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Abstract 

Procedural terrain generation is a field that handles procedural, not by hand, 
generated realistic looking terrain for use in simulations, video games, movie 
special effects or art. It allows for creation of vast and far more detailed terrain 
than humans can create by hand. 
 
In this paper a new method for procedural terrain generation is presented. 
Terrain is generated in three steps. An arbitrarily shaped network oh nodes, a 
graph, is used as a base to design the shape and layout of terrain features. 
Common algorithms are used to generate custom terrain features inside the 
graphs sealed areas and finally the generated terrain is merged into a single 
piece using a new method. In this manner, more controlled and detailed terrain 
can be created as the layout and shape of features can be controlled. 
 
Keywords: Terrain, real-time computer graphics, digital-cartography, graph-

grammar, Perlin noise, diamond-square   



 

  



Referat 

Området terräng generering hanterar procedurellt, icke för hand, skapande 
utav realistisk terräng för användning inom simulationer, data spel, filmers 
specialeffekter och konst. 
 
I denna uppsats presenteras en ny metod för procedurell terräng generation. 
Terrängen genereras i tre steg. Ett godtyckligt nätverk av noder skapas, en graf, 
och används som grund för att designa och forma utläggningen av terrängens 
drag. Kända algoritmer används för att skapa dragen inuti grafens tomma ytor 
och slutgiltigen sys den genererade terrängen ihop till en sammanhängande 
helhet med en ny metod. På detta vis kan man skapa mera detaljerad och bättre 
styrd terräng då man både kan kontrollera dragens former och utläggning. 
 
Nyckelord: Terräng, realtid datorgrafik, digital-kartografi, graf-grammatik, Perlin 
noise, diamond-square 
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1 Introduction  

1.1 Background 

The area of procedural terrain generation has existed since the 1980s with the 
purpose of procedurally, not by hand, generating vast realistic looking terrain 
for use with computer graphics. Its first commercial use was for creation of alien 
planets in the popular TV series Star Trek (Nove: Season 36, Episode 4, Hunting 
the Hidden Dimension 28 Oct 2008) (Lucasfilm 1982), a feat amazing the 
crowd at the time. 
 
Most of the algorithms are based on fractal mathematics and are often showcased as an 

area promoting fractals. This is a vast area growing with the increase in modern 

computing power with lots of problems that still need to be solved, and lots of problems 

that still can be explored. 

 

1.2 Problem Statement 

Two of the most popular algorithms for generating terrain today are the 
Diamond-Square algorithm and the Perlin Noise algorithm. Both produce an 
array of numbers called a height map, sometimes also called a patch. 
 
The Diamond-Square algorithm (Alain Fournier 1982) produces heightmaps by 
using fractals. At start, the patch has four preset points, a point in each corner. 
These preset values are called seeds. It takes two of these points and views them 
as one line. It then breaks the line by inserting a new point with a random offset 
in the middle, breaking it down into two lines. This is repeated several times. It 
produces realistic looking terrain but it is difficult to control the features of the 
resulting terrain. Scaling the algorithm to “infinite”, or actually boundless, 
terrain is difficult because each generated heightmap relies on the heightmap 
next to it for points to break. Also, the sizes of the heightmaps have to be certain 
fixed dimensions. 
 
Perlin Noise (David S. Ebert 1994) is easy to scale and make infinite terrain. It 
produces terrain by combining waves with high or low amplitudes and short or 
long frequencies a few amounts of times. The only parameters it requires are 
the description of a wave, the rate of descent for each iteration, which is how 
the maximum amplitude of the wave should change on each iteration, and the 
number of iterations to perform.  
 
But when one defines a wave, it will generate terrain with the same maxima and 
minima for each iteration in all directions. Variations such as lows and highs in 
mountains and valleys do not look natural, they will be evenly spread out. For 
example, in a patch of 500 square meters there will always be the same amount 
of mountains and valleys, which is not the case in natural terrain. 
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1.3 Problem  

Instead of building a terrain system that generates the same terrain in all 
directions with the same formula, a graph-based system is created for 
designing, generating and modifying infinite terrain.  
 
This system should be able to manually or procedurally generate a graph. All 
the closed areas of the graph are called fields. Each field contains terrain and is 
assigned properties describing it. The terrain of each field is generated based 
on the assigned properties. For instance, mountain properties with high peaks 
or flatland properties with a flat surface. 
 
The fields should be of irregular shapes, not just squared patches and the 
generated terrain should be stitched together from the fields so that borders 
together from fields do not become visible. 
 
Nodes of the graph can be added, removed or moved to shape the features of 
the terrain. An infinite world could be generated with a random graph, while 
allowing fine editing. For instance to place a mountain at point P and shape it 
while the rest of the world is auto generated.  
 
This way one can create much more interesting and non-uniform landscapes, 
with a single infinite terrain graph. Naturally ranging from tall Alps like 
mountains to Mediterranean reaches and African steppe like flatlands, with 
precise control of the environment.  
 

1.4 Purpose 

 
The field of procedural generation is still relatively young and underdeveloped 
with many aspects to explore. The current methods only provide basic 
functionality to generate general terrain. This project aims to expand upon 
them and create a method that makes up on their weaknesses. 
 
By dividing the process into multiple steps as opposed to just one, more control 
over the resulting terrain is introduced. Using a graph allows users to speed up 
the process of creating vast worlds while giving them the ability to pick certain 
pieces and decide their features. 
 
Today artists spend hundreds of hours creating mountains, valleys and plains 
for video games before spending more time placing and merging the created 
assets into a natural looking solid piece for use. The automated algorithms 
mostly only provide repetitive terrain. Either by first generating a patch of 
terrain and repeating it in all directions, or by generating the same type of 
terrain in all direction based on some parameters. On the other hand realistic 
and exiting terrain in computer games or movies is often designed to be the 
opposite, differing from place to place to allow exploration and excitement with 
custom breathtaking designs.  
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1.5 Goals and Tasks 

The main goal is to develop a system and a library in C# for creation of graph-
based terrain. The library should provide all the necessary algorithms, data 
structures and tools one needs to generate, shape and manage graph-based 
terrain.  Enabling the user to quickly and easily create realistic looking terrain 
that can be extended and shaped with great detail. 
 
The system should be using modified versions of existing terrain generating 
algorithms to generate custom terrain inside of the graph fields, store it in 
heightmaps and stitch the different pieces into a solid terrain piece. In order to 
stitch the borders between the irregularly shaped fields and terrain new 
algorithms will be developed. 
 
The main goals of the project  
 

 Review current state of the art algorithms for generating terrain. 

 Implement the commonly used ones efficiently and make sure they reach 
good performance. 

 Create good data structures for containing and managing the graph and 
fields. 

 Create a good data structure for the generated terrain heightmaps which 
takes into account the need for stitching irregular terrain pieces. 

 Create an algorithm for stitching the terrain of irregularly shaped fields. 
 
Additional goals are: 
 

 Make sure the graph and the terrain can deterministically be recreated 
when only storing the parameters, increasing the portability of even 
infinite worlds.  

 Make sure the produced library is external library and platform 
independent. Meaning that no other external libraries will be needed to 
compile and that the code is not tied to specific architectures. 

1.6 Methodology / Methods 

 
The project is divided into four phases, a research phase, a theory phase, an 
iterative prototyping phase and a testing phase. 
 
An in-depth research phase of the current methods and algorithms used for 
procedural terrain generation will be conducted. During this phase necessary 
knowledge and theory will be gathered. 
 
Based on the current foundations and research conducted by others, theory 
behind a new method will be developed. The method should meet all of the 
requirements and goals listed in the previous section. It is very important that 
the research phase is conducted with care so that the new theory does not 
simply try to reinvent existing theory. 



4 
 
 
 
 

An iterative and agile development process of a prototype that implements the 
newly designed theory will be performed. The prototype and its development 
will try to realize all of the goals set above and also provide feedback to the 
theoretical phase as new unforeseen issues and views may be found during the 
development. When new findings are made backtracking to the theoretical 
phase will be done to review what could be improved or changed. 
 
A testing phase is to follow as conclusion to the project. The prototype will be 
tested to see that it functions as desired, outputs desired results and does so in 
reasonable execution time.  
 

1.7 Risks, Consequences and Ethics  

 
As in other projects, this project contains risks. The main risks of this project is 
that it is too big, that it would become too difficult to implement in the available 
timespan and that it would try to reinvent something already created. Another 
major risk is to fail the goal of implementing the system as a flexible 
independent library by accidentally making the code too complex. 
 
The risk of having a too wide scope will be minimized by doing weekly 
performance and time estimates, to make sure the base of the project gets 
completed first. Such as terrain algorithm and data structure implementations 
and afterwards add upon them. This is best prevented by doing solid research 
beforehand. 
 
The C# library will be created as a separate project in the solution and only 
include what is necessary in it to create a good API. If any external libraries have 
to be used or code binding the user to specific external platforms of other 
authors, they will be contacted to obtain approval and reference them fully. 
Another option is to, if possible, write and implement equivalent in the time 
given. 
 

1.8 Ethics and Sustainability 

 
In today's graphics industry hundreds of hours are spent on modeling and 
designing terrain. The project aims to help speed this process up by allowing 
for more control during the generation of the terrain so that less time needs to 
be spent post processing and manually shaping the terrain if it initially is not 
satisfactory. If the time spent shaping the terrain can be shortened it would help 
save resources as both economical resources and human resources could be 
redirected to other causes. 
 
A main ethical issue is to make sure the project and the new method developed 
do not step into work already developed by others but stands on its own. As the 
field is still young and somewhat undeveloped there has been a lot of research 
done that does not surface to gain attention, making it difficult to find, bringing 



5 
 
 
 
 

with it the risk of this project being too similar. This has to be countered by 
extensive research prior to development.  In conclusion this project will do its 
best to follow the IEEE Code of Ethics as closely as possible. (IEEE 2015) 

1.9 Disposition 

In the Background and Methods chapter the necessary background knowledge, 
methods and algorithms are displayed together with their respective pros and 
cons together. The research conducted prior to the project. 
 
The Execution and Theory chapter presents the new methods and how they are 
used. The main theory and concepts developed during the project are 
presented. 
 
In the Results chapter the terrain produced by the developed methods is 
presented and the execution time is measured. The section shows and compares 
the execution times of different test cases and puts them in perspective.  
 
Finally in the Discussion chapter the resulting system and algorithms are 
discussed. What they achieved and what the original aim was together with 
possible improvements, both inside and outside the scope of this project 
together with a few conclusions.  
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2 Background and Methods 

2.1 Heightmaps 

A heightmap is one of the most basic and common methods for storing terrain 
data. The underlying data structure is a two-dimensional array or list of 
arbitrary size. Indices of the array correspond to X and Z coordinates of the 
heightmap, while values stored in the array correspond to Y coordinates, the 
height. For example, given a point (x, y, z), it is represented in the heightmap 
as a value y stored in column z and row x.  
 
Because heightmaps are simple to implement, fast to access data from and 
intuitive to use, they are common and became the backbone of many 
algorithms. Heightmaps are used by terrain generating algorithms, such as the 
diamond-square (Alain Fournier 1982) and the Perlin noise (David S. Ebert 
1994) algorithms. 
 
In order to render the terrain as a surface, it has to be converted into a mesh for 
the graphics driver to handle. A mesh is a solid Polyhedron consisting of solid 
polygonal faces, straight edges and corners called vertices. Converting the 
terrain heightmap into a mesh is relatively straightforward. (Colin 2006) 
Detailed polygon meshes can be created by using all values in the heightmap 
while coarse polygon meshes can be created by skipping a few values instead. 
(Colin 2006) 
 
The heightmap itself only contains data describing the height points, 
sometimes called the features, of the terrain. It does not contain any additional 
information. When rendering the heightmap, color, textures and other 
additional data is added by the rendering system, which is a separate system 
outside the scope of this paper. Such systems are usually based on either 
Microsoft DirectX (Microsoft 2015) or a version of OpenGL (Group 1997-2015). 
 
Disadvantages of heightmaps are 
that they only store one Y 
coordinate for each pair of XZ 
coordinates. Only one surface can 
be represented meaning that for 
instance caves cannot be 
represented in such systems. For 
more advanced systems that 
include cavities and complicated 
landscape, voxels, volumetric-
pixels, can be used instead (Eric 
2010). Figure 1 shows how 
heightmap terrain can look like. 
 
 
 

Figure 1: Example of heightmap terrain with 
additional color added. No point can 
overlap another. 
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2.2 Diamond-square algorithm 

The diamond-square algorithm (Alain Fournier 1982) produces heightmaps by 
using fractals through an advanced midpoint-displacement algorithm. The 
algorithm uses a small piece code recursively to generate terrain. It was first 
introduced in 1982.  
 
The idea behind the algorithm is to break and 
deform large line segments into smaller ones 
until they look like a mountain ridgeline. 
Suppose there is a line with two endpoints P1 
and P2, which have Y coordinates -1 and 1. 
The algorithm goes to the middle of the line, 
measures the height at that point and adds a 
small random offset to the height to form a 
third point P3. The offset can be positive or 
negative. The three points can now be 
viewed as two line segments, (P1, P3) and 
(P3, P2). This is the midpoint-displacement 
algorithm, an algorithm for breaking line 
segments. If this process is repeated a large amount of times one would get 
shapes that are similar to mountain ridgelines. Figure 2 shows an illustration 
of the midpoint-displacement algorithm running three iteration. 
 
The diamond-square algorithm is based on this idea but functions slightly 
differently since it is applied in three dimensions instead of two. When the 
principle is expanded from two to three dimensions the data structure is 
expanded as well. Instead of using a one dimensional array or list that is 
commonly done, a two-dimensional array is used instead, a heightmap. 
 
The algorithm takes in a heightmap as a parameter and populates it with values. 
When the algorithm finishes, the heightmap will contain terrain data. Since the 
algorithm is based on the idea of large line segments being broken down into 
shorter line segments, the heightmap must have a few initial lines to break. A 
few points in the heightmap must be manually set before the algorithm can 
execute. Setting initial height values that dictate the terrain shape manually is 
called seeding. The four initial points to seed are the four corners of the 
rectangular heightmap.  Seeds should have different values and be larger than 
∅.  
 
The algorithm then performs two steps: a diamond step and a square step. 
 
In a diamond step, a square of four points is taken. A new value at the 
intersection of the points is generated. The value is an average of the four values 
plus a small random offset to create a more natural looking result. For instance: 
suppose the four corner points are (0, 0), (0, 2), (2, 0), (2, 2). The value of the 
middle point (1, 1) is calculated by averaging the four corner values and adding 
a small offset to it. 
 

Figure 2: Midpoint-displacement 
in two dimensions run for three 
iterations on a line segment 
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The square step functions similarly. Instead of taking a rectangle, a diamond (a 
cross) of four points is taken, and just like the previous step, a value is generated 
at the center of the diamond by averaging the four diamond points plus a small 
random value. Points (0, 1), (2, 1), (1, 0) and (1, 2) would be used for calculating 
(1, 1).  
 
For each iteration across the heightmap more and more values are added until 
it eventually is full. Figure 3 illustrates how this is performed on a 5x5 
heightmap. The leftmost heightmap is the initial heightmap, then the square 
step is performed, the diamond step performed four times, the square step 
performed again four times and finally the diamond step performed twelve 
times. In total four iterations are performed, reaching iteration level four, 
before the heightmap is fully populated. 
 

 
Figure 3: Example of terrain generation on a 5x5 heightmap  

 
The algorithm performs the diamond and the square steps until a specified 
iteration level is reached, a specific amount of lines broken, or until the 
heightmap has all values set.  
 
Because the diamond step takes a square of values with one point in the center 
for calculation, for instance points (0, 0), (0, 2), (2, 0) and (2, 2) when setting 
(1, 1) in the center, the heightmap has to have the dimensions: (2n) + 1 ∗  (2n) +
1 . The diamond step will need a point to be perfectly in the center. A few 
possible heightmap dimensions are then: 29 ∗ 29, 1025 ∗ 1025 or 2049 ∗ 2049. 
 
The algorithm has a major feature that can both be good as bad, edge cases. If 
performing operations on a point close to the edge of the heightmap, for 
example point [0, 5] (left edge, column 5), and one would like to get the value 
of the point left of it for the square step, one would realize there is no point to 
the left. Instead there are two solutions, either use a random value, or wrap the 
heightmap and get the point from the opposite side. Perhaps point [16, 5], if it 
is a ∅ indexed 17x17 heightmap. 
 
Because the heightmap can be wrapped like this, one can create heightmaps 
whose one side would fit perfectly with the opposite side if they were to be 
instanced, copied, and put next to each other. A heightmap whose top edge fits 
with the bottom edge and the left edge fits with the right edge could be copied 
and repeatedly placed in a grid to form a repeating infinite terrain. Video games 
of the 1990s and early 2000s such as Delta Force 2 (Novalogic 1999) took 
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advantage of this to create an illusion of infinite terrain when memory was 
limited. 
 

The disadvantage is that nonrepeating infinite terrain cannot be created easily. 
Each generating heightmap would search for a non-existent heightmap next to 
it for lines near the boundaries to break. Controlling the terrain features can 
also be difficult. The four corner seeds will decide the basic shape of the terrain, 
but for more precise control one has to seed much more. If one wishes to place 
a mountain peak at a certain point it is most often not enough only to palace a 
large value at that point. Chances are that the point is at a late iteration level 
and that the point will not be taken into account until it is too late, creating 
spike like artifacts. View figure 4 for an example. 
 

 
Figure 4: Example of a diamond-square heightmap seeded at a too deep level 

 

To solve this one has to seed elements around the target point through multiple 
levels to ensure they are all taken into account. This can be a demanding and 
complicated procedure to apply if the heightmap is large as many values must 
be manually processed and set. 
 

2.3 Perlin Noise 

The Perlin noise (David S. Ebert 1994) algorithm is a good algorithm for 
generating data which should be random looking but still have some 
consistency, for example generating infinite terrain, rivers or textures. 
 
The general principle behind the algorithm is to combine different wave 
functions with varying periods and amplitudes in order to create more detailed 
ones. This is done by combining the two components: a noise function and an 
interpolation function. 
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The noise function works as a seeded random number generator working with 
two seeds.  When provided with a number as input it will return a number based 
on it. It will always return the same number for the same input.  Additionally a 
number, also called a seed, can be set for the whole function, randomly 
changing the returning numbers. The function is called random because there 
should be no visible correlation between the retuning numbers.  
 
Because the function is used to generate mountain ridgelines there should not 
be too steep differences between the returning values, otherwise unrealistic 
terrain will emerge. A maxima peak followed by minima after one meter 
followed by another maxima peak after another meter. Therefore a smoothing 
function is applied on the returning numbers bringing them closer together.  
 
If in a XY-coordinate system, traverse through the numbers X∅ to x10 and plot 
the resulting numbers in the Y-coordinate. It will look like random static data. 
But if it is interpolated between the points and drawn a graph it will resembles 
a ridgeline, or a wave. View figure 5.  
 
Several waves with varying frequencies and amplitudes can be mixed together 
to create a ridgeline. Waves with low frequencies and high amplitudes will 
create the base ridgeline, while waves of higher frequency and lower amplitudes 
create more noisy results. When they are combined two such waves results in a 
wave that still has the large scale contours of the original low frequency wave, 
but also has more details due to the lower frequency wave. The waves are 
combined by adding their values together and dividing by the amount of waves. 
View figure 5 for an example. 
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Figure 5: Example of 5 waves combined into terrain. 

 
The main advantages of the Perlin noise algorithm is that it is relatively fast and 
deterministic. The algorithm only takes three parameters, the initial wave 
function description, the persistence variable which describes how the wave 
changes through every iteration and the XZ coordinate for which the Y 
coordinate will be generated. Typically the wave amplitude decreases by some 
amount for each iteration, creating smaller and smaller waves adding detail to 
the previous larger wave contour. 
 
This means that if one declares a wave and a persistence, an infinite terrain can 
be generated by asking for the Y coordinate at any point of the world. The 
algorithm does not need to know the resulting values of the neighbouring 
patches as the diamond-square algorithm needs to. 
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The negative side of Perlin noise is that 
one cannot seed the resulting terrain at 
all. This means that without heavy 
modifications it is not possible to specify 
features to be generated, for example: 
one cannot decide where to place a 
mountain, only to know that there will be 
mountains somewhere. Also the 
generated terrain is of the same type in all 
directions as the same initial wave has to 
be used everywhere.  
 
No matter how large a world is generated, 
there will always be a predictable amount 
of mountain peaks per square area. In a 
video game this would mean the player 
would experience the same type of terrain 
no matter where they go. View Figure 6 
for a better understanding. 
 
 

2.4 Same resolution heightmap stitching 

 
Sometimes one wants to stitch two pieces of terrain, for example a low land 
heightmap and a highland heightmap with mountains. Placing an unrelated 
heightmap of mountains next to a heightmap of fields or lakes will look quite 
jarring. To solve this, one has to edit the terrain to form a good transition 
between the two heightmaps, this process is called stitching. 
 
Terrain stitching is the act of stitching together different heightmaps which are 
either originally not thought to coexist or where the resolution differs. (Yotam 
Livny 2008) View Figure 7. 
 

 
Figure 7: example of two heightmaps before and after stitching 

 
Two patches have different resolution of their heightmaps when they have 
different array sizes for the same space. For example, if one array of size 10 
represents Y coordinates from X world coordinate 0 to 100, while another array 

Figure 6: Top-down view of Perlin 
noise terrain with added color to 
indicate height differences. The 
higher points (green) outnumber the 
low point (white) by 3:1 evenly. 
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of size 100 also represents Y coordinates from X coordinate 0 to 100.  They both 
represent the same space, but the second array has 10 times more detail. This 
type of stitching will not be part of this project and therefore means of solving 
it will not be presented. 
 
When said that two patches of terrain were not meant to coexist, it is meant 
they are not generated with the same parameters, or perhaps not even with the 
same algorithm, causing large gaps or errors where they meet. 
 
There are multiple methods for solving this issue, the most common method is 
linear interpolation. This is done in a few steps. 
   

1. Measure the height differences, Difference, between the two heightmaps 
at their meeting points. To know how much each heightmap should 
change in height in order to meet the other one, divide the Difference in 
two and save it as a variable: d   

 
2. Decide how far into each of the heightmaps to interpolate, meaning how 

much of each heightmap should get altered in order to fit with the other 
heightmap. Call this amount: p. It can for instance be seven elements in. 

 
3. To know how much each individual point should change divide the 

heightmap Difference with the amount of points that should change in 
total, call this variable: c, c=d/p 

 
4. Go through all the points in the heightmap that should get altered. From 

the point most far away from the edge, to the one at the edge and keep 
count on how many are passed. Use a counter variable i and increment 
it for each element towards the edge that is passed. In the heightmap that 
should get lowered, subtract c ∗ i on each point that you pass and in the 
heightmap that should get raised add c ∗ i instead.  

 

This will result in two heightmaps that fit together. The method is used for 
heightmaps whose terrain is treated as squared or rectangular. Finding a 
stitching algorithm that works on heightmaps of any arbitrary shape is part of 
this project. 

2.5 Diamond-angle 

 
The Diamond Angle Algorithm (Julian 2009) is an algorithm used for 
calculating the angle between two vectors connected to the same point. The 
algorithm is able to precisely calculate the angle between the vectors in a 360 
degrees circle using very few divisions and neither sin, cos or atan2 functions, 
making it faster than most angle calculating methods. 
 
 
Instead of using the classical Unit circle together with Sine and Cosines it views 
the L1 norm of the Unit circle instead. Giving it a shape of a 45 degrees flipped 
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cube instead, a diamond. This allows use of simpler mathematics, the straight 
line equation.  
 

y =  mx +  b 
 
The algorithm does not return a Euclidean angle. It 
returns a value between one and four instead, compared to 
– π and π the Unit circle provides while retaining almost 
the same precision. Meaning that one can calculate an 
angle using the diamond angle function and convert it to a 
Euclidean angle if necessary. 
 
But because the returning value should be between zero 
and four, and the line intersecting the diamond may do so 
on either the positive or negative side of the origin, the 
method will look a little bit more complex than just the 
straight line equation. 
 

If (x, y) is a point in a Cartesian coordinate system,  then the 

following method will return the diamond angle between the 

point and the origin.  
 
function DiamondAngle(x, y) 
{ 
   if (y >= 0) 
      if(x >= 0) 
         return y/(x+y) 
      else 
         return 1-x/(-x+y)  
   else 
      if(x < 0) 
         return 2-y/(-x-y) 
      else 
         return 3+x/(x-y)  
} 
Code from: (Julian 2009) 

 
The algorithms angle calculating precision, as one will later on see, is sufficient 
for use in this project and because it does not use complicated methods 
internally, it is suitable for when often needing to calculate and compare large 
amounts of angles.  
  

Figure 8:A classical 
Unit circle and a L1 
Norm Unit circle 
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3 Execution and Theory 

3.1 Research 

The research phase began by looking into different methods for procedurally 
generating terrain. The two most popular methods for this were the Perlin noise 
and the diamond-square (Alain Fournier 1982) algorithms. Both algorithms 
have certain advantages and disadvantages, making each one suitable for 
generating specific type of terrain.  
 
Perlin noise will generate good terrain based on a wave given as a parameter. 
Because it only requires an initial wave and a coordinate a terrain height for, it 
is well suited for generating infinite, boundless, terrain with continuous 
features, such as plains or hills. The diamond-square algorithm on the other is 
a recursive algorithm that works by breaking up lines until a ridgeline appears. 
View Chapter 2 for detailed explanations.  
 
Once a few initial values or waves are given to the algorithms, they will generate 
terrain based on them. But neither one of these method allows for any real 
customization of the generated terrain. While they are useful for generating 
terrain of a certain type based on the parameters, they cannot change the 
terrain type they generate as they progress into a certain direction. They 
generate the same type of terrain in all directions, for example hilly terrain or 
lowland terrain. 
 
Continuing the research an interesting paper was found describing how graph 
networks can be used to create two-dimensional worlds and levels for video 
games. The paper described a system in which rules could be created using 
grammar and an algorithm for generating graph networks out of it. (Adams 
2002) (Rozenberg 1997)  
 
For instance, one may define that node type Lake may only be connected to 
node type Plain or other Lakes and that the edge to the other Lake may be a 
river. This system allows one to dictate the way the terrain can be shaped or laid 
out. But the papers only focus on generating terrain layout, not generating 
heightmaps or other features.  Graphs are generated and the hollow areas inside 
of them are colored in order to represent different features, such as blue lakes 
or dark green forests.  
 
These combined works and approaches laid the foundation for this paper. 
Graphs could be used in a larger extent for terrain generation than they 
currently are. If one would develop a three-dimensional system that takes in a 
terrain layout as an undirected network graph with different terrain types 
assigned for each hollow area, new and detailed terrain could be created with 
more control than before. One could use a graph as the base for the terrain, 
decide which areas are lakes, plains or mountains, and generate terrain based 
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on that. The terrain would not fit because it is generated without consideration 
for each hollow area, but it could be processed to fit.   
 

3.2 Design 

The general layout of the method presented in this paper will be show here. The 
general idea begins with a graph, an undirected network of nodes, whose fields 
could be defined to contain different types of terrain with different features. 
Convert the graph, which dictates the terrain layout, to actual terrain using 
proven algorithms such as the diamond-square and the Perlin noise algorithm, 
and stitch the resulting terrain into a smooth single piece. 
 
The overall steps for generating such terrain would involve: 
 

 Define terrain type containers for terrain description. They should be 
able to describe terrain, how tall a mountain peak should be or how a 
plain should be defined. These will from now on be referred to as: terrain 
description. 

 

 Generate or create an arbitrarily shaped graph, an undirected network 
of nodes, to represent the layout of the terrain. 

 

 Find all the hollow closed areas in the graph, which from now on will be 
referred to as: fields. 
 

 Randomly, procedurally or manually assign a terrain description to each 
field. 

 

 Generate terrain for each field according to the terrain description 
assigned to it. 

 

 Stitch the terrain of each field to the terrain of its neighbors, so they fit 
together. Two fields are neighbors if they share a common edge.  

 
 
In order to perform said points, the following questions and problems need to 
be answered and solved: 
 

 Define what a terrain description is and how to define it. How should it 
be implemented in a programming language and what information 
should it contain? 

 

 What data structure should be used for the graph and how should the 
graph be generated? 

 

 How does one find the fields of the graph in a fast enough manner? 
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 What algorithms should be used for generating the terrain in the fields 
and what data structure should be used for storing the terrain? 

 

 How does one stitch arbitrarily shaped Fields with other neighboring 
arbitrarily shaped fields? 

 
The following sections will give possible solutions and suggestions to these 
question.  
 

3.3 Terrain Description 

 
A terrain description is defined as a data structure that contains the name or ID 
of the terrain description together with all of the data necessary to generate 
terrain of some sort. Of some sort because this can be done in multiple ways. In 
this project only Perlin noise (David S. Ebert 1994) and diamond square (Alain 
Fournier 1982) are used for generating terrain, but any other algorithms could 
be used as well. As terrain description is used to generate terrain, the data it 
contains are the parameters for the two algorithms. Depending on which 
algorithm is used different data will be contained. 
 
Please view Chapter 2 if unfamiliar with Perlin noise. 
The parameters necessary to generate terrain with the Perlin noise algorithm 
are: 
 

 Amplitude - The initial maximum height of the terrain. For a mountain 
define it as a large number for a high peak, or a low number for a valley 
or ocean floor. 

 

 Frequency - The initial frequency for the random noise wave.  
 

 Frequency change - A decimal number that describes the change of the 
frequency through each iteration, typical value would be two. 

 

 Amplitude change - Persistence - A rational value that describes the 
change of the Amplitude through each iteration, a typical value would be 
0.5. This value dictates how much the maxima of the next iteration wave 
should be lowered by multiplying the current maxima with it. 

 

 Number of Octaves - The amount of iterations the Perlin noise algorithm 
should perform. The amount of waves it should generate and combine. 

 

3.4 Graph 

 
The graph is defined as an undirected network of nodes. Each node is 
represented by an object Node and each Node contains references to the Nodes 
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it is connected to as well as its coordinates in the absolute world space.  Each 
connection is an edge. 
 
This project will not go deep into discussing methods for generating graphs, 
because there is already a large amount of research done on the subject. One 
could for instance use Voronoi diagrams (Henrik July 30th 2005), hexagonal 
graphs, square graphs, or custom graphs. This project only encompasses the 
parts before and after a graph is obtained.  
 

3.5 Sectioning 

 
Once a graph is procedurally generated or manually provided, all possible fields 
inside of it need to be found.  
 
This is a widely discussed and classical problem of graph theory in computer 
science. One solution to this problem can be to use diamond angle together with 
right-side walking. Please read about diamond angle in Chapter 2 if unfamiliar. 
 
The idea is to traverse though the graph and walk in circles between the nodes 
across the edges connecting them.  Nodes are traversed through by walking on 
the edges between them. Here right-side walking is used while traversing the 
nodes. Whenever a node is reached, the next node to visit is determined by 
taking the node to the right side. As a result of always taking a right side node 
on a closed field, the route will end at the starting node when traversing is over. 
One will arrive back to the node one started from. 
 
 

1. Select a node of the graph. 
 

2. Find all of the neighboring nodes it is connected to and pick the one with 
the smallest positive angle. The smallest angle being viewed in a 
counterclockwise order. 

 
3. Continue to that node and note down the previous node. Repeat step one 

and two until an already passed node is reached again. This means a 
circle has been traversed and a filed consisting of the noted nodes is 
found.  Figure 10 illustrates how a possible path may look like. 
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Figure 9: An example path of right-side walking for field finding 

 
Because the diamond angle method is fast at calculating the angle and good for 
comparing the angles between different vectors,  hence it can be used on 
relatively large graphs without too much computation power. The advantage of 
using diamond angle is visible when comparing to a few other classical methods 
with heavy computations using Sinus and Cosines methods. 
 
A field is represented as a list of nodes in the order they were traversed. A field 
edge is the connection between two consecutive nodes in the list. After 
sectioning all the fields, each field is assigned with a terrain type, manually or 
procedurally. 
 

3.6 Creating and populating heightmaps 

 
The terrain in each field is stored inside of a heightmap. Even though the field 
itself is of arbitrary shape, the heightmap remains rectangular since it is only a 
simple two-dimensional array. Before the actual terrain is generated a large 
enough heightmap to cover the whole field needs to be created. This means that 
the bounding box of the field needs to be calculated, a rectangle that 
encompasses the whole field. 
 
To find it one needs to know the width and height of the bounding box. A simple 
way to calculate them is by iterating through the fields nodes noting down the 
minimum and maximum X and Y coordinates. Subtracting the largest X 
coordinate with the smallest X coordinate gives the width of the field, and 
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subtracting the largest Y coordinate with the 
smallest Y coordinate gives the height of the 
field. 
 
Now that the necessary width and height in 
absolute values are known, it is time to decide 
how many elements the actual heightmap array 
will contain. This depends on the area each 
element should take up in the absolute space 
and is an arbitrary value the user should set. For 
instance an element could take up the XZ area 
of 2 ∗ 2 world units and describe the value of a Y 
coordinate.  
 
When the width and height of each element is chosen, calculate the amount of 
rows and columns the heightmap should have. The amount of rows is bounding 
box width divided by element width, and the amount of columns is bounding 
box height divided by element height. 
 
Since the heightmap only contains the Y coordinates, and the indices represent 
XZ coordinates, each heightmap would start from the origin. In order to have 
varying ZX coordinates each heightmap is assigned a position offset to the ZX 
coordinate. The system in this paper views this offset to be at the bottom-left 
corner of the array. For instance its X component could be the smallest X value 
found in fields nodes and the Y component the largest Y value contained in its 
nodes. 
 
For each field a heightmap that covers the entire field is now created. Each field 
now has a terrain description and a heightmap assigned to it. If the terrain 
description inside of a field contains Perlin noise parameters use Perlin noise 
and generate terrain for the entire heightmap. Likewise if diamond-square 
parameters were used generate terrain using diamond square. 
 

3.7 Terrain collision detection 

 
So far the fields are of arbitrary shape, but the heightmaps containing terrain 
for them are rectangular. This means that the heightmaps describe terrain that 
is outside of the fields. If two fields were to be placed next to each other, each 
field would have terrain overlapping the other ones terrain. Terrain sticking 
outside of the field needs to be removed. 
 

Figure 10: Red field rectangle 
wrapping a field 
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In order to check that a heightmaps element is 
inside of the field use line polygon intersection 
methods. When generating a heightmap element 
one need to be able to tell whether or not it is 
inside of the field. If it is inside of the field keep 
it, if it is outside remove it. 
 
View the field and its edges as a polygon. Draw a 
line outside of the field towards the element. 
Note down each time the line crosses an edge of 
the field. When the line reaches the element, 
count how many edges it crossed. If the number 
is odd the line went into the polygon and never 
went out, if it is even the line went in and out of 
the polygon again. 
 
For each element in the heightmap, check if it is inside or outside of the field. If 
it is outside it needs to be removed. Because an element cannot just be deleted 
from a heightmap, a null value needs to be decided upon. In this paper a 
heightmap element is viewed as empty if its value is ∅. When rendering the 
heightmap no element with the height of ∅ will be rendered. 
 
By now the terrain generated could look like in Figure 13. 
 

 
Figure 12: A pair of fields with their terrain after terrain collision has been 
performed. 

 

Figure 11: Collision detection 
for a point inside a polygon 
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3.8 Multiple field stitching 

3.8.1 Base case 

This section deals with stitching two adjacent areas together. It is closely related 
to the previous section, section 2.4: same resolution patch stitching. The same 
principal from section 2.4 can be applied when dealing with terrain and fields 
of arbitrary shapes.  
 
Edges of each field are viewed as vectors. Before stitching, the algorithm will 
need to know how deep into each field it may go and alter the elements.  Call 
this Distance. After deciding how much a field affects another, points within 
fields are parsed. One field will be stitched at a time. The field being stitched 
will from now on be referred to as Field A, the field stitching it with will be 
referred to as Field B and the edge stitched at will be referred to as the Edge.  
 
Given a certain point, Point, inside Field A, first find out how far away it is from 
the Edge. If it is further away than Distance, it is outside the scope of the terrain 
stitching and leave it, if it is within Distance, this point should be processed. 
 
The distance between the Point and the Edge can 
be found by viewing the Edge as a line segment in 
R2 and projecting the Point onto it. This will give 
the point Point On Line, shortened POL, which is 
the projection of Point on the Edge. The distance 
between the Point and the Edge is the length of 
the line segment POL to Point. The line segment 
POL to Point will now be known as the Normal. 
 
Now that it is certain there is a Point in Field A 
which should be changed to fit with the terrain in 
Field B, find out how much its value should 
change. Just like in section 2.4 this is done by first 
viewing the points at the edge between the two 
fields. Calculate how large the height difference, Difference, is between the two 
fields at that the contact point, POL.  
 
Because one point is in Field A, the other one is in Field B and the POL can be 
in either one, take a step into each field from POL. By going back one element 
length into Field A the edge point in Field A is reached: A Point. Likewise 
stepping into Field B one element length the Field B edge point is reached: B 
Point. 
 
To make the step normalize the Normal and multiply it by one element length. 
A Point is reached by adding the Normal to POL and B Point is reached by 
subtracting the Normal from POL. View figure 15 for illustration.  
 

Figure 13: Showing the 
Normal between POL as a 
blue dot and Point as a green 
dot. 
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Figure 14: Leftmost figure shows distance inside a field. Middle figure shows 
Point, POL and the Normal. Right figure shows A Point and B Point being selected. 

 
By subtracting B Point from A Point one will get the Difference. How much each 
side should change at POL in order to fit together. If both heightmaps should 
change so they meet in the middle, Difference should be divided by two and let 
each side change  (+−)Difference / 2 
 
Both A Point and B Point are now known. In order to calculate Difference the 
actual values need to be read from the heightmaps. Convert A Point and B Point 
to indices for accessing each heightmap. 
 
For the X component of a point subtract it to the X component of the 
heightmaps position offset. This will give you the relative difference of the X 
components. If the difference is divided on the width of each heightmap 
element, the index used to access the element in the row dimension of the 
heightmap is obtained. The column index is calculated in the same manner. 
View Figure 16. 
 

 
Figure 15: Converting absolute coordinates to heightmap indices 
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With the indices used to access the points now obtained, the values are read. 
With the height difference between the heightmaps at POL known, the actual 
change on the element at Point can be performed  
 
The closer a point is to the Edge the more it should change and vice versa.  
Within Distance from the Edge, (Distance / Element Size) gives the amount of 
elements that could change. This amount is called Element Amount.  
 
Difference is spread out along Distance. The gradient of the change is defined 
as Difference dividing Element Amount, which is also the value for the base 
change. Each value is changed by adding the gradient multiplied by distance 
from this certain point to the Edge.  
 
Here is an example calculating the change of difference. For instance, if the 
element distance is 3, the Difference is 5 and Distance which defines how far 
away the stitching area extends is 10 then  
 

(Distance −  Normal length) / Distance  
 
The result here shows how far away a certain point is from the Edge in 
percentage. Then multiply this result with Difference to get the amount of 
changes that needs to be applied. In this case:  (10 −  3) / 10 =  0.7, and the 
change on element would be: 0.7 ∗  5 =  3.5 
 
If applied to every element within Distance in two adjacent fields, the algorithm 
will produce nice results. View Figure 17. If the graph is larger and there are 
multiple adjacent fields which need to be stitched, additional logic is needed to 
ensure that the stitching does not override the result of changes already made 
to certain Fields. The next section will discuss this. 
 

 
Figure 16: Before and after two fields are stitched 
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A key detail to notice here is that the Normal 
should be a Normal relative to a line segment, 
meaning that if the projection of the Point onto 
the Edge goes outside of the line segment, it 
should bend and become a line between the 
Point and the closest line segment endpoint. 
Due to this, the Normal either goes from POL 
to Point or an Edge endpoint to Point.  
 
This is very important in order to ensure that 
two fields do stitch together around corners 
also. Otherwise there will be abrupt height 
differences around the corner of certain 
endpoints when the angle between the edges is 
larger than 90 degrees. Figure 18 illustrates this. Notice, this is only necessary 
when stitching two Fields. Stitching multiple fields is illustrated at a later 
section. 
 

3.8.2 Height Difference Altering 

 
 
Using the above method when stitching two fields, Field A and Field B, the first 
thing to do is to decide at which middle ground they should meet. In the 
previous section it was mentioned that if one wishes to stitch two pieces of 
terrain and let them meet in the middle, then the following formula that should 
be used to calculate the difference is: (+−)Difference / 2. While this is true, the 
formula does change a little when applied in practical cases to:  
(+−)Difference ∗  amount  
 
Amount is a new parameter indicating how much of the possible Difference 
actually is to be used. In typical use-cases when both fields meet in the middle, 
Amount should either be 0.5 or 1. When the fields stitch, they do stitching one 
by one. After Field A has changed to half of Difference, Field B started to stitch. 
The Difference between A and B is measured again. This time B applies 
Difference completely.  
 
In a case where both fields should meet halfway, Amount for Field A should be 
0.5 and 1 in Field B. Depending on how much one desires each Field to change 
and how the change scale should be set, the values may vary. A key point to note 
here is that if the Amount at the first field stitching, Field A to Field B, is one, 
Field A will reach Field B in one go and there is no reason to stitch Field B to A 
also. This can be useful if performance is an issue and as little stitching as 
possible is desired. Though if the height differences between the fields are big, 
the results might look a bit too steep or crude. 
 
 

Figure 17: A bending normal 
example 
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3.8.3 Multiple field stitching 

 

3.8.3.1 Multiple Field Issue 

 
Previous sections deal with stitching two fields. While the method works well 
for simple cases, it has a flaw that needs to be addressed if more than two fields 
are to be stitched. When only stitching two fields, each field is only affected from 
one of its edges, but when fields in a graph are stitched they will be affected 
from multiple edges. This causes an interference issue close to the nodes, or 
close to the line segment endpoints. 
 
When Field A is stitched in regard to Field B along an edge, Edge, the points 
within Distance from Edge will be affected. If then Field A is also stitched with 
Field C along a new edge, which shares a common node with the previous edge, 
the stitching will show signs of interference. As before the elements within 
Distance away from the new edge will be affected. Because the current edge 
shares a node with the previous edge, they will both alter the elements close to 
the common node. View figure 19 for a better understanding. 
 

 
Figure 18: Illustration of the field interference issue 

 

3.8.3.2 Point Stitch 

Interference can be solved by dividing the stitching into two sub cases, the stitch 
in the middle of the edges and the stitching close to the nodes.  
 
Shorten the strip of the edge currently stitched on from both sides.  Instead of 
stitching along the entire edge, only stitch along the middle of it, leaving it un-
stitched close to the endpoints, the nodes. Using a new variable called Radius 
that for now can have the same value as the previous value Distance. Instead of 
stitching between endpoint A and B of the edge, stitch only between the 
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segment (A + Radius) to (B - Radius), the sub segment of the edge shortened by 
Radius from each side.  
 
Because stitching is only performed in the middle of the edge, there is no need 
to have a rotating normal anymore, as every point will have a projection on the 
edge and not outside of it. Also because the rotating normal does not need to be 
taken into account, the code can be simplified and made faster. This stitching 
method will be referred to as normal stitch. 
 
The following Figure 20 shows the result of such an operation. 
 

 
Figure 19: Results after only Normal Stitch is used 

 
Next, stitch the elements close to the endpoints that are within the segment 
Radius. The segment Radius in this case does not mean the distance from the 
endpoint to the element, it is the distance from the endpoint to the projection 
of the element on the Edge, POL. If the current element is at Point, and its 
projection on the Edge is POL, then the distance is measured between POL and 
the endpoint currently stitching at. Meaning the stitch area will be the 
rectangular area whose one side is going from an endpoint to the POL and 
another side from POL to Point. 
 
The Areas would in that case look like the illustration bellow, figure 21. The 
green areas are stitched with Normal Stitch, while the blue ones are stitched 
Point Stitch. 
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Figure 20: Example of an edge divided into six stitching areas. The blue areas use 
Point Stitch while the green areas use Normal Stitch. 

 
The idea behind the Point Stitch is to only stitch the elements to their closest 
edge. This is to prevent the stitching with Field A at edge A to affect the stitch 
near the edge B with Field B close to a common node. It would distort the 
elements near Field B which may already have gotten stitched. 
 
To implement this one can divide the area of the field from a nodes point of 
view, into two areas. If inside of Field A stitching at Node A and looking towards 
the center of the field, imagine an area on the left side and an area on the right 
side. An area separated by a vector with one side on the left adjacent to Field B 
and edge B and an area on the right side adjacent to Field C and edge C. The 
vector sought after does not need to go to the center of the field, but be the 
middle vector between the two edges converging in node A. 
 
This vector can be found by finding the combined opposite vector of the node 
and its two connected edges. Call this vector Separator. To find it view the two 
edges meeting at Node A as two line segments going out from Node A. By 
subtracting Node As coordinates from both line segments endpoints, the 
segments become two vectors going out from origin. When both vectors then 
are added up a new vector emerges. A vector pointing in the middle between 
the two edges. Add the vector to the position of Node A and it will be going 
between the two edges into the field from Node A. This vector will be called 
Separator 
 
Figure 22 shows the resulting scene. The separators are drawn as red lines for 
both of the endpoints and in all of the areas. 
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Figure 21: Showing two fields with terrain divided for Normal and Point stitch 
together with Separators in red 

 
By doing this, each field will from a nodes point of view be divided into two 
areas, an area on the left next to Edge A and an area on the right side next to 
Edge B. The element stitching in one area should never be allowed to affect the 
elements of the other area.  
 

3.8.3.3 One side stitch 

 
For each element that is stitched its position, its POL, its normal, the length of 
the normal and the distance its projection has to the node currently at is known. 
Because the Separator vector is also known, it is now possible to calculate 
whether or not the element is on left or right side of it. 
 
Simplify the problem and viewing it as a classical linear function with the 
formula f(x)  =  ax +  b. For clarity the X axis can be seen as going along the 
vector going out from the current node along the Edge. The line gotten from the 
equation should be the Separator and X is a point on the Edge.  
 
When an element is chosen use its segment Radius distance as the X parameter 
and find the point in which the elements Normal relative to the Edge would 
meet the Separator, by using the linear function f(x)  =  ax +  b. The value one 
would get would be the distance from that POL to the Separator. Practically it 
would be the maximum Normal length an element at distance x from the 
current Node may have from the Edge and still be stitched while being inside of 
the correct area adjacent to the Edge. Call this distance the Maximum Distance. 
 
If the length of the Normal is larger than the Maximum Distance, the element 
is not to be considered. It is then outside of its side of the field, on the wrong 
side of the Separator. If it is smaller than Maximum Distance, then it should be 
stitched. Figure 23 illustrates this. 
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Figure 22: Example of resulting area division and Maximum Distance calculation 

 

3.8.3.4 Dynamic Distance Value 

 
The current element selected is then adjacent to the Edge and is on the correct 
side of the Separator. If this element would be stitch as before, it would produce 
mostly fine results, but it would still produce interference with the stitching of 
other edges. While the element will be on the correct side of the Separator and 
will never be an element another edge also tries to stitch, the elements along 
the Separator could look strange. There will be a height gap along the Separator. 
This is because the old Distance variable is still used to divide and decide how 
much each element should change in value. The element this Distance value 
will think is the element furthest away from the Edge that should change the 
least will be a value far away inside the other wrong side of the Separator. 
 
In order to solve this, use the Maximum Distance variable instead of the 
Distance parameter. 
 
 

3.8.3.5 Radius Sync  

 
There is one last detail yet to mention which has been saved until now to avoid 
confusion. If the reader recalls at the start of this section it was mentioned that 
the variable Radius for now could be seen as having the same value as Distance. 
This is not really true. While the same value might be used for both variables, 
and in overall good stitched terrain is produced, there will be a small amount of 
elements with a noticeable height difference at the border between the Point 
Stitch and the Normal Stitch.  
 
This is because the Normal Stitch uses Distance and counts that the element to 
change the least should be Distance away from the Edge and that each element 
should change ((Distance −  Normal. length) / Distance  ∗  Difference .But 
because the angles between the edges connected to a node are arbitrary, the 
Separator will look different each time.  
 
If the Edge is viewed as the floor cathetus in a right-angled triangle and the 
Separator is viewed as the Hypotenuse then the height cathetus can be seen as 
them Maximum Distance. The resulting Maximum Distance furthest away from 
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the node, the distance Radius, must have the same value as the Distance used 
in Normal Stitch. Otherwise at the border between the two they will come to 
different conclusions regarding how much each element should change. 
 
The solution to this is simple. After finding the Separator measure its angle to 
the Edge and use Tangent to calculate the length the floor cathetus should have 
in order for the height cathetus to match Distance with regard to the angle. 
 
Because one can view the edges as vectors in R2, use the Dot Product of the 
vectors and acos to get the angle between them. angle =  acos(v1 • v2). Then 
the new Radius value will be Distance / Tan(angle)  and the length of the 
Hypothenusa, or actually the Separator, should be (𝑅𝑎𝑑𝑖𝑢𝑠2)  +  (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2). 
 

3.8.3.6 Pinching 

 
In most cases the graph will by now look neat and well stitched. But there is one 
last corner case that should not be forgotten. If multiple fields meet in the same 
node, the terrain will be stitched from the edges towards the inside of the terrain 
until the distance Distance or until the Separator is hit. But because the values 
under the Separator are never stitched, one the values left or right, they will 
always remain in their original position. 
 
This means that if a low lake element is close to a node and is stitched to an 
adjacent mountain element also on a Separator and also close to same node, 
neither will change and the height difference between them might be noticeably 
large. 
 
To solve this do a pre-stitch node sync. Before performing any type of stitching, 
go through all of the nodes. In each node find out which fields are intersecting 
and find the element in each field closest to the node. Add up their values and 
find the average value. Then go into each field and sync it so that the element 
closest to the node reaches the average value, do this by subtracting the average 
value from the closest elements value. This will be the Difference in height.  
 
Change the element according to the Difference so it meets its adjacent peers 
near the node at the same height, and sync the rest of the elements in the field. 
That is, pick an element in a field, calculate its distance to the node currently 
syncing at and using the same formula as previously to calculate the new value 
for the element. 
 

Difference ∗  ((Distance −  Normal length) / Distance) 
 
This operation does not take very much to perform and it only deals with the 
elements close to the node. These fields are not stitched, but are synchronized 
so that their elements near the nodes meet in the same point.  
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After applying the whole stitching procedure from above, the result should be a 
nice stitched terrain graph. While some of these procedures may seem 
demanding, one should remember that most of them are only done two times 
for each edge in each field for the entire stitch of the graph. It is a small piece of 
the stitching time. Each edge only needs to have two Separators calculated on 
each side, only two Radius values calculated and each node only synchronized 
once. Figure 24 shows the final result. 
 
 

 
Figure 23: A complete stitched graph 
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4 Results 

The C# implementation of the algorithm is divided into several steps, similar to 
how they were described in the sections above. It was mainly designed to be 
proof of concept code, to run decently well without being too abstract so that it 
also could be read and understood easily and help one grasp all of the 
procedures. The result is a small library containing all of the classes and 
functions necessary to generate graphs, terrain and to merge them for a good 
resulting terrain. It uses the vector classes of the OpenTK (OpenTK 2015) 
graphics library, but this can be changed to any other implementation of vectors 
and their corresponding functions such as dot product calculation, 
normalization etc. 
 
Graph generation and terrain generation algorithms are part of the code, but 
are not the main goal of this paper. The code provides a simple graph generating 
algorithm, but this is only an example. Likewise the algorithm used to generate 
terrain, such as the Perlin noise and the diamond square algorithm, are here as 
examples and could be switched out for any other algorithm or implementation 
one sees fit. Therefore the result section will mainly be concerned with the 
stitching, the stitching performance and the results of it. 
 
The different types of terrain can be described in two ways, as Perlin noise 
parameters or as diamond square parameters. Each field can have a terrain 
description assigned to it. The stitching takes in a graph including all of its 
nodes, edges, fields, terrain descriptions assigned to each of the fields together 
with a parameter deciding how much each field may change. It outputs the 
same graph where the terrain of each field is modified to fit that of the 
neighboring fields. This allows users to create different types of terrain for each 
field and to then merge it into one large cohesive terrain. 
 

4.1 Performance 

The performance section will mainly be concerned with the performance during 
stitching, as the graph and terrain generation algorithms are arbitrary and user 
replaceable.  
 
When stitching a field relative to an edge, Distance indicates how far into the 
field elements may be affected by the stitching. A higher Distance value means 
that more elements in each field will be considered and that the transition 
between two fields will be smoother, spread out over a larger area and perhaps 
not as steep. One can assign a different Distance variable to each field though, 
allowing for more fine control over the features. If for instance a field with lower 
altitude is created to represent a lake bed, a larger Distance variable would 
produce a more dry lake while a smaller Distance would account for a steeper 
transition and a less dry lake.  
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The size of the total graph area will of course be a major factor affecting the 
execution time. More elements to stitch means longer execution time. The 
amount of fields in the graph and the amount of edges to stitch also affect 
performance. More edges mean larger amount of values that fall under the 
Distance value and more fields means more fields to stitch against each other. 
 
For performance measuring the library containing a code implementation of 
the algorithm is run and the execution time of its functions are timed. The 
timing is performed using the built in C# .NET 4.5 Stopwatch functions and are 
displayed in seconds after each run. While execution time is highly relative from 
machine to machine, this can at least help to gain an understanding of the 
execution times involved for stitching. The machine used for timing is a 
Windows 8.1 ROG Asus G55V Laptop, using an Intel Core i5 3210M CPU with 
3.0 MB L3 cache, 512 KB L2 cache, 128KB L1 cache capable of running 4 threads 
on 2 physical cores and 12 GB of DDR3 ram at 1600 MHz. If this was to be run 
on a desktop machine, the performance should be considerably better. 
 
There are three test cases used. Each test case varies in the amount of fields and 
edges it contains and is tested on three different graph sizes with three different 
Distance values assigned. As mentioned earlier performance is most affected by 
the field count, edge count and the Distance value. Because the Distance value 
goes along each edge to check for elements within range, the general formula 
for the amount of elements one would pass is roughly: 
 

Edges passed ∗  Average Edge Length ∗  Distance 
 
Though depending on the graph this may not always be true since graphs with 
sharp corners will have very sharp Separators which will decrease the amount 
of elements on has to pass.  
 
The graph is created on a rectangular plane where each side has the same 
length. The side lengths vary in the four cases, and thus the size of the terrain 
varies in four cases, as listed in the tables below.  Each element size is two units. 
 
Test one is created using a graph with side length of 2000 units, and thus 
considering the element size of two units, it contains about 2000000 elements. 
Test two has side length of 2500 and thus contains about 3125000 elements. 
Test three has a side length of 3000 and 4500000 elements and finally Test 
four has side lengths of 3500 containing 6125000 elements. 
 
Each case is then tested running each test with three different Distance values, 
60, 80 and 100. There is no point in using smaller Distance values due to the 
execution time being so small, and using a larger Distance value than 100 would 
simply cut into the opposing edges of the field. The Distance value also affects 
the performance in terms of milliseconds, as one will see below, and thus does 
not matter a great deal. It is mainly the different graph complexities that affect 
performance. 
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Each case is ran in an automated testing environment 15 times and the expected 
values for each dataset are calculated and displayed bellow. All measurements 
are performed using the built in stopwatch timer of the .NET Framework 4.5. 
 

 Field count Edge count 
Case 1 16 40 
Case 2 36 84 
Case 3 64 144 

 
Distance: 60 
 

Element count 2000000 3125000 4500000 6125000 
Case 1 2,27s 3,51s 4,95s 6,71s 
Case 2 2,79s 4,21s 5,91s 8,05s 
Case 3 3,39s 5,11s 7,12s 9,48s 

 
Distance: 80 
 

Element count 2000000 3125000 4500000 6125000 
Case 1 2,34s 3,59s 5,08s 6,85s 
Case 2 2,93s 4,33s 6,09s 8,21s 
Case 3 3,48s 5,22s 7,27s 9,83s 

 
Distance: 100 
 

Element count 2000000 3125000 4500000 6125000 
Case 1 2,52s 3,77s 5,21s 7,07s 
Case 2 3,07s 4,48s 6,25s 8,43s 
Case 3 3,55s 5,65s 7,82s 10,11s 
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Do note that the difference in element count between the tests is not linear, thus 
making the plotted lines not linear as well. Test four has 1625000 more 
elements than Test three, which has 1375000 more elements than Test two, 
which has 1125000 more elements than Test one. 
 
 

4.2 Renders 

 
The following terrain and images were created using the system described in 
this paper together with a custom created renderer for prototyping purposes. 
 
As a first step a graph to describe the layout of the terrain is necessary. For 
this a custom function that generates a random network graph was created. 
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The resulting graph can be seen in figure 24. 

 
Figure 24: An empty graph before generating terrain 

  
In this demonstration terrain will be generated using four main types of 
features, lake beds, low lands, fields and mountains. The algorithm used for 
generating the terrain is Perlin noise, so Perlin noise parameters are provided 
as four terrain descriptions. The descriptions can be seen in the following 
table. Do note that the values used here work well with this implementation of 
a renderer and that results may differ if used on a different renderer with 
different settings.  
 

Name Amplitude Frequency Persistence Offset 
Mountain 50 0.07 0.5 50 
Fields 20 0.1 0.5 25 
Low land 15 0.1 0.5 15 
Lake bed 10 0.07 0.5 3 

 
The fields of the graph are assigned a terrain description each. Figure 25 
illustrates this by giving each field a color based on terrain assigned to it.  
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Figure 25: Illustration of a graph with its fields assigned a terrain description 
each. Lake beds are colored in dark blue, low land is colored in light green, fields 
are colored in darker green and mountains are colored in grey. 

After each field has a terrain type assigned, terrain is generated for each one. 
Figure 26 illustrates the graph with just the raw terrain prior to the stitching. 
The color is added as a post-process by the rendering system in order to help 
illustrate the height differences. The terrain generating system in itself does 
not deal with visualization. 
 

 
Figure 26: The graph with each field having its terrain generated. 
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Next the terrain pieces are stitched together. A Distance variable is chosen and 
assigned for use. In this case the same Distance variable is assigned to each 
edge of the graph. The distance variable will vary from system to system, 
implementation to implementation and the scale the user chooses to work 
with. After the stitching is performed the resulting terrain from Figure 27 is 
generated. 
 

 
Figure 27: The final stitched graph where each terrain piece has been stitched 
with its neighbours. 

  
In Figure 28 the terrain is rendered as a grid of boxes with varying height in 
order to show how large space each element takes up. In a real use case 
scenario the rendering system can render the terrain as a smooth mesh 
instead. 
 

 
Figure 28: The terrain from figure 27 without graph edges drawn and with a 
different perspective 
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5 Discussion 

5.1 Performance 

In its current implementation the algorithm is running in a single thread. While 
there are plans to improve this aspect in the future and while the following 
section discusses possible implementations of concurrency, this section will 
show that the performance already achieved is sufficiently good. The figure 
found bellow, figure 25, displays a piece of terrain comprised of 3125000 
elements that was stitched in 3.49 seconds on a mobile x86 CPU.  
 
3.1 million elements is a large amount of elements for terrain used in real-time 
graphics. Modern game engines strive to support terrain with 2.7 million 
elements. (Marcin Gollent 2014) While in many heavy 3D applications the mesh 
of a mountain or other piece of terrain may be comprised of a similar amount 
of vertices, this is only a heightmap, not a mesh. Converting this heightmap to 
a mesh and rendering it in a real-time graphs system would be very costly per 
frame. Large terrain of this type are tessellated and rarely produced in such 
detail at once. (Mattias Widmark 2011) 
 
In real-time graphics one would usually generate the areas far away with low 
fidelity, perhaps only assigning a few thousand or hundred elements for a 
mountain far away, and then increase the fidelity closer to the camera. Even 
close to the camera one would probably not generate a heightmap of 1 million 
elements, but would instead generate a relatively higher amount than usual and 
mesh it together. Add some vegetation, textures and texture bump mapping, to 
look like a cohesive detailed continues surface (Mattias Widmark 2011). 
 
In non-real-time applications, such as animated movies, the meshes are very 
large and contain a large amount of assets being rendered. A one-time waiting 
fee of 3.49 seconds to stitch highly detailed and controlled terrain would be 
small when considering the render time of a single frame of a Pixar movie is 
measured in hours. (Bettinger 2012) 
 
If one would generate multiple versions of the same graph containing the same 
terrain in a variety of resolutions, one could combine in them into a single mesh 
where the fields far from the graph center only use a few thousand elements and 
the fields close to the center contain tens of thousands of elements. This way far 
away areas would look well anyhow since they are far away, adjacent areas will 
look well due to their high resolution, and the terrain mesh could be even larger 
because faraway places do not cost much memory to produce and they would 
be event faster to render. 
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Figure 29: The terrain discussed in 5.1 Performance 

5.2 Caching 

A number of times during the execution of stitching, the algorithm needs to 
know the angle between certain edges, calculate Separator vectors together with 
their length and calculate the bound along each edge each stitch should be 
performed. Sometimes the Separator vectors of two adjacent edges will cross or 
overlap each other or other Distance variables bounds. In order to prevent this 
the algorithm makes certain calculations, as shown in each corresponding 
stage.  
 
Performing these calculations when values are needed during the stitching may 
be simple to implement, but should be avoided in a final product. Multiple 
stages of the algorithm sometimes needed to access values already calculated 
previously, for example angles between vectors. It would be desirable to extract 
this code and perform all of these calculations before running the actual 
stitching. This is possible because it only requires one to have the graph. 
 
If this is done only once for each edge and node before running the algorithm, 
and the values stored in an easily accessible and fast data structure, the 
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algorithm could just fetch the data when necessary and improve the execution 
time. 

5.3 Future Improvements 

 

5.3.1 Multithreading 

The algorithm contained in this paper is currently implemented as straight 
code, even so it is sufficiently fast for most reasonable use cases of today. View 
the discussion part about performance for more details. One area of the 
algorithm that could see improvements though, is multithreading it. 
 
The multithreading could be implemented in multiple ways and in several 
layers. One suggestion would be to first of all multi thread the creation of 
terrain. Create a few worker threads and assign a couple of fields to each one. 
Let each thread generate terrain for the fields assigned to itself. This should not 
be an issue to implement since the creation of terrain would only use variables 
private for each field, having no need for locks or other mechanisms. If the fields 
are large perhaps only assign one field to each thread. 
 
Each edge and node of the graph are given a Distance value before they are 
stitched, indicating how far in each field should be changed. Because this 
variables value, or length if seen as a vector, is modified during Node Stitch, the 
area it covers along an edge would never overlap with the stitching from another 
adjacent edge. It too fits well for multithreading and could be implemented 
without any locks or mechanisms.  
 
One only needs to make a slight change to the order the Node Stitch and the 
Normal Stitch are performed. Instead of stitching fields and imminently 
applying the changes, note down the changes to each element and apply them 
after every edge has been stitched. This way one could assign each edge to a 
thread for stitching or give each thread a list of edges to stitch, and could stitch 
them concurrently without worrying that a thread would read an already 
modified element and miscalculate. 
 
When going through the elements of the fields it would be logical to do so in 
two nested for-loops since the data structure is a two-dimensional array of 
floats. And because the elements of the field being stitched inside do not affect 
each other during and after the stitch, one could also make this concurrent. 
Consider using OpenMP (OpenMP 2015) to thread the for-loops or perhaps the 
built in C# functions for loop threading if you are using C#. 
 

5.4 Rounding errors 

When one selects a point to stitch it is first seen as the result of two indices used 
to fetch data from an array. To calculate the normal from the point to the edge 
one views the point as a point in R2 with absolute world coordinates, instead of 
as a set of indices and a value. The indices are converted. After one has found 
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the normal one shortens it to become a normalized vector and from the point 
where the normal meets the edge (at POL) ones goes by one element length in 
each direction of the Edge. One element length into the field one stitches with 
regard to, and one element length into the stitched field, to get the elements 
that meet and measure their difference.  
 
When one does this one ends up with two new points with absolute values in 
R2. In order to read the values from these points one converts the points into 
indices to access the element below them in the corresponding field they are 
found in. When converting the points one might have no issues and end up with 
a perfectly stitched terrain, but might other times find themselves having 
terrain that looks good but has a few artefacts sticking out slightly above or 
below the others.  
 
This is because of the rounding errors. The array is accessed by using an index 
which is an integer, while the points X and Y components are probably float or 
double values. Based on the implementation one should consider whether to 
simply cast the indices to integers or whether to round them properly. 
 
If one rounds them properly they might realize that they sometimes could get 
indices out of bound. If an array has 10 elements length one might sometimes 
get indices retrieved from converting absolute values to coordinates in the 
range between 9.5 and 9.99. The rounding function may then round them up to 
10 instead of the intended 9 and make them go out of bound since an arrays 
index ranges from 0 to n - 1, where n is the number of elements. This can be 
easily solved by making a check to see if the index is equal to n and then shorten 
it by 1 to become n - 1. Though this might also be time consuming. 
 
During the testing phase both solutions had their pros and cons. If one simply 
makes a cast to integer one will never have the issues of indices being out of 
bound, but one might have a bit crude terrain. If the element to access according 
to the point will be at index 4.4 it will be cast into 4, but if it is at 4.7 it will again 
be cast into 4 instead of 5 which may be more appropriate. 
 

5.5 Wrong field issue 

If one has a node at which multiple fields meet, and the resolution of the Fields 
is not very high, by which it is meant that there are few elements in each Field 
and their side lengths have small values, one might run into a small issue. When 
Field A stitches with regard to Field B, and Point is only one or two indices away 
from the Node. And it tries to find the element in Field B which whom it will 
stitch, by taking the normal from the Edge and go into Field B with the distance 
of one element length, that the element Field A will find will go too far through 
Field B and perhaps end up in Field C.  
 
The solution to this problem could either be to check if you are one or two 
indices away from the node and create a special case that manually checks an 
element one-two indices away from the Node in Field B, or to just check which 
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other field the point might end up in and use that points value instead. In the 
tests performed during the methods development it could actually be more 
correct and provide a better result, but could be more time consuming and may 
vary from graph to graph and resolution to resolution. 
 

5.6 Only use diamond angle 

Instead of using convenient trigonometry such as Tangent and Cosines to find 
the angle between the Edge and the Separator, one could use the diamond angle 
method instead. The resulting value would be a value between zero and four as 
opposed to -π to π, but it could easily be converted, as shown in section 2.5 
Diamond angle, to radians.  
 

5.7 Conclusions 

 
The projects main goal was to introduce a new graph-based approach to 
generating terrain. This means that instead of only using classical terrain 
generating algorithm and generate terrain in all directions, graphs are used to 
set the layout in combination with the classical algorithms to populate them. 
 
After first finding all of the fields in the graph, and generating terrain for each 
field, stitching the resulting terrain pieces together was expected to be the most 
difficult part to implement and the deciding factor if the method would be 
viable. The introduced method for stitching terrain of arbitrary shape proved to 
be viable, and producing correct results with reasonable execution times. 
 
The performance and execution times measured in the test cases were 
surprisingly good, and the algorithm seems to be well suited for multithreading. 
Although multithreading is currently not implemented, it could be without too 
many modifications to the algorithm and mechanisms.  
 
The drawback of the algorithm is that it may contain too many steps seen as it 
both requires terrain types to be described as terrain descriptions, a graph to be 
generated, terrain generated and then also stitched. 
 
In conclusion the algorithm provides a good option for those who desire more 
control over the generated terrain and have the time and resources to 
implement and run it.   
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