Search strategy 

In this thesis, we are interested in finding and proving the global optimal solution for 

the problem case. This is because in the lean production environment, even a little 

improvement in the cycle time can significantly increase the total throughput of the 

assembly line. In addition, the computational time for proving the optimality to the 

problem case in this thesis is less than an hour and completely acceptable. 

The search strategy is based on systematic tree search. As discussed in section 3.6, 

systematic search is a good choice to find the provably optimal solution to a 

constraint optimization problem. The decision variables to branch on are Route, Next, 

Location, and makespan. 

5.3.1 Structure of Search Tree 

The first variable to branch on is the Route variables. The reason to put Route in the 

first place is because for Vehicle Routing Problem, if the customers are assigned to 
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the vehicles, the problem becomes to build a route for each vehicle. This is basically a 

Travelling Salesman Problem and comparatively easier than VRP problem. 

The second variable to branch on is the Next variables, and the Location variables are 

branched on after Next. This is because according to the experiment, branching on 

Location before Next brings a worse performance. 

The last variable to branch on is makespan which is the objective variable. Recall 

from (5.35) that makespan is equals to the maximum value of the departure time of 

all nodes. At this stage, the sequence and locations are set. The setting of makespan 

will give the best possible resolving of the remaining time-window-conflicts, which is 

basically equivalent to solving a constrained Job Shop Problem. 

The problem in this thesis is a Constraint Optimization Problem with the aim of 

finding the optimal solution and proving its optimality, thus requires a traversal of 

the entire search tree. The idea of the search strategy is to find the optimal solution as 

soon as possible, and then prune the rest branches of which the objective value bound 

is worse than the objective value of optimal solution, as a result reducing the average 

depth of branches in the search tree. 

5.3.2 Built-in Search vs. Customized Search 

Two types of search strategy are used in this thesis: the built-in search strategy of the 

support CP library, and the customized search strategy specific to the problem case. 

The built-in search strategy is applicable to general problems and handy to use. Users 

do not need to consider the implementation details. However, when we talk about 

performance and stability, the built-in strategy is not adequate. For a certain problem 

case, different parameter settings usually make the performance of built-in search 

strategy differ a lot. Due to this reason, the users have to frequently change the 

parameter setting for different problem cases in order to get the best search 

performance. 

An important advantage of customized search strategy is that there is no need to 

change the parameter settings from case to case. Customized strategy is based on 

heuristics of given problems and usually provides a better performance than built-in 

search strategy. 

5.3.3 Built-in Search Strategy 

Two built-in variable selection strategies are used in this thesis: 

CHOOSE_FIRST_UNBOUND 

This strategy selects the first unbound variable. Variables are ordered by the indices 

of the variable collection passed to the selector. 
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CHOOSE_PATH 

This is a dedicated strategy for building simple paths (paths with no repeated 

vertices). It is described as follows [55]: 

1. Try to extend an existing path. The strategy seeks the existing path by 

looking for an unbound variable to which some other variable is pointing. 

2. If there is no existing path, try to find a start node of a path to begin. To find 

a start node, the strategy looks for an unbound variable to which no other 

variable points. 

3. If both rule 1 and rule 2 fail, pick the first unbound variable. 

Here is an example to illustrate how the CHOOSE_PATH strategy works. Suppose 

the variables to be ordered are                    , and a path exists among the 

variables, as shown in Figure 5.7. 

 

 

Figure 5.7 An example demonstrates CHOOSE_PATH strategy 

The variable array                    where the symbol “-” means the variable at 

this position is unassigned. The existing path in this figure is        . Based 

on CHOOSE_PATH strategy, the next variable to select is       and the domain of 

this variable is {2, 4, 5}. If       is assigned with the value 2, the path is closed, and 

the next variable to select will be another unbound variable which is 4 or 5. 

The built-in value selection strategies used in this thesis are ASSIGN_MIN_VALUE 

and ASSIGN_MAX_VALUE. 

ASSIGN_MIN_VALUE 

This strategy selects the minimum value in the domain of the selected variable. 

ASSIGN_MAX_VALUE 

This strategy selects the maximum value in the domain of the selected variable. 

 

 



49 

 

 

 

 

5.3.4 Customized Search Strategy 

5.3.4.1 Branching Route 

Route is the most important variable among the four variables to branch on because 

it is on the top of the entire search tree. The search under an assignment of Route 

consists of the sub search tree of Next, Location and makespan, which is a large 

search space. If we are able to find a good or even optimal assignment to Route at the 

early stage, the best objective value under this assignment will propagate the rest 

branches with worse bounds of objective value, thus significantly reduce the entire 

search space. 

Variable selection 

The Route variables are ordered by the length of the InvalidPrev list of each node. 

Let                          denotes the index of        in the variable ordering, 

                                              

                                                               (5.36) 

 

                                                      

                                                               (5.37) 

As shown in (5.36) and (5.37), if a node has a longer InvalidPrev list, its route 

variable will be branched on earlier. If two nodes have the same length of InvalidPrev 

list, the node with smaller index will be branched on first. 

(5.36) and (5.37) reflect a general order of performing the assembly sequence. As 

seen in Figure 5.1, the node with longer InvalidPrev list is closer to the leaf of the 

assembly tree, and generally should be performed earlier in the sequence. To branch 

on the Route variables in this order conforms to the assembly scenario. 

Value selection 

The value selecting strategy for Route is to balance the total durations of both routes. 

In addition, a heuristics named “Fixture Succession” is used. 

Suppose        is unbound and to be assigned. The procedure is described as follows: 

1. If node i is a fixture operation node, perform Fixture Succession heuristics. 

The Fixture Succession heuristics works like this. Let prevNode denote a 

child of node i which is drop-off or fixture operation or sub-assembly. If the 

route of prevNode is bound, assign        with the same route as prevNode. 

2. If rule 1 is not applicable, perform the balance heuristics. 
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In rule 1, the prevNode of node i could be drop-off or fixture operation or sub-

assembly. For example, as seen in Figure 5.1, the prevNode of node 20 is 24, the 

prevNode of node 11 is 15, and the prevNode of node 4 is 5. Assign a fixture operation 

node with the same route as its prevNode is because the two nodes are at the same 

location (on the same fixture), to perform the fixture operation node immediately 

after its prevNode could save travel time. 

Let               denote the set of nodes that have already been assigned to route 

r so far,                denodes the current cumulative durations on route r. The 

balance heuristics is described as follows: 

1. Calculate the current cumulative durations on each route: 

              {      |                  } 

               ∑                                      
  

2. If                              , assign        with route r of which 

the                is smaller. 

3. If                              , assign node i to the arm which 

performs this node in a shorter duration, i.e. 

if                                          , assign 0 to       , 

else if                                           , assign 1 to       . 

Balancing is an important feature of the optimal solution. With the effort of evenly 

allocating workload to both arms, the total makespan could be reduced. In balance 

heuristics, the Route variables are always assigned values according to the run-time 

cumulative durations on both arms. 

5.3.4.2 Branching Next 

After the Route variables are bound, branching on Next is basically to create a simple 

path for each route. 

Variable selection 

The variable selection strategy for Next is CHOOSE_PATH. As discussed in section 

5.3.3, it is a dedicated strategy for building simple path. 

Value selection 

The values in the domain of       are the indices of the candidate successors of node 

i. Basically, the value ordering for a variable is to give a priority to each value in its 

domain. The value with higher priority will be set to the variable earlier in the search. 



51 

 

 

 

 

The value selection strategy for Next is based on two heuristics: the length of the 

InvalidPrev list of the candidate successors and a similar Fixture Succession 

heuristics as that of the Route variables. 

Suppose       is unbound and to be assigned, the value ordering heuristic is 

described as follows: 

1. If node i is drop-off or sub-assembly, 

                           is fixture operation node, as shown in 

Figure 5.1. Give the index of          the highest priority among all 

values in the domain of      . 

 For the rest values in the domain, give higher priority to the index of the 

node with longer InvalidPrev list. 

2. If node i is neither drop-off nor sub-assembly, give higher priority to the 

index of the node with longer InvalidPrev list. 

The idea of rule 1 is similar to the Fixture Succession heuristics of Route. Since a 

drop-off node and its succNode are at the same location (on the same fixture), to 

process the succNode immediately after finishing this drop-off node will save travel 

time. The reason of giving higher priority to the node with longer InvalidPrev list is 

because according to the assembly tree in Figure 5.1, the general trend of the 

assembly is from leaf to root. The node with longer InvalidPrev list is closer to the 

leaf of the assembly tree, thus should be performed earlier in the sequence in general. 

5.3.4.3 Branching Location 

At this stage, the Route and Next variables are assigned values. The next step is to 

determine the locations of tray nodes and camera nodes. The idea of branching on 

the Location variables is based on greedy strategy, as well as keeping the balancing 

feature for both routes. 

Variable selection 

To keep balance on both routes, the tray locations and camera locations are branched 

on both routes simultaneously. The variable ordering strategy is described as follows: 

1. Calculate current cumulative time on both routes. The cumulative time 

includes the total durations and the total travel time between the nodes with 

bound locations (fixture, air-gun, output, as well as tray and camera nodes 

that are assigned locations). For the route with longer cumulative time, 

select the first unbound location on this route. 

2. Select the first unbound location on the other route other than in step 1. 



52 

 

 

 

 

3. Repeat step 1 and step 2 until one route is exhausted. Then exhaust the rest 

route. 

Value selection 

The value ordering for Location is based on greedy strategy [56]. The greedy strategy 

means always selecting the location value that gives the shortest distance for each 

step along the route. 

Suppose           is unbound and to be assigned. Let prevLocation denote the 

location of the predecessor of node i. Since we start from the first unbound location 

on a route and the prevLocation is always fixed or assigned along this route. The 

strategy is described as follows: 

1. If the predecessor of node i is a start node, calculate the minimum distance 

between the possible locations of node i and the possible location(s) of its 

successor (the location of the successor could be bound or unbound). Assign 

          with the location value that leads to the minimum distance. 

2. If the predecessor of node i is not a start node, calculate the minimum 

distance between prevLocation and the possible locations of node i. Assign 

          with the location value that leads to the minimum distance. 

The reason of rule 1 is because the distance between a start node and any other node 

is always 0. To avoid blind selection, the minimum distance between current node 

and its successor is considered. 

5.3.4.4 Branching makespan 

The branching strategy for makespan is quite simple. Since there is only one variable, 

no variable selection strategy is needed. The value selection strategy is to assign the 

variable with the minimum value in its domain. Recall from (5.35) that makespan is 

equal to the departure time of the last node in the assembly sequence. Assigning 

makespan with the minimum value will tighten the entire sequence. 

5.4 Implementation 

The constraint programming support library used in this thesis is Google OR-Tools 

[55] with repository of version 3756. Google OR-Tools is an open source project 

developed by Google under the Apache License 2.0. The library contains a constraint 

programming solver, an interface to several linear programming and mixed integer 

programming solvers, as well as a set of dedicated algorithms such as Knapsack and 

graph algorithms. 

The library is written in C++ but is also available in Python, Java, and .NET through 

SWIG [57] which is a software development tool that connects programs written in C 
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and C++ with a variety of high-level programming languages. In this thesis, we use 

the .NET version of the library. 

Google OR-Tools contains a set of global constraints including the constraints 

described in section 3.5. The library also implements a couple of search algorithms, 

such as systematic tree search, local search, and Large Neighborhood Search. The 

library allows combining sequential searches in the order defined by users. At each 

leaf of the current search tree, the next search tree is created. 

In addition to the implemented constraints and search strategies, Google OR-Tools 

offers full support for implementing customized constraints and search strategies. 
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 Results 6

In this chapter, the experiment settings will be introduced first. Then the results for 5 

test cases will be presented. 

6.1 Experiment Settings 

The problem case in this thesis is the same as that in the previous thesis work [8] 

regarding the task durations and travel time matrix, but with a slightly updated 

assembly tree which makes the problem case a little larger. The detail of the problem 

case is described in Chapter 2. The task durations and travel time matrix are collected 

by simulating each operation and movement with both arms in Robot Studio. 

The experiment is run on a computer with Windows 7 64-bit operating system, Intel 

Core i7 2.7 GHz CPU, and 8 GB RAM. The CP library is Google OR-Tools of version 

3756 for C#. In each test, the program is executed to solve a problem instance and all 

solutions are recorded including the run-time of finding each solution. In addition, 

the information of finishing the entire search tree is recorded at the end of each test, 

including the run-time, branches and failures. 

To compare the efficiency of the built-in search strategy and the customized search 

strategy, we run the programs based on each search strategy under the same problem 

instance. The run-time of finding the optimal solution and run-time of finishing the 

whole search, i.e. proving the optimality are two major indicator for comparison. 

The evaluation is based on four general test cases and a special case. The only 

difference between the general case and the special case is that the special case is 

under the additional compact-fixture constraint described in Section 5.2.4.9. Under 

this constraint, the two arms are not allowed to access the fixture area simultaneously. 

Case 1 to case 4 share the same task durations and travel time matrix, but with 

different assembly trees. The assembly tree of case 2, case 3 and case 4 are shown in 

Appendix. 

Table 6.1 shows the settings of each test case. Case 1 to case 4 is general case and case 

5 is the special case. 

Table 6.1 Settings of test cases 

 
Fixtures  
compact 

Number of  
components 

Tool usage  
for components 

Case 1 no 5 2 grippers, 3 suctions 

Case 2 no 4 1 gripper, 3 suctions 

Case 3 no 4 2 grippers, 2 suctions 

Case 4 no 3 1 gripper, 2 suctions 

Case 5 yes 5 2 grippers, 3 suctions 
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For the built-in search strategy, we test all possible combination of parameter 

settings to find the configuration with best performance. The variable selection 

strategy for Route is FIRST_UNBOUND and the value selection strategies are 

ASSIGN_MAX_VALUE and ASSIGN_MIN_VALUE. 

For the Next variables, the variable selection strategy is CHOOSE_PATH. The value 

selection strategy is ASSIGN_MAX_VALUE. The reason not to consider 

ASSIGN_MIN_VALUE is because when building a route regarding the assembly tree, 

the general trend of the route is always from the leaf (nodes with larger indices) to 

the root (nodes with smaller indices) in the assembly tree. Apparently, 

ASSIGN_MIN_VALUE is not an appropriate strategy. 

The variable selection strategy for Location is FIRST_UNBOUND and the value 

selection strategies are ASSIGN_MAX_VALUE and ASSIGN_MIN_VALUE. For 

makespan no variable selection strategy is needed, and the value selection strategy is 

ASSIGN_MIN_VALUE. 

Table 6.2 shows the four settings of value selection strategy for the Route and 

Location variables. 

Table 6.2 Value selection settings for Route and Location 

 Route Location 

Setting 1 MAX MAX 

Setting 2 MAX MIN 

Setting 3 MIN MAX 

Setting 4 MIN MIN 

 

As shown in the table, MAX denotes the strategy of ASSIGN_MAX_VALUE and MIN 

denotes ASSIGN_MIN_VALUE. 

6.2 Experiment Results 

The experiment results showed that the CP model in this thesis has made a great 

improvement over the model in the previous work [8]. For the same problem 

instance and under similar hardware and software environment to that of the 

previous work, the model and implementation in this thesis can find the optimal 

solution in less than 20 minutes and prove the optimality in around 40 minutes. 

However, the previous work can only find an approximately optimal solution but not 

able to prove the optimality. 

In the following, we will compare the performance of the customized search strategy 

with the built-in search strategy under five test cases listed in Table 6.1. 
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6.2.1 Test on case 1 

Case 1 is the general problem case with 5 components which is described in Chapter 2. 

The assembly tree of case 1 is shown in Figure 2.5 and Figure 5.1. Table 6.3 shows the 

run-time, branches and failures for finding optimal solution with the built-in strategy 

settings and the customized strategy. 

Table 6.3 Time, branches and failures of finding the optimal solution for 

case 1 

 Time (s) 

(s) 

Branches Failures 

Setting 1 1085 1557675 778844 

Setting 2 1080 1562427 781223 

Setting 3 9856 9003944 4501990 

Setting 4 9569 9002333 4501224 

Customized 243 391237 195613 

 

Table 6.4 shows the run-time, branches and failures for proving the optimality i.e. 

completing the entire search. 

Table 6.4 Time, branches and failures of proving the optimality for case 1 

 Time (s) Branches Failures 

Setting 1 2470 3611374 1805704 

Setting 2 2466 3617326 1808683 

Setting 3 11296 11174880 5587468 

Setting 4 10991 11175249 5587692 

Customized 1957 3036286 1518150 

 

Figure 6.1 shows the performance comparison of each search strategy on case 1. The 

vertical coordinate represents run-time. Grey rectangle denotes the run-time for 

finding optimal solution, and black rectangle denotes the run-time for proving 

optimality. 

 

Figure 6.1 Performance comparison on case 1 
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As shown in Figure 6.1, the best setting for built-in strategy is setting 2. The 

customized strategy has a better performance than setting 2. Specifically, the 

customized strategy only took 22.22% of the time for finding optimal solution and 

79.33% of time for proving the optimality compared to setting 2. 

The diagram also shows that the performance of setting 1 and setting 2 are close to 

each other, and the same with setting 3 and setting 4. In another word, difference 

search strategies for Location do not bring a considerable influence on the overall 

performance. This is because the search on Location is the last part of the whole 

search, and its search space is fairly small compared with Next and Route. Therefore 

in the following test, we only consider setting 1 and setting 3 for the built-in strategy. 

Figure 6.2 shows the track of finding optimal solution with customized strategy and 

with the best built-in strategy. 

 
Figure 6.2 The track of finding optimal solution with customized and best 

built-in strategy 

In this diagram, each point labeled on the curves represents a solution. The value of 

horizontal coordinate is the elapsed search time of finding the solution, and the value 

of the vertical coordinate is the objective value of this solution. 

In Figure 6.3, the horizontal coordinate is displayed on logarithmic scale so that we 

can see more details in the beginning stage of the search. 
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Figure 6.3 Logarithmic scale of horizontal coordinate in Figure 6.2 

Figure 6.2 and Figure 6.3 show that the customized strategy initially finds solutions 

with much better objective values, thus reach the optimal solution faster. 

6.2.2 Test on case 2 and 3 

Case 2 and case 3 are both 4 component case but with different tool usage and 

assembly tree. In case 2, one component requires gripper tool and three components 

require suction tool. In this situation, the gripper capacity constraint and the suction 

capacity constraint both have effects. On the contrary, case 3 contains two 

components for gripper and two components for suction, and in this case the suction 

capacity constraint has no effect but the gripper capacity constraint has a big effect. 

Test on case 2 

Table 6.5 shows the performance of the customized strategy and the built-in strategy 

with setting 1 and setting 3 on case 2. 

Table 6.5 Performance comparison on case 2 

 Time for finding 

opt solution (s) 

Time for proving 

opt solution (s) 

Customized 51 65 

Setting 1 56 77 

Setting 3 2791 2808 

 

The table shows that the customized strategy and setting 1 have much better 

performance than setting 3. Furthermore, customized strategy performs slightly 

better than setting 1. 
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Test on case 3 

Table 6.6 shows the performance of the search strategies on case 3. For built-in 

strategy with setting 3, we ran the program for more than 5 hours but did not find 

any solution. Therefore, here gives the lower bound of the run-time. 

Table 6.6 Performance comparison on case 3 

 Time for finding 

opt solution (s) 

Time for proving 

opt solution (s) 

Customized 0.6 6.8 

Setting 1 3191 3197 

Setting 3 > 18000 > 18000 

 

Table 6.6 shows that customized strategy has much better performance than built-in 

strategy under case 3. There are two reasons for the significant advantage. The first 

reason is because the constraint on the objective value has an extreme effect on this 

case. After reaching the optimal solution, the objective value of the optimal solution 

can propagate the rest of the search space in a very short time. As seen in table 6.6, 

both customized strategy and built-in strategy with setting 1 proved the optimality in 

6 seconds after finding the optimal solution. The second reason is that the solutions 

clustered very intensively in the search space. We notice that setting 1 found the first 

solution after 3178 seconds and setting 3 found no solution over 5 hours, as a result, 

no objective value is collected to prune any branches in the search tree. On the 

contrary, the customized strategy happened to find the optimal solution at beginning 

with some luck. 

6.2.3 Test on case 4 

Case 4 contains one gripper picking-up component and two suction picking-up 

components. Apparently, neither of the gripper nor suction capacity constraint has 

effect on this case. 

Table 6.7 shows the performance of the search strategies on case 4. 

Table 6.7 Performance comparison on case 4 

 Time for finding 

opt solution (s) 

Time for proving 

opt solution (s) 

Customized 3.23 3.72 

Setting 1 2.56 4.05 

Setting 3 21.62 23.46 
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From this table we can see that customized strategy and setting 1 have better 

performance than setting 3. Setting 1 took shorter time for finding the optimal 

solution, and customized strategy proved the optimality faster. 

6.2.4 Test on case 5 

Case 5 is the special 5 component case in which the two arms are not allowed to 

access the fixture area simultaneously. This is achieved by posting an additional 

constraint described in Section 5.2.4.9. Since this constraint affects the concurrency 

of the operations on two fixtures, the objective value of the optimal solution to case 5 

is a little larger than that of case 1. The performance of each strategy is shown in 

Figure 6.4. 

 

Figure 6.4 Performance comparison on case 5 

In this test, setting 1 has the best performance in both finding optimal solution and 

proving the optimality. Although the customized strategy did not win out, its 

performance is much better than setting 3.  

6.3 Summary 

It needs to be stressed that setting 1 is not necessarily the best configuration for built-

in strategy in all problem cases. In some other cases with different task durations, 

travel time matrix, and/or assembly trees, setting 3 would give the best performance 

for built-in strategy. 

Actually, the only difference between setting 1 and setting 3 is the value selection 

strategy for Route. For setting 1, all nodes are assigned to arm 1 at beginning, and 

then the route of each node alters iteratively until finding the optimal solution. For 

setting 3, all nodes are initially assigned to arm 0. Basically, setting 1 and setting 3 

define two symmetrical directions in the search space of Route. Hence, setting 3 

should be the best setting for about half of the problem cases. 

In practice, the parameter setting for built-in strategy always needs to change from 

case to case in order to get good performance. However, since the search strategy for 
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Route in customized strategy is based on task durations and assembly tree which are 

intrinsic properties of the problem case, customized strategy performs consistently 

for all problem cases. 
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 Conclusion 7

In this thesis a real-world assembly case for dual arm robot is introduced. A 

constraint programming model and a customized search strategy for optimizing the 

assembly sequence and assembly cell layout of the problem case is proposed. The 

model and search strategy are implemented using Google OR-Tools, an open source 

constraint programming support library. The implementation is tested under a set of 

problem instances sharing the same task durations and travel time matrix but with 

different assembly tree and tool usage of components.  

The results show that the model and search strategy are effective and efficient on the 

problem case studied in this thesis. For the general 5 component test case in the 

experiment, the implementation can find optimal solution with 4 minutes and prove 

the optimality with 32 minutes. The results also show that with the increase of the 

problem size, the run-time grows fast. However, since the common size of the real-

world assembly case is similar to the 5 component case, the time for solving the 

problem is acceptable. 

A performance comparison between the customized search strategy and the built-in 

search strategy of Google OR-Tools is done. The results show that the customized 

strategy has a better performance than the built-in strategy in many cases. For the 

general 5 component case, the customized strategy only takes 22.22% of the time for 

finding optimal solution and 79.33% of the time for proving optimality compared to 

built-in strategy with the best setting. For the general test cases with 4 components 

and 3 components, customized strategy also shows a performance advantage over 

built-in strategy. 

The results also indicate that the parameter setting for built-in strategy is highly 

relevant to the problem case, therefore needs to change frequently according to 

different cases. However, the customized strategy performs consistently in all 

problem cases, thus no need to make changes. 
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 Discussion & Future Work 8

In this chapter, a further discussion on the CP model and the customized search 

strategy will be conducted, and some future work is suggested. 

An important part in the model is to post regular expression constraints on each 

route to eliminate invalid assembly sequences. The regular expression constraints are 

very efficient in propagation. When building these constraints, the integration of 

smaller DFAs to a larger DFA often brings improvements in performance, but 

meanwhile increases the implementation complexity. Therefore, a good balance 

between performance and complexity need to be determined. 

Currently, the information of assembly tree and task durations is used for the 

customized search strategy. The strategy of balancing the total durations on both 

routes plays an important role. Since the makespan on each route consists of total 

durations and total travel time, it is advisable to find a way to utilize the travel time 

matrix in search heuristics. 

Instead of manually generating travel time matrix from Robot Studio, a program can 

be developed to automatically generate the travel time from dynamic case models. 

The travel time used now is the average travel time between two locations. To get 

more accurate travel time, more configurations for the position of an arm could be 

added into the model. With the increase of freedom in the model, searching for 

optimal solution might become infeasible. Then the non-systematic search methods 

such as local search and large neighborhood search are needed to get the 

approximately optimal solutions. 
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Appendix 

A1. Assembly tree of case 2 

 

Assembly tree of case 2 (1 GPU, 3 SPU) 

 

A2. Assembly tree of case 3 

 

Assembly tree of case 3 (2 GPU, 2 SPU) 
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A3. Assembly tree of case 4 

 

Assembly tree of case 4 (1 GPU, 2 SPU)
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