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Abstract
Constraint-based compiler back-ends use constraint programming to
solve some of the translation stages that a compiler back-end typically
is constructed of. Using constraint programming enables the compiler
to generate optimal target code that is faster and more robust compared
to code generated by a traditional compiler back-end. With constraint
programming, problems are modeled and automatically solved by a con-
straint solver. A method to make the solving less time-consuming is
presolving. Presolving derives new information about a problem that
can be applied to its model before the actual solving.

This thesis focuses on evaluating a set of dominance breaking pre-
solving techniques in a constraint-based compiler back-end. A domi-
nance relation in constraint programming is two assignments that are
in some sense equivalent. Based on the evaluation some of the presolv-
ing techniques are re-implemented in an open source constraint-solving
toolkit, to remove dependencies on proprietary, but commonly avail-
able, systems inside the constraint-based compiler. The re-implemented
techniques show similar or better performance than the original im-
plementations of the techniques. In the best case, the re-implemented
techniques shows an efficiency increase of 50 % compared to the original
implementations.



Referat
Utvärdering och Implementation av Dominansbrytande

Presolving-tekniker i Unison Kompilatorn

Villkorsprogrammeringsbaserade kompilatorer använder villkorsprogram-
mering för att lösa vissa delar av översättningsprocessen som en tradi-
tionell kompilator-back-end typisk är konstruerad av. Genom använd-
ningen av villkorsprogrammering kan kompilatorn generera kod som är
optimal och snabbare än kod genererad av en traditionell kompilator-
back-end. Med villkorsprogrammering modelleras problem som sedan
löses automatiskt av en constraint solver. En metod för att göra lös-
ningsprocessen mindre tidskrävande är presolving. Presolving härleder
ny information om ett problem och adderar informationen till proble-
mets modell innan det löses.

Denna masteravhandling evaluerar en grupp av dominansbrytande
presolving-tekniker i en villkorsprogrammeringsbaserad kompilator. Ba-
serat på denna utvärdering är några av dessa tekniker om-implementerade
i ett open source villkorsprogrammerings-toolkit för att ta bort beroen-
den av proprietära, men tillgängliga, system. De om-implementerade
teknikerna har samma eller bättre effekt som originalimplementationer-
na. I det bästa fallet visar om-implementationerna en effektivitetsökning
på 50 % jämfört med originalimplementationen.
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Chapter 1

Introduction

A compiler is a computer program that translates a program written in a high-level
language into target-specific code. Traditional compilers are typically divided into
a front-end and a back-end. The front end reads the high-level language program
and translates it into an Intermediate Representation (IR). The IR is then used by
the compiler back-end to generate the target specific code. Generally, the back-end
generates the target specific code in three different stages: first instruction selection,
then instruction scheduling followed by register allocation.

Together the three stages in the compiler back-end form a hard combinatorial
problem, and thus traditionally the stages are solved as three individual problems
using some heuristic. This set-up often favors fast compilation time over code
quality.

A tool for solving hard combinatorial problems is Constraint Programming (CP).
In CP, problems are first modeled with variables and constraints and then auto-
matically solved by a constraint solver.

The Unison compiler project [3] is a current research project at the Swedish
Institute of Computer Science (SICS) and KTH, which focuses on solving instruc-
tion scheduling and register allocation as one combined problem with the help of
constraint programming. This approach to compilation enables the compiler to find
more robust and higher-quality code.

Solving combinatorial problems with CP can be a time-consuming job. There
can for example exist many symmetrical solutions to the problem that have to be
explored by the solver before it can determine whether the best or optimal solution
is found.

A technique used for improving the solving speed is presolving. Presolving au-
tomatically reformulates a constraint model into another model that is potentially
easier to solve.

This thesis focuses on evaluating and re-implementing some of the dominance
breaking presolving techniques in the Unison compiler back-end project. Domi-
nance in CP is assignments to the variables of a problem that are in some sense
equivalent that makes the search space unnecessary large, e.g. symmetrical assign-
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CHAPTER 1. INTRODUCTION

ments. Throughout the thesis an evaluation of the existing techniques is performed.
Based on the evaluation, some of the most effective presolving techniques are re-
implemented. The re-implemented techniques are evaluated and compared against
their respective original implementation.

1.1 Problem

The problem of this master’s thesis is twofold. The first problem is to investigate and
evaluate the set of dominance-based presolving techniques of the existing presolver
in the Unison compiler back-end. The techniques are ranked according to the effort
of solving when using the technique and the quality of the solutions found.

The second problem of this master’s thesis is to re-implement some of the most
effective presolving techniques with the same constraint-solving toolkit as used in
Unison. This serves as a starting point for moving the presolver from tools requiring
a license, to alternative tools. The re-implemented techniques are then evaluated
and compared against the existing techniques based on the effort of implementing
the techniques and how the techniques perform compared to the original implemen-
tation. Alternative implementations are explored and evaluated.

1.2 Purpose and Goals

The purpose of this master’s thesis is to gain more knowledge of the dominance-
based presolving techniques within the Unison compiler project. The existing pre-
solver in Unison is implemented using tools requiring a license for usage. One of
the goals with the Unison compiler is to release it as open source in the future.
It is therefore desired to remove dependencies of systems that requires a license.
This master’s thesis also serves the purpose to start migrating the presolver to open
source tools.

The goals of this master thesis can be decomposed as:

• Evaluate the effectiveness of the different presolving techniques

• Rank the different techniques based on the evaluation

• Describe at least two of the techniques

• A fully functional implementation, in a constraint solving toolkit, for each of
the two studied techniques

• A comparison between the re-implementations and the original implementa-
tions

• A report presenting the work carried out during the master’s thesis

2



1.3. ETHICS AND SUSTAINABILITY

1.3 Ethics and Sustainability

No issues regarding ethics have been found with this thesis work. Sources that have
been used are cited and people who have been involved in the project are credited.

The Unison compiler can produce code that is optimal and has in many cases
fewer instructions than code generated by another compiler. From an energy con-
sumption point of view this is good, since fewer instructions have to be executed
during a given time slot to perform the desired function, the processor can at times
be idle and thus save energy.

1.4 Methodology

The existing implementation of the presolving techniques in Unison is evaluated.
The techniques are ranked and compared. Based on the rank, some of the highest
ranked techniques are re-implemented. The re-implemented techniques are verified
and evaluated as the original implementations. The rank of each re-implemented
technique is compared against its original implementation.

The re-implementations are based on pseudo code provided at the start of the
thesis. If needed, some help from the source code of each existing implementation
is used to re-implement the techniques.

1.5 Limitations and Scope

Within the scope of this master’s thesis, the set of dominance-based presolving tech-
niques is evaluated and at least two techniques are implemented. The evaluation is
performed using a sample of 53 functions from the MediaBench [25] benchmarking
suite to make the evaluation run-time smaller but representative for the benchmark-
ing suite. The functions are compiled for Qualcomm’s Hexagon V4 processor. The
re-implemented techniques are written in C++ with the help of the constraint-solving
toolkit Gecode [19].

1.6 Individual Contributions

This master’s thesis has been carried out in close collaboration with Erik Ekström,
who is also doing his master thesis at the SICS [17]. Parts of the background
material of this report have therefore been developed together, or with the help of
each other. Part I has been written in collaboration with Erik Ekström where he
is the main author of Chapter 2, Chapter 4 and the introducing part of Chapter 5.
Chapter 1, 3, 5, 6, 7 and Chapter 8 are written by the author of this thesis.

3



CHAPTER 1. INTRODUCTION

1.7 Outline
The rest of this master’s thesis is divided into two parts. Part I contains four
chapters that present the theoretical background needed to follow the rest of the
thesis. Chapter 2 describes how traditional compilers are typically constructed,
Chapter 3 describes constraint programming, Chapter 4 presents the constraint-
based compiler used throughout this thesis and Chapter 5 presents the dominance-
based presolving techniques used in the presolver of Unison. Part II contains three
chapters and presents the work done by the author. Chapter 6 describes how the
evaluation of the existing presolving techniques is conducted and presents the results
from the evaluation. Chapter 7 presents the re-implementation of the presolving
techniques together with some results from using the techniques. Chapter 8 wraps
up the thesis with conclusion and further work.
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Background
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Chapter 2

Traditional Compilers

This chapter introduces some basic concepts of traditional compilers and some prob-
lems that a compiler must solve in order to compile a source program. Section 2.1
presents the structure of traditional compilers, whereas Section 2.2 introduces the
compiler back-end, and in particular instruction scheduling and register allocation.

2.1 Compiler Structure
A compiler is a computer program that takes a source program, written in some
high-level programming language (for example C++), and translates it into assembly
code suitable for the target machine [4]. This translation is named compilation and
enables the programmer to write powerful, portable programs without deep insight
in the target machine’s architecture. The target machine refers to the machine
(virtual or physical) on which the compiled program is to be executed.

Traditional compilers perform the compilation in stages, where each stage takes
the input from the previous stage and processes it before handing it over to the next
stage. The stages are commonly divided into two parts, the compiler front-end and
the compiler back-end [4], as is shown in Figure 2.1.

Compiler

Front-End Back-End
IR

Source
Program

Assembly
Code

Figure 2.1: Compiler overview.

The front-end of a compiler is typically responsible for analyzing the source
program, which involves passes of lexical, syntactic, and semantic analysis. These
passes verify that the source program follows the rules of the used programming
language and otherwise terminate the compilation [5].

7



CHAPTER 2. TRADITIONAL COMPILERS

If the program passes all parts of the analysis, the front-end translates it into an
Intermediate Representation (IR), which is an abstract representation of the source
program independent of both the source programming language and the target
machine [16]. The back-end takes this IR and translates it into assembly code for
the target machine [4].

The use of an abstract IR makes it possible to use a target specific back-end
together with multiple different front-ends, each implemented for a specific source
language, or vice versa. This can drastically reduce the work effort when building
a compiler, and introduces a natural decomposition to the compiler design [16].

2.2 Compiler Back-end
The back-end of a compiler is responsible for generating executable, machine de-
pendent code that implements the semantics of the source program’s IR. This is
traditionally done in three stages: instruction selection, instruction scheduling and
register allocation [4, 16]. Figure 2.2 shows how these stages can be organized in a
traditional compiler, for example GCC [1] or LLVM [2].

Instruction
selection

Instruction
scheduling

Register
allocation

IR
Partially ordered

instructions

Ordered in-
structions

Register allocated
instructions

Generated
code

Back-end

Figure 2.2: Compiler Back-end.

The instruction selection stage maps each operation in the IR to one or more
instructions of the target machine. The instruction scheduling stage reorders these
instructions to make the program execution more efficient while still being correct.
In the register allocation stage, each temporary value of the IR is assigned into
either a processor register or a location in memory.

These three subproblems are all interdependent, meaning that attempts to solve
one of them can affect the other problems and possibly make them harder. Due
to this interdependence, it is sometimes beneficial to re-execute some stage of the
code generation after some other stage has executed. For example, it might be
that the register allocation stage introduces additional register-to-register moves
into the code, and it would be beneficial to re-run the scheduler after this since
the conditions have changed. These repetitions of stages are illustrated by the two
arrows between instruction scheduling and register allocation in Figure 2.2.

In addition to the interdependence, all three subproblems are also Non-deter-
ministic Polynomial-time (NP)-hard problems [32, 21, 9]. Despite solid work, there
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2.2. COMPILER BACK-END

is no known algorithm to optimally solve NP-hard problems in polynomial time,
and many people do not even believe that such an algorithm exists. In general, it
is therefore computationally challenging to find an optimal solution to these kinds
of problems. Due to this, traditional compilers resort to greedy algorithms that
produce suboptimal solutions in reasonable time when solving each of the three
subproblems [4, 20].

2.2.1 Instruction Selection

Instruction selection is the task of selecting one or more instructions that shall be
used to implement each operation of the IR code of source program [22]. The most
important requirement of instruction selection, and the rest of the code generation,
is to produce correct code. In this context, correct means that the generated code
conforms to the semantics of the source program. Thus, the instruction selection
must be made in a way that guarantees that the semantics of the source program
is not altered [4, 20].

2.2.2 Instruction Scheduling

Instruction scheduling has one main purpose, to create a schedule for when each
selected instruction is to be executed [16]. Ideally, the generated schedule should
be as short as possible, which implies fast execution of the program.

The instruction scheduler takes as input a set of partially ordered instructions
and orders them into a schedule that respects all of the input’s control and data
dependencies.

A dependency captures a necessary ordering of two instructions, that is, that one
instruction cannot be executed before the other instruction has finished. The sched-
uler must also guarantee that this schedule never overuses the available functional
units of the processor [4].

Functional units are a limited type of processor resources, each of which is ca-
pable of executing one program instruction at a time. Examples of functional units
are adders, multipliers and Floating Point Units (FPUs) [16]. An instruction may
need a resource for multiple time units, blocking any other instruction from using
the resource during this time.

Latency refers to the time an instruction needs to finish its execution, and is
highly dependent on the state of the executing machine. For example, the latency of
a load instruction can vary from a couple of cycles to hundreds of cycles, depending
on where in the memory hierarchy the desired data exist. Due to this, it is impossible
for the compiler know the actual latency of an instruction, instead it has to rely on
some estimated latency and let the hardware handle any additional delay during
run time. The hardware may do this by stalling the processor by inserting nops
(an instruction performing no operation) into the processor pipeline.

Some processors support the possibility to issue more than one instruction in
each cycle. This is the case for Very Long Instruction Word (VLIW) processors

9
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which can bundle multiple instructions to be issued in parallel on the processor’s
different resources [16]. To support such processors, the scheduler must be able to
bundle the instructions, that is scheduling not only in sequence but also in parallel.

Control Dependencies

Control dependencies capture necessary precedences of instructions implied by the
program’s semantics. There is a control dependency between two instructions I1 and
I2 if the first instruction determines whether the second will be executed or not, or
vice versa. One of these instructions can for example be a conditional branch while
the other one is an instruction from one of the branches [5, 24].

The control dependencies of a program are often represented by a dependency
graph, which is used for analyzing the program control flow [5]. Figure 2.3 (b) shows
an example dependency graph for the code in Figure 2.3 (a). The vertices of the
graph are basic blocks and the edges represent jumps in the program.

A basic block is a maximal sequence of instructions among which there are
no control dependencies. The block starts with a label and ends with a jump
instruction, and there are no other labels or jumps within the block [5]. This
implies that if one instruction of a block is executed, then all of them must be
executed.

I1: t1 ← load @ra
I2: t2 ← load @rb
I3: if (t2 > t1)
I4: t1 ← add t0, t1
I5: t1 ← add t2, t1

(a) Example Code

I1: t1 ← load @ra
I2: t2 ← load @rb

b1

I4: t1 ← add t0, t1

b2

I5: t1 ← add t2, t1

b3

(b) Control dependency graph for example code.

Figure 2.3: Control dependencies for some example code

As an example for control dependencies, consider the code of Figure 2.3 (a), in
this example it is assumed that ra and rb are memory addresses and thus the pred-
icate of I3 cannot be evaluated during compilation. In the code, there is a control
dependency between instruction I4 and I3 sinceI4 is only executed if the predicate of
I3 evaluates to true. Therefore there is an edge between the corresponding blocks
b1 and b2 in the dependence graph of Figure 2.3 (b). On the other hand, there is
no control dependency between I5 and I3 since I5 is executed for all possible evalua-
tions of I3, but they are still in different blocks since they are connected by a jump
instruction indicated by an edge in the figure.

10



2.2. COMPILER BACK-END

Data Dependencies

Data dependencies are used to capture the implied ordering among pairs of instruc-
tions. A pair has a data dependency among them if one the instructions uses the
result of the other one [5, 20]. Traditional compilers usually use a data dependency
graph while scheduling the program’s instructions. Typically, this is done using a
greedy graph algorithm on the dependency graph [5, 20].

I1: t1 ← load @ra
I2: t2 ← add t0, t1
I3: t1 ← add t2, t1
I4: t3 ← load @ra
I5: t2 ← sub t1, t2
I6: t2 ← mul t2, t3
I7: @rb ← store t2

b1

(a) Example Code in form of a basic
block

I7

I6

I4 I5

I3

I2

I1

(b) Data dependency graph

Figure 2.4: Example showing a data dependency graph for a given basic block

An example of such a graph is given in Figure 2.4 (b) where each node cor-
responds to an instruction of the basic block of Figure 2.4 (a). If an instruction
uses the result of some other instruction within the block, an edge is drawn in the
direction in which data flow. For example, instruction I5 uses the result of I3 and
I2, therefore there is an edge from I3 to I5 and one from I2 to I5.
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2.2.3 Register Allocation

Register Allocation is the process of assigning temporary values (temporaries) to
machine registers and main memory [5]. Both registers and main memory are,
among others, part of a computer architecture’s memory hierarchy.

Registers are typically very fast, accessible from the processor within only one
clock cycle [5] but require large area on the silicon, and is therefore very expensive.
Due to this high cost, it is common for computer architectures to have a severely
limited number of registers, which makes register allocation a harder problem to
solve.

Main memory on the other hand is much cheaper, but also significantly slower
compared to registers. It is typically accessed in the order of 100 clock cycles [5],
which is so long that it may force the processor to stall while waiting for the desired
data. Since registers are much faster than main memory, it is desirable that the
register allocation utilizes the registers as efficiently as possible, ideally optimally.

To utilize the registers in an efficient way, it is of utmost importance to decide
which temporaries are stored in memory and which are stored in registers. To decide
this is one of the main tasks of register allocation and should be done so that the
most used temporaries reside in the register bank. In that way the delay associated
with accessing a temporary’s value is minimized.

The register allocation must never allocate more than one temporary to a register
simultaneously. That is, at any point of time there may exist at most one temporary
in each register. Every program temporary that cannot be stored in a register is
thus forced to be stored in memory and is said to be spilled to memory.

Register allocation is often done by graph coloring, which generally can produce
good results in polynomial time [16]. The graph coloring is carried out by an
algorithm that uses colors for representing registers in a graph where nodes are
temporaries and edges between nodes represent interferences. This kind of graph is
called an interference graph [16].

Interference Graphs

Two temporaries are said to interfere with each other if they are both live at the
same time [4]. Whether a temporary is live at some time is determined by liveness
analysis, which says that a temporary is live if it has already been defined and if
it can be used by some instruction in the future (and the temporary has not been
redefined) [5]. This is a conservative approximation of a temporary’s liveness, since
it is considered live not only when it will be used in the future but also if it can be
used in the future. This conservative approximation is called static liveness and is
what traditional compilers use [4].

An interference graph represents the interference among temporaries in the pro-
gram under compilation. Nodes of an interference graph represent temporaries while
edges between two distinct nodes represent interference between the nodes.

Figure 2.5 shows to the left the code of Figure 2.4 (a) translated to Single Static
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I1: t1 ← load @ra
I2: t2 ← addi 0, t1
I3: t4 ← add t2, t1
I4: t3 ← load @ra
I5: t5 ← sub t1, t4
I6: t6 ← mul t5, t3
I7: @rb ← store r6

b1

(a) Example code for interference graph.
(SSA version of the previous example
code.)

t6

t5

t4

t3

t2

t1

(b) Example interference graph.

Figure 2.5: Example showing interference graph for a given basic block

Assignment (SSA) form and to the right the corresponding interference graph. SSA
form is used by many modern compilers’ IR and requires that every temporary of
the program IR is defined exactly once, and any used temporary refers to a single
definition [16]. SSA is introduced in some more detail in Section 4.2.

In the interference graph of Figure 2.5 (b), there is an edge between t1 and t2

since they have overlapping live ranges, t1 is live before and beyond the point where
t2 is defined. In the same way t1 interferes with both t3 and t4, which interfere
with each other. t3 and t5 interfere since they are both used by the instruction
defining t6. None of the other temporaries is live after the definition of t6, hence
neither interferes with t6.
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Chapter 3

Constraint Programming

This chapter introduces the main concepts of Constraint Programming (CP). In
Section 3.1, an overview of CP is presented. In Section 3.2, the process of modeling
a problem with CP is described. In Section 3.3, the solving of a model is presented.
At last, in Section 3.4 some techniques for improving a model are presented.

3.1 Overview
Constraint Programming (CP) is a declarative programming paradigm used for
solving combinatorial problems. In CP, problems are modeled by declaring vari-
ables and constraints over the variables. The modeled problem is then solved by
a constraint solver. In some cases, an objective function is added to the model to
optimize the solutions in some way [11].

A well-known combinatorial problem that can be efficiently modeled and solved
with CP is a Sudoku, shown in Figure 3.1. This problem can be modeled with 81
variables allowed to take values from the domain {1, ..., 9}, each representing one of
the fields of the Sudoku board. The constraints in the Sudoku are: all rows must
have distinct values, all columns must have distinct values and all 3× 3 boxes must
have distinct values.

8
3 6

7 9 2
5 7

4 5 7
1 3

1 6 8
8 5 1

9 4

Figure 3.1: The world’s hardest Sudoku [31].
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To solve a problem, the constraint solver uses domain propagation interleaved
with search. Propagation removes values from the variables that do not satisfy
a constraint and can therefore not be part of a solution. Search tries different
assignments for the variables when no further propagation can be done [11].

3.2 Modeling

Before a problem can be solved with CP, the problem has to be modeled as a
Constraint Satisfaction Problem (CSP) which specifies the desired solutions of the
problem [11, 28]. The modeling elements of a CSP are variables and constraints.
The variables represent decisions the solver can make to form solutions and the
constraints describe properties of the variables that must hold in a solution. Each
variable is connected to its own finite domain, from which the variable is allowed to
take values. Typical variable domains in CP are integer and Boolean. Constraints
for integer variables are e.g. equality and inequality, for Boolean variables constraints
such as disjunction or conjunction are commonly used [6]. The objective of solving
a CSP is to find a set of solutions or to prove that no solution exists [15].

Consider register allocation as explained in Section 2.2.3 for a program repre-
sented in LSSA form, described in Section 4.2. This problem can be modeled and
solved with CP as a rectangle-packing problem, shown in Figure 3.2. The goal of
rectangle packing is to pack a set of rectangles inside a bounding rectangle [23].
Each temporary is represented by a rectangle connected to two integer variables;
xi and yi, which represent the bottom left coordinate of the rectangle inside the
surrounding rectangle, where i is the number of the temporary. The temporary
size and live range are represented as the rectangle’s width, wi, and height, hi,
respectively where again i is the number of the temporary. The maximum number
of registers that can be used is represented by the width, ws, of the surrounding
rectangle. The maximum number of issue cycles is represented by the the height,
hs, of the surrounding rectangle.

disjoint2(x, w, y, h) ∧ (y0 ≥ y2 + h2)∧ (3.1)
∀i(xi ≥ 0 ∧ xi + wi < ws ∧ yi ≥ 0 ∧ yi + hi < hs)

Given a situation where four temporaries, t0, t1, t2, t3, are to be allocated on a
maximum of four registers, ws = 4, during at most five issue cycles, hs = 5, and
with the additional constraint that the issue cycle of t2 must be before the issue
cycle of t0. The constraints of this problem can be expressed as in Equation 3.1
saying that none of the rectangles may overlap, the issue cycle of t2 is before the
issue cycle of t0 and all rectangles must be inside the surrounding rectangle.

The disjoint2 constraint is a global constraint expressing that a set of rectangles
cannot overlap. Global constraints are explained in more detail in Section 3.4.1. A
possible solution to this example is shown in Figure 3.2 (a).
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(a) Solution to register packing
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(b) Optimal solution with respect to
minimizing the bounding rectangle

Figure 3.2: Solutions to register packing

3.2.1 Optimization

Often when solving a problem it is desirable to find the best possible solution, i.e.
a solution that is optimal according to some objective. A Constraint Optimization
Problem (COP) is a CSP extended with an objective function, helping the solver
to determine the quality of different solutions [11]. The goal of solving a COP is
to minimize or maximize its objective function, and thus the quality is determined
by how low (minimizing) or high (maximizing) the value of the objective function
is [28]. For each solution that is found the solver uses the objective function to
calculate the quality of the solution. If the found solution has higher quality than
the previous best solution, the newly found solution is marked to be the current
best. The solving stops when the whole search space has been explored by the
solver. At this point the solver has proven one solution to be optimal or proven
that no solution exists [28].

Proving that an solution is optimal after it has been found is referred to as proof
of optimality. This phase of solving a COP can be the most time-consuming part of
the solving. In cases where a timeout is used to stop the solver from searching for
better solutions, the solver knows which solution that is the best upon the timeout.
This solution is not necessarily an optimal solution, but it can be optimal without
the solver’s knowledge, i.e. the solving timed out during proof of optimality.

Consider the register allocation problem as introduced in Section 3.2 together
with the potential solution shown in Figure 3.2 (a). This solution is a feasible
solution to the problem, but it is not optimal. An optimal solution to this problem
can be found by transforming the model into a COP, adding the objective function
f = ws×hs, where f is the area of the surrounding rectangle, with the objective to
minimize the value of f . Doing so, the solver can find and prove that the solution,
shown in Figure 3.2 (b), is indeed one optimal solution to this problem, according
to the objective function f .
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3.3 Solving

Solving a problem in CP is done with two techniques: propagation and search [6].
Propagation discards values from the variables that violate a constraint from the
model and can therefore not be part of a solution. Search tries different assignments
for the variables when no further propagation can be done and some variable is still
not assigned to a value. Propagation interleaved with search is repeated until the
problem is solved [11].

3.3.1 Propagation

The constraints in a model are implemented by one or many propagator functions,
each responsible for discarding values from the variables such that the constraint
the propagator implements is satisfied [29]. Propagation is the process of executing
a set of propagator functions until no more values can be discarded from any of the
variables. At this point, propagation is said to be at fixpoint.

s = { x 7→ {1, 2, 3},
y 7→ {1, 2, 3},
z 7→ {0, 1, 2, 3, 4}}

Initial domain
s = { x 7→ {1, 2},

y 7→ {2, 3},
z 7→ {1, 2, 3}}

First iteration
s = { x 7→ {1, 2},

y 7→ {2, 3},
z 7→ {1, 2}}

Second iteration
s = { x 7→ {1, 2},

y 7→ {2, 3},
z 7→ {1, 2}}

Third iteration

Figure 3.3: Propagation with three iterations with the constraints z = x and
x < y

Figure 3.3 shows an example of propagating the constraints z = x and x < y
on the variables x 7→ {1, 2, 3}, y 7→ {1, 2, 3}, z 7→ {0, 1, 2, 3, 4}. In the first iteration
of the propagation, the values from z that are not equal to any of the values of x
are removed. Then the values from x and y not satisfying the constraint x < y are
removed from the respective variables. In the second iteration, more propagation
can be done since the domain of x has changed. In this iteration the value 3 is
removed from the domain of z to satisfy z = x. In the third iteration no further
propagation can be done and the propagation is at fixpoint.

3.3.2 Search

When propagation is at fixpoint and some variables are not yet assigned a value, the
solver has to resort to search. [28]. The underlying search method most commonly
used in CP is backtrack search [28]. Backtrack search is a complete search algorithm
which ensures that all solutions to a problem will be found, if any exists [28].

There exist different strategies for exploring the search tree of a problem. One
of them is Depth First Search (DFS), which explores the depth of the search tree
first.

Figure 3.4 shows an example of a search tree for a CSP solved with backtrack
search. The root node corresponds to the propagation in Figure 3.3. The number
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x 7→ {1, 2}
y 7→ {2, 3}

z 7→ {1, 2}

1

x 7→ {1}
y 7→ {2, 3}

z 7→ {1}

2

x 7→ {1}
y 7→ {2}

z 7→ {1}

3
x 7→ {1}
y 7→ {3}

z 7→ {1}

4

x 7→ {2}
y 7→ {3}

z 7→ {2}

5
x 7→ 1 x 7→ 2

y 7→ 2 y 7→ 3

Figure 3.4: Search tree for a CSP with the initial store {x 7→ {1, 2, 3}, y 7→
{1, 2, 3}, z 7→ {0, 1, 2, 3, 4} and the constraint {x < y, z = x}

on each node corresponds to the order in which DFS has explored the tree, where
node 3, 4 and 5 are solutions to the problem.

When solving a COP it is not always necessary to explore the whole search
tree, since when the solver knows the quality of the current best solution it is not
interested in finding solutions of less quality. Solving COPs is typically done with
an exploration strategy called Branch and Bound (BAB). This strategy uses the
objective function of the COP to constrain the model further when a solution has
been found [28]. This constraint prunes branches in the search tree that would have
led to solutions of lower quality, and therefore decreases the effort of finding and
proving the optimal solution [28].

Consider the COP of register allocation as in Section 3.2.1. When a solution,
S, has been found to this problem, the model is further constrained with the con-
straint ws×hs < f(S), saying that upcoming solutions must have smaller bounding
rectangles, if the solutions exists.

Another important aspect of the search process is the branching strategy. This
strategy determines how the variables will be assigned to values at search. These
assignments are the edges between the nodes in the search tree. The assignments
can for example be done by assigning a variable to the lowest value from its domain,
or by splitting its domain into two halves [28].

3.4 Improving Models

Solving a naively implemented CSP can be a time-consuming job for the constraint
solver, since the model might be weak and because of that its search tree might
contain many dead ends [28]. There exist some modeling techniques to reduce
the amount of effort that has to be put into to search. Some of the techniques
such as global constraints and implied constraints focus on giving more propagation
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to the problem [28]. Dominance-breaking constraints on the other hand focuses
on removing solutions that in some way are equivalent to another solution, thus
making the search tree smaller [28]. Another technique for improving the solving
time and robustness of solving is presolving. This technique transforms a model
into an equivalent model that is potentially easier to solve before solving [11].

3.4.1 Global Constraints
Global constraints replace many frequently used smaller constraints of a model
[28]. A global constraint can involve an arbitrary number of variables to express
properties on them. Using a global constraint makes the model more concise and
makes propagation more efficient, since efficient algorithm exploiting structures in
the constraint can be used [18]. Some examples of global constraints are alldiffer-
ent, disjoint2 and cumulative. The alldifferent constraint expresses that a number
of variables must be pairwise distinct. This replaces many inequality constraints
among variables. The disjoint2 constraint takes a number of rectangle coordinates
together with their dimensions and expresses that these rectangles are not allowed
to overlap. Again, this constraint replaces many smaller inequality constraints be-
tween the variables. The cumulative constraint expresses that the limit of a resource
is must at no time be exceeded by the set of tasks sharing that resource [29].

There exist many more global constraints. Examples of these can be found in
the Global Constraints Catalogue [8].

3.4.2 Dominance Breaking Constraints
A dominance relation in a constraint model are two assignments where one is known
to be at least as good as the other one. This makes dominance relations almost
symmetries where instead of being two exactly symmetrical solutions, they are
symmetrical with respect to satisfiability or quality [15].

Dominance breaking constraints exploit these almost symmetries to prune some
solutions before or during search, without affecting satisfiability or optimality, which
leads to faster solving of the problem.

Symmetry Breaking Constraints

A subset of dominance breaking constraints are symmetry breaking constraints [15].
Symmetry in a CSP or COP means that for some solutions there exist other ones
that are in some sense equivalent. The symmetries divide the search tree into
different classes where each class corresponds to equivalent sub-trees of the search
tree [28]. Consider the problem of register packing. The objective of this problem
is to minimize the number of cycles and registers used. However, to this problem
there exist many solutions that are, with respect to optimality, equally good or the
same solution. An example of this is shown in Figure 3.5.

By removing symmetries, solving a problem can be done faster and more effi-
ciently, mainly because a smaller search tree has to be explored before either finding
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Figure 3.5: Two equivalent solutions

all solutions or to prove that a solution is optimal. There exist different techniques
for removing symmetries from a model. One way of doing so is to remove these
symmetries during search, discussed in [28]. Another way to remove symmetries is
to add more constraints to the model which will force the values in some way, by
for example add some ordering among the variables [28]. In the register packing
problem, some symmetries can be removed by assigning a temporary to a register
before search. This can for example be to assign t0 to R1 and R2 in the cycles 2
and 3 before search takes place. This will remove all symmetrical solutions where
t0 is allocated to register R1 and R2 in the same cycles.

3.4.3 Implied Constraints

An efficient, and commonly used, technique for improving the performance of solv-
ing, by removing potential dead ends in its search tree, is to add implied constraints
to the model [28]. Implied constraints are logically redundant, which means that
they do not change the set of solutions to a model but instead remove some failures
that might have occurred during search by forbidding some assignments being made
[28].

Finding implied constraints can be done manually before search or by presolving,
explained in Section 3.4.4.

Consider the register allocation problem as presented in Section 3.2. To improve
this model it can be extended with two additional cumulative constraints, projecting
the x and y dimensions as in Figure 3.6 [30]. This constraint does not add any new
information to the problem but it might give more propagation. The cumulative
constraint constraining the y-axis of the register packing expresses that at any
given issue cycle, not more than 4 temporaries can be allocated to the registers.
The cumulative constraint projected on the x-axis expresses that no register can
have temporaries during more than 5 issue cycles.

Negating nogoods is another way of adding implied constraints to a model. A
nogood is an assignment that can never be part of a solution and thus its negation
holds for the model [14]. Nogoods are typically found and used during search, known
as nogood recording [28]. However, they can also be derived during presolving or
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Figure 3.6: Register packing with cumulative constraint

manually by reasoning.
For the register allocation problem from Section 3.2 it can be seen that tempo-

rary t0 can never be assigned to a register during issue cycle 0 or 1, since temporary
t2 must be issued before t0. This assignment is a nogood. This nogood, y0 >= 3,
can be negated and added as a constraint in the model, as: y0 < 3.

3.4.4 Presolving
Presolving automatically transforms one model into an equivalent model (with re-
spect to satisfiability or optimal solution) that is potentially easier to solve. Presolv-
ing aims at reducing the search effort by tightening bounds on the objective func-
tion, removing redundancy from the model, finding implied constraints or adding
nogoods [27].

Presolving techniques can be implemented by solving a relaxed model of the
problem, from which variables or constraints have been removed to make it easier
to solve, and then use the solutions from this model to improve the original model.
One technique that does this is bounding by relaxation. This technique first solves a
relaxed model of the problem to optimality. The objective function of the original
model is then constrained to be equal or worse than the result of the relaxed model.
The idea of bounding by relaxation is to speed up proof of optimality, as described
in [11].

Other techniques such as shaving instead use the original model during presolv-
ing. This technique tries individual assignments for the variables and removes those
values from the variables that after propagation lead to failure, as described in [11].

More presolving techniques are described in Chapter 5. These techniques either
focus on generating dominance breaking constraints or implied constraints, which
are then added to the model.
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Chapter 4

Unison - A Constraint-Based Compiler
Back-End

This chapter introduces Unison, a compiler back-end based on combinatorial opti-
mization using constraint programming [3]. Unison is the outcome of an ongoing
research project at the Swedish Institute of Computer Science (SICS) and the Royal
Institute of Technology, KTH. In its current state, Unison is capable of performing
integrated instruction scheduling and register allocation while depending on other
tools for the instruction selection. With the help of experiments, it has been shown
that Unison is both robust and scalable and has the potential to produce optimal
code for functions of size up to 1000 instructions within reasonable time [11].

The remainder of this chapter is organized as follows. Section 4.1 presents the
main architecture of Unison and briefly describes the different components. The
Unison-specific Intermediate Representations (IRs) are introduced in Section 4.2.
Section 4.3 describes how the source program and target processor are modeled. The
methods for instruction scheduling and register allocation in Unison are introduced
in Section 4.3.3 and Section 4.3.4, respectively.

4.1 Architecture

As common in compiler architectures, the Unison compiler back-end is organized
into a chain of tools. Each of these tools takes part in the translation from the
source program to the assembly code. Figure 4.1 illustrates these tools and how
they are organized. The dashed rectangle illustrates the boundaries of Unison, every
component inside this rectangle is a part of Unison while everything on the outside
are tools that Unison uses.

Each of the components in Figure 4.1 processes files, meaning that each com-
ponent takes a file as input, processes the content and then delivers the result in
a new file. The content of the output files is formatted according to the filename
extension, written next to the arrows between the components of the figure. The
input file to Unison is expected to contain only one function, called the compilation
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import extend model presolver solver export

instruction
selector

instruction
emitter

Unison

.ll

.mll

.uni .ext.uni .json .ext.json .out.json

.unison.mll

.s

Figure 4.1: Architecture of Unison, recreated from [12]

unit. For this thesis, the most interesting component is the presolver, which will
be described in some detail in Chapter 5 but also evaluated and partly reimple-
mented in later Chapters. The function of the components, including those outside
the dashed box in Figure 4.1, is shortly described below.

Instruction selector: takes as input an IR of the source program and re-
places each abstract instruction of the IR with an appropriate assembly in-
struction of the target machine. The output of this component contains code
for a single function, since that is the compilation unit of Unison.

Import: transforms the output of the instruction selector into a Unison-
specific representation.

Extend: extends the previous output with data used to transform the Unsion-
specific representation into a combinatorial problem.

Model: takes the extended Unison representation and formulates (models) it as a
combined combinatorial problem for instruction scheduling and register allo-
cation.

Presolver: simplifies the combinatorial problem by executing different presolv-
ing techniques for example finding and adding necessary (implied) constraints
to the problem model. This component and its techniques are described in
some more detail in Chapter 5.

Solver: solves the combinatorial problem using a constraint solver.

Export: transforms the solution of the combinatorial problem into assembly code.

Instruction emitter: generates assembly code for the target machine given
the assembly code from the export component.
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4.2 Intermediate Representation
The input to Unison is a function in SSA form, for which instructions has been
selected by the instruction selector.

t1 ← load t0
t2 ← add t0, t1
t1 ← add t2, t1
t3 ← load t0
t2 ← sub t1, t2
t2 ← mul t2, t3

(a) Original code

t1 ← load t0
t2 ← add t0, t1
t4 ← add t2, t1
t3 ← load t0
t5 ← sub t4, t2
t6 ← mul t5, t3

(b) Code in SSA form

Figure 4.2: Example of SSA form. The code of (b) is the SSA form of the code
in (a), and the differences between these are highlighted in (b).

In SSA form, every program temporary is defined exactly once, meaning that
the value of a temporary must never change during its lifetime [16]. Figure 4.2 (a)
shows some example code where temporaries are used and defined by operations.
In this example, both t1 and t2 are defined more than once, something that is
not legal in SSA. When translating this piece of code into SSA form it is necessary
to replace every re-definition of a temporary with a new, unused temporary. Of
course, this new temporary must also replace any succeeding use of the re-defined
temporary to maintain the semantics. As a result, every definition is of a distinct
temporary and every used temporary can be connected to a single definition [16].

Figure 4.2 (b) shows the example code after translation into SSA, it is semanti-
cally equivalent to the previous code but there are no re-definitions of temporaries.

The import component of Unison takes the SSA formed program, given by the
instruction selector, and translates it into Linear Single Static Assignment
(LSSA), a stricter version of SSA that is used within Unison back-end. LSSA was
introduced by [13] and is stricter than SSA in that temporaries are not only limited
to be defined only once, but also to be defined and used within a single basic
block [13]. This property yields simple live ranges for temporaries and thus enables
further problem decomposition. To handle cases where the value of a temporary
is used across boundaries of basic block, LSSA introduces the congruence relation
between temporaries [13]. Two temporaries t0 and t1 are congruent with each
other whenever t0 and t1 correspond to the same temporary in a conventional
SSA form.

Figure 4.3 shows the factorial function in LSSA form for Qualcomm’s Hexagon
V4 [26] and this is how the output from the import component would look like in
this setup. The file consists of two main parts: the basic blocks (for example b2)
and their operations (each line within a block), and a list of congruent temporaries
[12]. Each operation has a unique identifier (for example o2) and consists of a set
of definitions (for example [t3]), a set of possible instructions for implementing
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b0:
o0: [t0:R0,t1:R31] <- (in) []
o1: [t2] <- TFRI [{imm, 1}]
o2: [t3] <- {CMPGTri_nv, CMPGTri} [t0,{imm, 0}]
o3: [] <- {JMP_f_nv, JMP_f} [t3,b3]
o4: [] <- (out) [t0,t1,t2]

b1:
o5: [t4,t5,t6] <- (in) []
o6: [] <- LOOP0_r [b2,t5]
o7: [] <- (out) [t4,t5,t6]

b2:
o8: [t7,t8,t9] <- (in) []
o9: [t10] <- ADD_ri [t8,{imm, -1}]
o10: [t11] <- MPYI [t8,t7]
o11: [] <- ENDLOOP0 [b2]
o12: [] <- (out) [t9,t10,t11]

b3:
o13: [t12,t13] <- (in) []
o14: [] <- JMPret [t13]
o15: [] <- (out) [t12:R0]

congruences:
t0 = t5, t1 = t6, t1 = t13, t2 = t4, t2 = t12, t4 = t7, t5 = t8,
t6 = t9, t9 = t13, t10 = t8, t11 = t7, t11 = t12

Figure 4.3: Example function in LSSA: factorial.uni (reprinted and simpli-
fied from [12])

the operation (for example {CMPGTri_nv, CMPGTri}) and a set of uses (for example
[t0, imm, 0]). In some cases, a temporary must be placed in a specific register, for
example due to calling conventions, and this is captured in the program represen-
tation by adding the register identifier as a suffix to the temporary. This is true for
operation o0 where temporary t0 is preassigned to register R0 and t1 is preassigned
to register R31.

4.2.1 Extended Intermediate Representation

The extender component of Unison takes a program in LSSA form and extends
it in order to express the program as a combinatorial problem. The extension
consists of adding optional copies to the program and generalizes the concept of
temporaries to operands [12]. Figure 4.4 shows the extended representation of the
previous example (Figure 4.3).

Optional copies are optional operations that copy the value of a temporary ts

into another temporary td [13]. These two temporaries thus hold the same value
and are said to be copy related to each other, and any use of such a temporary can
be replaced by a copy related temporary without altering the program’s semantics
[14]. The copies are optional in the sense that they can be either active or inactive,
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b0:
o0: [p0{t0}:R0,p1{t1}:R31] <- (in) []
o1: [p3{-, t2}] <- {-, TFR, STW} [p2{-, t0}]
o2: [p4{t3}] <- TRFI [{imm, 1}]
o3: [p6{-, t4}] <- {-, TFR, STW, STW_nv} [p5{-, t3}]
o4: [p8{-, t5}] <- {-, TFR, LDW} [p7{-, t0, t2}]
o5: [p10{t6}] <- {CMPGTri_nv, CMPGTri} [p9{t0, t2, t5, t7},{imm, 0}]
o6: [p12{-, t7}] <- {-, TFR, LDW} [p11{-, t0, t2}]
o7: [p14{-, t8}] <- {-, TFR, LDW} [p13{-, t3, t4}]
o8: [] <- {JMP_f_nv, JMP_f} [p15{t6},b3]
o9: [] <- (out) [p16{t0, t2, t5, t7},p17{t1},p18{t3, t4, t8}]

b1:
o10: [p19{t9},p20{t10},p21{t11}] <- (in) []
o11: [p23{-, t12}] <- {-, TFR, STW} [p22{-, t9}]
o12: [p25{-, t13}] <- {-, TFR, STW} [p24{-, t10}]
o13: [p27{-, t14}] <- {-, TFR, LDF} [p26{-, t10, t13}]
o14: [] <- LOOP0_r [b2,p28{t10, t13, t14, t16}]
o15: [p30{-, t15}] <- {-, TFR, LDW} [p29{-, t9, t12}]
o16: [p32{-, t16}] <- {-, TFR, LDW} [p31{-, t10, t13}]
o17: [] <- (out) [p33{t9, t12, t15},p34{t10, t13, t14, t16},p35{t11}]

b2:
o18: [p36{t17},p37{t18},p38{t19}] <- (in) []
o19: [p40{-, t20}] <- {-, TFR, STW} [p39{-, t17}]
o20: [p42{-, t21}] <- {-, TFR, STW} [p41{-, t18}]
o21: [p44{-, t22}] <- {-, TFR, LDW} [p43{-, t18, t21}]
o22: [p46{t23}] <- ADD_ri [p45{t18, t21, t22, t26},{imm, -1}]
o23: [p48{-, t24}] <- {-, TFR, STW, STW_nv} [p47{-, t23}]
o24: [p50{-, t25}] <- {-, TFR, LDW} [p49{-, t17, t20}]
o25: [p52{-, t26}] <- {-, TFR, LDW} [p51{-, t18, t21}]
o26: [p55{t27}] <- MPYI [p53{t18, t21, t22, t26},p54{t17, t20, t25}]
o27: [p57{-, t28}] <- {-, TFR, STW, STW_nv} [p56{-, t27}]
o28: [p59{-, t29}] <- {-, TFR, LDW} [p58{-, t23, t24}]
o29: [p61{-, t30}] <- {-, TFR, LDW} [p60{-, t27, t28}]
o30: [] <- ENDLOOP0 [b2]
o31: [] <- (out) [p62{t19},p63{t23, t24, t29},p64{t27, t28, t30}]

b3:
o32: [p65{t31},p66{t32}] <- (in) []
o33: [p68{-, t33}] <- {-, TFR, STW} [p67{-, t31}]
o34: [p70{-, t34}] <- {-, TFR, LDW} [p69{-, t31, t33]
o35: [] <- JMPret [p71{t32}]
o36: [] <- (out) [p72{t31, t33, t34}:R0]

congruences:
p1 = p17, p10 = p15, p16 = p20, p17 = p21, p17 = p66, p18 = p19,
p18 = p65, p21 = p35, p33 = p36, p34 = p37, p35 = p38, p38 = p62,
p62 = p38, p62 = p66, p63 = p37, p64 = p36, p64 = p65, p66 = p71

Figure 4.4: Extended example function in LSSA: factorial.ext.uni
(reprinted from [12]).
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an inactive copy will not appear in the generated assembly code while an active
will. Whenever an optional copy is inactive its operands are connected to a null
temporary, denoted by a dash (-) in Figure 4.4. An inactive optional copy has no
effect in the translated program. The purpose of extending the IR with optional
copies is to allow the value of temporaries to be transferred between registers in
different register banks and memory. This helps during register allocation since
optional copies make spilling possible (as defined in Chapter 2) by allowing tempo-
raries to be transferred between different storage types (for example register banks
or memory). Optional copies use alternative instructions in order to implement
the effect of transferring temporaries between different storage types. For example,
operation o4 of Figure 4.4 is an optional copy that can be implemented by one of
the instructions in the set {-, TFR, LDW}. The first one, -, is a null instruction
which is used when the copy is inactive, much in the same way as null temporaries
are used. The second instruction, TFR, is used when the source temporary and the
destination temporary both reside in registers. The LDW instruction is selected to
implement the operation whenever the source temporary resides in memory. Ex-
tending the program representation with optional copies is a task dependent on the
target processor. For the Hexagon processor one copy is added after each definition
of a temporary, and before any use of a temporary, except for temporaries that are
preassigned to some special register [14]. Adding copies in such a way allows the
value of a defined temporary to be spilled, if needed, to memory and then retrieved
back to register when needed.

Operands are introduced as a generalization of the temporary concept [14]. An
operand is either used or defined by its operation, and the operand is connected to
one of its alternative temporaries. When an operation is inactive, i.e. it is imple-
mented by the null instruction, the operands of that operation are connected to the
null temporary. The introduction of operands is a necessity for efficiently introduc-
ing alternative temporaries into the program representation, which together yields
the possibility to substitute copy related temporaries. The ability to substitute tem-
poraries makes it possible to implement coalescing and spill code optimization, and
therefore also to produce higher quality code (with respect to speed, size etc.) [14].
In the Unison extended IR every set of alternative temporaries is prefixed by an
operand identifier. For example, operation o4 in Figure 4.4 uses one operand, p7,
and defines another one, p8. The use operand p7 can be connected to one of the
alternative temporaries in the set {-, t0, t2}. In the same way p8 can be con-
nected to one of the temporaries in {-, t5}, depending on whether the operation
o4 is active or not. Even though operands and alternative temporaries increase the
problem complexity, it has been shown to have no or positive effect on the code
quality of optimally solved functions [14]. Also, congruences are lifted to operands
rather than temporaries, and the same holds for preassignments.
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4.3 Constraint Model
Unison’s constraint model is built upon a set of program parameters for modeling
the source program, and a set of processor parameters, which are used to describe
properties of the target processor. In addition to these parameters, the model also
has a set of variables used for modeling the instruction scheduling and register
allocation.

4.3.1 Program and Processor Parameters
This section shortly presents a subset of the program and processor parameters used
in the Unison constraint model.

Program Parameters

B,O,P,T sets of blocks, operations, operands and temporaries
operands(o) set of operands of operation o

temps(p) set of temporaries that can be connected to operand p

use(p) whether p is a use operand
definer(t) operation that potentially defines temporary t

T(b) set of temporaries in block b

p.r whether operand p is preassigned to register r
width(t) number of register atoms that temporary t occupies
p≡q whether operands p and q are congruent
O(b) set of operations of block b

freq(b) estimated frequency of block b

dep(b) fixed dependency graph of the operations in block b

Table 4.1: Program Parameters, reprinted from [12]

Table 4.1 shows a subset of the program parameters used in Unison. These
parameters are used to express properties in the model of the source program, as
for example operations of the program, which operands that can be connected to
an operation or whether an operand is preassigned to a register. The freq(b)

parameter is an estimate of the frequency at which block b will be executed. This
estimate is based on a loop analysis and the assumption that code within a nested
loop is executed more frequently than code outside the nested loop [33].

29



CHAPTER 4. UNISON - A CONSTRAINT-BASED COMPILER BACK-END

Processor Parameters

I,R sets of instructions and resources
dist(o1,o2,i) min. issue distance of ops. o1 and o2 when o1 is implemented by i

class(o,i,p) register class in which operation o implemented by i accesses p
atoms(rc) atoms of register class rc
instrs(o) set of instructions that can implement operation o

lat(o,i,p) latency of p when its operation o is implemented by i

cap(r) capacity of processor resource r
con(i,r) consumption of processor resource r by instruction i

dur(i,r) duration of usage of processor resource r by instruction i

Table 4.2: Processor Parameters, reprinted from [12]

Table 4.2 shows a subset of Unison’s processor parameters. These parameters are
used to model the target processor and its instruction set. This includes for example,
the set of available instructions, resources, or the capacity of the processors different
resources.

4.3.2 Model Variables

ao ∈ {0,1} whether operation o is active
io ∈ instrs(o) instruction that implements operation o

lt ∈ {0,1} whether temporary t is live
rt ∈ N0 register to which temporary t is assigned
yp ∈ temps(p) temporary that is connected to operand p

co ∈ N0 issue cycle of operation o relative to the beginning of its block
lst ∈ N0 live start of temporary t

let ∈ N0 live end of temporary t

Table 4.3: Model variables, reprinted from [12]

The model variables of Table 4.3 are used when formulating the constraints
for instruction scheduling and register allocation. Thus, these variables are used
to describe the solutions to a model, rather than the input program or the target
processor.

4.3.3 Instruction scheduling

This section shortly describes the most relevant part of the instruction scheduling
model within Unison. A more in-depth description of this is available in [13] and
[14], which are the sources of what is presented in this section. The instruction
scheduling is modeled as a set of constraints, here presented as logical formulas.
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Liveness Constraints

The model has two different constraints regarding the temporaries’ liveness:

lt ⇒ lst = cdefiner(t) ∀t ∈ T (4.1)

lt ⇒ let = max
o∈users(t)

co ∀t ∈ T (4.2)

The constraint (4.1) expresses that if a temporary t is live, then its live range
must start at the issue cycle of the operation that defines t. The second constraint,
(4.2), expresses that every live temporary t must be live until the issue cycle of the
last operand that uses the temporary. users(t) yields the operations that have at
least one operand that uses the temporary t. Both of these constraints hold for all
temporaries in the constraint model.

Data Precedences

Data precedence constraints handle the necessary ordering among operations intro-
duced by data dependencies.

ao ⇒ co ≥ cdefiner(yp) + lat(o, io, p) ∀o ∈ O,∀p ∈ operands(o) : use(p) (4.3)

Constraint (4.3) expresses that an active operation may never be issued until all of
its used temporaries has been defined. A used temporary t is considered defined at
the point where its defining operation have finished its execution.

Processor Resources

Resource constraints have the purpose of guaranteeing that the use of any limited
processor resource never exceeds its capacity.

cumulative({〈co, con(io, r),dur(io, r)〉 : o ∈ O(b)}, cap(r)) ∀b ∈ B, ∀r ∈ R (4.4)

The constraint in (4.4) uses the cumulative constraint [6] for expressing this. Each
of these constraints ensures that each resource never exceeds its capacity during
the execution time of an operation within the current block. Doing this for all
operations within all blocks simply ensures that the capacity of any resource is
never exceeded.

4.3.4 Register Allocation

This section shortly introduces the most relevant constraints used for expressing the
register allocation model in the Unison constraint model. As the previous section,
this section is based on [13] and [14].
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Alternative Temporaries

Constraint (4.5) ensures that a temporary t is live if and only if it is used by some
operand p.

lt ⇔ ∃p ∈ P : (use(p) ∧ yp = t) ∀t ∈ T (4.5)
If a temporary t is active, it must be defined in some operation that is active.

The converse also holds: if an operation is the definer of some temporary then that
temporary must be live. These properties are covered by constraint (4.6).

lt ⇔ adefiner(t) ∀t ∈ T (4.6)

For any active operation, it must hold that all of its operands are connected
to a temporary other than the null temporary. Constraint (4.7) adds this to the
constraint model. The falsum symbol (⊥) denotes here either the null temporary
or the null instruction, depending on the context.

ao ⇔ yp 6= ⊥ ∀o ∈ O,∀p ∈ operands(o) (4.7)

An active operation must also be implemented by an instruction other than the
null instruction, otherwise it cannot be active. This is captured by constraint (4.8).

ao ⇔ io 6= ⊥ ∀o ∈ O (4.8)

Alternative Instructions and Storage Locations

Unison models memory locations in the same way registers are modeled [14]. This
means that the Unison register allocation is not only able to place temporaries in
registers but also in memory locations (when spilling the temporary) on the runtime
stack. As mentioned in Section 4.2.1, the instruction that can implement an opera-
tion depends upon where its temporaries are located, for example in some register
bank or memory. Therefore, the model must constrain the choice of alternative
instruction for an operation to comply with the storage type of its temporaries.

ryp ∈ class(o, io, p) ∀o ∈ O,∀p ∈ operands(o) (4.9)
The constraint (4.9) constrains every operation to be implemented by an instruction
that can handle the storage location of all temporaries connected to the operation
through its operands.

Register packing

The Unison constraint model utilizes rectangle packing when assigning temporaries
to registers, as introduced in Section 3.2.

disjoint2({〈rt, rt + width(t)× lt, lst, let〉 : t ∈ T (b)}) ∀b ∈ B (4.10)

The disjoint2 constraint [7] is used to implement this rectangle packing, which
guarantees that no registers overlap with each other (interfere), as shown by (4.10).
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Preassigned Operands

As explained earlier an operand can be preassigned to some register, for example
due to calling conventions of the target architecture.

ryp = r ∀p ∈ P : p . r (4.11)

Preassignments are implemented by constraining the temporary of every preassigned
operand to be assigned to the register to which the operand is preassigned, as is
done by constraint (4.11).

Congruent Operands

Congruent operands are by definition assigned to the same register. This is captures
by the constraint (4.12) below.

ryp = ryq ∀p, q ∈ P : p ≡ q (4.12)

This constraint is part of the global register allocation and makes sure variables
used across block boundaries are stored in the same register.
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Unison Presolver

This chapter introduces the existing presolver of Unison, and those presolving tech-
niques that are relevant for this thesis. This presolver is evaluated in Chapter 6 and
parts of it are reimplemented in Chapter 7.

As shown in Figure 4.1, Unison uses a presolver in order to speed up the solving
of the constraint model. Even though it would be possible to use Unison without
this presolver, it has been shown to be beneficial with respect to solving time and
thereby robustness [14].

The presolver of Unison is built upon a set of presolving techniques, hereafter
simply referred to as techniques. During the presolving process, all of these tech-
niques are executed aiming to simplify the constraint model before the main solver.
The simplification consists in adding more information to the constraint model,
which the main solver then beneficially can use to cut down the search effort, as
previously explained in Section 3.4.4. This added information is not mixed with
the base model but rather added as a set of extensions to the model, meaning it is
possible for the constraint solver to disregard the results of individual techniques.

The different techniques of the Unison presolver can be divided into two cate-
gories, those that generate implied constraints (Section 3.4.3) and those that gen-
erate dominance breaking constraints (Section 3.4.2).

For this thesis, only those generating dominance breaking constraints are rele-
vant and thus introduced in the following section. The techniques generating the
implied constraints are described in [17].

5.1 Dominance-Based Presolving Techniques

The set of dominance-based presolving techniques contains four techniques here
called: Temp Tables, Active Tables, Copy Min and Domops. These techniques are
highly dependent on other techniques used in the presolver, most coming from
other groups of techniques. This set of dominance-based techniques aims to remove
dominance relations and symmetries from the model that are introduced by the
optional copies, before the solving takes place to reduce the effort of solving.
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InfeasibleDomops Nogoods

Temp tables Active tables

Copy min

Figure 5.1: Simplified Dependency graph for dominance-based presolving tech-
niques. Infeasible and nogoods are not part of the group but rather dependencies.

Figure 5.1 shows a significantly simplified dependency graph for the dominance
based techniques. Infeasible is a part of the Nogoods technique and its results are
used directly or indirectly by all techniques of this group. Note that Nogoods is not
part of this group but a dependency.

5.1.1 Temp Tables

generates a set of tuples of the form 〈O, P, S〉, where O is a set of operations, P
is a set of operands and S is a set of tuples of allowed combinations of [a(o) | o ∈
O] ⊕ [yp | p ∈ P ], where ⊕ means list concatenation [10]. The combinations of
assignments in S are found by solving a relaxed model of the Unison model. The
constraint shown in (5.1) using Temp Tables is added to the Unison model to im-
prove performance of solving.

∀〈O, P, S〉 ∈ Temp Tables ([ao | o ∈ O]⊕ [yp | p ∈ P ] ∈ S) (5.1)

Temp Tables is generated by first mapping each mandatory temporary to its copy
related temporaries. Then for each such mapping two sets O and P are generated.
O is generated to contain the optional copies where the copy related temporaries are
defined and P is generated to contain the operands where the mandatory temporary
is used, except for use operands where the mandatory temporary must be used when
the operation is active (i.e. those on the form {−, t}).

The relaxed model is then solved for [ao|o ∈ O] ⊕ [yp|p ∈ P ], yielding a set of
feasible combinations of assignments to these variables. The set of feasible assign-
ments is then analyzed and dominated assignments are removed. An assignment
is dominated by another assignment if they have the same active operations, the
mandatory temporary is connected to the same operand and the solutions are per-
mutations. The dominated solutions are removed and S is updated to contain the
decomposed solutions. The tuple 〈O, P, S〉 is added to the Temp Tables.
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This process is repeated for all mandatory temporaries of a function, and thus
the Temp Tables can become quite large.

o3: [p14{-, t12}] <- {-, TFR, STW} [p13{-, t1}]
o10: [p28{-, t19}] <- {-, TFR, LDW} [p27{-, t1, t12}]
o11: [p30{t20}] <- ZXTH [p29{t1, t12, t19, t28}]
o19: [p46{-, t28}] <- {-, TFR, LDW} [p45{-, t1, t12}]
o21: [] <- (out) [..., p49{t1, t12, t19, t28}, ...]

Figure 5.2: Example Code for Temp Tables. Taken from the function
gsm.add.gsm_mult_r in MediaBench [25]

Consider the code from Figure 5.2, which is extended with optional copies.
Generating Temp Tables for this code would go as follows. There is one mandatory
temporary, t1, in this code and its copy related temporaries are {t12, t19, t28}. These
temporaries are defined by the operations O = {o3, o10, o19} and the mandatory
temporary, t1, can be used by the operands P = {p28, p30, p46, p49}.

The relaxed model is then solved for the variables ao3 , ao10 , ao19 , yp28 , yp30 , yp46 , yp49 .
For the code in Figure 5.2, all assignments found are shown in Table 5.1.

a3 a10 a19 y27 y29 y45 y49
0 0 0 ⊥ t1 ⊥ t1
1 0 0 ⊥ t1 ⊥ t12
1 0 0 ⊥ t12 ⊥ t12
1 1 0 t1 t12 ⊥ t19
1 1 0 t1 t19 ⊥ t12
1 1 0 t12 t1 ⊥ t19
1 1 0 t12 t12 ⊥ t19
1 1 0 t12 t19 ⊥ t12
1 1 0 t12 t19 ⊥ t19
1 1 1 t1 t19 t12 t28
1 1 1 t12 t19 t1 t28
1 1 1 t12 t19 t12 t28

Table 5.1: All successful labellings
of the variables. Dominated solutions
are highlighted.

a3 a10 a19 y27 y29 y45 y49
0 0 0 ⊥ t1 ⊥ t1
1 0 0 ⊥ t1 ⊥ t12
1 0 0 ⊥ t12 ⊥ t12
1 1 0 t1 t12 ⊥ t19
1 1 0 t12 t1 ⊥ t19
1 1 0 t12 t12 ⊥ t19
1 1 0 t12 t19 ⊥ t19
1 1 1 t1 t19 t12 t28
1 1 1 t12 t19 t1 t28
1 1 1 t12 t19 t12 t28

Table 5.2: Compressed version of
Table 5.1

The highlighted rows in Table 5.1 are dominated by the rows above them. This
is because their a pattern is the same, {1, 1, 0} for both highlighted solutions, the
mandatory temporary t1 has the same position (if connected to an operand) and
the solutions are permutations. Table 5.2 shows the final generated Temp Tables for
the code in Figure 5.2 which would be used as allowed combinations of the variables
ao3 , ao10 , ao19 , yp28 , yp30 , yp46 , yp49 when solving the function.
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A whole Temp Tables for a function would contain one table, as in Figure 5.6b,
for each mandatory temporary of that function.

5.1.2 Active Tables

generates a set of tuples on the form 〈O, S〉, where O is a set of operations and S
is a set of allowed combinations of [a(o)|o ∈ O] [10]. The constraint shown in (5.2)
is added to the Unison model to improve performance of solving.

∀〈O, S〉 ∈ Active Tables ([ao | o ∈ O] ∈ S) (5.2)

Optional copies that are introduced by the extender in Unison might be active
or inactive. There are some combinations of active and inactive operations that
cannot hold in a solution, e.g. an optional copy defining a temporary cannot be
inactive if the temporary is used by an operand in another active operation. The
goal with Active Tables is to find and remove assignments of active operations that
cannot hold in a solution.

Active Tables is generated by mapping each mandatory temporary of an ex-
tended function to its set of copy related temporaries. For each such mapping, a
set O is generated, containing the operations that define the copy related tempo-
raries. The relaxed model is then solved for [a(o)|o ∈ O], yielding a set of allowed
combinations for these variables.

The allowed combinations are then compressed to only contain useful informa-
tion. The following three transformations are done on the solutions found:

1: The first variable is irrelevant If for all solutions beginning with a 0 there
exists another solution where the 0 is replaced by a 1. In this case, the first column
of the allowed combinations can be removed since it does not add any information.
When the first column has been removed, there exist two copies for each solution
and the second half of the solutions can be removed.

ax ay az

0 0 0
0 1 0
0 1 1
1 0 0
1 1 0
1 1 1

(a) All feasible combinations of assign-
ments of {ax, ay, az}

ay az

0 0
1 0
1 1

(b) Compressed version of Table 5.3a

Table 5.3: Example of compression strategy 1
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Table 5.3a shows all feasible combinations of the variables ax, ay, az. By looking
at this table, it can be seen that the variable ax can have any value in the allowed
combinations and thus the column of ax can be removed. After removing this
column the table contains two halves that are the same, the second half can be
removed from the table, giving the final compressed table in Table 5.3b.

2: The ith variable is stuck at one If a variable in S is always 1, this informa-
tion can be added as a separate entry in the Active Tables and this column can be
removed from the table.

ax ay az

0 1 1
0 1 0
1 1 0

(a) All feasible combinations of assign-
ments of {ax, ay, az}

ay

1
ax az

0 1
0 0
1 0

(b) Decomposed version of Table 5.4a

Table 5.4: Example of compression strategy 2

Table 5.4a shows all feasible combinations of assignments to the variables ax, ay, az.
The second column in this table is stuck at 1. The table is now decomposed into
two tables, one containing one row and column saying that the variable ay must be
active. The other table contains the same columns as the original with the stuck at
1 column removed. The second table is the further compressed, if possible.

3: The last variable implies the other variables if all rows ends with a 0
except for the last row that has only 1’s, the last column implies the other columns.
In this case, the last row and last column of the table can be removed and two
constraints: az ⇒ ax and az ⇒ ay can be generated.

ax ay az

0 0 0
0 1 0
1 1 0
1 1 1

(a) All feasible combinations of assign-
ments of {ax, ay, az}

ax ay

0 0
0 1
1 1

(b) Compressed version of Table 5.5a

Table 5.5: Example of compression strategy 3

Table 5.5a show all feasible combinations of assignments to the variables ax, ay, az.
The variable az implies the other variables. The last row and column is removed
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from Table 5.5a which yields the table in Table 5.5b which is further decomposed,
if possible.

The compressions are done iteratively on the solutions until no further compres-
sion can be done. The compressed solution are saved as S in the tuple 〈O, S〉

Consider the code in Figure 5.3. Generating Active Tables for this code would
go as follows. There is one mandatory temporary in the code, t29 that is copy
related to {t40, t44, t49}. The operations that defines these temporaries are O =
{o23, o27, o32} and thus the relaxed model is solved for ao23 , ao27 , ao32 . Table 5.6a
shows all feasible solutions for these variables.

o23: [p71{-, t40}] <- {-, TFR, STW} [p70{-, t29}]
o27: [p78{-, t44}] <- {-, TFR, LDW} [p77{-, t29, t40}]
o32: [p88{-, t49}] <- {-, TFR, LDW} [p87{-, t29, t40}]

Figure 5.3: Example Code for Active Tables. Taken from the function
gsm.add.gsm_mult_r in MediaBench [25]

The table in Table 5.6a would be compressed by strategy 3, since a32 implies
the other variables and thus the column a32 and the last row can be removed and
replaced by a32 ⇒ a23 and a32 ⇒ a27. The final Active Tables of the code in
Figure 5.3 is shown in Table 5.6b.

a23 a27 a32
0 0 0
0 1 0
1 1 0
1 1 1

(a) All feasible combinations of assign-
ments of {a23, a27, a32}

a23 a27
0 0
0 1
1 1

(b) Compressed version of Table 5.6a

Table 5.6: Example of Active Tables compression

40



5.1. DOMINANCE-BASED PRESOLVING TECHNIQUES

5.1.3 Copy Min
generates a list CM = [o0, ..., o|B|−1], where each element ob in CM is the minimum
number of active operations for the basic block b [10]. This information is added as
a constraint to the model as in equation (5.3).

∀b ∈ B(sum([ao | o ∈ Ob]) ≥ CMb) (5.3)

From Active Tables it is known which assignments of active operations that
must hold in a solution. Copy Tables exploits this information by using the Active

Tables to calculate a lower bound on the number of active operations in a basic
block. By calculating this lower bound, some parts of the search tree where fewer
operations are active, and therefore would not lead to a solution, are removed.

Copy Min is generated as follows. For each basic block, a variable count = 0 is
initialized. Then for each tuple 〈O, S〉 in Active Tables, if all operations in the set
O belong to the current basic block, add the number of active operations in the
assignment in S with the least number of active operation to count.

When all tuples in Active Tables have been examined, count contains the min-
imum value of active operation of the current block. This is repeated for all basic
blocks of a function.

Calculating Copy Min for Table 5.6b would give zero, since the minimum number
of active operations that are allowed for that table is zero (row one).

5.1.4 Domops
generates a set of tuples on the form 〈P, T 〉, where P is a set of operands and T is
a set of temporaries. For each tuple, the temporaries T are interchangeable for the
operands of P [10].

The goal of generating and using Domops is to remove symmetries that might be
introduced in the model by the extender of Unison. For each tuple 〈P, T 〉 Domops
generates the constraint shown in (5.4) and adds it to the Unison model which forces
the temporaries to be used in increasing order by their respective operands.

∀p1 ∈ P ∀p2 ∈ P ∀t1 ∈ T ∀t2 ∈ T (p1 < p2∧t1 < t2 → ¬(yp1 = t2∧yp2 = t1)) (5.4)

The pseudo code of the generation of Domops can be found in [10].
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Chapter 6

Evaluation of Dominance Based
Presolving Techniques

This chapter presents the results from the evaluation of the existing implementa-
tion of the dominance based presolving techniques, namely: Temp Tables, Active
Tables, Copy Min and Domops. Section 6.1 presents the set-up of the evaluation and
how it was executed. Section 6.2 presents the result from the evaluation together
with discussions explaining the result.

6.1 Evaluation Set Up
The evaluation contains a sample of 53 functions from the MediaBench [25] bench-
mark suite, with function sizes ranging from ∼40 to ∼900 instructions. The sample
contains functions from adpcm, epic, g721, gsm, jpeg and mpeg2. This sample is
chosen to make the evaluation run-time smaller but still be representative for the
benchmark. The impact of a presolving technique on a function is measured by
solving the function with the technique and then solving the function without any
presolving technique. To find out how some of the techniques interact, the evalu-
ation contains both experiments with the techniques isolated and with techniques
in pairs. For each function solved, and for each presolving technique, the following
data are collected:

• Number of nodes in the search tree

• Estimated cycle count of the solution

• Whether the solution is proven to be optimal

The efficiency of a presolving technique is calculated as in (6.1), where nodesnp,f

means the number of nodes in the search tree when using no presolving technique,
solving the function f , and cyclesnp,f means the cycle count of the best solution
found when using no presolving technique, solving the function f . nodest,f and
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cyclest,f are the nodes of the search tree and cycle count of the solution found when
using a presolving technique t, solving the function f .

Et,f = nodesnp,f × cyclesnp,f
nodest,f × cyclest,f

(6.1)

The mean efficiency of a technique, t, on all 53 functions is calculated as in (6.2).

GMt = (geomean([Et,f | f ∈ F ])− 1)× 100 (6.2)

Equation (6.2) calculates the geometric mean for the efficiency of a technique,
t, for all the functions in F . In this experiment set-up F includes all the 53 Medi-
aBench functions. To get the base-line at zero, 1 is subtracted from the geometric
mean and to get the values in percent the result from the subtraction is multiplied
by 100.

In addition to the efficiency of the presolving techniques, the number of proven
optimal solutions is used as a measurement when deciding which technique has the
largest impact on solving.

The Unison solver can be set to time out at a certain solving time, or at a certain
number of failures in the search tree. Using the latter, the results from solving are
deterministic, meaning that the results can be reproduced even when using another
computer executing the experiments. This also gives the nice property that each
experiment only has to be executed once, and thus saves a lot of time. Table 6.1
shows the flags passed to the Unison solver.

Flag Value
-limit-unit fails

-global-budget 1.2

-global-setup-limit 800

-local-limit 4000

-global-shaving-limit 1000

-local-shaving-limit 200

Table 6.1: Flags with corresponding value passed to Unison solver

The experiments were conducted on a machine with an Intel Core i5-2500k
processor with 24 GiB of RAM and a Corsair Force Series GT solid state drive.
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6.2 Results

This section presents the result from the evaluation. In all figures, the geometric
mean is calculated for each function or cluster to present the data. The data were
captured during two experiments. The first experiment was executed by using
the techniques individually. The second experiment was executed by using the
techniques in pairs.

6.2.1 Using Techniques Individually

The following sections present the results from using the presolving techniques iso-
lated.

Overall Improvement

Figure 6.1 shows the geometric mean of the efficiency as in (6.2) when using the
different presolving techniques individually on all 53 MediaBench functions.

Temp Tables is the technique with the overall largest efficiency increase, with
an increase of around 115 %. The technique with the second best overall efficiency
increase is Active Tables. This technique improves the solving efficiency by around
65 %. Copy Min and Domops are the two techniques with less efficiency increase. Both
these techniques increase the overall solving efficiency by less than 40 %.
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Figure 6.1: Efficiency increase compared to no presolving
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The highest efficiency of Temp Tables, Active Tables, Copy Min and Domops for
a function are 1081.7, 113.7, 103.8 and 16.93, respectively. The lowest efficiency of
these techniques (same order) are 0.17, 0.18, 0.28 and 0.28. The median for these
techniques are 1.11, 1.11, 1.01 and 1.02. The mean efficiency of the techniques are
2.15, 1.62, 1.32 and 1.22.

Function Size

Figure 6.2 shows the geometric mean, as in (6.2), of the efficiency increase on dif-
ferent function sizes. The function size is determined by the number of machine
instructions the function has. Here, the functions are divided into four sets, con-
taining functions with < 80, 81 − 160, 161 − 400 and > 401 machine instructions.
These clusters are chosen so that they contain a similar number of functions, from
8 to 18 functions in each cluster.

On functions with sizes in the range < 80 − 160, Temp Tables is clearly the
technique with the largest efficiency increase. For smaller functions, the efficiency
increase goes up to around 275 %. For larger functions, Domops is the technique
giving the largest efficiency increase, with an increase of around 125 %. On this set
of functions, all the other techniques have an efficiency increase of around 100 %.
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Figure 6.2: Efficiency increase on different function sizes compared to no presolv-
ing

As can be seen from Figure 6.2 Temp Tables has a very large efficiency increase
for smaller sized functions. This result might be explained by the fact that Temp
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Tables is based on a timeout and on smaller functions more data are generated.
However, the main reason for why Temp Tables is so much better on smaller func-
tions is the fact that there is one function where this technique is far better than for
the other functions, which in turn makes the mean larger. By manual observation
the efficiency increase for this cluster should be between 50− 100%.

Node and Cycle Decrease

Figure 6.3 shows the geometric mean of node and cycle decrease from using the
different techniques. Node decrease is plotted against the left y-axis and cycle
decrease is plotted against the right y-axis.

Temp Tables has both the largest cycle decrease and node decrease. The cycles
are not affected at all when using Copy Min or Domops.
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Figure 6.3: Node and cycle decrease from presolving techniques

It can be seen from the figure that node and cycle decrease are correlated. This
is actually not that unexpected. The timeout is, as mentioned, based on the number
of failures in the search tree. If many search nodes are removed from the search
tree, many of them are for sure failures. Removing failures from solving when the
timeout is based on failures, gives the solver in some sense more time to find a
better solution that in turn has fewer cycles.
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Proof of Optimality

Table 6.2 shows for how many functions optimality is proven for the different tech-
niques. The increase of each technique is how many additional functions optimality
is proven for, compared to using no presolving technique.

Temp Tables and Active Tables prove 18 solutions to be optimal, which is an
increase by 4 compared to using no presolving technique. Copy Min and Domops both
prove 15 solutions to be optimal, which is an increase by 1 solution.

Technique Optimal solutions Increase
No technique 14 -
Temp Tables 18 4
Active Tables 18 4
Copy Min 15 1
Domops 15 1

Table 6.2: Number of optimal solutions found with each presolving technique

By looking at Table 6.2 and Figure 6.1 it can be seen that the number of optimal
solutions found is somewhat correlated with the efficiency increase of the presolving
technique. But most interesting in these two results is the fact that Active Tables

has a much lower efficiency increase than Temp Tables, but proves the same number
of solutions to be optimal. In addition, the efficiency increase of Active Tables

compared to Copy Min and Domops is not that much higher, but with that increase
three more functions are proven to be optimal.
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6.2.2 Using Techniques Pairwise

The following results are from using the dominance-based techniques in pairs.

Overall improvement

Figure 6.4 shows the geometric mean of the efficiency increase, as in (6.2), when
using the different presolving techniques in pairs. The efficiency increase is based
on all 53 MediaBench functions.

Temp Tables is involved in all pairs with the highest efficiency increase. The
pair with the lowest efficiency increase is Copy Min and Domops.
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Figure 6.4: Pairwise efficiency increase compared to no presolving

Interestingly using Copy Min, which was one of the least efficiency increase tech-
niques, together with Temp Tables actually is the pair giving the highest efficiency
increase. From the results when using the techniques isolated, one could think that
the pair Active Tables and Temp Tables would really outperform the other tech-
nique pairs, with respect to efficiency increase. However, using these two techniques
together does not add much to the efficiency increase of using only Temp Tables.
The explanation for this is that Temp Tables and Active Tables are generated from
the same data, and both contain information about whether certain combinations of
active operations are allowed. Since both of these techniques contain these data,one
technique can in some cases be subsumed by the other one. Why Copy Min improves
the efficiency increase of Temp Tables more can be explained by the fact that this
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technique uses data from Active Tables to generate new data. These data are not
subsumed by Temp Tables.

Function size

Figure 6.5 shows the geometric mean of the efficiency increase on different function
sizes, when using the presolving techniques in pairs. The function size is determined
by the number of machine instructions the function has. Here, the functions are
divided into four sets, containing functions with < 80, 81−160, 161−400 and > 401
machine instructions.

Using Temp Tables and Copy Min in pairs on smaller functions yields a high
efficiency increase, with an increase of around 400 %.
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Figure 6.5: Pairwise efficiency increase on different function sizes compared to no
presolving

Comparing Figure 6.5 with Figure 6.2 it can be seen that the pairs containing
Temp Tables from Figure 6.5 have the same characteristics as Temp Tables from
Figure 6.2 and the same goes for Active Tables, except in the pair Active Tables

and Temp Tables. From these results, it seems like Temp Tables dominates the
overall efficiency increase of the presolving techniques.

Node and cycle decrease

Figure 6.6 shows the node and cycle decrease from using the techniques in pairs.
Node decrease is plotted against the left y-axis and cycles decrease is plotted against

52



6.2. RESULTS

the right y-axis.
The node and cycle decrease from the techniques using Temp Tables are similar.

Using Domops and Copy Min together does not affect the number of cycles of the
solution, but has a small impact on the number of nodes in the search tree. The
two pairs including Active Tables, without Temp Tables, have similar node and
cycle decrease.
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Figure 6.6: Node and cycle decrease from pairwise presolving techniques

As when using the presolving techniques in isolation, the node and cycle decrease
in Figure 6.6 are correlated.
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Proof of optimality

Table 6.3 shows for how many functions optimality is proven for the different pair-
wise techniques. The increase of each technique pair is how many additional func-
tions optimality is proven for, compared to using no presolving technique.

The pair Active Tables and Temp Tables increases the number of proven opti-
mal solutions by 6, from 14 to 20. The pair that increases the number of additional
proven optimal solutions found least is Copy Min and Domops.

Technique Optimal solutions Increase
No technique 14 -
Active Tables-Temp Tables 20 6
Active Tables-Copy Min 18 4
Active Tables-Domops 18 4
Temp Tables-Copy Min 19 5
Temp Tables-Domops 18 4
Copy Min-Domops 16 2

Table 6.3: Number of optimal solutions found with pairwise presolving technique

6.3 Conclusion
From the results presented in this chapter, there are two techniques that seem to
have more impact on the solving than the other techniques, namely: Temp Tables

and Active Tables. For all the pairs where Temp Tables is involved the efficiency
increase is higher than the other pairs. As can be seen from the figures in this
section, the cycle decrease is not that high, but some solutions are proven to be
optimal. The main benefit of using the presolving techniques seems to be to speed
up the proof of optimality rather than finding better solutions. Temp Tables and
Active Tables are better at speeding up the proof of optimality.

The focus of the re-implementation is therefore on Temp Tables and Active

Tables.
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Implementation

This chapter presents the implementation of the presolving techniques. Through-
out this thesis, all four dominance based presolving techniques were implemented
together with a relaxed model of Unison used by Temp Tables and Active Tables.
In Section 7.1 the relaxed model of Unison is described. Later, in section 7.2 a short
discussion of the implementation effort of each technique is done. In Section 7.3 the
results from using the re-implemented techniques are presented and compared to the
results from the original implementation. Finally, in Section 7.4 a short conclusion
of the re-implemented techniques is presented.

7.1 Relaxed Constraint Model

Temp Tables and Active Tables solve a relaxed version of the Unison model from
Section 4.3 to generate their respective tables, as described in Section 5.1. In order
to achieve the same results as the original implementation of Temp Tables and
Active Tables, it is important to implement the relaxed model so that it expresses
the same problem as the original SICStus implementation.

This section presents two different models implemented throughout this thesis.
Both models share the same set of base constraints, which are a subset of the
constraints of the Unison model. The constraints needed are derived from the source
code of the original model written in SICStus Prolog. The first model, Model-S, is an
attempt to directly translate the current relaxed model from SICStus Prolog to C++

using Gecode. The idea with Model-S is to get as accurate a model as possible. The
second model, Model-U, is based on the Unison model, using already implemented
constraints and variables. The idea with this model is to reuse as much as possible
of what is already implemented to get as low an implementation effort as possible.
When referring to any of the models throughout this section relaxed model is used,
otherwise Model-S or Model-U are used when describing one of the models.

The relaxed model of Unison is a CSP and therefore it does not contain any
objective function. The goal of solving this model is to find all assignments to a set
of variables that satisfy the constraints in the model. The program and processor
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parameters from the Unison model, described in Section 4.3 are all included in the
relaxed model.

7.1.1 Relaxed Model Variables
The relaxed model uses a subset of the variables from the Unison model shown in
Table 7.1. Comparing this table with Table 4.3 from Section 4.3, it can be seen that
the variables co, lst and let are removed from this model.

ao ∈ {0,1} whether operation o is active
io ∈ instrs(o) instruction that implements operation o

lt ∈ {0,1} whether temporary t is live
rt ∈ N0 register to which temporary t is assigned
yp ∈ temps(p) temporary that is connected to operand p

Table 7.1: Relaxed Model variables, partly reprinted from [12]

There is a slight difference in how two of the variables are used in Model-S and
Model-U. This difference comes from the fact that the current SICStus implemen-
tation of the relaxed model uses these variables differently from the Unison model.
The variables that differ are the variable arrays y and i. Figure 7.1 illustrates how
the variables are used in the two models.

y

0 1 2
t16 t9 t0

(a) Model-S Representation of yp

y

0 1 2
1 1 0

t3 t16

0 1
⊥ t9 t10

0 1 2
t0 t4

0 1
temps(0) temps(1) temps(2)

(b) Model-U Representation of yp

Figure 7.1: Representations of yp

Figure 7.1 (a) shows how the variable array y is used in Model-S. In this model
the variable y is a direct mapping from operand to temporary, e.g. operand p1 (index
1 in y) is connected to the temporary t9. From an implementation point of view, this
strategy is really convenient, e.g. when the register of an operand is required, ryp

can be used directly since yp is connected to a temporary. The negative side of this
strategy is that the domains of the variables might contain large holes, e.g. when an
operand can be connected to the temporaries ⊥, t4, t10, which can sometimes make
propagation less efficient.
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Figure 7.1 (b) shows how the variable array y is used in Model-U. In this im-
plementation y holds the index of the temporary it is connected to in temps(p).
From an implementation point of view, this strategy is less convenient than the
one used in Model-S, e.g. ryp is harder to implement since yp holds indexes of the
arrays temps(p). The positive side of this strategy is that the holes in the domains
will be eliminated since the variables of y holds indexes that goes from 0 up to
|temps(p)| − 1.

The null temporary, ⊥, is implemented as −1 in both the Unison model and
SICStus model. This causes some problems in Model-S when ryp is used and yp

connected to the null temporary, since it is not possible to use a negative index in
an array in C++. To address this, the null temporary is instead implemented to be
the max(T)+1 in Model-S. In Model-U the null temporary is still represented as −1.

7.1.2 Relaxed Model Constraints
In the relaxed model, none of the instruction scheduling constraints from the Uni-
son model are included, neither is the register packing constraint. From the base
constraints of Unison, the following constraints are used in the relaxed model:

Alternative Temporaries

If a temporary is live, it is used by some operand.

lt ⇔ ∃p ∈ P : (use(p) ∧ yp = t) ∀t ∈ T (7.1)

The operation that defines a temporary is active.

lt ⇔ adefiner(t) ∀t ∈ T (7.2)

Active operations are connected to non-null temporaries.

ao ⇔ yp 6= ⊥ ∀o ∈ O,∀p ∈ operands(o) (7.3)

Active operations are implemented by a non-null instruction.

ao ⇔ io 6= ⊥ ∀o ∈ O (7.4)

Alternative Instruction and Storage Locations

The instruction that implements an operation determines the register class to which
its operands are allocated.

ryp ∈ class(o, io, p) ∀o ∈ O,∀p ∈ operands(o) (7.5)

Preassigned Operands

Certain operands are preassigned to registers.

ryp = r ∀p ∈ P : p . r (7.6)
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Congruent Operands

Congruent operands are assigned to the same register.

ryp = ryq ∀p, q ∈ P : p ≡ q (7.7)

A more detailed description of these constraints can be found in Section 4.3.

7.1.3 New Constraints
The SICStus implementation of the relaxed model introduces three new constraints,
which are implemented in both Model-S and Model-U. These constraints use the
presolving techniques Dominates, Difftemps and Diffregs, which can be found in
[10], to constrain the relaxed model. Here the new constraints are expressed with
logical formulas, but the constraint using Difftemps is also presented with pseudo
code to point out how the different usage of the y variable affects the implementation
of a constraint. The other two constraint implementations are too complicated, and
long, to show with pseudo code. All these constraints are derived from the source
code of the SICStus implementation. The new constraints are the following:

Dominates

ao1 ∨ ao2 ∨ (io1 ∈ I) ∨ (tp ∈ T ) ∀〈o1, o2, I, T 〉 ∈ dominates (7.8)

Distinct Operand Temporaries

Certain operands must be assigned to distinct temporaries.

∀Pd ∈ difftemps (alldifferent([yp | p ∈ Pd])) (7.9)

Figure 7.2 shows how constraint (7.9) is implemented in the two models. The
element constraint works as temps(p)yp .

for Ps ∈ difftemps do
T ← ∅;
for p ∈ Ps do

T ← yp;
end
alldifferent(T )

end

(a) Model-S implementation of constraint
(7.9)

for Ps ∈ difftemps do
T ← ∅;
for p ∈ Ps do

T ← element(temps(p), yp);
end
alldifferent(T )

end

(b) Model-U implementation of constraint
(7.9)

Figure 7.2: Implementations of constraint (7.9) in the two models
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Different Operand Registers

Certain operands cannot have overlapping registers.

∀Pd ∈ diffregs (alldifferent([ryp | p ∈ Pd])) (7.10)

7.1.4 Performance of Models
To compare how the two models perform, the time consumption of generating both
Temp Tables and Active Tables is measured. The speedup of using one of the mod-
els compared to the SICStus model is calculated as in equation (7.11), where Timeo

is the time consumption of the original implementation of the relaxed model when
generating both Temp Tables and Active Tables and Timem is the time consump-
tion of a model m (either Model-S or Model-U).

speedupm = Timeo

Timem
(7.11)

When solving all implementations of the relaxed model, the same timeout is
used. This timeout is calculated by the SICStus implementation. Therefore, it is
not expected that any of the relaxed models will have a time decrease compared to
the SICStus model for larger functions, simply because all of the implementations
will time out.

Figure 7.3 shows the geometric mean of the speedup when using Model-S com-
pared to the SICStus model. As can be seen from the figure, Model-S has a speedup
of 2.7 compared to the SICStus model, in the best case. For larger functions there
is no speedup when using Model-S, this is because the solving timed out for both
models, and thus the same time was used.

Figure 7.4 shows the geometric mean of the speedup when using Model-U to
generate both Temp Tables and Active Tables, compared to the SICStus imple-
mentation, for different function sizes. In the best case, Model-U has a speedup of
5 compared to the SICStus implementation. For larger functions, there is just a
slight increase of the speedup.
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Figure 7.3: Speedup of generating Temp Tables and Active Tables with Model-S

to original implementation
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Figure 7.4: Speedup of generating Temp Tables and Active Tables with Model-U

to original implementation

Both relaxed models implemented are, as Figure 7.3 and Figure 7.4 show, faster
for smaller functions than the SICStus model. For larger functions, there is no
speedup, but Model-S and Model-U might, because they can solve smaller functions
faster than the SICStus model, find more solutions during the time they are given.
This is discussed separately for Temp Tables in Section 7.3.1 and for Acitve Tables

in Section 7.3.2.
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7.2 Implementation Effort
All presolving techniques are based on pseudo code from [10]. The most time
consuming technique to implement was Temp Tables. This is because this technique
was the starting point of the implementation phase, so it took quite some time to
get used to how the pseudo code worked. This technique also required a relaxed
model of Unison that required quite some time to implement. When Temp Tables

had been implemented there was no bigger effort in implementing Active Tables

as well, since this technique uses the same relaxed model of Unison as Temp Tables

and at the point of implementing Active Tables, the relaxed model was already
implemented. The two least time-consuming techniques to implement were Copy

Min and Domops, together these techniques just took a couple of hours to implement.
Table 7.2 shows the implementation effort of each technique compared to its

original implementation, based on lines of code in the different implementations. On
the relaxed model row, the result means Model-S/Model-U. As can be seen from this
table, the effort of implementing Model-S is almost twice as high as implementing
Model-U, simply by the fact that in Model-U all constraint definitions, except the
three new constraints, were reused from the Unison model.

Technique Original Re-implemented
Temp Tables 156 204
Active Tables 175 274
Copy Min 24 20
Domops 36 43
Relaxed Model (Model-S/Model-U) 447 433/260
Total (Model-S/Model-U) 838 971/798

Table 7.2: Number of lines of code in each implementation

The number of lines of code for the different implementations corresponds quite
well to the time required to implement the techniques.
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7.3 Results

This section presents the results of using the re-implemented techniques compared
to their original implementations. The evaluation set-up is the same as in Sec-
tion 6.1. Throughout this section, SICStus model is referred to the relaxed model
implemented with SICStus Prolog (i.e. the original implementation). In the figures,
the techniques where no model is in the name, the SICStus model is used.

7.3.1 Temp Tables

To evaluate the re-implemented Temp Tables, its accuracy and efficiency are cal-
culated. The accuracy of the Temp Tables is measured by counting the number of
rows in S that differ from each tuple 〈O, P, S〉 between the original implementa-
tion and the re-implementation. This is done automatically by a script that after
a function has been solved compares if the results from the re-implemented differ
from the results from the original implementation. The techniques were given the
same timeout as the SICStus implementation to solve the relaxed model. The ∞
symbol is used to mark a difference where for some function one of the models did
not find any feasible assignments but the other did. The efficiency of Temp Tables

is calculated as in equation (6.2) from Section 6.1.
Table 7.3 and Table 7.4 shows the differences for Temp Tables when using the

different models.

Differences Functions
∞ 9

Tot 9

Table 7.3: Model-S solutions differ-
ences compared to original implemen-
tation

Differences Functions
1 1
2 3
4 1
8 1
∞ 18
Tot 24

Table 7.4: Model-U solutions differ-
ences compared to original implemen-
tation

Table 7.3 shows the differences between the solutions found by the SICStus im-
plementation of Temp Tables and the re-implemented version using Model-S. As can
be seen in the table, there were only nine functions for which the Temp Tables dif-
fered between the SICStus implementation of Temp Tables and the implementation
of Temp Tables when using Model-S. All these differences where when the SICStus
implementation timed out but the new implementation did not.

Table 7.4 shows the differences between the SICStus implementation of Temp

Tables and the re-implemented version using Model-U. This implementation has
more differences than the implementation where Model-S is used. At most one
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function had a total of eight extra rows among the tuples of Temp Tables. For 18 of
the functions, this implementation found solutions when the original implementation
timed out. These results can be explained by the fact that Model-U re-uses many
constraints and all constraints do not exactly map to the ones of the SICStus model
and Model-U is less accurate than Model-S.

Recall from the performance of the both models shown in Section 7.1.4. Both
models are faster than the original implementation and as can be seen from the
tables Table 7.3 and Table 7.4 both models actually produce more data than the
Temp Tables using the SICStus implementation.

Figure 7.5 shows the geometric mean of the efficiency increase of Temp Tables in
the different implementations. As can be seen from the figure, both implementations
using either Model-S or Model-U has a larger efficiency increase than the SICStus
implementation, and Model-U have just a slightly higher efficiency increase than
Model-S. Note that the efficiency increase in the figure begins at 100 %.
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Figure 7.5: Efficiency increase comparison between different implementations of
Temp Tables

The results from Figure 7.5 match with the earlier results from the relaxed model
and the accuracy of the Temp Tables implementations. Model-S found solutions for
nine extra functions compared to the SICStus implementation and therefore when
using the Temp Tables the model is more constrained making the search tree smaller.
Model-U produced Temp Tables for eighteen more functions than the original imple-
mentation, but is not as accurate as Model-S and therefore has just a slightly higher
efficiency increase than Model-S.
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Figure 7.6 shows the efficiency increase of the different implementations of Temp
Tables on different function sizes. As can be seen in the figure, the efficiency increase
when using Temp Tables generated with Model-S or Model-U is identical, but both
models give a slight efficiency increase for larger functions compared to the original
implementation.
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Figure 7.6: Efficiency increase for different function sizes; comparison between
different implementations of Temp Tables

The results from Figure 7.6 can be explained by the fact that solving any of
the new implemented models is faster and thus more data can be generated before
timeout. For smaller functions, all models find all feasible assignments before the
given timeout, so they have the same efficiency increase.
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Figure 7.7 shows the node and cycle decrease when generating Temp Tables

using all of the models. The node decrease is plotted against the left y-axis and
cycle decrease against the right y-axis. Note that the left y-axis starts on 50 %
and the right y-axis on 0.8 %. For both the node and cycle decrease, the re-
implemented versions of Temp Tables has a slightly larger decrease compared to the
SICStus implementation. Temp Tables using Model-U has both a larger node and
cycle decrease compared to Model-U, but it’s barely visible in this plot.
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Figure 7.7: Node and cycle decrease of the different implementations of Temp

Tables

The efficiency increase shown in Figure 7.5 for the different implementations of
Temp Tables mainly depends on the node decrease, and not the cycle decrease. This
can be seen in Figure 7.7, where the difference between the cycle decrease is close
to nothing.

65



CHAPTER 7. IMPLEMENTATION

7.3.2 Active Tables
The accuracy of Active Tables is measured by calculating the number of tuples
that differ in the results of solving a function with the re-implemented technique
and solving the function with the original technique. Table 7.5 and Table 7.6 show
how many tuples are changed between the original implementation and when using
either Model-S or Model-U to find assignments.

Differences Functions
1 1
2 2
4 3
5 4
6 2
13 1
∞ 21

Total 34

Table 7.5: Model-S solutions differ-
ences compared to original implemen-
tation

Differences Functions
1 2
2 7
3 2
4 2
5 2
7 1
9 1
∞ 23

Total 40

Table 7.6: Model-U solutions differ-
ences compared to original implemen-
tation

As can be seen from the tables Table 7.5 and Table 7.6 the Active Tables imple-
mentation using Model-S is more accurate than the implementation using Model-U.
With Model-S the generated Active Tables differ in 34 functions which are more
than half of all functions in the test suite. Model-U has differences in 40 of the 53
functions, which is quite a large number.
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Figure 7.8 shows the overall efficiency increase of the different implementations
of Active Tables. As can be seen from the figure, both new implementations have
a larger efficiency increase compared to the SICStus implementation.
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Figure 7.8: Efficiency increase comparison between different implementations of
Active Tables
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Figure 7.9 shows the efficiency increase of the different implementations of
Active Tables on different function sizes. As can be seen from the figure, for
all different clusters both re-implemented versions of Active Tables have a larger
efficiency increase compared to the SICStus implementation. The re-implemented
Active Tables using either Model-S or Model-U has similar efficiency increase.
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Figure 7.9: Efficiency increase for different function sizes comparison between
different implementations of Active Tables

The results from Figure 7.9 can be explained by the fact that both new imple-
mentations are faster than the SICStus implementation and therefore find feasible
assignments when the SICStus implementation times out.
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Figure 7.10 shows the node and cycle decrease for the implementations of Active
Tables. As can be seen in this plot, the node and cycle decrease is larger for both re-
implemented versions of Active Tables, compared to the SICStus implementation.
The two re-implemented version have similar node and cycle decrease.
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Figure 7.10: Node and cycle decrease of the different implementations of Active
Tables

The efficiency increase shown in Figure 7.8 for the different implementations of
Active Tables mainly depends on the node decrease, and not the cycle decrease.
This can be seen in Figure 7.10, where the difference between the cycle decrease is
close to nothing.
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7.3.3 Copy Min
The result from using Copy Min is the same as when using the original implemen-
tation. Time measurements have been done to get some statistics about how much
faster or slower the re-implemented technique is. But this technique is so small
that the resolution of the timer in SICStus Prolog is not enough with its 10 ms,
so it says 0 time or 10 ms in the most cases. The time measurements done on the
re-implementation have been more accurate, but often lie between 0 and 20 ms, so
in many cases it is hard to know whether the technique is slower or faster than the
original implementation.

Since the re-implemented version of Copy Min generates the same data as the
original implementation, the results for Copy Min from Section 6.2 still hold.

7.3.4 Domops
The results from using the re-implemented version of Domops are the same as using
the original implementation. As for Copy Min, attempts to measure the time gener-
ating Domops have been done, but the time is so short that in many cases it returns
zero time.

Since the re-implemented Domops generates the same data as the original imple-
mentation, the results for Domops in Section 6.2 still hold.

7.4 Conclusion
The two techniques having the largest impact on the solving were also the two
techniques being most complicated to implement. Even though the cycle decrease
is less for Temp Tables and Active Tables. Copy Min and Domops were really worth
implementing since none of the techniques required a large effort. Model-S was the
implementation requiring the most time, which in the end did not give more to the
presolving compared to Model-U, which required half the effort of Model-S.
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Conclusions and Further Work

This chapter wraps up the thesis by discussing the results achieved from the first
evaluation and the evaluation made on the re-implemented techniques.

All the goals were achieved throughout this thesis. All dominance breaking
presolving techniques were evaluated and compared. At least two techniques were
described in more detail and re-implemented. The re-implemented techniques were
compared to their original implementation.

8.1 Results
Throughout this thesis, the set of dominance-based presolving techniques was eval-
uated and re-implemented in C++ using Gecode. The results from the evaluation
show that all techniques have an overall positive impact on the solving phase of
Unison. The techniques Temp Tables and Active Tables were the two techniques
with the largest impact on the solving and Domops and Copy Min had the smallest
impact.

The re-implementations show that it is a good choice to move the dominance-
based presolving techniques from SICStus Prolog to C++ and Gecode, not only
because SICStus is a proprietary system but since the implementations for the
techniques have similar or better efficiency increase when implemented in C++ with
Gecode.

8.2 Further Work
For further work with these techniques, I suggest that Model-U be used as the relaxed
model of Unison. Even though this model is not as accurate as Model-S, Model-U
actually shows an overall better efficiency increase. This model is also based on the
Unison model, so when changes are done in Unison they are automatically included
in the relaxed model.

With respect to Model-U things to resolve are: why does the model generate
too many feasible solutions, which constraints are missing? and why is the Temp
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Tables generation more accurate than Active Tables when both are based on the
same relaxed model?.

Another interesting thing to investigate with the new implementation of Temp

Tables and Active Tables is the timeout used for the solver solving the relaxed
model in these strategies. As can be seen from the results, Model-U was up to 5
times faster than the SICStus implementation. For larger functions both models
time out, but Model-U finds more solutions. It would be interesting to see how short
a timeout can be used in Model-U and still achieve results similar to the SICStus
implementation. Is it more interesting to have a fast presolver, or one that produces
better results?

Further, no optimizations were done on the code written throughout this thesis.
This was mainly because of lack of time. For future work on this I highly suggest
that the code for Domops, Copy Min and the decompositions for Active Tables be
optimized.
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