

A Graph-Based Approach to
Procedural Terrain

Bachelor Thesis

Written by: Vidak Mijailovic
Examiner: Christian Schulte

KTH ROYAL INSTITUTE OF TECHNOLOGY

I N F O R M A T I O N A N D C O M M U N IC A T I O N TE C H N O L O G Y

BACHELOR THESIS
DEGREE PROJECT IN INFORMATION AND COMMUNICATION

TECHNOLOGY

A Graph-Based Approach to
Procedural Terrain

Vidak Mijailovic
29th of June 2015 Examiner: Christian Schulte
Stockholm, Sweden TRITA-ICT-EX-2015:72

Abstract

Procedural terrain generation is a field that handles procedural, not by hand,
generated realistic looking terrain for use in simulations, video games, movie
special effects or art. It allows for creation of vast and far more detailed terrain
than humans can create by hand.

In this paper a new method for procedural terrain generation is presented.
Terrain is generated in three steps. An arbitrarily shaped network oh nodes, a
graph, is used as a base to design the shape and layout of terrain features.
Common algorithms are used to generate custom terrain features inside the
graphs sealed areas and finally the generated terrain is merged into a single
piece using a new method. In this manner, more controlled and detailed terrain
can be created as the layout and shape of features can be controlled.

Keywords: Terrain, real-time computer graphics, digital-cartography, graph-

grammar, Perlin noise, diamond-square

Referat

Området terräng generering hanterar procedurellt, icke för hand, skapande
utav realistisk terräng för användning inom simulationer, data spel, filmers
specialeffekter och konst.

I denna uppsats presenteras en ny metod för procedurell terräng generation.
Terrängen genereras i tre steg. Ett godtyckligt nätverk av noder skapas, en graf,
och används som grund för att designa och forma utläggningen av terrängens
drag. Kända algoritmer används för att skapa dragen inuti grafens tomma ytor
och slutgiltigen sys den genererade terrängen ihop till en sammanhängande
helhet med en ny metod. På detta vis kan man skapa mera detaljerad och bättre
styrd terräng då man både kan kontrollera dragens former och utläggning.

Nyckelord: Terräng, realtid datorgrafik, digital-kartografi, graf-grammatik, Perlin
noise, diamond-square

1

2

Table of Contents

1 Introduction ... 1
1.1 Background .. 1
1.2 Problem Statement .. 1
1.3 Problem ... 2
1.4 Purpose ... 2
1.5 Goals and Tasks .. 3
1.6 Methodology / Methods ... 3
1.7 Risks, Consequences and Ethics... 4
1.8 Ethics and Sustainability .. 4
1.9 Disposition ... 5

2 Background and Methods .. 7
2.1 Heightmaps .. 7
2.2 Diamond-square algorithm ... 8
2.3 Perlin Noise .. 10
2.4 Same resolution heightmap stitching .. 13
2.5 Diamond-angle .. 14

3 Execution and Theory ... 17
3.1 Research .. 17
3.2 Design .. 18
3.3 Terrain Description ... 19
3.4 Graph.. 19
3.5 Sectioning ... 20
3.6 Creating and populating heightmaps ... 21
3.7 Terrain collision detection .. 22
3.8 Multiple field stitching.. 24

3.8.1 Base case .. 24
3.8.2 Height Difference Altering ... 27
3.8.3 Multiple field stitching .. 28

3.8.3.1 Multiple Field Issue .. 28
3.8.3.2 Point Stitch .. 28
3.8.3.3 One side stitch .. 31
3.8.3.4 Dynamic Distance Value .. 32
3.8.3.5 Radius Sync ... 32
3.8.3.6 Pinching .. 33

4 Results ... 36
4.1 Performance .. 36
4.2 Renders ... 39

5 Discussion ... 44
5.1 Performance .. 44
5.2 Caching .. 45
5.3 Future Improvements ... 46

5.3.1 Multithreading .. 46
5.4 Rounding errors ... 46
5.5 Wrong field issue .. 47
5.6 Only use diamond angle ... 48
5.7 Conclusions .. 48

3

1

1 Introduction

1.1 Background

The area of procedural terrain generation has existed since the 1980s with the
purpose of procedurally, not by hand, generating vast realistic looking terrain
for use with computer graphics. Its first commercial use was for creation of alien
planets in the popular TV series Star Trek (Nove: Season 36, Episode 4, Hunting
the Hidden Dimension 28 Oct 2008) (Lucasfilm 1982), a feat amazing the
crowd at the time.

Most of the algorithms are based on fractal mathematics and are often showcased as an

area promoting fractals. This is a vast area growing with the increase in modern

computing power with lots of problems that still need to be solved, and lots of problems

that still can be explored.

1.2 Problem Statement

Two of the most popular algorithms for generating terrain today are the
Diamond-Square algorithm and the Perlin Noise algorithm. Both produce an
array of numbers called a height map, sometimes also called a patch.

The Diamond-Square algorithm (Alain Fournier 1982) produces heightmaps by
using fractals. At start, the patch has four preset points, a point in each corner.
These preset values are called seeds. It takes two of these points and views them
as one line. It then breaks the line by inserting a new point with a random offset
in the middle, breaking it down into two lines. This is repeated several times. It
produces realistic looking terrain but it is difficult to control the features of the
resulting terrain. Scaling the algorithm to “infinite”, or actually boundless,
terrain is difficult because each generated heightmap relies on the heightmap
next to it for points to break. Also, the sizes of the heightmaps have to be certain
fixed dimensions.

Perlin Noise (David S. Ebert 1994) is easy to scale and make infinite terrain. It
produces terrain by combining waves with high or low amplitudes and short or
long frequencies a few amounts of times. The only parameters it requires are
the description of a wave, the rate of descent for each iteration, which is how
the maximum amplitude of the wave should change on each iteration, and the
number of iterations to perform.

But when one defines a wave, it will generate terrain with the same maxima and
minima for each iteration in all directions. Variations such as lows and highs in
mountains and valleys do not look natural, they will be evenly spread out. For
example, in a patch of 500 square meters there will always be the same amount
of mountains and valleys, which is not the case in natural terrain.

2

1.3 Problem

Instead of building a terrain system that generates the same terrain in all
directions with the same formula, a graph-based system is created for
designing, generating and modifying infinite terrain.

This system should be able to manually or procedurally generate a graph. All
the closed areas of the graph are called fields. Each field contains terrain and is
assigned properties describing it. The terrain of each field is generated based
on the assigned properties. For instance, mountain properties with high peaks
or flatland properties with a flat surface.

The fields should be of irregular shapes, not just squared patches and the
generated terrain should be stitched together from the fields so that borders
together from fields do not become visible.

Nodes of the graph can be added, removed or moved to shape the features of
the terrain. An infinite world could be generated with a random graph, while
allowing fine editing. For instance to place a mountain at point P and shape it
while the rest of the world is auto generated.

This way one can create much more interesting and non-uniform landscapes,
with a single infinite terrain graph. Naturally ranging from tall Alps like
mountains to Mediterranean reaches and African steppe like flatlands, with
precise control of the environment.

1.4 Purpose

The field of procedural generation is still relatively young and underdeveloped
with many aspects to explore. The current methods only provide basic
functionality to generate general terrain. This project aims to expand upon
them and create a method that makes up on their weaknesses.

By dividing the process into multiple steps as opposed to just one, more control
over the resulting terrain is introduced. Using a graph allows users to speed up
the process of creating vast worlds while giving them the ability to pick certain
pieces and decide their features.

Today artists spend hundreds of hours creating mountains, valleys and plains
for video games before spending more time placing and merging the created
assets into a natural looking solid piece for use. The automated algorithms
mostly only provide repetitive terrain. Either by first generating a patch of
terrain and repeating it in all directions, or by generating the same type of
terrain in all direction based on some parameters. On the other hand realistic
and exiting terrain in computer games or movies is often designed to be the
opposite, differing from place to place to allow exploration and excitement with
custom breathtaking designs.

3

1.5 Goals and Tasks

The main goal is to develop a system and a library in C# for creation of graph-
based terrain. The library should provide all the necessary algorithms, data
structures and tools one needs to generate, shape and manage graph-based
terrain. Enabling the user to quickly and easily create realistic looking terrain
that can be extended and shaped with great detail.

The system should be using modified versions of existing terrain generating
algorithms to generate custom terrain inside of the graph fields, store it in
heightmaps and stitch the different pieces into a solid terrain piece. In order to
stitch the borders between the irregularly shaped fields and terrain new
algorithms will be developed.

The main goals of the project

 Review current state of the art algorithms for generating terrain.

 Implement the commonly used ones efficiently and make sure they reach
good performance.

 Create good data structures for containing and managing the graph and
fields.

 Create a good data structure for the generated terrain heightmaps which
takes into account the need for stitching irregular terrain pieces.

 Create an algorithm for stitching the terrain of irregularly shaped fields.

Additional goals are:

 Make sure the graph and the terrain can deterministically be recreated
when only storing the parameters, increasing the portability of even
infinite worlds.

 Make sure the produced library is external library and platform
independent. Meaning that no other external libraries will be needed to
compile and that the code is not tied to specific architectures.

1.6 Methodology / Methods

The project is divided into four phases, a research phase, a theory phase, an
iterative prototyping phase and a testing phase.

An in-depth research phase of the current methods and algorithms used for
procedural terrain generation will be conducted. During this phase necessary
knowledge and theory will be gathered.

Based on the current foundations and research conducted by others, theory
behind a new method will be developed. The method should meet all of the
requirements and goals listed in the previous section. It is very important that
the research phase is conducted with care so that the new theory does not
simply try to reinvent existing theory.

4

An iterative and agile development process of a prototype that implements the
newly designed theory will be performed. The prototype and its development
will try to realize all of the goals set above and also provide feedback to the
theoretical phase as new unforeseen issues and views may be found during the
development. When new findings are made backtracking to the theoretical
phase will be done to review what could be improved or changed.

A testing phase is to follow as conclusion to the project. The prototype will be
tested to see that it functions as desired, outputs desired results and does so in
reasonable execution time.

1.7 Risks, Consequences and Ethics

As in other projects, this project contains risks. The main risks of this project is
that it is too big, that it would become too difficult to implement in the available
timespan and that it would try to reinvent something already created. Another
major risk is to fail the goal of implementing the system as a flexible
independent library by accidentally making the code too complex.

The risk of having a too wide scope will be minimized by doing weekly
performance and time estimates, to make sure the base of the project gets
completed first. Such as terrain algorithm and data structure implementations
and afterwards add upon them. This is best prevented by doing solid research
beforehand.

The C# library will be created as a separate project in the solution and only
include what is necessary in it to create a good API. If any external libraries have
to be used or code binding the user to specific external platforms of other
authors, they will be contacted to obtain approval and reference them fully.
Another option is to, if possible, write and implement equivalent in the time
given.

1.8 Ethics and Sustainability

In today's graphics industry hundreds of hours are spent on modeling and
designing terrain. The project aims to help speed this process up by allowing
for more control during the generation of the terrain so that less time needs to
be spent post processing and manually shaping the terrain if it initially is not
satisfactory. If the time spent shaping the terrain can be shortened it would help
save resources as both economical resources and human resources could be
redirected to other causes.

A main ethical issue is to make sure the project and the new method developed
do not step into work already developed by others but stands on its own. As the
field is still young and somewhat undeveloped there has been a lot of research
done that does not surface to gain attention, making it difficult to find, bringing

5

with it the risk of this project being too similar. This has to be countered by
extensive research prior to development. In conclusion this project will do its
best to follow the IEEE Code of Ethics as closely as possible. (IEEE 2015)

1.9 Disposition

In the Background and Methods chapter the necessary background knowledge,
methods and algorithms are displayed together with their respective pros and
cons together. The research conducted prior to the project.

The Execution and Theory chapter presents the new methods and how they are
used. The main theory and concepts developed during the project are
presented.

In the Results chapter the terrain produced by the developed methods is
presented and the execution time is measured. The section shows and compares
the execution times of different test cases and puts them in perspective.

Finally in the Discussion chapter the resulting system and algorithms are
discussed. What they achieved and what the original aim was together with
possible improvements, both inside and outside the scope of this project
together with a few conclusions.

6

7

2 Background and Methods

2.1 Heightmaps

A heightmap is one of the most basic and common methods for storing terrain
data. The underlying data structure is a two-dimensional array or list of
arbitrary size. Indices of the array correspond to X and Z coordinates of the
heightmap, while values stored in the array correspond to Y coordinates, the
height. For example, given a point (x, y, z), it is represented in the heightmap
as a value y stored in column z and row x.

Because heightmaps are simple to implement, fast to access data from and
intuitive to use, they are common and became the backbone of many
algorithms. Heightmaps are used by terrain generating algorithms, such as the
diamond-square (Alain Fournier 1982) and the Perlin noise (David S. Ebert
1994) algorithms.

In order to render the terrain as a surface, it has to be converted into a mesh for
the graphics driver to handle. A mesh is a solid Polyhedron consisting of solid
polygonal faces, straight edges and corners called vertices. Converting the
terrain heightmap into a mesh is relatively straightforward. (Colin 2006)
Detailed polygon meshes can be created by using all values in the heightmap
while coarse polygon meshes can be created by skipping a few values instead.
(Colin 2006)

The heightmap itself only contains data describing the height points,
sometimes called the features, of the terrain. It does not contain any additional
information. When rendering the heightmap, color, textures and other
additional data is added by the rendering system, which is a separate system
outside the scope of this paper. Such systems are usually based on either
Microsoft DirectX (Microsoft 2015) or a version of OpenGL (Group 1997-2015).

Disadvantages of heightmaps are
that they only store one Y
coordinate for each pair of XZ
coordinates. Only one surface can
be represented meaning that for
instance caves cannot be
represented in such systems. For
more advanced systems that
include cavities and complicated
landscape, voxels, volumetric-
pixels, can be used instead (Eric
2010). Figure 1 shows how
heightmap terrain can look like.

Figure 1: Example of heightmap terrain with
additional color added. No point can
overlap another.

8

2.2 Diamond-square algorithm

The diamond-square algorithm (Alain Fournier 1982) produces heightmaps by
using fractals through an advanced midpoint-displacement algorithm. The
algorithm uses a small piece code recursively to generate terrain. It was first
introduced in 1982.

The idea behind the algorithm is to break and
deform large line segments into smaller ones
until they look like a mountain ridgeline.
Suppose there is a line with two endpoints P1
and P2, which have Y coordinates -1 and 1.
The algorithm goes to the middle of the line,
measures the height at that point and adds a
small random offset to the height to form a
third point P3. The offset can be positive or
negative. The three points can now be
viewed as two line segments, (P1, P3) and
(P3, P2). This is the midpoint-displacement
algorithm, an algorithm for breaking line
segments. If this process is repeated a large amount of times one would get
shapes that are similar to mountain ridgelines. Figure 2 shows an illustration
of the midpoint-displacement algorithm running three iteration.

The diamond-square algorithm is based on this idea but functions slightly
differently since it is applied in three dimensions instead of two. When the
principle is expanded from two to three dimensions the data structure is
expanded as well. Instead of using a one dimensional array or list that is
commonly done, a two-dimensional array is used instead, a heightmap.

The algorithm takes in a heightmap as a parameter and populates it with values.
When the algorithm finishes, the heightmap will contain terrain data. Since the
algorithm is based on the idea of large line segments being broken down into
shorter line segments, the heightmap must have a few initial lines to break. A
few points in the heightmap must be manually set before the algorithm can
execute. Setting initial height values that dictate the terrain shape manually is
called seeding. The four initial points to seed are the four corners of the
rectangular heightmap. Seeds should have different values and be larger than
∅.

The algorithm then performs two steps: a diamond step and a square step.

In a diamond step, a square of four points is taken. A new value at the
intersection of the points is generated. The value is an average of the four values
plus a small random offset to create a more natural looking result. For instance:
suppose the four corner points are (0, 0), (0, 2), (2, 0), (2, 2). The value of the
middle point (1, 1) is calculated by averaging the four corner values and adding
a small offset to it.

Figure 2: Midpoint-displacement
in two dimensions run for three
iterations on a line segment

9

The square step functions similarly. Instead of taking a rectangle, a diamond (a
cross) of four points is taken, and just like the previous step, a value is generated
at the center of the diamond by averaging the four diamond points plus a small
random value. Points (0, 1), (2, 1), (1, 0) and (1, 2) would be used for calculating
(1, 1).

For each iteration across the heightmap more and more values are added until
it eventually is full. Figure 3 illustrates how this is performed on a 5x5
heightmap. The leftmost heightmap is the initial heightmap, then the square
step is performed, the diamond step performed four times, the square step
performed again four times and finally the diamond step performed twelve
times. In total four iterations are performed, reaching iteration level four,
before the heightmap is fully populated.

Figure 3: Example of terrain generation on a 5x5 heightmap

The algorithm performs the diamond and the square steps until a specified
iteration level is reached, a specific amount of lines broken, or until the
heightmap has all values set.

Because the diamond step takes a square of values with one point in the center
for calculation, for instance points (0, 0), (0, 2), (2, 0) and (2, 2) when setting
(1, 1) in the center, the heightmap has to have the dimensions: (2n) + 1 ∗ (2n) +
1 . The diamond step will need a point to be perfectly in the center. A few
possible heightmap dimensions are then: 29 ∗ 29, 1025 ∗ 1025 or 2049 ∗ 2049.

The algorithm has a major feature that can both be good as bad, edge cases. If
performing operations on a point close to the edge of the heightmap, for
example point [0, 5] (left edge, column 5), and one would like to get the value
of the point left of it for the square step, one would realize there is no point to
the left. Instead there are two solutions, either use a random value, or wrap the
heightmap and get the point from the opposite side. Perhaps point [16, 5], if it
is a ∅ indexed 17x17 heightmap.

Because the heightmap can be wrapped like this, one can create heightmaps
whose one side would fit perfectly with the opposite side if they were to be
instanced, copied, and put next to each other. A heightmap whose top edge fits
with the bottom edge and the left edge fits with the right edge could be copied
and repeatedly placed in a grid to form a repeating infinite terrain. Video games
of the 1990s and early 2000s such as Delta Force 2 (Novalogic 1999) took

10

advantage of this to create an illusion of infinite terrain when memory was
limited.

The disadvantage is that nonrepeating infinite terrain cannot be created easily.
Each generating heightmap would search for a non-existent heightmap next to
it for lines near the boundaries to break. Controlling the terrain features can
also be difficult. The four corner seeds will decide the basic shape of the terrain,
but for more precise control one has to seed much more. If one wishes to place
a mountain peak at a certain point it is most often not enough only to palace a
large value at that point. Chances are that the point is at a late iteration level
and that the point will not be taken into account until it is too late, creating
spike like artifacts. View figure 4 for an example.

Figure 4: Example of a diamond-square heightmap seeded at a too deep level

To solve this one has to seed elements around the target point through multiple
levels to ensure they are all taken into account. This can be a demanding and
complicated procedure to apply if the heightmap is large as many values must
be manually processed and set.

2.3 Perlin Noise

The Perlin noise (David S. Ebert 1994) algorithm is a good algorithm for
generating data which should be random looking but still have some
consistency, for example generating infinite terrain, rivers or textures.

The general principle behind the algorithm is to combine different wave
functions with varying periods and amplitudes in order to create more detailed
ones. This is done by combining the two components: a noise function and an
interpolation function.

11

The noise function works as a seeded random number generator working with
two seeds. When provided with a number as input it will return a number based
on it. It will always return the same number for the same input. Additionally a
number, also called a seed, can be set for the whole function, randomly
changing the returning numbers. The function is called random because there
should be no visible correlation between the retuning numbers.

Because the function is used to generate mountain ridgelines there should not
be too steep differences between the returning values, otherwise unrealistic
terrain will emerge. A maxima peak followed by minima after one meter
followed by another maxima peak after another meter. Therefore a smoothing
function is applied on the returning numbers bringing them closer together.

If in a XY-coordinate system, traverse through the numbers X∅ to x10 and plot
the resulting numbers in the Y-coordinate. It will look like random static data.
But if it is interpolated between the points and drawn a graph it will resembles
a ridgeline, or a wave. View figure 5.

Several waves with varying frequencies and amplitudes can be mixed together
to create a ridgeline. Waves with low frequencies and high amplitudes will
create the base ridgeline, while waves of higher frequency and lower amplitudes
create more noisy results. When they are combined two such waves results in a
wave that still has the large scale contours of the original low frequency wave,
but also has more details due to the lower frequency wave. The waves are
combined by adding their values together and dividing by the amount of waves.
View figure 5 for an example.

12

Figure 5: Example of 5 waves combined into terrain.

The main advantages of the Perlin noise algorithm is that it is relatively fast and
deterministic. The algorithm only takes three parameters, the initial wave
function description, the persistence variable which describes how the wave
changes through every iteration and the XZ coordinate for which the Y
coordinate will be generated. Typically the wave amplitude decreases by some
amount for each iteration, creating smaller and smaller waves adding detail to
the previous larger wave contour.

This means that if one declares a wave and a persistence, an infinite terrain can
be generated by asking for the Y coordinate at any point of the world. The
algorithm does not need to know the resulting values of the neighbouring
patches as the diamond-square algorithm needs to.

13

The negative side of Perlin noise is that
one cannot seed the resulting terrain at
all. This means that without heavy
modifications it is not possible to specify
features to be generated, for example:
one cannot decide where to place a
mountain, only to know that there will be
mountains somewhere. Also the
generated terrain is of the same type in all
directions as the same initial wave has to
be used everywhere.

No matter how large a world is generated,
there will always be a predictable amount
of mountain peaks per square area. In a
video game this would mean the player
would experience the same type of terrain
no matter where they go. View Figure 6
for a better understanding.

2.4 Same resolution heightmap stitching

Sometimes one wants to stitch two pieces of terrain, for example a low land
heightmap and a highland heightmap with mountains. Placing an unrelated
heightmap of mountains next to a heightmap of fields or lakes will look quite
jarring. To solve this, one has to edit the terrain to form a good transition
between the two heightmaps, this process is called stitching.

Terrain stitching is the act of stitching together different heightmaps which are
either originally not thought to coexist or where the resolution differs. (Yotam
Livny 2008) View Figure 7.

Figure 7: example of two heightmaps before and after stitching

Two patches have different resolution of their heightmaps when they have
different array sizes for the same space. For example, if one array of size 10
represents Y coordinates from X world coordinate 0 to 100, while another array

Figure 6: Top-down view of Perlin
noise terrain with added color to
indicate height differences. The
higher points (green) outnumber the
low point (white) by 3:1 evenly.

14

of size 100 also represents Y coordinates from X coordinate 0 to 100. They both
represent the same space, but the second array has 10 times more detail. This
type of stitching will not be part of this project and therefore means of solving
it will not be presented.

When said that two patches of terrain were not meant to coexist, it is meant
they are not generated with the same parameters, or perhaps not even with the
same algorithm, causing large gaps or errors where they meet.

There are multiple methods for solving this issue, the most common method is
linear interpolation. This is done in a few steps.

1. Measure the height differences, Difference, between the two heightmaps
at their meeting points. To know how much each heightmap should
change in height in order to meet the other one, divide the Difference in
two and save it as a variable: d

2. Decide how far into each of the heightmaps to interpolate, meaning how

much of each heightmap should get altered in order to fit with the other
heightmap. Call this amount: p. It can for instance be seven elements in.

3. To know how much each individual point should change divide the

heightmap Difference with the amount of points that should change in
total, call this variable: c, c=d/p

4. Go through all the points in the heightmap that should get altered. From

the point most far away from the edge, to the one at the edge and keep
count on how many are passed. Use a counter variable i and increment
it for each element towards the edge that is passed. In the heightmap that
should get lowered, subtract c ∗ i on each point that you pass and in the
heightmap that should get raised add c ∗ i instead.

This will result in two heightmaps that fit together. The method is used for
heightmaps whose terrain is treated as squared or rectangular. Finding a
stitching algorithm that works on heightmaps of any arbitrary shape is part of
this project.

2.5 Diamond-angle

The Diamond Angle Algorithm (Julian 2009) is an algorithm used for
calculating the angle between two vectors connected to the same point. The
algorithm is able to precisely calculate the angle between the vectors in a 360
degrees circle using very few divisions and neither sin, cos or atan2 functions,
making it faster than most angle calculating methods.

Instead of using the classical Unit circle together with Sine and Cosines it views
the L1 norm of the Unit circle instead. Giving it a shape of a 45 degrees flipped

15

cube instead, a diamond. This allows use of simpler mathematics, the straight
line equation.

y = mx + b

The algorithm does not return a Euclidean angle. It
returns a value between one and four instead, compared to
– π and π the Unit circle provides while retaining almost
the same precision. Meaning that one can calculate an
angle using the diamond angle function and convert it to a
Euclidean angle if necessary.

But because the returning value should be between zero
and four, and the line intersecting the diamond may do so
on either the positive or negative side of the origin, the
method will look a little bit more complex than just the
straight line equation.

If (x, y) is a point in a Cartesian coordinate system, then the

following method will return the diamond angle between the

point and the origin.

function DiamondAngle(x, y)
{
 if (y >= 0)
 if(x >= 0)
 return y/(x+y)
 else
 return 1-x/(-x+y)
 else
 if(x < 0)
 return 2-y/(-x-y)
 else
 return 3+x/(x-y)
}
Code from: (Julian 2009)

The algorithms angle calculating precision, as one will later on see, is sufficient
for use in this project and because it does not use complicated methods
internally, it is suitable for when often needing to calculate and compare large
amounts of angles.

Figure 8:A classical
Unit circle and a L1
Norm Unit circle

16

17

3 Execution and Theory

3.1 Research

The research phase began by looking into different methods for procedurally
generating terrain. The two most popular methods for this were the Perlin noise
and the diamond-square (Alain Fournier 1982) algorithms. Both algorithms
have certain advantages and disadvantages, making each one suitable for
generating specific type of terrain.

Perlin noise will generate good terrain based on a wave given as a parameter.
Because it only requires an initial wave and a coordinate a terrain height for, it
is well suited for generating infinite, boundless, terrain with continuous
features, such as plains or hills. The diamond-square algorithm on the other is
a recursive algorithm that works by breaking up lines until a ridgeline appears.
View Chapter 2 for detailed explanations.

Once a few initial values or waves are given to the algorithms, they will generate
terrain based on them. But neither one of these method allows for any real
customization of the generated terrain. While they are useful for generating
terrain of a certain type based on the parameters, they cannot change the
terrain type they generate as they progress into a certain direction. They
generate the same type of terrain in all directions, for example hilly terrain or
lowland terrain.

Continuing the research an interesting paper was found describing how graph
networks can be used to create two-dimensional worlds and levels for video
games. The paper described a system in which rules could be created using
grammar and an algorithm for generating graph networks out of it. (Adams
2002) (Rozenberg 1997)

For instance, one may define that node type Lake may only be connected to
node type Plain or other Lakes and that the edge to the other Lake may be a
river. This system allows one to dictate the way the terrain can be shaped or laid
out. But the papers only focus on generating terrain layout, not generating
heightmaps or other features. Graphs are generated and the hollow areas inside
of them are colored in order to represent different features, such as blue lakes
or dark green forests.

These combined works and approaches laid the foundation for this paper.
Graphs could be used in a larger extent for terrain generation than they
currently are. If one would develop a three-dimensional system that takes in a
terrain layout as an undirected network graph with different terrain types
assigned for each hollow area, new and detailed terrain could be created with
more control than before. One could use a graph as the base for the terrain,
decide which areas are lakes, plains or mountains, and generate terrain based

18

on that. The terrain would not fit because it is generated without consideration
for each hollow area, but it could be processed to fit.

3.2 Design

The general layout of the method presented in this paper will be show here. The
general idea begins with a graph, an undirected network of nodes, whose fields
could be defined to contain different types of terrain with different features.
Convert the graph, which dictates the terrain layout, to actual terrain using
proven algorithms such as the diamond-square and the Perlin noise algorithm,
and stitch the resulting terrain into a smooth single piece.

The overall steps for generating such terrain would involve:

 Define terrain type containers for terrain description. They should be
able to describe terrain, how tall a mountain peak should be or how a
plain should be defined. These will from now on be referred to as: terrain
description.

 Generate or create an arbitrarily shaped graph, an undirected network
of nodes, to represent the layout of the terrain.

 Find all the hollow closed areas in the graph, which from now on will be
referred to as: fields.

 Randomly, procedurally or manually assign a terrain description to each
field.

 Generate terrain for each field according to the terrain description
assigned to it.

 Stitch the terrain of each field to the terrain of its neighbors, so they fit
together. Two fields are neighbors if they share a common edge.

In order to perform said points, the following questions and problems need to
be answered and solved:

 Define what a terrain description is and how to define it. How should it
be implemented in a programming language and what information
should it contain?

 What data structure should be used for the graph and how should the
graph be generated?

 How does one find the fields of the graph in a fast enough manner?

19

 What algorithms should be used for generating the terrain in the fields
and what data structure should be used for storing the terrain?

 How does one stitch arbitrarily shaped Fields with other neighboring
arbitrarily shaped fields?

The following sections will give possible solutions and suggestions to these
question.

3.3 Terrain Description

A terrain description is defined as a data structure that contains the name or ID
of the terrain description together with all of the data necessary to generate
terrain of some sort. Of some sort because this can be done in multiple ways. In
this project only Perlin noise (David S. Ebert 1994) and diamond square (Alain
Fournier 1982) are used for generating terrain, but any other algorithms could
be used as well. As terrain description is used to generate terrain, the data it
contains are the parameters for the two algorithms. Depending on which
algorithm is used different data will be contained.

Please view Chapter 2 if unfamiliar with Perlin noise.
The parameters necessary to generate terrain with the Perlin noise algorithm
are:

 Amplitude - The initial maximum height of the terrain. For a mountain
define it as a large number for a high peak, or a low number for a valley
or ocean floor.

 Frequency - The initial frequency for the random noise wave.

 Frequency change - A decimal number that describes the change of the
frequency through each iteration, typical value would be two.

 Amplitude change - Persistence - A rational value that describes the
change of the Amplitude through each iteration, a typical value would be
0.5. This value dictates how much the maxima of the next iteration wave
should be lowered by multiplying the current maxima with it.

 Number of Octaves - The amount of iterations the Perlin noise algorithm
should perform. The amount of waves it should generate and combine.

3.4 Graph

The graph is defined as an undirected network of nodes. Each node is
represented by an object Node and each Node contains references to the Nodes

20

it is connected to as well as its coordinates in the absolute world space. Each
connection is an edge.

This project will not go deep into discussing methods for generating graphs,
because there is already a large amount of research done on the subject. One
could for instance use Voronoi diagrams (Henrik July 30th 2005), hexagonal
graphs, square graphs, or custom graphs. This project only encompasses the
parts before and after a graph is obtained.

3.5 Sectioning

Once a graph is procedurally generated or manually provided, all possible fields
inside of it need to be found.

This is a widely discussed and classical problem of graph theory in computer
science. One solution to this problem can be to use diamond angle together with
right-side walking. Please read about diamond angle in Chapter 2 if unfamiliar.

The idea is to traverse though the graph and walk in circles between the nodes
across the edges connecting them. Nodes are traversed through by walking on
the edges between them. Here right-side walking is used while traversing the
nodes. Whenever a node is reached, the next node to visit is determined by
taking the node to the right side. As a result of always taking a right side node
on a closed field, the route will end at the starting node when traversing is over.
One will arrive back to the node one started from.

1. Select a node of the graph.

2. Find all of the neighboring nodes it is connected to and pick the one with
the smallest positive angle. The smallest angle being viewed in a
counterclockwise order.

3. Continue to that node and note down the previous node. Repeat step one

and two until an already passed node is reached again. This means a
circle has been traversed and a filed consisting of the noted nodes is
found. Figure 10 illustrates how a possible path may look like.

21

Figure 9: An example path of right-side walking for field finding

Because the diamond angle method is fast at calculating the angle and good for
comparing the angles between different vectors, hence it can be used on
relatively large graphs without too much computation power. The advantage of
using diamond angle is visible when comparing to a few other classical methods
with heavy computations using Sinus and Cosines methods.

A field is represented as a list of nodes in the order they were traversed. A field
edge is the connection between two consecutive nodes in the list. After
sectioning all the fields, each field is assigned with a terrain type, manually or
procedurally.

3.6 Creating and populating heightmaps

The terrain in each field is stored inside of a heightmap. Even though the field
itself is of arbitrary shape, the heightmap remains rectangular since it is only a
simple two-dimensional array. Before the actual terrain is generated a large
enough heightmap to cover the whole field needs to be created. This means that
the bounding box of the field needs to be calculated, a rectangle that
encompasses the whole field.

To find it one needs to know the width and height of the bounding box. A simple
way to calculate them is by iterating through the fields nodes noting down the
minimum and maximum X and Y coordinates. Subtracting the largest X
coordinate with the smallest X coordinate gives the width of the field, and

22

subtracting the largest Y coordinate with the
smallest Y coordinate gives the height of the
field.

Now that the necessary width and height in
absolute values are known, it is time to decide
how many elements the actual heightmap array
will contain. This depends on the area each
element should take up in the absolute space
and is an arbitrary value the user should set. For
instance an element could take up the XZ area
of 2 ∗ 2 world units and describe the value of a Y
coordinate.

When the width and height of each element is chosen, calculate the amount of
rows and columns the heightmap should have. The amount of rows is bounding
box width divided by element width, and the amount of columns is bounding
box height divided by element height.

Since the heightmap only contains the Y coordinates, and the indices represent
XZ coordinates, each heightmap would start from the origin. In order to have
varying ZX coordinates each heightmap is assigned a position offset to the ZX
coordinate. The system in this paper views this offset to be at the bottom-left
corner of the array. For instance its X component could be the smallest X value
found in fields nodes and the Y component the largest Y value contained in its
nodes.

For each field a heightmap that covers the entire field is now created. Each field
now has a terrain description and a heightmap assigned to it. If the terrain
description inside of a field contains Perlin noise parameters use Perlin noise
and generate terrain for the entire heightmap. Likewise if diamond-square
parameters were used generate terrain using diamond square.

3.7 Terrain collision detection

So far the fields are of arbitrary shape, but the heightmaps containing terrain
for them are rectangular. This means that the heightmaps describe terrain that
is outside of the fields. If two fields were to be placed next to each other, each
field would have terrain overlapping the other ones terrain. Terrain sticking
outside of the field needs to be removed.

Figure 10: Red field rectangle
wrapping a field

23

In order to check that a heightmaps element is
inside of the field use line polygon intersection
methods. When generating a heightmap element
one need to be able to tell whether or not it is
inside of the field. If it is inside of the field keep
it, if it is outside remove it.

View the field and its edges as a polygon. Draw a
line outside of the field towards the element.
Note down each time the line crosses an edge of
the field. When the line reaches the element,
count how many edges it crossed. If the number
is odd the line went into the polygon and never
went out, if it is even the line went in and out of
the polygon again.

For each element in the heightmap, check if it is inside or outside of the field. If
it is outside it needs to be removed. Because an element cannot just be deleted
from a heightmap, a null value needs to be decided upon. In this paper a
heightmap element is viewed as empty if its value is ∅. When rendering the
heightmap no element with the height of ∅ will be rendered.

By now the terrain generated could look like in Figure 13.

Figure 12: A pair of fields with their terrain after terrain collision has been
performed.

Figure 11: Collision detection
for a point inside a polygon

24

3.8 Multiple field stitching

3.8.1 Base case

This section deals with stitching two adjacent areas together. It is closely related
to the previous section, section 2.4: same resolution patch stitching. The same
principal from section 2.4 can be applied when dealing with terrain and fields
of arbitrary shapes.

Edges of each field are viewed as vectors. Before stitching, the algorithm will
need to know how deep into each field it may go and alter the elements. Call
this Distance. After deciding how much a field affects another, points within
fields are parsed. One field will be stitched at a time. The field being stitched
will from now on be referred to as Field A, the field stitching it with will be
referred to as Field B and the edge stitched at will be referred to as the Edge.

Given a certain point, Point, inside Field A, first find out how far away it is from
the Edge. If it is further away than Distance, it is outside the scope of the terrain
stitching and leave it, if it is within Distance, this point should be processed.

The distance between the Point and the Edge can
be found by viewing the Edge as a line segment in
R2 and projecting the Point onto it. This will give
the point Point On Line, shortened POL, which is
the projection of Point on the Edge. The distance
between the Point and the Edge is the length of
the line segment POL to Point. The line segment
POL to Point will now be known as the Normal.

Now that it is certain there is a Point in Field A
which should be changed to fit with the terrain in
Field B, find out how much its value should
change. Just like in section 2.4 this is done by first
viewing the points at the edge between the two
fields. Calculate how large the height difference, Difference, is between the two
fields at that the contact point, POL.

Because one point is in Field A, the other one is in Field B and the POL can be
in either one, take a step into each field from POL. By going back one element
length into Field A the edge point in Field A is reached: A Point. Likewise
stepping into Field B one element length the Field B edge point is reached: B
Point.

To make the step normalize the Normal and multiply it by one element length.
A Point is reached by adding the Normal to POL and B Point is reached by
subtracting the Normal from POL. View figure 15 for illustration.

Figure 13: Showing the
Normal between POL as a
blue dot and Point as a green
dot.

25

Figure 14: Leftmost figure shows distance inside a field. Middle figure shows
Point, POL and the Normal. Right figure shows A Point and B Point being selected.

By subtracting B Point from A Point one will get the Difference. How much each
side should change at POL in order to fit together. If both heightmaps should
change so they meet in the middle, Difference should be divided by two and let
each side change (+−)Difference / 2

Both A Point and B Point are now known. In order to calculate Difference the
actual values need to be read from the heightmaps. Convert A Point and B Point
to indices for accessing each heightmap.

For the X component of a point subtract it to the X component of the
heightmaps position offset. This will give you the relative difference of the X
components. If the difference is divided on the width of each heightmap
element, the index used to access the element in the row dimension of the
heightmap is obtained. The column index is calculated in the same manner.
View Figure 16.

Figure 15: Converting absolute coordinates to heightmap indices

26

With the indices used to access the points now obtained, the values are read.
With the height difference between the heightmaps at POL known, the actual
change on the element at Point can be performed

The closer a point is to the Edge the more it should change and vice versa.
Within Distance from the Edge, (Distance / Element Size) gives the amount of
elements that could change. This amount is called Element Amount.

Difference is spread out along Distance. The gradient of the change is defined
as Difference dividing Element Amount, which is also the value for the base
change. Each value is changed by adding the gradient multiplied by distance
from this certain point to the Edge.

Here is an example calculating the change of difference. For instance, if the
element distance is 3, the Difference is 5 and Distance which defines how far
away the stitching area extends is 10 then

(Distance − Normal length) / Distance

The result here shows how far away a certain point is from the Edge in
percentage. Then multiply this result with Difference to get the amount of
changes that needs to be applied. In this case: (10 − 3) / 10 = 0.7, and the
change on element would be: 0.7 ∗ 5 = 3.5

If applied to every element within Distance in two adjacent fields, the algorithm
will produce nice results. View Figure 17. If the graph is larger and there are
multiple adjacent fields which need to be stitched, additional logic is needed to
ensure that the stitching does not override the result of changes already made
to certain Fields. The next section will discuss this.

Figure 16: Before and after two fields are stitched

27

A key detail to notice here is that the Normal
should be a Normal relative to a line segment,
meaning that if the projection of the Point onto
the Edge goes outside of the line segment, it
should bend and become a line between the
Point and the closest line segment endpoint.
Due to this, the Normal either goes from POL
to Point or an Edge endpoint to Point.

This is very important in order to ensure that
two fields do stitch together around corners
also. Otherwise there will be abrupt height
differences around the corner of certain
endpoints when the angle between the edges is
larger than 90 degrees. Figure 18 illustrates this. Notice, this is only necessary
when stitching two Fields. Stitching multiple fields is illustrated at a later
section.

3.8.2 Height Difference Altering

Using the above method when stitching two fields, Field A and Field B, the first
thing to do is to decide at which middle ground they should meet. In the
previous section it was mentioned that if one wishes to stitch two pieces of
terrain and let them meet in the middle, then the following formula that should
be used to calculate the difference is: (+−)Difference / 2. While this is true, the
formula does change a little when applied in practical cases to:
(+−)Difference ∗ amount

Amount is a new parameter indicating how much of the possible Difference
actually is to be used. In typical use-cases when both fields meet in the middle,
Amount should either be 0.5 or 1. When the fields stitch, they do stitching one
by one. After Field A has changed to half of Difference, Field B started to stitch.
The Difference between A and B is measured again. This time B applies
Difference completely.

In a case where both fields should meet halfway, Amount for Field A should be
0.5 and 1 in Field B. Depending on how much one desires each Field to change
and how the change scale should be set, the values may vary. A key point to note
here is that if the Amount at the first field stitching, Field A to Field B, is one,
Field A will reach Field B in one go and there is no reason to stitch Field B to A
also. This can be useful if performance is an issue and as little stitching as
possible is desired. Though if the height differences between the fields are big,
the results might look a bit too steep or crude.

Figure 17: A bending normal
example

28

3.8.3 Multiple field stitching

3.8.3.1 Multiple Field Issue

Previous sections deal with stitching two fields. While the method works well
for simple cases, it has a flaw that needs to be addressed if more than two fields
are to be stitched. When only stitching two fields, each field is only affected from
one of its edges, but when fields in a graph are stitched they will be affected
from multiple edges. This causes an interference issue close to the nodes, or
close to the line segment endpoints.

When Field A is stitched in regard to Field B along an edge, Edge, the points
within Distance from Edge will be affected. If then Field A is also stitched with
Field C along a new edge, which shares a common node with the previous edge,
the stitching will show signs of interference. As before the elements within
Distance away from the new edge will be affected. Because the current edge
shares a node with the previous edge, they will both alter the elements close to
the common node. View figure 19 for a better understanding.

Figure 18: Illustration of the field interference issue

3.8.3.2 Point Stitch

Interference can be solved by dividing the stitching into two sub cases, the stitch
in the middle of the edges and the stitching close to the nodes.

Shorten the strip of the edge currently stitched on from both sides. Instead of
stitching along the entire edge, only stitch along the middle of it, leaving it un-
stitched close to the endpoints, the nodes. Using a new variable called Radius
that for now can have the same value as the previous value Distance. Instead of
stitching between endpoint A and B of the edge, stitch only between the

29

segment (A + Radius) to (B - Radius), the sub segment of the edge shortened by
Radius from each side.

Because stitching is only performed in the middle of the edge, there is no need
to have a rotating normal anymore, as every point will have a projection on the
edge and not outside of it. Also because the rotating normal does not need to be
taken into account, the code can be simplified and made faster. This stitching
method will be referred to as normal stitch.

The following Figure 20 shows the result of such an operation.

Figure 19: Results after only Normal Stitch is used

Next, stitch the elements close to the endpoints that are within the segment
Radius. The segment Radius in this case does not mean the distance from the
endpoint to the element, it is the distance from the endpoint to the projection
of the element on the Edge, POL. If the current element is at Point, and its
projection on the Edge is POL, then the distance is measured between POL and
the endpoint currently stitching at. Meaning the stitch area will be the
rectangular area whose one side is going from an endpoint to the POL and
another side from POL to Point.

The Areas would in that case look like the illustration bellow, figure 21. The
green areas are stitched with Normal Stitch, while the blue ones are stitched
Point Stitch.

30

Figure 20: Example of an edge divided into six stitching areas. The blue areas use
Point Stitch while the green areas use Normal Stitch.

The idea behind the Point Stitch is to only stitch the elements to their closest
edge. This is to prevent the stitching with Field A at edge A to affect the stitch
near the edge B with Field B close to a common node. It would distort the
elements near Field B which may already have gotten stitched.

To implement this one can divide the area of the field from a nodes point of
view, into two areas. If inside of Field A stitching at Node A and looking towards
the center of the field, imagine an area on the left side and an area on the right
side. An area separated by a vector with one side on the left adjacent to Field B
and edge B and an area on the right side adjacent to Field C and edge C. The
vector sought after does not need to go to the center of the field, but be the
middle vector between the two edges converging in node A.

This vector can be found by finding the combined opposite vector of the node
and its two connected edges. Call this vector Separator. To find it view the two
edges meeting at Node A as two line segments going out from Node A. By
subtracting Node As coordinates from both line segments endpoints, the
segments become two vectors going out from origin. When both vectors then
are added up a new vector emerges. A vector pointing in the middle between
the two edges. Add the vector to the position of Node A and it will be going
between the two edges into the field from Node A. This vector will be called
Separator

Figure 22 shows the resulting scene. The separators are drawn as red lines for
both of the endpoints and in all of the areas.

31

Figure 21: Showing two fields with terrain divided for Normal and Point stitch
together with Separators in red

By doing this, each field will from a nodes point of view be divided into two
areas, an area on the left next to Edge A and an area on the right side next to
Edge B. The element stitching in one area should never be allowed to affect the
elements of the other area.

3.8.3.3 One side stitch

For each element that is stitched its position, its POL, its normal, the length of
the normal and the distance its projection has to the node currently at is known.
Because the Separator vector is also known, it is now possible to calculate
whether or not the element is on left or right side of it.

Simplify the problem and viewing it as a classical linear function with the
formula f(x) = ax + b. For clarity the X axis can be seen as going along the
vector going out from the current node along the Edge. The line gotten from the
equation should be the Separator and X is a point on the Edge.

When an element is chosen use its segment Radius distance as the X parameter
and find the point in which the elements Normal relative to the Edge would
meet the Separator, by using the linear function f(x) = ax + b. The value one
would get would be the distance from that POL to the Separator. Practically it
would be the maximum Normal length an element at distance x from the
current Node may have from the Edge and still be stitched while being inside of
the correct area adjacent to the Edge. Call this distance the Maximum Distance.

If the length of the Normal is larger than the Maximum Distance, the element
is not to be considered. It is then outside of its side of the field, on the wrong
side of the Separator. If it is smaller than Maximum Distance, then it should be
stitched. Figure 23 illustrates this.

32

Figure 22: Example of resulting area division and Maximum Distance calculation

3.8.3.4 Dynamic Distance Value

The current element selected is then adjacent to the Edge and is on the correct
side of the Separator. If this element would be stitch as before, it would produce
mostly fine results, but it would still produce interference with the stitching of
other edges. While the element will be on the correct side of the Separator and
will never be an element another edge also tries to stitch, the elements along
the Separator could look strange. There will be a height gap along the Separator.
This is because the old Distance variable is still used to divide and decide how
much each element should change in value. The element this Distance value
will think is the element furthest away from the Edge that should change the
least will be a value far away inside the other wrong side of the Separator.

In order to solve this, use the Maximum Distance variable instead of the
Distance parameter.

3.8.3.5 Radius Sync

There is one last detail yet to mention which has been saved until now to avoid
confusion. If the reader recalls at the start of this section it was mentioned that
the variable Radius for now could be seen as having the same value as Distance.
This is not really true. While the same value might be used for both variables,
and in overall good stitched terrain is produced, there will be a small amount of
elements with a noticeable height difference at the border between the Point
Stitch and the Normal Stitch.

This is because the Normal Stitch uses Distance and counts that the element to
change the least should be Distance away from the Edge and that each element
should change ((Distance − Normal. length) / Distance ∗ Difference .But
because the angles between the edges connected to a node are arbitrary, the
Separator will look different each time.

If the Edge is viewed as the floor cathetus in a right-angled triangle and the
Separator is viewed as the Hypotenuse then the height cathetus can be seen as
them Maximum Distance. The resulting Maximum Distance furthest away from

33

the node, the distance Radius, must have the same value as the Distance used
in Normal Stitch. Otherwise at the border between the two they will come to
different conclusions regarding how much each element should change.

The solution to this is simple. After finding the Separator measure its angle to
the Edge and use Tangent to calculate the length the floor cathetus should have
in order for the height cathetus to match Distance with regard to the angle.

Because one can view the edges as vectors in R2, use the Dot Product of the
vectors and acos to get the angle between them. angle = acos(v1 • v2). Then
the new Radius value will be Distance / Tan(angle) and the length of the
Hypothenusa, or actually the Separator, should be (𝑅𝑎𝑑𝑖𝑢𝑠2) + (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2).

3.8.3.6 Pinching

In most cases the graph will by now look neat and well stitched. But there is one
last corner case that should not be forgotten. If multiple fields meet in the same
node, the terrain will be stitched from the edges towards the inside of the terrain
until the distance Distance or until the Separator is hit. But because the values
under the Separator are never stitched, one the values left or right, they will
always remain in their original position.

This means that if a low lake element is close to a node and is stitched to an
adjacent mountain element also on a Separator and also close to same node,
neither will change and the height difference between them might be noticeably
large.

To solve this do a pre-stitch node sync. Before performing any type of stitching,
go through all of the nodes. In each node find out which fields are intersecting
and find the element in each field closest to the node. Add up their values and
find the average value. Then go into each field and sync it so that the element
closest to the node reaches the average value, do this by subtracting the average
value from the closest elements value. This will be the Difference in height.

Change the element according to the Difference so it meets its adjacent peers
near the node at the same height, and sync the rest of the elements in the field.
That is, pick an element in a field, calculate its distance to the node currently
syncing at and using the same formula as previously to calculate the new value
for the element.

Difference ∗ ((Distance − Normal length) / Distance)

This operation does not take very much to perform and it only deals with the
elements close to the node. These fields are not stitched, but are synchronized
so that their elements near the nodes meet in the same point.

34

After applying the whole stitching procedure from above, the result should be a
nice stitched terrain graph. While some of these procedures may seem
demanding, one should remember that most of them are only done two times
for each edge in each field for the entire stitch of the graph. It is a small piece of
the stitching time. Each edge only needs to have two Separators calculated on
each side, only two Radius values calculated and each node only synchronized
once. Figure 24 shows the final result.

Figure 23: A complete stitched graph

35

36

4 Results

The C# implementation of the algorithm is divided into several steps, similar to
how they were described in the sections above. It was mainly designed to be
proof of concept code, to run decently well without being too abstract so that it
also could be read and understood easily and help one grasp all of the
procedures. The result is a small library containing all of the classes and
functions necessary to generate graphs, terrain and to merge them for a good
resulting terrain. It uses the vector classes of the OpenTK (OpenTK 2015)
graphics library, but this can be changed to any other implementation of vectors
and their corresponding functions such as dot product calculation,
normalization etc.

Graph generation and terrain generation algorithms are part of the code, but
are not the main goal of this paper. The code provides a simple graph generating
algorithm, but this is only an example. Likewise the algorithm used to generate
terrain, such as the Perlin noise and the diamond square algorithm, are here as
examples and could be switched out for any other algorithm or implementation
one sees fit. Therefore the result section will mainly be concerned with the
stitching, the stitching performance and the results of it.

The different types of terrain can be described in two ways, as Perlin noise
parameters or as diamond square parameters. Each field can have a terrain
description assigned to it. The stitching takes in a graph including all of its
nodes, edges, fields, terrain descriptions assigned to each of the fields together
with a parameter deciding how much each field may change. It outputs the
same graph where the terrain of each field is modified to fit that of the
neighboring fields. This allows users to create different types of terrain for each
field and to then merge it into one large cohesive terrain.

4.1 Performance

The performance section will mainly be concerned with the performance during
stitching, as the graph and terrain generation algorithms are arbitrary and user
replaceable.

When stitching a field relative to an edge, Distance indicates how far into the
field elements may be affected by the stitching. A higher Distance value means
that more elements in each field will be considered and that the transition
between two fields will be smoother, spread out over a larger area and perhaps
not as steep. One can assign a different Distance variable to each field though,
allowing for more fine control over the features. If for instance a field with lower
altitude is created to represent a lake bed, a larger Distance variable would
produce a more dry lake while a smaller Distance would account for a steeper
transition and a less dry lake.

37

The size of the total graph area will of course be a major factor affecting the
execution time. More elements to stitch means longer execution time. The
amount of fields in the graph and the amount of edges to stitch also affect
performance. More edges mean larger amount of values that fall under the
Distance value and more fields means more fields to stitch against each other.

For performance measuring the library containing a code implementation of
the algorithm is run and the execution time of its functions are timed. The
timing is performed using the built in C# .NET 4.5 Stopwatch functions and are
displayed in seconds after each run. While execution time is highly relative from
machine to machine, this can at least help to gain an understanding of the
execution times involved for stitching. The machine used for timing is a
Windows 8.1 ROG Asus G55V Laptop, using an Intel Core i5 3210M CPU with
3.0 MB L3 cache, 512 KB L2 cache, 128KB L1 cache capable of running 4 threads
on 2 physical cores and 12 GB of DDR3 ram at 1600 MHz. If this was to be run
on a desktop machine, the performance should be considerably better.

There are three test cases used. Each test case varies in the amount of fields and
edges it contains and is tested on three different graph sizes with three different
Distance values assigned. As mentioned earlier performance is most affected by
the field count, edge count and the Distance value. Because the Distance value
goes along each edge to check for elements within range, the general formula
for the amount of elements one would pass is roughly:

Edges passed ∗ Average Edge Length ∗ Distance

Though depending on the graph this may not always be true since graphs with
sharp corners will have very sharp Separators which will decrease the amount
of elements on has to pass.

The graph is created on a rectangular plane where each side has the same
length. The side lengths vary in the four cases, and thus the size of the terrain
varies in four cases, as listed in the tables below. Each element size is two units.

Test one is created using a graph with side length of 2000 units, and thus
considering the element size of two units, it contains about 2000000 elements.
Test two has side length of 2500 and thus contains about 3125000 elements.
Test three has a side length of 3000 and 4500000 elements and finally Test
four has side lengths of 3500 containing 6125000 elements.

Each case is then tested running each test with three different Distance values,
60, 80 and 100. There is no point in using smaller Distance values due to the
execution time being so small, and using a larger Distance value than 100 would
simply cut into the opposing edges of the field. The Distance value also affects
the performance in terms of milliseconds, as one will see below, and thus does
not matter a great deal. It is mainly the different graph complexities that affect
performance.

38

Each case is ran in an automated testing environment 15 times and the expected
values for each dataset are calculated and displayed bellow. All measurements
are performed using the built in stopwatch timer of the .NET Framework 4.5.

 Field count Edge count
Case 1 16 40
Case 2 36 84
Case 3 64 144

Distance: 60

Element count 2000000 3125000 4500000 6125000
Case 1 2,27s 3,51s 4,95s 6,71s
Case 2 2,79s 4,21s 5,91s 8,05s
Case 3 3,39s 5,11s 7,12s 9,48s

Distance: 80

Element count 2000000 3125000 4500000 6125000
Case 1 2,34s 3,59s 5,08s 6,85s
Case 2 2,93s 4,33s 6,09s 8,21s
Case 3 3,48s 5,22s 7,27s 9,83s

Distance: 100

Element count 2000000 3125000 4500000 6125000
Case 1 2,52s 3,77s 5,21s 7,07s
Case 2 3,07s 4,48s 6,25s 8,43s
Case 3 3,55s 5,65s 7,82s 10,11s

s

2s

4s

6s

8s

10s

12s

1500000ec 2500000ec 3500000ec 4500000ec 5500000ec 6500000ec

LINE SUMMARY

Case 1 Case 2 Case 3

39

Do note that the difference in element count between the tests is not linear, thus
making the plotted lines not linear as well. Test four has 1625000 more
elements than Test three, which has 1375000 more elements than Test two,
which has 1125000 more elements than Test one.

4.2 Renders

The following terrain and images were created using the system described in
this paper together with a custom created renderer for prototyping purposes.

As a first step a graph to describe the layout of the terrain is necessary. For
this a custom function that generates a random network graph was created.

2,
27

s 3,
51

s 4,
95

s

6,
71

s

,s

2,
34

s 3,
59

s

5,
08

s

6,
85

s

,s

2,
52

s 3,
77

s 5,
21

s

7,
07

s

2,
79

s 4,
21

s

5,
91

s

8,
05

s

,s

2,
93

s 4,
33

s

6,
09

s

8,
21

s

,s

3,
07

s 4,
48

s

6,
25

s

8,
43

s

3,
39

s

5,
11

s

7,
12

s

9,
48

s

,s

3,
48

s

5,
22

s

7,
27

s

9,
83

s

,s

3,
55

s

5,
65

s

7,
82

s

10
,1

1s

SUMMARY

Case 1 Case 2 Case 3

40

The resulting graph can be seen in figure 24.

Figure 24: An empty graph before generating terrain

In this demonstration terrain will be generated using four main types of
features, lake beds, low lands, fields and mountains. The algorithm used for
generating the terrain is Perlin noise, so Perlin noise parameters are provided
as four terrain descriptions. The descriptions can be seen in the following
table. Do note that the values used here work well with this implementation of
a renderer and that results may differ if used on a different renderer with
different settings.

Name Amplitude Frequency Persistence Offset
Mountain 50 0.07 0.5 50
Fields 20 0.1 0.5 25
Low land 15 0.1 0.5 15
Lake bed 10 0.07 0.5 3

The fields of the graph are assigned a terrain description each. Figure 25
illustrates this by giving each field a color based on terrain assigned to it.

41

Figure 25: Illustration of a graph with its fields assigned a terrain description
each. Lake beds are colored in dark blue, low land is colored in light green, fields
are colored in darker green and mountains are colored in grey.

After each field has a terrain type assigned, terrain is generated for each one.
Figure 26 illustrates the graph with just the raw terrain prior to the stitching.
The color is added as a post-process by the rendering system in order to help
illustrate the height differences. The terrain generating system in itself does
not deal with visualization.

Figure 26: The graph with each field having its terrain generated.

42

Next the terrain pieces are stitched together. A Distance variable is chosen and
assigned for use. In this case the same Distance variable is assigned to each
edge of the graph. The distance variable will vary from system to system,
implementation to implementation and the scale the user chooses to work
with. After the stitching is performed the resulting terrain from Figure 27 is
generated.

Figure 27: The final stitched graph where each terrain piece has been stitched
with its neighbours.

In Figure 28 the terrain is rendered as a grid of boxes with varying height in
order to show how large space each element takes up. In a real use case
scenario the rendering system can render the terrain as a smooth mesh
instead.

Figure 28: The terrain from figure 27 without graph edges drawn and with a
different perspective

43

44

5 Discussion

5.1 Performance

In its current implementation the algorithm is running in a single thread. While
there are plans to improve this aspect in the future and while the following
section discusses possible implementations of concurrency, this section will
show that the performance already achieved is sufficiently good. The figure
found bellow, figure 25, displays a piece of terrain comprised of 3125000
elements that was stitched in 3.49 seconds on a mobile x86 CPU.

3.1 million elements is a large amount of elements for terrain used in real-time
graphics. Modern game engines strive to support terrain with 2.7 million
elements. (Marcin Gollent 2014) While in many heavy 3D applications the mesh
of a mountain or other piece of terrain may be comprised of a similar amount
of vertices, this is only a heightmap, not a mesh. Converting this heightmap to
a mesh and rendering it in a real-time graphs system would be very costly per
frame. Large terrain of this type are tessellated and rarely produced in such
detail at once. (Mattias Widmark 2011)

In real-time graphics one would usually generate the areas far away with low
fidelity, perhaps only assigning a few thousand or hundred elements for a
mountain far away, and then increase the fidelity closer to the camera. Even
close to the camera one would probably not generate a heightmap of 1 million
elements, but would instead generate a relatively higher amount than usual and
mesh it together. Add some vegetation, textures and texture bump mapping, to
look like a cohesive detailed continues surface (Mattias Widmark 2011).

In non-real-time applications, such as animated movies, the meshes are very
large and contain a large amount of assets being rendered. A one-time waiting
fee of 3.49 seconds to stitch highly detailed and controlled terrain would be
small when considering the render time of a single frame of a Pixar movie is
measured in hours. (Bettinger 2012)

If one would generate multiple versions of the same graph containing the same
terrain in a variety of resolutions, one could combine in them into a single mesh
where the fields far from the graph center only use a few thousand elements and
the fields close to the center contain tens of thousands of elements. This way far
away areas would look well anyhow since they are far away, adjacent areas will
look well due to their high resolution, and the terrain mesh could be even larger
because faraway places do not cost much memory to produce and they would
be event faster to render.

45

Figure 29: The terrain discussed in 5.1 Performance

5.2 Caching

A number of times during the execution of stitching, the algorithm needs to
know the angle between certain edges, calculate Separator vectors together with
their length and calculate the bound along each edge each stitch should be
performed. Sometimes the Separator vectors of two adjacent edges will cross or
overlap each other or other Distance variables bounds. In order to prevent this
the algorithm makes certain calculations, as shown in each corresponding
stage.

Performing these calculations when values are needed during the stitching may
be simple to implement, but should be avoided in a final product. Multiple
stages of the algorithm sometimes needed to access values already calculated
previously, for example angles between vectors. It would be desirable to extract
this code and perform all of these calculations before running the actual
stitching. This is possible because it only requires one to have the graph.

If this is done only once for each edge and node before running the algorithm,
and the values stored in an easily accessible and fast data structure, the

46

algorithm could just fetch the data when necessary and improve the execution
time.

5.3 Future Improvements

5.3.1 Multithreading

The algorithm contained in this paper is currently implemented as straight
code, even so it is sufficiently fast for most reasonable use cases of today. View
the discussion part about performance for more details. One area of the
algorithm that could see improvements though, is multithreading it.

The multithreading could be implemented in multiple ways and in several
layers. One suggestion would be to first of all multi thread the creation of
terrain. Create a few worker threads and assign a couple of fields to each one.
Let each thread generate terrain for the fields assigned to itself. This should not
be an issue to implement since the creation of terrain would only use variables
private for each field, having no need for locks or other mechanisms. If the fields
are large perhaps only assign one field to each thread.

Each edge and node of the graph are given a Distance value before they are
stitched, indicating how far in each field should be changed. Because this
variables value, or length if seen as a vector, is modified during Node Stitch, the
area it covers along an edge would never overlap with the stitching from another
adjacent edge. It too fits well for multithreading and could be implemented
without any locks or mechanisms.

One only needs to make a slight change to the order the Node Stitch and the
Normal Stitch are performed. Instead of stitching fields and imminently
applying the changes, note down the changes to each element and apply them
after every edge has been stitched. This way one could assign each edge to a
thread for stitching or give each thread a list of edges to stitch, and could stitch
them concurrently without worrying that a thread would read an already
modified element and miscalculate.

When going through the elements of the fields it would be logical to do so in
two nested for-loops since the data structure is a two-dimensional array of
floats. And because the elements of the field being stitched inside do not affect
each other during and after the stitch, one could also make this concurrent.
Consider using OpenMP (OpenMP 2015) to thread the for-loops or perhaps the
built in C# functions for loop threading if you are using C#.

5.4 Rounding errors

When one selects a point to stitch it is first seen as the result of two indices used
to fetch data from an array. To calculate the normal from the point to the edge
one views the point as a point in R2 with absolute world coordinates, instead of
as a set of indices and a value. The indices are converted. After one has found

47

the normal one shortens it to become a normalized vector and from the point
where the normal meets the edge (at POL) ones goes by one element length in
each direction of the Edge. One element length into the field one stitches with
regard to, and one element length into the stitched field, to get the elements
that meet and measure their difference.

When one does this one ends up with two new points with absolute values in
R2. In order to read the values from these points one converts the points into
indices to access the element below them in the corresponding field they are
found in. When converting the points one might have no issues and end up with
a perfectly stitched terrain, but might other times find themselves having
terrain that looks good but has a few artefacts sticking out slightly above or
below the others.

This is because of the rounding errors. The array is accessed by using an index
which is an integer, while the points X and Y components are probably float or
double values. Based on the implementation one should consider whether to
simply cast the indices to integers or whether to round them properly.

If one rounds them properly they might realize that they sometimes could get
indices out of bound. If an array has 10 elements length one might sometimes
get indices retrieved from converting absolute values to coordinates in the
range between 9.5 and 9.99. The rounding function may then round them up to
10 instead of the intended 9 and make them go out of bound since an arrays
index ranges from 0 to n - 1, where n is the number of elements. This can be
easily solved by making a check to see if the index is equal to n and then shorten
it by 1 to become n - 1. Though this might also be time consuming.

During the testing phase both solutions had their pros and cons. If one simply
makes a cast to integer one will never have the issues of indices being out of
bound, but one might have a bit crude terrain. If the element to access according
to the point will be at index 4.4 it will be cast into 4, but if it is at 4.7 it will again
be cast into 4 instead of 5 which may be more appropriate.

5.5 Wrong field issue

If one has a node at which multiple fields meet, and the resolution of the Fields
is not very high, by which it is meant that there are few elements in each Field
and their side lengths have small values, one might run into a small issue. When
Field A stitches with regard to Field B, and Point is only one or two indices away
from the Node. And it tries to find the element in Field B which whom it will
stitch, by taking the normal from the Edge and go into Field B with the distance
of one element length, that the element Field A will find will go too far through
Field B and perhaps end up in Field C.

The solution to this problem could either be to check if you are one or two
indices away from the node and create a special case that manually checks an
element one-two indices away from the Node in Field B, or to just check which

48

other field the point might end up in and use that points value instead. In the
tests performed during the methods development it could actually be more
correct and provide a better result, but could be more time consuming and may
vary from graph to graph and resolution to resolution.

5.6 Only use diamond angle

Instead of using convenient trigonometry such as Tangent and Cosines to find
the angle between the Edge and the Separator, one could use the diamond angle
method instead. The resulting value would be a value between zero and four as
opposed to -π to π, but it could easily be converted, as shown in section 2.5
Diamond angle, to radians.

5.7 Conclusions

The projects main goal was to introduce a new graph-based approach to
generating terrain. This means that instead of only using classical terrain
generating algorithm and generate terrain in all directions, graphs are used to
set the layout in combination with the classical algorithms to populate them.

After first finding all of the fields in the graph, and generating terrain for each
field, stitching the resulting terrain pieces together was expected to be the most
difficult part to implement and the deciding factor if the method would be
viable. The introduced method for stitching terrain of arbitrary shape proved to
be viable, and producing correct results with reasonable execution times.

The performance and execution times measured in the test cases were
surprisingly good, and the algorithm seems to be well suited for multithreading.
Although multithreading is currently not implemented, it could be without too
many modifications to the algorithm and mechanisms.

The drawback of the algorithm is that it may contain too many steps seen as it
both requires terrain types to be described as terrain descriptions, a graph to be
generated, terrain generated and then also stitched.

In conclusion the algorithm provides a good option for those who desire more
control over the generated terrain and have the time and resources to
implement and run it.

49

References

Adams David. Automatic Generation of Dungeons for Computer Games. The

University of Sheffield, 2002.

Alain Fournier, Don Fussell and Loren Carpenter. “Computer rendering of

stochastic models.” Communications of the ACM, June 1982: 371-384.

Bettinger, Brendan. “Pixar by the Numbers – From TOY STORY to BRAVE.”

Collider, 2012.

Colin Smith. On Vertex-Vertex Systems and Their Use in. The univeristy of

Calgray, 2006.

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steven

Worley. Texturing & Modeling, A Procedural Approach. AP
Professional, 1994.

Eric Stephen Lengyel. Voxel-based terrain for real-time virtual simulations.

University of California, 2010.

Group, Khronos. OpenGL. Khronos Group. 1997-2015.

https://www.opengl.org/.

Henrik Zimmer. "Voronoi and Delaunay Techniques." July 30th 2005.

IEEE . IEEE Code of Ethics. 2015.

http://www.ieee.org/about/corporate/governance/p7-8.html.

Julian. Encoding 2D angles without trigonometry. 5 June 2009.

http://www.freesteel.co.uk/wpblog/2009/06/05/encoding-2d-angles-
without-trigonometry/.

Lucasfilm. Genesis Sequence of Star Trek 2, the Wrath of Khan. Lucasfilm

computer graphics division, 1982.

Marcin Gollent, CD Project RED. “Landscape creation and rendering in

REDengine 3.” GDC 14, 2014.

Mattias Widmark, DICE. "Terrain in Battlefield 3: A Modern, Complete and

Scalable System." DICE 2011 GDC presentation. DICE 2011 GDC, 2011.

Microsoft. DirectX. Microsoft. 2015. https://support.microsoft.com/en-

us/kb/179113.

Novalogic. Delta Force 2. By Novalogic, 1999.

50

Nove: Season 36, Episode 4, Hunting the Hidden Dimension. 28 Oct 2008.

OpenMP Architecture Review. OpenMP. 2015. http://openmp.org/wp/.

OpenTK Group. OpenTK. 2015. www.opentk.com.

Rozenberg, Grzegorz. Handbook of graph grammars and computing by graph

transformation: volume I. foundations. Leiden Univ. The Netherlands,
1997.

Yotam Livny, Zvi Kogan and Jihad El-Sana. "Seamless patches for GPU-based

terrain rendering." The Visual Computer, March 11, 2008: 197-208.

51

TRITA-ICT-EX-2015:72

