
Implied Constraints for the Unison Presolver

An investigation and reimplementation of implied-based presolving techniques whitin
the Unison Compiler

ERIK EKSTRÖM

Master’s Thesis at KTH and SICS
Supervisor: Roberto Castañeda Lozano (SICS)

Supervisor: Mats Carlsson (SICS)
Examiner: Christian Schulte (KTH)

TRITA-ICT-EX-2015:74

Abstract
Unison is a compiler back-end that differs from traditional compiler
approaches in that the compilation is carried out using constraint pro-
gramming rather than greedy algorithms. The compilation problem is
translated to a constraint model and then solved using a constraint
solver, yielding an approach that has the potential of producing opti-
mal code. Presolving is the process of strengthening a constraint model
before solving, and has previously been shown to be effective in terms
of the robustness and the quality of the generated code.

This thesis presents an evaluation of different presolving techniques
used in Unison’s presolver for deducing implied constraints. Such con-
straints are logical consequences of other constraints in the model and
must therefore be fulfilled in any valid solution of the model. Two of the
most important techniques for generating these constraints are reimple-
mented, aiming to reduce Unison’s dependencies on systems that are
not free software. The reimplementation is shown to be successful with
respect to both correctness and performance. In fact, while producing
the same output a substantial performance increase can be measured
indicating a mean speedup of 2.25 times compared to the previous im-
plementation.

Referat

Unison är kompilatorkomponent för generering av programkod. Unison
skiljer sig från traditionella kompilatorer i den meningen att villkors-
programmering används för kodgenerering i stället för giriga algoritmer.
Med Unisons metodik modelleras kompileringsproblem i en villkorsmo-
dell som därefter kan lösas av en villkorslösare. Detta gör att Unison har
potentialen att generara optimal kod, något som traditionella kompila-
torer vanligtvis inte gör. Tidigare forskning har visat att det går att öka
Unisons möjligheter att generera högkvalitativ kod genom att härleda
extra, implicerade, villkor från villkorsmodellen innan denna löses. Ett
implicerat villkor är en logisk konsekvens av andra villkor i modellen och
förstärker modellen genom att minska den tid som lösaren spenderar i
återvändsgränder.

Denna avhandling presenterar en utvärdering av olika tekniker för
detektering av implicerade villkor i den villkorsmodell som används av
Unison. Två av de mer effektiva teknikerna för detektering av dessa
villkor har även omimplementerats, med syfte att minska Unisons bero-
enden på annan icke kostadsfri programvara. Denna omimplementation
har visats inte bara vara korrekt, det vill säga generera samma resultat,
utan också även väsentligt snabbare än den ursprungliga implementa-
tionen.

Experiment utföra under arbetet med denna avhandling har påvisat
en uppsnabbning (med avseende på exekveringstid) på i medeltal 2,25
gånger jämfört med den ursprungliga implementationen av dessa tekni-
ker. Detta resultat gäller när båda implementationerna generar samma
utdata givet samma indata.

Acknowledgments
I would like to thank my supervisors Roberto Castañeda Lozano and Mats Carlsson
for their valuable support and guidance during this thesis. It has really inspired me
and been a pleasure to learn from you.

I am grateful to my examiner Christian Schulte for giving me the opportunity to
work in such an interesting research project, both as an intern and a thesis student,
it has really been a pleasure.

Lastly I would like to thank Mikael Almgren, not only for his support and col-
laboration during the thesis but also during the last years of study.

Erik Ekström
June 2015

Contents

List of Figures I

List of Tables II

Glossary III

1 Introduction 1
1.1 Problem . 2
1.2 Goals . 3
1.3 Ethics and Sustainability . 3
1.4 Research Methodology . 4
1.5 Scope . 4
1.6 Individual Contributions . 5
1.7 Outline . 5

I Background 7

2 Traditional Compilers 9
2.1 Compiler Structure . 9
2.2 Compiler Back-end . 10

2.2.1 Instruction Selection . 11
2.2.2 Instruction Scheduling . 11
2.2.3 Register Allocation . 14

3 Constraint Programming 17
3.1 Overview . 17
3.2 Modeling . 18

3.2.1 Optimization . 19
3.3 Solving . 20

3.3.1 Propagation . 20
3.3.2 Search . 20

3.4 Improving Models . 21
3.4.1 Global Constraints . 22

3.4.2 Dominance Breaking Constraints 22
3.4.3 Implied Constraints . 23
3.4.4 Presolving . 24

4 Unison - A Constraint-Based Compiler Back-End 25
4.1 Architecture . 25
4.2 Intermediate Representation . 27

4.2.1 Extended Intermediate Representation 28
4.3 Constraint Model . 31

4.3.1 Program and Processor Parameters 31
4.3.2 Model Variables . 32
4.3.3 Instruction scheduling . 32
4.3.4 Register Allocation . 33

5 Unison Presolver 37
5.1 Implied-Based Presolving Techniques 37

5.1.1 Across . 39
5.1.2 Set across . 41
5.1.3 Before and Before2 . 42
5.1.4 Nogoods and Nogoods2 . 43
5.1.5 Precedences and Precedences2 44

II Evaluation and Reimplementation 45

6 Evaluation of Implied Presolving Techniques 47
6.1 Evaluation Setup . 47

6.1.1 Data Collection . 48
6.1.2 Data Analysis . 49
6.1.3 Group Evaluations . 51

6.2 Results . 51
6.2.1 Individual Techniques . 52
6.2.2 Grouped Techniques . 63
6.2.3 Conclusions . 65

7 Reimplementation 67
7.1 Reimplementation Process . 67
7.2 Evaluation Results . 70

7.2.1 Before . 71
7.2.2 Nogoods . 72
7.2.3 Combined Results . 73

8 Conclusions and Further Work 75
8.1 Conclusions . 75
8.2 Further Work . 76

CONTENTS

Bibliography 77

List of Figures

2.1 Compiler overview. 9
2.2 Compiler Back-end. 10
2.3 Control dependencies for some example code 12
2.4 Example showing a data dependency graph for a given basic block . . . 13
2.5 Example showing interference graph for a given basic block 15

3.1 The world’s hardest Sudoku. 17
3.2 Solutions to register packing . 19
3.3 Propagation with three iterations with the constraints z = x and x < y 20
3.4 Search tree for a CSP . 21
3.5 Two equivalent solutions . 23
3.6 Register packing with cumulative constraint 24

4.1 Architecture of Unison . 26
4.2 Example of SSA form . 27
4.3 Example function in LSSA . 28
4.4 Extended example function in LSSA . 29

5.1 Dependency graph for implied-based techniques 38
5.2 Part of code from the extended Unison representation of the function

epic.edges.nocompute . 40

6.1 GM score improvement for the individually evaluated techniques. 52
6.2 GM score improvement for the individually evaluated techniques, clus-

tered according to function size. 53
6.3 GM node and cycle decrease for each of the individually evaluated tech-

niques. 54
6.4 Node decrease for the across technique 55
6.5 Node decrease for the set across technique 56
6.6 Node decrease for the before technique 57
6.7 Node decrease for the before2 technique 58
6.8 Node decrease for the nogoods technique 59
6.9 Node decrease for the nogoods2 technique 60
6.10 Node decrease for the precedences technique 61

I

6.11 Node decrease for the precedences2 technique 62
6.12 GM score improvement for the group evaluated techniques. 63
6.13 GM score improvement for the group evaluated techniques, clustered

according to function size. 64

7.1 Rough time line over the reimplementation 67
7.2 Execution time speedup of reimplemented before 71
7.3 Execution time speedup of reimplemented nogoods. 72
7.4 Execution time speed up of reimplemented nogoods. 73

List of Tables

4.1 Program Parameters . 31
4.2 Processor Parameters . 32
4.3 Model Variables . 32

6.1 Solver parameters for evaluation . 48
6.2 Groups of techniques that have been evaluated 51
6.3 Number of solution proved to be optimal for each technique. 54
6.4 Number of solution proved to be optimal for each group of techniques. . 65

7.1 Categories of found bugs and effort for fixing them. 68

II

Glossary

BAB Branch and Bound

COP Constraint Optimization Problem

CP Constraint Programming

CSP Constraint Satisfaction Problem

DFS Depth First Search

DSP Digital Signal Processor

FPU Floating Point Unit

GM Geometric Mean

IR Intermediate Representation

LSSA Linear Single Static Assignment

NP Non-deterministic Polynomial-time

SICS Swedish Institute of Computer Science

SSA Single Static Assignment

VLIW Very Long Instruction Word

III

Chapter 1

Introduction

Software development using high-level programming languages is today a common
phenomenon, mostly because it allows the developer to write powerful but still
portable programs without having deep knowledge of the architecture of the target
machines. These high-level programing languages are convenient for humans to
work with, but not as convenient for computers. It is therefore required that the
written programs be translated into a language more suitable for computers, this
translation is done by a compiler and is called compilation.

A compiler is a computer program that takes a source program, written in some
high-level programming language, and translates it into a form that is suitable for
execution on target machine. A compiler is commonly divided into two main parts:
the compiler front-end and the compiler back-end. The front-end is responsible for
syntactically and semantically analyzing the source program against the rules of the
source programming language.

After the analysis, the front-end translates the source program into an IR, which
the compiler back-end can interpret. The IR is usually independent of both the
source programming language and the target computer architecture, thus it is pos-
sible to use multiple front-ends together with one back-end, or vice versa.

The back-end is responsible for code generation, which is to translate the IR into
a code that is executable on the target machine, often some sort of assembly code.
The code generation mainly consists of three subtasks, namely: instruction selection
(selecting which instructions to use for implementing the source program), instruc-
tion scheduling (scheduling the execution order among the selected instructions),
and register allocation (selecting where program variables shall be stored during
execution, in either a register or some memory location). Each of these subtasks
is an NP-complete problem, and they are interdependent (with each other). These
two properties imply that it is computationally hard to find an optimal solution to
the code generation problem.

Traditional compilers solve these three subproblems one by one using greedy
algorithms. This approach is usually time efficient but overlooks the interdepen-
dencies and thus produces suboptimal solutions.

1

CHAPTER 1. INTRODUCTION

This thesis is carried out within the Unison compiler research project, which
aims to produce assembly code of higher quality, possibly optimal, compared to tra-
ditional state-of-the-art compilers. Unison exploits the interdependencies between
the instruction scheduling and register allocation problem by solving them as one
global problem using Constraint Programming (CP), instead of greedy algorithms
as traditional compilers do.

CP follows a declarative programming paradigm where the problem to solve is
translated into a constraint model, containing a set of variables and constraints over
these variables. The constraints describe relations among the variables that any
valid solution must fulfill. To find solutions to the model, a constraint solver is
used. The constraint solver uses the constraints of the model to reduce the amount
of search needed for finding valid solutions to the model. This implies that many
possible solutions can be removed without explicitly being evaluated by the solver,
and therefore the time for finding an optimal solution can be reduced.

Presolving the model is a method to further decrease the search effort of the
constraint solver. A presolver does this and attempts to strengthen the model by
adding more constraints to it. All the added constraints must of course conform
to the original model, meaning that no valid solutions must be excluded by adding
these constrains, except solution duplicates, which may be excluded as long as one
of the duplicates is still a solution to the model. The presolver can strengthen the
model by finding implied constraints and adding them to the model. An implied
constraint is the logical consequence of some other constraints in the model and
holds for all cases when the source constraints hold (the premises of the implication).
For example, if the model contains the two constraints x > y and y > z one could
derive an implied constraint saying that x > z since this must hold whenever the
two individual constraints hold. Implied constraints do not remove any solutions of
the model but may reduce the search effort for finding the solutions.

1.1 Problem

The main problem of this thesis is to investigate how different existing presolving
techniques for deducing implied constraints influence the Unison compiler, and to
reimplement two of the most effective ones using only free software.

While most parts of the Unison compiler are based on open source tools and
free software, the current presolver implementation uses a proprietary system. This
system is generally available but comes at a small price. To be able to release
the Unison compiler as open source software that entirely can be used without
any cost, it is therefore necessary to reimplement the presolver using only free
software. However, to reimplement the entire presolver would be too big effort
to fit a master’s thesis and therefore only two of the most important or effective
presolving techniques are reimplemented within this thesis. An evaluation of the
existing presolver is carried out to determine how the presolving techniques perform
compared to each other. This not only gives a better understanding of the efficiency

2

1.2. GOALS

of the different presolving techniques, but also a good basis for selecting which two
presolving techniques are to be reimplemented.

1.2 Goals
The central parts of the thesis are the evaluation and reimplementation of two of
the existing presolving techniques within Unison’s presolver. The evaluation aims
to show how efficient the different presolving techniques are compared to each other
while the reimplementation aims to remove Unison’s dependency on a system that
is not free, which will enable the entirely Unison to be used without any cost. In
the future, this may lead to the release and use of Unison without any associated
cost for the user. In order to achieve the above, the following goals must be met:

• Evaluate all presolving techniques within the Unison presolver that derive
implied constraints. The evaluation shall consider how efficient the techniques
are to reduce the effort for finding good solutions.

• Reimplement two presolving techniques that are highly efficient for the pre-
solving process. The reimplementation shall be based on free software only.

• Evaluate the reimplemented techniques and compare with the results for the
original implementation. This evaluation should be in terms of correctness
and performance.

Here correctness means that given the same input, the same output is generated
by both the original implementation and the reimplementation. The performance
of a presolving technique refers to the execution time of the technique.

1.3 Ethics and Sustainability
This work of this thesis follows the IEEE code of ethics [2]. The main benefits or
contributions of this thesis are:

• A method to evaluate the efficiency of a presolving technique.

• Insight into how well the presolving techniques used in Unison perform.

• A reimplementation of two of the presolving techniques, using only free tools
and systems.

These three contributions enable Unison to be released and used without any
cost while still being able to produce high-quality code within reasonable time lim-
its. Since Unison has the potential to produce higher-quality code comparing with
traditional compilers, it also contributes to the sustainability of computer systems.
It could be either that Unison optimizes directly for power consumption, lowering
the consumption of the running system, or that a program optimized for speed

3

CHAPTER 1. INTRODUCTION

needs shorter execution time. This could mean that more programs can be run on
the same hardware, reducing the need for hardware and thereby the drain of natural
resources. Of course, this will only have a real effect if Unison becomes widespread
and even better than today in generating optimal code.

1.4 Research Methodology
The existing implied-based presolving techniques of the Unison presolver are eval-
uated and ranked according to how well they perform. Two of the most efficient
presolving techniques are reimplemented, using another programming language than
the existing implementation. The reimplementation is based on existing pseudocode
and, when needed, the source code of the already existing implementation. The
reimplementation is verified to produce the same results as the original implemen-
tation when given the same inputs. To determine the speedup of the reimplemen-
tation, the execution time of two implementations are measured and compared.

1.5 Scope
This section introduces the scope and delimitation of the thesis to limit it to a
reasonable scope. To limit the number of experimental instances only one target
architecture is considered: Qualcomm’s Hexagon V4 [26], which is a Digital Sig-
nal Processor (DSP) implementing Very Long Instruction Word (VLIW) and is
commonly available in modern cellphones. In addition to limiting the number of
targets, the evaluation only concerns presolving techniques for producing implied
constraints. That is, constraints that can be deduced from already existing ones.
These implied-based presolving techniques are evaluated individually and in groups
of two or more presolving techniques. The evaluation of grouped presolving tech-
niques aims to reveal how well the different groups complement each other and if
some combinations are particularly useful. Two of the evaluated presolving tech-
niques are selected for reimplementation. This selection considers the results from
the evaluation, the benefit of the presolving technique and the estimated work effort
of the reimplementation for each of the presolving techniques.

Lastly, the reimplementations are evaluated to ensure correctness with respect
to input and output. This means that the reimplementations and the original
implementations both produce the same results when given the same input. This
second evaluation also concerns the execution time of the reimplementations and
the original implementation to ensure that the performance of the reimplementation
is at least comparable with the one of the original implementation.

4

1.6. INDIVIDUAL CONTRIBUTIONS

1.6 Individual Contributions
The main author and contributor to this thesis is Erik Ekström. Chapters 1, 5, 6, 7
and 8 were developed entirely by Erik, while Chapters 2, 3 and 4 were developed in
collaboration with Mikael Almgren.

Mikael has been conducting a similar thesis [6] in parallel with this one, but
focusing on evaluating and reimplementing another set of presolving techniques
than those of this thesis. For the chapters developed in collaboration with Mikael,
the contributions are as follows: Erik is principal the author of Chapters 2 and 4
while Mikael has acted as editing reviewer. He is the principal author of Chapter 3,
for which Erik has acted more like an editing reviewer.

1.7 Outline
The rest of this thesis is divided into two main parts. Part I covers theoretical
background, and is organized into four chapters: Chapter 2, 3, 4 and 5. The
first of these chapters introduces a general description of traditional compilers and
particularly those tasks of a compiler back-end that are of most relevance in the
thesis: instruction scheduling and register allocation. Chapter 3 introduces the
concepts of Constraint Programming (CP) and presolving in this context. Chapter 4
introduces Unison, a constraint-based compiler back-end. Chapter 5 introduces the
implied-based presolving techniques used by Unison’s presolver.

Part II consists of three chapters: Chapter 6 presents the evaluation of the ex-
isting implementation of the presolver techniques. This chapter also presents the
selection of which two presolving techniques are to be reimplemented. Chapter 7
describes the reimplementation, presents the evaluation of the reimplemented pre-
solving techniques and the results of this evaluation. The last chapter, Chapter 8,
summarizes the thesis and its results and proposes further work.

5

Part I

Background

7

Chapter 2

Traditional Compilers

This chapter introduces some basic concepts of traditional compilers and some prob-
lems that a compiler must solve in order to compile a source program. Section 2.1
presents the structure of traditional compilers, whereas Section 2.2 introduces the
compiler back-end, and in particular instruction scheduling and register allocation.

2.1 Compiler Structure
A compiler is a computer program that takes a source program, written in some
high-level programming language (for example C++), and translates it into assembly
code suitable for the target machine [5]. This translation is named compilation and
enables the programmer to write powerful, portable programs without deep insight
in the target machine’s architecture. The target machine refers to the machine
(virtual or physical) on which the compiled program is to be executed.

Traditional compilers perform the compilation in stages, where each stage takes
the input from the previous stage and processes it before handing it over to the next
stage. The stages are commonly divided into two parts, the compiler front-end and
the compiler back-end [5], as is shown in Figure 2.1.

Compiler

Front-End Back-End
IR

Source
Program

Assembly
Code

Figure 2.1: Compiler overview.

The front-end of a compiler is typically responsible for analyzing the source
program, which involves passes of lexical, syntactic, and semantic analysis. These
passes verify that the source program follows the rules of the used programming
language and otherwise terminate the compilation [7].

9

CHAPTER 2. TRADITIONAL COMPILERS

If the program passes all parts of the analysis, the front-end translates it into an
Intermediate Representation (IR), which is an abstract representation of the source
program independent of both the source programming language and the target
machine [18]. The back-end takes this IR and translates it into assembly code for
the target machine [5].

The use of an abstract IR makes it possible to use a target specific back-end
together with multiple different front-ends, each implemented for a specific source
language, or vice versa. This can drastically reduce the work effort when building
a compiler, and introduces a natural decomposition to the compiler design [18].

2.2 Compiler Back-end
The back-end of a compiler is responsible for generating executable, machine de-
pendent code that implements the semantics of the source program’s IR. This is
traditionally done in three stages: instruction selection, instruction scheduling and
register allocation [5, 18]. Figure 2.2 shows how these stages can be organized in a
traditional compiler, for example GCC [1] or LLVM [3].

Instruction
selection

Instruction
scheduling

Register
allocation

IR
Partially ordered

instructions

Ordered in-
structions

Register allocated
instructions

Generated
code

Back-end

Figure 2.2: Compiler Back-end.

The instruction selection stage maps each operation in the IR to one or more
instructions of the target machine. The instruction scheduling stage reorders these
instructions to make the program execution more efficient while still being correct.
In the register allocation stage, each temporary value of the IR is assigned into
either a processor register or a location in memory.

These three subproblems are all interdependent, meaning that attempts to solve
one of them can affect the other problems and possibly make them harder. Due
to this interdependence, it is sometimes beneficial to re-execute some stage of the
code generation after some other stage has executed. For example, it might be
that the register allocation stage introduces additional register-to-register moves
into the code, and it would be beneficial to re-run the scheduler after this since
the conditions have changed. These repetitions of stages are illustrated by the two
arrows between instruction scheduling and register allocation in Figure 2.2.

In addition to the interdependence, all three subproblems are also Non-deter-
ministic Polynomial-time (NP)-hard problems [32, 21, 11]. Despite solid work, there

10

2.2. COMPILER BACK-END

is no known algorithm to optimally solve NP-hard problems in polynomial time,
and many people do not even believe that such an algorithm exists. In general, it
is therefore computationally challenging to find an optimal solution to these kinds
of problems. Due to this, traditional compilers resort to greedy algorithms that
produce suboptimal solutions in reasonable time when solving each of the three
subproblems [5, 20].

2.2.1 Instruction Selection

Instruction selection is the task of selecting one or more instructions that shall be
used to implement each operation of the IR code of source program [22]. The most
important requirement of instruction selection, and the rest of the code generation,
is to produce correct code. In this context, correct means that the generated code
conforms to the semantics of the source program. Thus, the instruction selection
must be made in a way that guarantees that the semantics of the source program
is not altered [5, 20].

2.2.2 Instruction Scheduling

Instruction scheduling has one main purpose, to create a schedule for when each
selected instruction is to be executed [18]. Ideally, the generated schedule should
be as short as possible, which implies fast execution of the program.

The instruction scheduler takes as input a set of partially ordered instructions
and orders them into a schedule that respects all of the input’s control and data
dependencies.

A dependency captures a necessary ordering of two instructions, that is, that one
instruction cannot be executed before the other instruction has finished. The sched-
uler must also guarantee that this schedule never overuses the available functional
units of the processor [5].

Functional units are a limited type of processor resources, each of which is ca-
pable of executing one program instruction at a time. Examples of functional units
are adders, multipliers and Floating Point Units (FPUs) [18]. An instruction may
need a resource for multiple time units, blocking any other instruction from using
the resource during this time.

Latency refers to the time an instruction needs to finish its execution, and is
highly dependent on the state of the executing machine. For example, the latency of
a load instruction can vary from a couple of cycles to hundreds of cycles, depending
on where in the memory hierarchy the desired data exist. Due to this, it is impossible
for the compiler know the actual latency of an instruction, instead it has to rely on
some estimated latency and let the hardware handle any additional delay during
run time. The hardware may do this by stalling the processor by inserting nops
(an instruction performing no operation) into the processor pipeline.

Some processors support the possibility to issue more than one instruction in
each cycle. This is the case for Very Long Instruction Word (VLIW) processors

11

CHAPTER 2. TRADITIONAL COMPILERS

which can bundle multiple instructions to be issued in parallel on the processor’s
different resources [18]. To support such processors, the scheduler must be able to
bundle the instructions, that is scheduling not only in sequence but also in parallel.

Control Dependencies

Control dependencies capture necessary precedences of instructions implied by the
program’s semantics. There is a control dependency between two instructions I1 and
I2 if the first instruction determines whether the second will be executed or not, or
vice versa. One of these instructions can for example be a conditional branch while
the other one is an instruction from one of the branches [7, 24].

The control dependencies of a program are often represented by a dependency
graph, which is used for analyzing the program control flow [7]. Figure 2.3 (b) shows
an example dependency graph for the code in Figure 2.3 (a). The vertices of the
graph are basic blocks and the edges represent jumps in the program.

A basic block is a maximal sequence of instructions among which there are
no control dependencies. The block starts with a label and ends with a jump
instruction, and there are no other labels or jumps within the block [7]. This
implies that if one instruction of a block is executed, then all of them must be
executed.

I1: t1 ← load @ra
I2: t2 ← load @rb
I3: if (t2 > t1)
I4: t1 ← add t0, t1
I5: t1 ← add t2, t1

(a) Example Code

I1: t1 ← load @ra
I2: t2 ← load @rb

b1

I4: t1 ← add t0, t1

b2

I5: t1 ← add t2, t1

b3

(b) Control dependency graph for example code.

Figure 2.3: Control dependencies for some example code

As an example for control dependencies, consider the code of Figure 2.3 (a), in
this example it is assumed that ra and rb are memory addresses and thus the pred-
icate of I3 cannot be evaluated during compilation. In the code, there is a control
dependency between instruction I4 and I3 sinceI4 is only executed if the predicate of
I3 evaluates to true. Therefore there is an edge between the corresponding blocks
b1 and b2 in the dependence graph of Figure 2.3 (b). On the other hand, there is
no control dependency between I5 and I3 since I5 is executed for all possible evalua-
tions of I3, but they are still in different blocks since they are connected by a jump
instruction indicated by an edge in the figure.

12

2.2. COMPILER BACK-END

Data Dependencies

Data dependencies are used to capture the implied ordering among pairs of instruc-
tions. A pair has a data dependency among them if one the instructions uses the
result of the other one [7, 20]. Traditional compilers usually use a data dependency
graph while scheduling the program’s instructions. Typically, this is done using a
greedy graph algorithm on the dependency graph [7, 20].

I1: t1 ← load @ra
I2: t2 ← add t0, t1
I3: t1 ← add t2, t1
I4: t3 ← load @ra
I5: t2 ← sub t1, t2
I6: t2 ← mul t2, t3
I7: @rb ← store t2

b1

(a) Example Code in form of a basic
block

I7

I6

I4 I5

I3

I2

I1

(b) Data dependency graph

Figure 2.4: Example showing a data dependency graph for a given basic block

An example of such a graph is given in Figure 2.4 (b) where each node cor-
responds to an instruction of the basic block of Figure 2.4 (a). If an instruction
uses the result of some other instruction within the block, an edge is drawn in the
direction in which data flow. For example, instruction I5 uses the result of I3 and
I2, therefore there is an edge from I3 to I5 and one from I2 to I5.

13

CHAPTER 2. TRADITIONAL COMPILERS

2.2.3 Register Allocation

Register Allocation is the process of assigning temporary values (temporaries) to
machine registers and main memory [7]. Both registers and main memory are,
among others, part of a computer architecture’s memory hierarchy.

Registers are typically very fast, accessible from the processor within only one
clock cycle [7] but require large area on the silicon, and is therefore very expensive.
Due to this high cost, it is common for computer architectures to have a severely
limited number of registers, which makes register allocation a harder problem to
solve.

Main memory on the other hand is much cheaper, but also significantly slower
compared to registers. It is typically accessed in the order of 100 clock cycles [7],
which is so long that it may force the processor to stall while waiting for the desired
data. Since registers are much faster than main memory, it is desirable that the
register allocation utilizes the registers as efficiently as possible, ideally optimally.

To utilize the registers in an efficient way, it is of utmost importance to decide
which temporaries are stored in memory and which are stored in registers. To decide
this is one of the main tasks of register allocation and should be done so that the
most used temporaries reside in the register bank. In that way the delay associated
with accessing a temporary’s value is minimized.

The register allocation must never allocate more than one temporary to a register
simultaneously. That is, at any point of time there may exist at most one temporary
in each register. Every program temporary that cannot be stored in a register is
thus forced to be stored in memory and is said to be spilled to memory.

Register allocation is often done by graph coloring, which generally can produce
good results in polynomial time [18]. The graph coloring is carried out by an
algorithm that uses colors for representing registers in a graph where nodes are
temporaries and edges between nodes represent interferences. This kind of graph is
called an interference graph [18].

Interference Graphs

Two temporaries are said to interfere with each other if they are both live at the
same time [5]. Whether a temporary is live at some time is determined by liveness
analysis, which says that a temporary is live if it has already been defined and if
it can be used by some instruction in the future (and the temporary has not been
redefined) [7]. This is a conservative approximation of a temporary’s liveness, since
it is considered live not only when it will be used in the future but also if it can be
used in the future. This conservative approximation is called static liveness and is
what traditional compilers use [5].

An interference graph represents the interference among temporaries in the pro-
gram under compilation. Nodes of an interference graph represent temporaries while
edges between two distinct nodes represent interference between the nodes.

Figure 2.5 shows to the left the code of Figure 2.4 (a) translated to Single Static

14

2.2. COMPILER BACK-END

I1: t1 ← load @ra
I2: t2 ← addi 0, t1
I3: t4 ← add t2, t1
I4: t3 ← load @ra
I5: t5 ← sub t1, t4
I6: t6 ← mul t5, t3
I7: @rb ← store r6

b1

(a) Example code for interference graph.
(SSA version of the previous example
code.)

t6

t5

t4

t3

t2

t1

(b) Example interference graph.

Figure 2.5: Example showing interference graph for a given basic block

Assignment (SSA) form and to the right the corresponding interference graph. SSA
form is used by many modern compilers’ IR and requires that every temporary of
the program IR is defined exactly once, and any used temporary refers to a single
definition [18]. SSA is introduced in some more detail in Section 4.2.

In the interference graph of Figure 2.5 (b), there is an edge between t1 and t2

since they have overlapping live ranges, t1 is live before and beyond the point where
t2 is defined. In the same way t1 interferes with both t3 and t4, which interfere
with each other. t3 and t5 interfere since they are both used by the instruction
defining t6. None of the other temporaries is live after the definition of t6, hence
neither interferes with t6.

15

Chapter 3

Constraint Programming

This chapter introduces the main concepts of Constraint Programming (CP). In
Section 3.1, an overview of CP is presented. In Section 3.2, the process of modeling
a problem with CP is described. In Section 3.3, the solving of a model is presented.
At last, in Section 3.4 some techniques for improving a model are presented.

3.1 Overview
Constraint Programming (CP) is a declarative programming paradigm used for
solving combinatorial problems. In CP, problems are modeled by declaring vari-
ables and constraints over the variables. The modeled problem is then solved by
a constraint solver. In some cases, an objective function is added to the model to
optimize the solutions in some way [13].

A well-known combinatorial problem that can be efficiently modeled and solved
with CP is a Sudoku, shown in Figure 3.1. This problem can be modeled with 81
variables allowed to take values from the domain {1, ..., 9}, each representing one of
the fields of the Sudoku board. The constraints in the Sudoku are: all rows must
have distinct values, all columns must have distinct values and all 3× 3 boxes must
have distinct values.

8
3 6

7 9 2
5 7

4 5 7
1 3

1 6 8
8 5 1

9 4

Figure 3.1: The world’s hardest Sudoku [31].

17

CHAPTER 3. CONSTRAINT PROGRAMMING

To solve a problem, the constraint solver uses domain propagation interleaved
with search. Propagation removes values from the variables that do not satisfy
a constraint and can therefore not be part of a solution. Search tries different
assignments for the variables when no further propagation can be done [13].

3.2 Modeling

Before a problem can be solved with CP, the problem has to be modeled as a
Constraint Satisfaction Problem (CSP) which specifies the desired solutions of the
problem [13, 28]. The modeling elements of a CSP are variables and constraints.
The variables represent decisions the solver can make to form solutions and the
constraints describe properties of the variables that must hold in a solution. Each
variable is connected to its own finite domain, from which the variable is allowed to
take values. Typical variable domains in CP are integer and Boolean. Constraints
for integer variables are e.g. equality and inequality, for Boolean variables constraints
such as disjunction or conjunction are commonly used [8]. The objective of solving
a CSP is to find a set of solutions or to prove that no solution exists [17].

Consider register allocation as explained in Section 2.2.3 for a program repre-
sented in LSSA form, described in Section 4.2. This problem can be modeled and
solved with CP as a rectangle-packing problem, shown in Figure 3.2. The goal of
rectangle packing is to pack a set of rectangles inside a bounding rectangle [23].
Each temporary is represented by a rectangle connected to two integer variables;
xi and yi, which represent the bottom left coordinate of the rectangle inside the
surrounding rectangle, where i is the number of the temporary. The temporary
size and live range are represented as the rectangle’s width, wi, and height, hi,
respectively where again i is the number of the temporary. The maximum number
of registers that can be used is represented by the width, ws, of the surrounding
rectangle. The maximum number of issue cycles is represented by the the height,
hs, of the surrounding rectangle.

disjoint2(x, w, y, h) ∧ (y0 ≥ y2 + h2)∧ (3.1)
∀i(xi ≥ 0 ∧ xi + wi < ws ∧ yi ≥ 0 ∧ yi + hi < hs)

Given a situation where four temporaries, t0, t1, t2, t3, are to be allocated on a
maximum of four registers, ws = 4, during at most five issue cycles, hs = 5, and
with the additional constraint that the issue cycle of t2 must be before the issue
cycle of t0. The constraints of this problem can be expressed as in Equation 3.1
saying that none of the rectangles may overlap, the issue cycle of t2 is before the
issue cycle of t0 and all rectangles must be inside the surrounding rectangle.

The disjoint2 constraint is a global constraint expressing that a set of rectangles
cannot overlap. Global constraints are explained in more detail in Section 3.4.1. A
possible solution to this example is shown in Figure 3.2 (a).

18

3.2. MODELING

0

1

2

3

4

R1 R2 R3 R4

t0

t1

t2

t3

cy
cl
e

(a) Solution to register packing

0

1

2

3

4

R1 R2 R3 R4

t0

t1

t2 t3

cy
cl
e

(b) Optimal solution with respect to
minimizing the bounding rectangle

Figure 3.2: Solutions to register packing

3.2.1 Optimization

Often when solving a problem it is desirable to find the best possible solution, i.e.
a solution that is optimal according to some objective. A Constraint Optimization
Problem (COP) is a CSP extended with an objective function, helping the solver
to determine the quality of different solutions [13]. The goal of solving a COP is
to minimize or maximize its objective function, and thus the quality is determined
by how low (minimizing) or high (maximizing) the value of the objective function
is [28]. For each solution that is found the solver uses the objective function to
calculate the quality of the solution. If the found solution has higher quality than
the previous best solution, the newly found solution is marked to be the current
best. The solving stops when the whole search space has been explored by the
solver. At this point the solver has proven one solution to be optimal or proven
that no solution exists [28].

Proving that an solution is optimal after it has been found is referred to as proof
of optimality. This phase of solving a COP can be the most time-consuming part of
the solving. In cases where a timeout is used to stop the solver from searching for
better solutions, the solver knows which solution that is the best upon the timeout.
This solution is not necessarily an optimal solution, but it can be optimal without
the solver’s knowledge, i.e. the solving timed out during proof of optimality.

Consider the register allocation problem as introduced in Section 3.2 together
with the potential solution shown in Figure 3.2 (a). This solution is a feasible
solution to the problem, but it is not optimal. An optimal solution to this problem
can be found by transforming the model into a COP, adding the objective function
f = ws×hs, where f is the area of the surrounding rectangle, with the objective to
minimize the value of f . Doing so, the solver can find and prove that the solution,
shown in Figure 3.2 (b), is indeed one optimal solution to this problem, according
to the objective function f .

19

CHAPTER 3. CONSTRAINT PROGRAMMING

3.3 Solving

Solving a problem in CP is done with two techniques: propagation and search [8].
Propagation discards values from the variables that violate a constraint from the
model and can therefore not be part of a solution. Search tries different assignments
for the variables when no further propagation can be done and some variable is still
not assigned to a value. Propagation interleaved with search is repeated until the
problem is solved [13].

3.3.1 Propagation

The constraints in a model are implemented by one or many propagator functions,
each responsible for discarding values from the variables such that the constraint
the propagator implements is satisfied [29]. Propagation is the process of executing
a set of propagator functions until no more values can be discarded from any of the
variables. At this point, propagation is said to be at fixpoint.

s = { x 7→ {1, 2, 3},
y 7→ {1, 2, 3},
z 7→ {0, 1, 2, 3, 4}}

Initial domain
s = { x 7→ {1, 2},

y 7→ {2, 3},
z 7→ {1, 2, 3}}

First iteration
s = { x 7→ {1, 2},

y 7→ {2, 3},
z 7→ {1, 2}}

Second iteration
s = { x 7→ {1, 2},

y 7→ {2, 3},
z 7→ {1, 2}}

Third iteration

Figure 3.3: Propagation with three iterations with the constraints z = x and
x < y

Figure 3.3 shows an example of propagating the constraints z = x and x < y
on the variables x 7→ {1, 2, 3}, y 7→ {1, 2, 3}, z 7→ {0, 1, 2, 3, 4}. In the first iteration
of the propagation, the values from z that are not equal to any of the values of x
are removed. Then the values from x and y not satisfying the constraint x < y are
removed from the respective variables. In the second iteration, more propagation
can be done since the domain of x has changed. In this iteration the value 3 is
removed from the domain of z to satisfy z = x. In the third iteration no further
propagation can be done and the propagation is at fixpoint.

3.3.2 Search

When propagation is at fixpoint and some variables are not yet assigned a value, the
solver has to resort to search. [28]. The underlying search method most commonly
used in CP is backtrack search [28]. Backtrack search is a complete search algorithm
which ensures that all solutions to a problem will be found, if any exists [28].

There exist different strategies for exploring the search tree of a problem. One
of them is Depth First Search (DFS), which explores the depth of the search tree
first.

Figure 3.4 shows an example of a search tree for a CSP solved with backtrack
search. The root node corresponds to the propagation in Figure 3.3. The number

20

3.4. IMPROVING MODELS

x 7→ {1, 2}
y 7→ {2, 3}

z 7→ {1, 2}

1

x 7→ {1}
y 7→ {2, 3}

z 7→ {1}

2

x 7→ {1}
y 7→ {2}

z 7→ {1}

3
x 7→ {1}
y 7→ {3}

z 7→ {1}

4

x 7→ {2}
y 7→ {3}

z 7→ {2}

5
x 7→ 1 x 7→ 2

y 7→ 2 y 7→ 3

Figure 3.4: Search tree for a CSP with the initial store {x 7→ {1, 2, 3}, y 7→
{1, 2, 3}, z 7→ {0, 1, 2, 3, 4} and the constraint {x < y, z = x}

on each node corresponds to the order in which DFS has explored the tree, where
node 3, 4 and 5 are solutions to the problem.

When solving a COP it is not always necessary to explore the whole search
tree, since when the solver knows the quality of the current best solution it is not
interested in finding solutions of less quality. Solving COPs is typically done with
an exploration strategy called Branch and Bound (BAB). This strategy uses the
objective function of the COP to constrain the model further when a solution has
been found [28]. This constraint prunes branches in the search tree that would have
led to solutions of lower quality, and therefore decreases the effort of finding and
proving the optimal solution [28].

Consider the COP of register allocation as in Section 3.2.1. When a solution,
S, has been found to this problem, the model is further constrained with the con-
straint ws×hs < f(S), saying that upcoming solutions must have smaller bounding
rectangles, if the solutions exists.

Another important aspect of the search process is the branching strategy. This
strategy determines how the variables will be assigned to values at search. These
assignments are the edges between the nodes in the search tree. The assignments
can for example be done by assigning a variable to the lowest value from its domain,
or by splitting its domain into two halves [28].

3.4 Improving Models

Solving a naively implemented CSP can be a time-consuming job for the constraint
solver, since the model might be weak and because of that its search tree might
contain many dead ends [28]. There exist some modeling techniques to reduce
the amount of effort that has to be put into to search. Some of the techniques
such as global constraints and implied constraints focus on giving more propagation

21

CHAPTER 3. CONSTRAINT PROGRAMMING

to the problem [28]. Dominance-breaking constraints on the other hand focuses
on removing solutions that in some way are equivalent to another solution, thus
making the search tree smaller [28]. Another technique for improving the solving
time and robustness of solving is presolving. This technique transforms a model
into an equivalent model that is potentially easier to solve before solving [13].

3.4.1 Global Constraints
Global constraints replace many frequently used smaller constraints of a model
[28]. A global constraint can involve an arbitrary number of variables to express
properties on them. Using a global constraint makes the model more concise and
makes propagation more efficient, since efficient algorithm exploiting structures in
the constraint can be used [19]. Some examples of global constraints are alldiffer-
ent, disjoint2 and cumulative. The alldifferent constraint expresses that a number
of variables must be pairwise distinct. This replaces many inequality constraints
among variables. The disjoint2 constraint takes a number of rectangle coordinates
together with their dimensions and expresses that these rectangles are not allowed
to overlap. Again, this constraint replaces many smaller inequality constraints be-
tween the variables. The cumulative constraint expresses that the limit of a resource
is must at no time be exceeded by the set of tasks sharing that resource [29].

There exist many more global constraints. Examples of these can be found in
the Global Constraints Catalogue [10].

3.4.2 Dominance Breaking Constraints
A dominance relation in a constraint model are two assignments where one is known
to be at least as good as the other one. This makes dominance relations almost
symmetries where instead of being two exactly symmetrical solutions, they are
symmetrical with respect to satisfiability or quality [17].

Dominance breaking constraints exploit these almost symmetries to prune some
solutions before or during search, without affecting satisfiability or optimality, which
leads to faster solving of the problem.

Symmetry Breaking Constraints

A subset of dominance breaking constraints are symmetry breaking constraints [17].
Symmetry in a CSP or COP means that for some solutions there exist other ones
that are in some sense equivalent. The symmetries divide the search tree into
different classes where each class corresponds to equivalent sub-trees of the search
tree [28]. Consider the problem of register packing. The objective of this problem
is to minimize the number of cycles and registers used. However, to this problem
there exist many solutions that are, with respect to optimality, equally good or the
same solution. An example of this is shown in Figure 3.5.

By removing symmetries, solving a problem can be done faster and more effi-
ciently, mainly because a smaller search tree has to be explored before either finding

22

3.4. IMPROVING MODELS

0

1

2

3

R1 R2 R3

t0

t1

t2 t3

cy
cl
e

0

1

2

3

R1 R2 R3

t0

t1

t2t3

cy
cl
e

Figure 3.5: Two equivalent solutions

all solutions or to prove that a solution is optimal. There exist different techniques
for removing symmetries from a model. One way of doing so is to remove these
symmetries during search, discussed in [28]. Another way to remove symmetries is
to add more constraints to the model which will force the values in some way, by
for example add some ordering among the variables [28]. In the register packing
problem, some symmetries can be removed by assigning a temporary to a register
before search. This can for example be to assign t0 to R1 and R2 in the cycles 2
and 3 before search takes place. This will remove all symmetrical solutions where
t0 is allocated to register R1 and R2 in the same cycles.

3.4.3 Implied Constraints

An efficient, and commonly used, technique for improving the performance of solv-
ing, by removing potential dead ends in its search tree, is to add implied constraints
to the model [28]. Implied constraints are logically redundant, which means that
they do not change the set of solutions to a model but instead remove some failures
that might have occurred during search by forbidding some assignments being made
[28].

Finding implied constraints can be done manually before search or by presolving,
explained in Section 3.4.4.

Consider the register allocation problem as presented in Section 3.2. To improve
this model it can be extended with two additional cumulative constraints, projecting
the x and y dimensions as in Figure 3.6 [30]. This constraint does not add any new
information to the problem but it might give more propagation. The cumulative
constraint constraining the y-axis of the register packing expresses that at any
given issue cycle, not more than 4 temporaries can be allocated to the registers.
The cumulative constraint projected on the x-axis expresses that no register can
have temporaries during more than 5 issue cycles.

Negating nogoods is another way of adding implied constraints to a model. A
nogood is an assignment that can never be part of a solution and thus its negation
holds for the model [16]. Nogoods are typically found and used during search, known
as nogood recording [28]. However, they can also be derived during presolving or

23

CHAPTER 3. CONSTRAINT PROGRAMMING

0
1
2
3
4

R1R2R3R4

t0
t1

t2
t3

cy
cl
e

Figure 3.6: Register packing with cumulative constraint

manually by reasoning.
For the register allocation problem from Section 3.2 it can be seen that tempo-

rary t0 can never be assigned to a register during issue cycle 0 or 1, since temporary
t2 must be issued before t0. This assignment is a nogood. This nogood, y0 >= 3,
can be negated and added as a constraint in the model, as: y0 < 3.

3.4.4 Presolving
Presolving automatically transforms one model into an equivalent model (with re-
spect to satisfiability or optimal solution) that is potentially easier to solve. Presolv-
ing aims at reducing the search effort by tightening bounds on the objective func-
tion, removing redundancy from the model, finding implied constraints or adding
nogoods [27].

Presolving techniques can be implemented by solving a relaxed model of the
problem, from which variables or constraints have been removed to make it easier
to solve, and then use the solutions from this model to improve the original model.
One technique that does this is bounding by relaxation. This technique first solves a
relaxed model of the problem to optimality. The objective function of the original
model is then constrained to be equal or worse than the result of the relaxed model.
The idea of bounding by relaxation is to speed up proof of optimality, as described
in [13].

Other techniques such as shaving instead use the original model during presolv-
ing. This technique tries individual assignments for the variables and removes those
values from the variables that after propagation lead to failure, as described in [13].

More presolving techniques are described in Chapter 5. These techniques either
focus on generating dominance breaking constraints or implied constraints, which
are then added to the model.

24

Chapter 4

Unison - A Constraint-Based Compiler
Back-End

This chapter introduces Unison, a compiler back-end based on combinatorial opti-
mization using constraint programming [4]. Unison is the outcome of an ongoing
research project at the Swedish Institute of Computer Science (SICS) and the Royal
Institute of Technology, KTH. In its current state, Unison is capable of performing
integrated instruction scheduling and register allocation while depending on other
tools for the instruction selection. With the help of experiments, it has been shown
that Unison is both robust and scalable and has the potential to produce optimal
code for functions of size up to 1000 instructions within reasonable time [13].

The remainder of this chapter is organized as follows. Section 4.1 presents the
main architecture of Unison and briefly describes the different components. The
Unison-specific Intermediate Representations (IRs) are introduced in Section 4.2.
Section 4.3 describes how the source program and target processor are modeled. The
methods for instruction scheduling and register allocation in Unison are introduced
in Section 4.3.3 and Section 4.3.4, respectively.

4.1 Architecture

As common in compiler architectures, the Unison compiler back-end is organized
into a chain of tools. Each of these tools takes part in the translation from the
source program to the assembly code. Figure 4.1 illustrates these tools and how
they are organized. The dashed rectangle illustrates the boundaries of Unison, every
component inside this rectangle is a part of Unison while everything on the outside
are tools that Unison uses.

Each of the components in Figure 4.1 processes files, meaning that each com-
ponent takes a file as input, processes the content and then delivers the result in
a new file. The content of the output files is formatted according to the filename
extension, written next to the arrows between the components of the figure. The
input file to Unison is expected to contain only one function, called the compilation

25

CHAPTER 4. UNISON - A CONSTRAINT-BASED COMPILER BACK-END

import extend model presolver solver export

instruction
selector

instruction
emitter

Unison

.ll

.mll

.uni .ext.uni .json .ext.json .out.json

.unison.mll

.s

Figure 4.1: Architecture of Unison, recreated from [14]

unit. For this thesis, the most interesting component is the presolver, which will
be described in some detail in Chapter 5 but also evaluated and partly reimple-
mented in later Chapters. The function of the components, including those outside
the dashed box in Figure 4.1, is shortly described below.

Instruction selector: takes as input an IR of the source program and re-
places each abstract instruction of the IR with an appropriate assembly in-
struction of the target machine. The output of this component contains code
for a single function, since that is the compilation unit of Unison.

Import: transforms the output of the instruction selector into a Unison-
specific representation.

Extend: extends the previous output with data used to transform the Unsion-
specific representation into a combinatorial problem.

Model: takes the extended Unison representation and formulates (models) it as a
combined combinatorial problem for instruction scheduling and register allo-
cation.

Presolver: simplifies the combinatorial problem by executing different presolv-
ing techniques for example finding and adding necessary (implied) constraints
to the problem model. This component and its techniques are described in
some more detail in Chapter 5.

Solver: solves the combinatorial problem using a constraint solver.

Export: transforms the solution of the combinatorial problem into assembly code.

Instruction emitter: generates assembly code for the target machine given
the assembly code from the export component.

26

4.2. INTERMEDIATE REPRESENTATION

4.2 Intermediate Representation
The input to Unison is a function in SSA form, for which instructions has been
selected by the instruction selector.

t1 ← load t0
t2 ← add t0, t1
t1 ← add t2, t1
t3 ← load t0
t2 ← sub t1, t2
t2 ← mul t2, t3

(a) Original code

t1 ← load t0
t2 ← add t0, t1
t4 ← add t2, t1
t3 ← load t0
t5 ← sub t4, t2
t6 ← mul t5, t3

(b) Code in SSA form

Figure 4.2: Example of SSA form. The code of (b) is the SSA form of the code
in (a), and the differences between these are highlighted in (b).

In SSA form, every program temporary is defined exactly once, meaning that
the value of a temporary must never change during its lifetime [18]. Figure 4.2 (a)
shows some example code where temporaries are used and defined by operations.
In this example, both t1 and t2 are defined more than once, something that is
not legal in SSA. When translating this piece of code into SSA form it is necessary
to replace every re-definition of a temporary with a new, unused temporary. Of
course, this new temporary must also replace any succeeding use of the re-defined
temporary to maintain the semantics. As a result, every definition is of a distinct
temporary and every used temporary can be connected to a single definition [18].

Figure 4.2 (b) shows the example code after translation into SSA, it is semanti-
cally equivalent to the previous code but there are no re-definitions of temporaries.

The import component of Unison takes the SSA formed program, given by the
instruction selector, and translates it into Linear Single Static Assignment
(LSSA), a stricter version of SSA that is used within Unison back-end. LSSA was
introduced by [15] and is stricter than SSA in that temporaries are not only limited
to be defined only once, but also to be defined and used within a single basic
block [15]. This property yields simple live ranges for temporaries and thus enables
further problem decomposition. To handle cases where the value of a temporary
is used across boundaries of basic block, LSSA introduces the congruence relation
between temporaries [15]. Two temporaries t0 and t1 are congruent with each
other whenever t0 and t1 correspond to the same temporary in a conventional
SSA form.

Figure 4.3 shows the factorial function in LSSA form for Qualcomm’s Hexagon
V4 [26] and this is how the output from the import component would look like in
this setup. The file consists of two main parts: the basic blocks (for example b2)
and their operations (each line within a block), and a list of congruent temporaries
[14]. Each operation has a unique identifier (for example o2) and consists of a set
of definitions (for example [t3]), a set of possible instructions for implementing

27

CHAPTER 4. UNISON - A CONSTRAINT-BASED COMPILER BACK-END

b0:
o0: [t0:R0,t1:R31] <- (in) []
o1: [t2] <- TFRI [{imm, 1}]
o2: [t3] <- {CMPGTri_nv, CMPGTri} [t0,{imm, 0}]
o3: [] <- {JMP_f_nv, JMP_f} [t3,b3]
o4: [] <- (out) [t0,t1,t2]

b1:
o5: [t4,t5,t6] <- (in) []
o6: [] <- LOOP0_r [b2,t5]
o7: [] <- (out) [t4,t5,t6]

b2:
o8: [t7,t8,t9] <- (in) []
o9: [t10] <- ADD_ri [t8,{imm, -1}]
o10: [t11] <- MPYI [t8,t7]
o11: [] <- ENDLOOP0 [b2]
o12: [] <- (out) [t9,t10,t11]

b3:
o13: [t12,t13] <- (in) []
o14: [] <- JMPret [t13]
o15: [] <- (out) [t12:R0]

congruences:
t0 = t5, t1 = t6, t1 = t13, t2 = t4, t2 = t12, t4 = t7, t5 = t8,
t6 = t9, t9 = t13, t10 = t8, t11 = t7, t11 = t12

Figure 4.3: Example function in LSSA: factorial.uni (reprinted and simpli-
fied from [14])

the operation (for example {CMPGTri_nv, CMPGTri}) and a set of uses (for example
[t0, imm, 0]). In some cases, a temporary must be placed in a specific register, for
example due to calling conventions, and this is captured in the program represen-
tation by adding the register identifier as a suffix to the temporary. This is true for
operation o0 where temporary t0 is preassigned to register R0 and t1 is preassigned
to register R31.

4.2.1 Extended Intermediate Representation

The extender component of Unison takes a program in LSSA form and extends
it in order to express the program as a combinatorial problem. The extension
consists of adding optional copies to the program and generalizes the concept of
temporaries to operands [14]. Figure 4.4 shows the extended representation of the
previous example (Figure 4.3).

Optional copies are optional operations that copy the value of a temporary ts

into another temporary td [15]. These two temporaries thus hold the same value
and are said to be copy related to each other, and any use of such a temporary can
be replaced by a copy related temporary without altering the program’s semantics
[16]. The copies are optional in the sense that they can be either active or inactive,

28

4.2. INTERMEDIATE REPRESENTATION

b0:
o0: [p0{t0}:R0,p1{t1}:R31] <- (in) []
o1: [p3{-, t2}] <- {-, TFR, STW} [p2{-, t0}]
o2: [p4{t3}] <- TRFI [{imm, 1}]
o3: [p6{-, t4}] <- {-, TFR, STW, STW_nv} [p5{-, t3}]
o4: [p8{-, t5}] <- {-, TFR, LDW} [p7{-, t0, t2}]
o5: [p10{t6}] <- {CMPGTri_nv, CMPGTri} [p9{t0, t2, t5, t7},{imm, 0}]
o6: [p12{-, t7}] <- {-, TFR, LDW} [p11{-, t0, t2}]
o7: [p14{-, t8}] <- {-, TFR, LDW} [p13{-, t3, t4}]
o8: [] <- {JMP_f_nv, JMP_f} [p15{t6},b3]
o9: [] <- (out) [p16{t0, t2, t5, t7},p17{t1},p18{t3, t4, t8}]

b1:
o10: [p19{t9},p20{t10},p21{t11}] <- (in) []
o11: [p23{-, t12}] <- {-, TFR, STW} [p22{-, t9}]
o12: [p25{-, t13}] <- {-, TFR, STW} [p24{-, t10}]
o13: [p27{-, t14}] <- {-, TFR, LDF} [p26{-, t10, t13}]
o14: [] <- LOOP0_r [b2,p28{t10, t13, t14, t16}]
o15: [p30{-, t15}] <- {-, TFR, LDW} [p29{-, t9, t12}]
o16: [p32{-, t16}] <- {-, TFR, LDW} [p31{-, t10, t13}]
o17: [] <- (out) [p33{t9, t12, t15},p34{t10, t13, t14, t16},p35{t11}]

b2:
o18: [p36{t17},p37{t18},p38{t19}] <- (in) []
o19: [p40{-, t20}] <- {-, TFR, STW} [p39{-, t17}]
o20: [p42{-, t21}] <- {-, TFR, STW} [p41{-, t18}]
o21: [p44{-, t22}] <- {-, TFR, LDW} [p43{-, t18, t21}]
o22: [p46{t23}] <- ADD_ri [p45{t18, t21, t22, t26},{imm, -1}]
o23: [p48{-, t24}] <- {-, TFR, STW, STW_nv} [p47{-, t23}]
o24: [p50{-, t25}] <- {-, TFR, LDW} [p49{-, t17, t20}]
o25: [p52{-, t26}] <- {-, TFR, LDW} [p51{-, t18, t21}]
o26: [p55{t27}] <- MPYI [p53{t18, t21, t22, t26},p54{t17, t20, t25}]
o27: [p57{-, t28}] <- {-, TFR, STW, STW_nv} [p56{-, t27}]
o28: [p59{-, t29}] <- {-, TFR, LDW} [p58{-, t23, t24}]
o29: [p61{-, t30}] <- {-, TFR, LDW} [p60{-, t27, t28}]
o30: [] <- ENDLOOP0 [b2]
o31: [] <- (out) [p62{t19},p63{t23, t24, t29},p64{t27, t28, t30}]

b3:
o32: [p65{t31},p66{t32}] <- (in) []
o33: [p68{-, t33}] <- {-, TFR, STW} [p67{-, t31}]
o34: [p70{-, t34}] <- {-, TFR, LDW} [p69{-, t31, t33]
o35: [] <- JMPret [p71{t32}]
o36: [] <- (out) [p72{t31, t33, t34}:R0]

congruences:
p1 = p17, p10 = p15, p16 = p20, p17 = p21, p17 = p66, p18 = p19,
p18 = p65, p21 = p35, p33 = p36, p34 = p37, p35 = p38, p38 = p62,
p62 = p38, p62 = p66, p63 = p37, p64 = p36, p64 = p65, p66 = p71

Figure 4.4: Extended example function in LSSA: factorial.ext.uni
(reprinted from [14]).

29

CHAPTER 4. UNISON - A CONSTRAINT-BASED COMPILER BACK-END

an inactive copy will not appear in the generated assembly code while an active
will. Whenever an optional copy is inactive its operands are connected to a null
temporary, denoted by a dash (-) in Figure 4.4. An inactive optional copy has no
effect in the translated program. The purpose of extending the IR with optional
copies is to allow the value of temporaries to be transferred between registers in
different register banks and memory. This helps during register allocation since
optional copies make spilling possible (as defined in Chapter 2) by allowing tempo-
raries to be transferred between different storage types (for example register banks
or memory). Optional copies use alternative instructions in order to implement
the effect of transferring temporaries between different storage types. For example,
operation o4 of Figure 4.4 is an optional copy that can be implemented by one of
the instructions in the set {-, TFR, LDW}. The first one, -, is a null instruction
which is used when the copy is inactive, much in the same way as null temporaries
are used. The second instruction, TFR, is used when the source temporary and the
destination temporary both reside in registers. The LDW instruction is selected to
implement the operation whenever the source temporary resides in memory. Ex-
tending the program representation with optional copies is a task dependent on the
target processor. For the Hexagon processor one copy is added after each definition
of a temporary, and before any use of a temporary, except for temporaries that are
preassigned to some special register [16]. Adding copies in such a way allows the
value of a defined temporary to be spilled, if needed, to memory and then retrieved
back to register when needed.

Operands are introduced as a generalization of the temporary concept [16]. An
operand is either used or defined by its operation, and the operand is connected to
one of its alternative temporaries. When an operation is inactive, i.e. it is imple-
mented by the null instruction, the operands of that operation are connected to the
null temporary. The introduction of operands is a necessity for efficiently introduc-
ing alternative temporaries into the program representation, which together yields
the possibility to substitute copy related temporaries. The ability to substitute tem-
poraries makes it possible to implement coalescing and spill code optimization, and
therefore also to produce higher quality code (with respect to speed, size etc.) [16].
In the Unison extended IR every set of alternative temporaries is prefixed by an
operand identifier. For example, operation o4 in Figure 4.4 uses one operand, p7,
and defines another one, p8. The use operand p7 can be connected to one of the
alternative temporaries in the set {-, t0, t2}. In the same way p8 can be con-
nected to one of the temporaries in {-, t5}, depending on whether the operation
o4 is active or not. Even though operands and alternative temporaries increase the
problem complexity, it has been shown to have no or positive effect on the code
quality of optimally solved functions [16]. Also, congruences are lifted to operands
rather than temporaries, and the same holds for preassignments.

30

4.3. CONSTRAINT MODEL

4.3 Constraint Model
Unison’s constraint model is built upon a set of program parameters for modeling
the source program, and a set of processor parameters, which are used to describe
properties of the target processor. In addition to these parameters, the model also
has a set of variables used for modeling the instruction scheduling and register
allocation.

4.3.1 Program and Processor Parameters
This section shortly presents a subset of the program and processor parameters used
in the Unison constraint model.

Program Parameters

B,O,P,T sets of blocks, operations, operands and temporaries
operands(o) set of operands of operation o

temps(p) set of temporaries that can be connected to operand p

use(p) whether p is a use operand
definer(t) operation that potentially defines temporary t

T(b) set of temporaries in block b

p.r whether operand p is preassigned to register r
width(t) number of register atoms that temporary t occupies
p≡q whether operands p and q are congruent
O(b) set of operations of block b

freq(b) estimated frequency of block b

dep(b) fixed dependency graph of the operations in block b

Table 4.1: Program Parameters, reprinted from [14]

Table 4.1 shows a subset of the program parameters used in Unison. These
parameters are used to express properties in the model of the source program, as
for example operations of the program, which operands that can be connected to
an operation or whether an operand is preassigned to a register. The freq(b)

parameter is an estimate of the frequency at which block b will be executed. This
estimate is based on a loop analysis and the assumption that code within a nested
loop is executed more frequently than code outside the nested loop [33].

31

CHAPTER 4. UNISON - A CONSTRAINT-BASED COMPILER BACK-END

Processor Parameters

I,R sets of instructions and resources
dist(o1,o2,i) min. issue distance of ops. o1 and o2 when o1 is implemented by i

class(o,i,p) register class in which operation o implemented by i accesses p
atoms(rc) atoms of register class rc
instrs(o) set of instructions that can implement operation o

lat(o,i,p) latency of p when its operation o is implemented by i

cap(r) capacity of processor resource r
con(i,r) consumption of processor resource r by instruction i

dur(i,r) duration of usage of processor resource r by instruction i

Table 4.2: Processor Parameters, reprinted from [14]

Table 4.2 shows a subset of Unison’s processor parameters. These parameters are
used to model the target processor and its instruction set. This includes for example,
the set of available instructions, resources, or the capacity of the processors different
resources.

4.3.2 Model Variables

ao ∈ {0,1} whether operation o is active
io ∈ instrs(o) instruction that implements operation o

lt ∈ {0,1} whether temporary t is live
rt ∈ N0 register to which temporary t is assigned
yp ∈ temps(p) temporary that is connected to operand p

co ∈ N0 issue cycle of operation o relative to the beginning of its block
lst ∈ N0 live start of temporary t

let ∈ N0 live end of temporary t

Table 4.3: Model variables, reprinted from [14]

The model variables of Table 4.3 are used when formulating the constraints
for instruction scheduling and register allocation. Thus, these variables are used
to describe the solutions to a model, rather than the input program or the target
processor.

4.3.3 Instruction scheduling

This section shortly describes the most relevant part of the instruction scheduling
model within Unison. A more in-depth description of this is available in [15] and
[16], which are the sources of what is presented in this section. The instruction
scheduling is modeled as a set of constraints, here presented as logical formulas.

32

4.3. CONSTRAINT MODEL

Liveness Constraints

The model has two different constraints regarding the temporaries’ liveness:

lt ⇒ lst = cdefiner(t) ∀t ∈ T (4.1)

lt ⇒ let = max
o∈users(t)

co ∀t ∈ T (4.2)

The constraint (4.1) expresses that if a temporary t is live, then its live range
must start at the issue cycle of the operation that defines t. The second constraint,
(4.2), expresses that every live temporary t must be live until the issue cycle of the
last operand that uses the temporary. users(t) yields the operations that have at
least one operand that uses the temporary t. Both of these constraints hold for all
temporaries in the constraint model.

Data Precedences

Data precedence constraints handle the necessary ordering among operations intro-
duced by data dependencies.

ao ⇒ co ≥ cdefiner(yp) + lat(o, io, p) ∀o ∈ O,∀p ∈ operands(o) : use(p) (4.3)

Constraint (4.3) expresses that an active operation may never be issued until all of
its used temporaries has been defined. A used temporary t is considered defined at
the point where its defining operation have finished its execution.

Processor Resources

Resource constraints have the purpose of guaranteeing that the use of any limited
processor resource never exceeds its capacity.

cumulative({〈co, con(io, r),dur(io, r)〉 : o ∈ O(b)}, cap(r)) ∀b ∈ B, ∀r ∈ R (4.4)

The constraint in (4.4) uses the cumulative constraint [8] for expressing this. Each
of these constraints ensures that each resource never exceeds its capacity during
the execution time of an operation within the current block. Doing this for all
operations within all blocks simply ensures that the capacity of any resource is
never exceeded.

4.3.4 Register Allocation

This section shortly introduces the most relevant constraints used for expressing the
register allocation model in the Unison constraint model. As the previous section,
this section is based on [15] and [16].

33

CHAPTER 4. UNISON - A CONSTRAINT-BASED COMPILER BACK-END

Alternative Temporaries

Constraint (4.5) ensures that a temporary t is live if and only if it is used by some
operand p.

lt ⇔ ∃p ∈ P : (use(p) ∧ yp = t) ∀t ∈ T (4.5)
If a temporary t is active, it must be defined in some operation that is active.

The converse also holds: if an operation is the definer of some temporary then that
temporary must be live. These properties are covered by constraint (4.6).

lt ⇔ adefiner(t) ∀t ∈ T (4.6)

For any active operation, it must hold that all of its operands are connected
to a temporary other than the null temporary. Constraint (4.7) adds this to the
constraint model. The falsum symbol (⊥) denotes here either the null temporary
or the null instruction, depending on the context.

ao ⇔ yp 6= ⊥ ∀o ∈ O,∀p ∈ operands(o) (4.7)

An active operation must also be implemented by an instruction other than the
null instruction, otherwise it cannot be active. This is captured by constraint (4.8).

ao ⇔ io 6= ⊥ ∀o ∈ O (4.8)

Alternative Instructions and Storage Locations

Unison models memory locations in the same way registers are modeled [16]. This
means that the Unison register allocation is not only able to place temporaries in
registers but also in memory locations (when spilling the temporary) on the runtime
stack. As mentioned in Section 4.2.1, the instruction that can implement an opera-
tion depends upon where its temporaries are located, for example in some register
bank or memory. Therefore, the model must constrain the choice of alternative
instruction for an operation to comply with the storage type of its temporaries.

ryp ∈ class(o, io, p) ∀o ∈ O,∀p ∈ operands(o) (4.9)
The constraint (4.9) constrains every operation to be implemented by an instruction
that can handle the storage location of all temporaries connected to the operation
through its operands.

Register packing

The Unison constraint model utilizes rectangle packing when assigning temporaries
to registers, as introduced in Section 3.2.

disjoint2({〈rt, rt + width(t)× lt, lst, let〉 : t ∈ T (b)}) ∀b ∈ B (4.10)

The disjoint2 constraint [9] is used to implement this rectangle packing, which
guarantees that no registers overlap with each other (interfere), as shown by (4.10).

34

4.3. CONSTRAINT MODEL

Preassigned Operands

As explained earlier an operand can be preassigned to some register, for example
due to calling conventions of the target architecture.

ryp = r ∀p ∈ P : p . r (4.11)

Preassignments are implemented by constraining the temporary of every preassigned
operand to be assigned to the register to which the operand is preassigned, as is
done by constraint (4.11).

Congruent Operands

Congruent operands are by definition assigned to the same register. This is captures
by the constraint (4.12) below.

ryp = ryq ∀p, q ∈ P : p ≡ q (4.12)

This constraint is part of the global register allocation and makes sure variables
used across block boundaries are stored in the same register.

35

Chapter 5

Unison Presolver

This chapter introduces the existing presolver of Unison, and those presolving tech-
niques that are relevant for this thesis. This presolver is evaluated in Chapter 6 and
parts of it are reimplemented in Chapter 7.

As shown in Figure 4.1, Unison uses a presolver in order to speed up the solving
of the constraint model. Even though it would be possible to use Unison without
this presolver, it has been shown to be beneficial with respect to solving time and
thereby robustness [16].

The presolver of Unison is built upon a set of presolving techniques, hereafter
simply referred to as techniques. During the presolving process, all of these tech-
niques are executed aiming to simplify the constraint model before the main solver.
The simplification consists in adding more information to the constraint model,
which the main solver then beneficially can use to cut down the search effort, as
previously explained in Section 3.4.4. This added information is not mixed with
the base model but rather added as a set of extensions to the model, meaning it is
possible for the constraint solver to disregard the results of individual techniques.

The different techniques of the Unison presolver can be divided into two cate-
gories, those that generate implied constraints (Section 3.4.3) and those that gen-
erate dominance breaking constraints (Section 3.4.2).

For this thesis, only those generating implied constraints are relevant and thus
introduced in the following section. The techniques generating the dominance break-
ing constraints are described in [6].

5.1 Implied-Based Presolving Techniques

The group of implied presolving techniques contains eight different techniques of
varying size and complexity, here named as follows: Across, Before, Before2,
Nogoods, Nogoods2, Precedences, Precedences2 and Set-across. These techniques
are not independent on each other, in fact most of them are in some way dependent
upon some other technique. A technique is dependent upon another technique if it
uses the results of the other technique.

37

CHAPTER 5. UNISON PRESOLVER

Infeasible
(part of nogoods)

Before Set_across

Precedences Before2 Across Nogoods2

Nogoods Precedences2

Figure 5.1: Significantly simplified dependency graph for implied-based presolving
techniques

Figure 5.1 shows a significantly simplified dependency graph of the implied-
based techniques. The original dependency graph (available in [12]) is much more
detailed and therefore more correct but also harder to interpret. The rectangles of
Figure 5.1 represent the different techniques while the parallelogram represents the
set of core functions for the Nogood technique. An arrow going from one technique
to another technique represent the way data flow, and thus also a dependency. For
example, the arrow going from Precedences to Nogoods represents that Nogoods

uses data produced by Precedences, or in other words, Nogoods is dependent upon
Precedences.

As the figure shows, there exists a large amount of dependencies between the
techniques for generating implied constraints. Therefore, it is expected that some
techniques produce similar results or in principle even subsume each other. Most of
the techniques depend on Infeasible, which is the core of the Nogoods technique.
It is therefore expected that any useful reimplementation of the presolver has to
include at least the Infeasible part of Nogoods.

38

5.1. IMPLIED-BASED PRESOLVING TECHNIQUES

5.1.1 Across
Across analyzes the live ranges of temporaries to find those that can be live across
function calls [12]. A temporary that is live across a function call cannot be assigned
to a register that may be altered by the called function (a caller-saved register), since
such an assignment would destroy the value of the temporary. Such a temporary also
cannot be assigned to a register occupied by another temporary that is live across
the same function call, since that would mean that two temporaries are assigned to
the same register and at least one of them would be destroyed. To capture these
illegal assignments the Across technique emits constraints in the form 〈o, R, C〉,
where o is an operation making a function call, R is a set of registers and C is a
set of pairs in the form 〈t, d〉. Here is t is a temporary and d is a disjunction of
expressions, which is unconditionally true if d = {∅} and unconditionally false if
d = ∅ [12]. Let T denote the set of pairs from C such that either the temporary of
the pair is live across o, or the disjunction is true. Then the 〈o, R, C〉 constraints
express that during operation o, all caller-saved registers, all registers in R and the
registers occupied by a temporary in T must be different. That is, every temporary
of T must be assigned to a distinct register that is not in the set R or the set of
caller-saved registers [12].

As an example, consider the code in Figure 5.2 , which has been extracted from
the Unison model of the epic.edges.nocompute function. This code contains one
operation making a function call, o110. Since the last operation of this code, o113,
uses the temporaries t141 to t149, which all are defined before the function call, these
temporaries must all unconditionally be assigned to distinct registers that are not
caller-saved. To express this, the Across technique emits the following constraint:
〈o110, ∅, {〈t141, {∅}〉, 〈t142, {∅}〉, 〈t143, {∅}〉, 〈t144, {∅}〉, 〈t145, {∅}〉,

〈t146, {∅}〉, 〈t147, {∅}〉, 〈t148, {∅}〉, 〈t149, {∅}〉}〉

39

CHAPTER 5. UNISON PRESOLVER

o83: [p283{t140},p284{t141},p285{t142},p286{t143},p287{t144},p288{t145},
p289{t146},p290{t147},p291{t148},p292{t149},p293{t150}] <- (in) []

o84: [p295{-, t151}] <- {-, TFR, STW} [p294{-, t140}]
o85: [p297{-, t152}] <- {-, TFR, STW} [p296{-, t150}]
o86: [p299{-, t153}] <- {-, TFR, LDW} [p298{-, t150, t152}]
o87: [p301{t154}] <- ADD_ri [p300{t150, t152, t153},{imm, -1}]
o88: [p303{-, t155}] <- {-, TFR, STW, STW_nv} [p302{-, t154}]
o89: [p304{t156}] <- TFRI64 [{imm, 4}]
o90: [p306{-, t157}] <- {-, TFR64, STD} [p305{-, t156}]
o91: [p307{t158}] <- TFRI [{imm, 0}]
o92: [p309{-, t159}] <- {-, TFR, STW, STW_nv} [p308{-, t158}]
o93: [p311{-, t160}] <- {-, TFR, LDW} [p310{-, t154, t155}]
o94: [p313{t161}] <- ASL [p312{t154, t155, t160},{imm, 2}]
o95: [p315{-, t162}] <- {-, TFR, STW, STW_nv} [p314{-, t161}]
o96: [p317{-, t163}] <- {-, TFR, LDW} [p316{-, t161, t162}]
o97: [p319{t164}] <- SXTW [p318{t161, t162, t163}]
o98: [p321{-, t165}] <- {-, TFR64, STD} [p320{-, t164}]
o99: [p323{-, t166}] <- {-, TFR64, LDD} [p322{-, t156, t157}]
o100: [p325{-, t167}] <- {-, TFR64, LDD} [p324{-, t164, t165}]
o101: [p328{t168}] <- ADD64_rr [p326{t164, t165, t167},

p327{t156, t157, t166}]
o102: [p330{-, t169}] <- {-, TFR64, STD} [p329{-, t168}]
o103: [p332{-, t170}] <- {-, TFR64, LDD} [p331{-, t168, t169}]
o104: [p334{t171}] <- (low) [p333{t168, t169, t170}]
o105: [p336{-, t172}] <- {-, TFR, STW} [p335{-, t171}]
o106: [p338{-, t173}] <- {-, TFR, LDW} [p337{-, t140, t151}]
o107: [p340{-, t174}] <- {-, TFR, LDW} [p339{-, t158, t159}]
o108: [p342{-, t175}] <- {-, TFR, LDW} [p341{-, t171, t172}]
o109: [] <- CALLv3 [{ext, memset}]
o110: [p346{t176}:D0-3,p347{t177}:D4-7,p348{t178}:R28,p349{t179}:P0-3]

<- (fun) [p343{t140, t151, t173}:R0,p344{t158, t159, t174}:R1,
p345{t171, t172, t175}:R2]

o111: [] <- (kill) [p350{t176},p351{t177},p352{t178},p353{t179}]
o112: [] <- JMP [b8]
o113: [] <- (out) [p354{t141},p355{t142},p356{t143},p357{t144},

p358{t145},p359{t146},p360{t147},p361{t148},p362{t149}]

Figure 5.2: Part of code from the extended Unison representation of the function
epic.edges.nocompute in MediaBench [25]

40

5.1. IMPLIED-BASED PRESOLVING TECHNIQUES

5.1.2 Set across
Set across functions similarly to Across, but focuses on finding sets of copy-related
temporaries for which one must be live across a function call. The generated con-
straints are in the form 〈o, R, T 〉, where o is an operation doing a function call, R is
a set of registers, and T is a set of sets of copy related temporaries. For each set in
T , one of the copy related temporaries must be able to be live across the function
call done by o, and that temporary therefore must not be assigned to a caller-saved
register or any register of R .

To clarify, again consider the code of Figure 5.2. In this code, the temporaries
t141 to t149 must all be live across the function call in operation o110, since they
are defined prior to the function call but also used after the function call. None of
the temporaries t141 to t149 has any copy related temporaries within the example
code, the sets in T will each only contain one temporary. The constraint generated
for this example would be as shown below:

{o110, ∅,
{{t141},{t142},{t143},{t144},{t145},{t146},
{t147},{t148},{t149}}}

expressing that each of the temporaries in {t141, t142, t143, t144, t145, t146,

t147, t148, t149} must be assigned to distinct registers, none of which is a caller-
saved register, during the call of operation o110. This completely conforms with
what the constraint from across expressed, but this is not always the case.

41

CHAPTER 5. UNISON PRESOLVER

5.1.3 Before and Before2
Before and Before2 are both techniques used for detecting necessary precedencies
among operands, that is a partial ordering of operands that is implied by the se-
mantic. It might for example be that one temporary is defined by an operand p1

while used by the operand p2, in this case it is clear that p1 must precede p2 for
the semantics to be maintained.

The constraints produced by these techniques are in the form 〈p, q, d〉, where p
and q are operands while d is a disjunction. A constraint of this form expresses that
the live range of p has to precede the live range of q whenever the disjunction d is
true. As previously, d is true whenever one of its conjunctions is true or if d is the
set of the empty set ({∅}), and false when none of its conjunctions is true or when
d is empty (∅).

While producing constraints of the same format, the two techniques derive these
in slightly different ways: Before2 generates constraints by analyzing temporaries
that are live across function calls while Before builds on a more basic analysis [12].

As an example, consider the following code taken from Figure 4.4:
o18: [p36{t17},p37{t18},p38{t19}] <- (in) []
o19: [p40{-, t20}] <- {-, TFR, STW} [p39{-, t17}]
o20: [p42{-, t21}] <- {-, TFR, STW} [p41{-, t18}]
o21: [p44{-, t22}] <- {-, TFR, LDW} [p43{-, t18, t21}]
o22: [p46{t23}] <- ADD_ri [p45{t18, t21, t22, t26},{imm, -1}]
o23: [p48{-, t24}] <- {-, TFR, STW, STW_nv} [p47{-, t23}]
o24: [p50{-, t25}] <- {-, TFR, LDW} [p49{-, t17, t20}]
o25: [p52{-, t26}] <- {-, TFR, LDW} [p51{-, t18, t21}]
o26: [p55{t27}] <- MPYI [p53{t18, t21, t22, t26},p54{t17, t20, t25}]

In this code, operand p36 defines the temporary t17, which is copy related to
t20 and t25. This means that if t20 is active it holds the same value as t17 was
defined to, the same holds for t25 if it is active. Since the operation of p54 is always
active and p54 uses one of t17, t20 and t25 it must be preceded by p36 in order
to obey the semantic. The above reasoning would result in Before generating the
following constraint:

〈p36, p54, {∅}〉

which expresses that p36 must precede p54 under all conditions.
Another constraint generated by Before for the same piece of code is

〈p54, p55, {∅}〉

The constraint expresses that, under all conditions the live range of p54 must pre-
cede the live range of p55. This can be deduced since p55 is the defining operand of
the same operation as p54 belongs to, and p54 is the last use of the value defined by
operand p36. It is the last use since no succeeding operand will use the temporary
of p36 nor a temporary copy related to that one. Therefore, it must be that the
live range of p54 ends at the point where the live range of p55 begins, that is in
operation o26.

42

5.1. IMPLIED-BASED PRESOLVING TECHNIQUES

5.1.4 Nogoods and Nogoods2

Nogoods and Nogoods2 are both techniques for deducing nogoods, hence the names.
A nogood is (as mentioned in Section 3.4.3) an assignment that is infeasible in
any solution of the constraint model. For example, if the constraint model has the
constraint x− y = 3 then x = 3∧ y = 4 is an infeasible assignment, a nogood, since
it would contradict the constraint. In the same way the assignment x = 1 ∧ y = 4
is a nogood, while x = 7 ∧ y = 4 is a perfectly valid assignment.

The negation of a nogood is used to constrain the model, saying that the nogood
is a forbidden assignment. The above example would result in the constraint

¬(x = 3 ∧ y = 4) ∧ ¬(x = 1 ∧ y = 4)

This would strengthen the model and could enable further propagation and thereby
improve the solving time. These two techniques both produce a set of conjunctions
of conditional expressions, where each conditional expression forms a nogood, that
is, the conditional expression can never be true in a solution. A conditional ex-
pression could for example be that two operands use the same temporary or that a
specific operation is active [12]. As an example, consider the following lines of code
taken from the factorial function of Figure 4.4.

o10: [p19{t9},p20{t10},p21{t11}] <- (in) []
o11: [p23{-, t12}] <- {-, TFR, STW} [p22{-, t9}]
o12: [p25{-, t13}] <- {-, TFR, STW} [p24{-, t10}]
o13: [p27{-, t14}] <- {-, TFR, LDF} [p26{-, t10, t13}]
o14: [] <- LOOP0_r [b2,p28{t10, t13, t14, t16}]
o15: [p30{-, t15}] <- {-, TFR, LDW} [p29{-, t9, t12}]
o16: [p32{-, t16}] <- {-, TFR, LDW} [p31{-, t10, t13}]
o17: [] <- (out) [p33{t9, t12, t15},p34{t10, t13, t14, t16},p35{t11}]

For this code, Nogoods would produce (among others) the following conditional
expression.

yp33 = t15 ∧ overlap(p19,p30)

Which states that p33 is assigned to t15 and that the live ranges of p19 and p30

overlap. This expression can never be true in the model, since is would imply that
the temporary t9 defined by p30 must be used after operation o15, while p33 uses
the temporary t15. Since the only possible user of t9 after o15 is the operand p33,
this leads to a contradiction. In fact, p30 can never be live after o15 if t9 is not
used by p33.

The core of the Nogoods technique is named Infeasible in the dependency graph
of Figure 5.1 and is a crucial part of the presolver since it is used by most of the
other implied-based techniques. The remaining parts of Nogoods mostly consist of
unifying and filtering the data collected in Infeasible and Precedences. Nogoods2
is hardly a technique by itself, but rather a by-product from the Across and Set

across techniques [12].

43

CHAPTER 5. UNISON PRESOLVER

5.1.5 Precedences and Precedences2
Precedences and Precedences2 generate by basic analysis and across-call analysis
a set of tuples 〈o, o′, k, d〉 where d is a conjunction of conditional expressions that if
true implies that o precedes o′ by distance k. o and o′ are both operands [12]. The
constraints generated by these techniques can capture both data precedences and
control precedences (se Section 2.2.2) [12]. As an example of constraints generated
by these techniques, consider the following code lines from Figure 4.4.

o0: [p0{t0}:R0,p1{t1}:R31] <- (in) []
o1: [p3{-, t2}] <- {-, TFR, STW} [p2{-, t0}]
o2: [p4{t3}] <- TRFI [{imm, 1}]
o3: [p6{-, t4}] <- {-, TFR, STW, STW_nv} [p5{-, t3}]
o4: [p8{-, t5}] <- {-, TFR, LDW} [p7{-, t0, t2}]
o5: [p10{t6}] <- {CMPGTri_nv, CMPGTri} [p9{t0, t2, t5, t7},{imm, 0}]
o6: [p12{-, t7}] <- {-, TFR, LDW} [p11{-, t0, t2}]
o7: [p14{-, t8}] <- {-, TFR, LDW} [p13{-, t3, t4}]
o8: [] <- {JMP_f_nv, JMP_f} [p15{t6},b3] (writes: [control]})
o9: [] <- (out) [p16{t0, t2, t5, t7},p17{t1},p18{t3, t4, t8}]

From this code precedences generates the following constraint:

〈o0, o4, 1, a(o4)〉

This states that whenever operation o4 is active, o0 must precede the execution of
o4 by at least one cycle. This is because when o4 is active, operand p7 uses either
temporary t0 or t2 and these are both related to the temporary defined in operation
o0. If o4 would use temporary t2 then operation o1 is active and transfers the value
of t0 into t2.

Another constraint generated by precedences for this piece of code is

〈o0, o1, 1, yp2 = t0〉

which states that if operand p2 is connected to temporary t0 then operation o0 must
precede operation o1 by at least one cycle. This must hold since if o1 is active, then
its operand p2 must be connected to t0. Since t0 is defined by operation o0 it
cannot be used by another operation until the next cycle, hence there must be a
delay of at least one cycle between o0 and o1.

44

Part II

Evaluation and Reimplementation

45

Chapter 6

Evaluation of Implied Presolving
Techniques

This chapter presents the evaluation of the implied-based presolving techniques of
Unison’s presolver (see Section 5.1). The aim of the evaluation is to show how the
techniques perform compared to each other using an introduced score metric. This
score compares a technique to the base model, and considers both the quality of
the produced code and the effort taken to produce the code. The base model refers
to the constraint model in which none of the presolving techniques are used, or in
other words the model where the presolver is deactivated.

The implied-based techniques are evaluated both individually, and in groups of
two or more techniques, where the later add some insight in how techniques interact
with each other and if some techniques perform especially well together. Such
knowledge can be of great value when selecting two techniques for reimplementation.

Section 6.1 presents how the experiments are conducted, what is evaluated,
what data are collected, and how the data are processed. Section 6.2 presents
the results from the evaluation both separately for each technique and for groups
of techniques. This section also concludes the chapter and presents which two
techniques are reimplemented in Chapter 7.

6.1 Evaluation Setup

The evaluation is based on a sample of 53 functions from the MediaBench bench-
mark suite, which commonly is used for evaluating compilers targeting embedded
systems [25]. The sample covers a wide range of functions taken from the adpcm,
epic, g721, gsm, jpeg and mpeg2, and was taken to reduce the evaluation run-
time while being representative of the benchmark suite. The actual sampling was
conducted prior to the thesis and the sampling process is described in [16]. All ex-
perimental instances of the evaluation are run on a GNU/Linux machine equipped
with an Intel Core i5-2500k processor, 24 GiB of primary memory and a Corsair
Force Series GT solid-state drive.

47

CHAPTER 6. EVALUATION OF IMPLIED PRESOLVING TECHNIQUES

Parameter Value
Limiting unit: fails

Global budget: 1.2

Global setup limit: 800

Global shaving limit: 1000

Local limit: 4000

Local shaving limit: 200

Table 6.1: Solver parameters for evaluation

6.1.1 Data Collection
The evaluation was carried out by first presolving each of the 53 function (all tech-
niques activated) and then letting Unison compile each of these functions once
for every technique and group of techniques. The presolver was executed with a
global timeout of 180 seconds, yielding an in principle deterministic behavior for
the techniques considered here. By only presolving each function once, the evalua-
tion runtime could be reduced significantly. This is possible since the main solver is
capable of disregarding the outcome of individual techniques (as mentioned in Chap-
ter 5) and that the presolver can be assumed to be deterministic for the considered
techniques.

For each compilation done by the main solver, the following data were collected
and stored for later being processed:

• Number of nodes in search tree

• Number of failures in search tree

• Estimated cycle count (used as base of quality estimate)

• Whether an optimal solution was found or not

The number of nodes in the search tree describes the effort for finding the solution,
the number of failures in the search tree captures in some way the strength of the
model. A strong model allows us to find a solution where the number of failures is
low, conversely a weak model results in a high number of failures in the search tree.
In the selected configuration of the main solver, given by Table 6.1, the main solver
has a deterministic behavior and thus the collected data are deterministic. This
means that regardless how many times the compilation is re-executed the results
will be same. Thanks to this deterministic behavior, it is enough to execute each
compilation only once. This radically reduces the evaluation runtime compared to
if non-deterministic data were used (for example execution time), since that would
require repeating the evaluation a few times in order to get significant data. By
collecting deterministic data it is safe to execute experiment instances in parallel on
the same hardware without affecting the results, this would probably not be true
for non-deterministic data.

48

6.1. EVALUATION SETUP

6.1.2 Data Analysis
The collected data are analyzed in order to produce plots and statistical data.
Since a technique can affect both the produced code and the effort of producing
the code, both of these must be considered when comparing the performance of the
techniques. To do that, the notion of code quality and a score metric are introduced
below. The latter is used when comparing techniques and captures both the code
quality and the effort of producing the code in a single metric.

Quality of generated code is here defined to be the reciprocal of the estimated
cycle count of the solution. This yields higher quality for solutions with lower cycle
count, and lower quality when the cycle count is higher.

Q = 1
ce

(6.1)

In Equation 6.1, Q denotes the quality of the solution and ce the estimated cycle
count, which is collected during the experiments. Unfortunately, the quality is
strongly dependent on the number of operations in the source program and the
estimated execution frequency (both are used for estimating cycle count). A small
function tends to generate a lower cycle count compared to a larger function and
thus gets higher quality. In order to handle this in a good way the notion of score
is introduced next.

Score of Technique is used to determine how effective a technique is for a partic-
ular compiled function and to compare techniques with each other. The score of a
function is defined as product of the quality score (SQ) and the node score (SN) for
the function, as shown in equation 6.2.

S = SQ × SN (6.2)

Both the quality score and the node score are defined per technique and compiled
function, and are shown in equation 6.3 and 6.4, respectively.

SQ = Qt + Qt

Qt + Qb
(6.3)

Qt denotes the quality of the solution found using the technique, while Qb denotes
the solution found by the base model (using no technique). The quality score SQ is
in the range (0, 2], since every (useful) function has an execution time larger than
zero, the quality Q is in the range (0,∞).

This definition is constructed so that the quality score is one if both the base
model and the model using the technique produce the same code quality, that is
if Qt = Qb then SQ = 1. When Qt is larger than Qb, the technique improves the
quality and the score approaches two. When Qt is smaller than Qb, the technique
results in worse code quality and the score approaches zero.

49

CHAPTER 6. EVALUATION OF IMPLIED PRESOLVING TECHNIQUES

SN = Nb + Nb

Nb + Nt
(6.4)

Equation 6.4 shows the definition of the node score. Here, Nt denotes the number
of nodes in a function’s solution found using a technique. Nb denotes the number
of nodes in a solution to the same function found using the base model (presolver
deactivated). The node score is in the range (0, 2] since all solutions found by Unison
always contain at least one node. This definition is chosen so that if Nt and Nb are
equal then the node score is one, meaning the technique is neither worse nor better
than the base model considering the number of nodes. If Nt is larger than Nb, the
technique produced more nodes and the score approaches zero. If Nt is smaller
than Nb the technique reduced the effort of finding the solution, and the node score
approaches two.

Since both SQ and SN are in the range (0, 2], the technique score is in the range
(0, 4]. If the technique’s score S is equal to one, then the technique is considered to
have no useful effect, that is the base model is as good. If the technique’s score is
greater than one, the technique improves either the node score or the quality score,
or both of them. On the other hand, if the technique score is less than one then the
technique has a negative effect on the solving process. The fact that S is bounded
is an important property when calculating the mean of some set of scores, since
it will ensure that scores for both small and large functions compete on the same
premises in the mean calculation.

50

6.2. RESULTS

Group Techniques
1 across, set-across
2 across, precedences, precedences2
3 across, nogoods, nogoods2
4 across, before, before2
5 set-across, precedences, precedences2
6 set-across, nogoods, nogoods2
7 set-across, before, before2
8 precedences, precedences2, nogoods, nogoods2
9 precedences, precedences2, before, before2
10 nogoods, nogoods2, before, before2

Table 6.2: Groups of techniques that have been evaluated

6.1.3 Group Evaluations

In addition to evaluating each of the eight implied-based techniques individually,
they are also evaluated in groups to get some insight into the techniques’ potential
when collaborating. In total ten different groups have been evaluated, as shown in
Table 6.2.

Each of these groups constitute the union of a pair of sets taken from

{
{across},{set-across},{precedneces, precedences2},

{nogoods, nogoods2},{before, before2}
}

where each set contains techniques that are assumed to almost subsume each other.
This can be assumed since the techniques produce similar data and the data gener-
ation are much alike, also the results in Section 6.2.1 indicate that this may be true.
The main reason for making these assumptions is to reduce the execution time of
the grouped evaluation. If the assumptions were not made, the grouped evaluation
would have included 28 pairs of techniques, requiring almost three times as long
time, which is not feasible in the scope of this thesis.

6.2 Results

This section introduces the results of the conducted evaluations. Results for the
individual techniques are presented in Section 6.2.1 while the results for the grouped
techniques are presented in Section 6.2.2. Lastly, Section 6.2.3 discusses the results
and presents which techniques that should be reimplemented.

When nothing else is stated, all comparisons are between a technique or group of
techniques and the base model, which does not use any of the presolving techniques.

51

CHAPTER 6. EVALUATION OF IMPLIED PRESOLVING TECHNIQUES

6.2.1 Individual Techniques

Figure 6.1 shows the mean score improvement for each of the 8 techniques compared
with using none of the techniques. The mean score for a technique is the Geometric
Mean (GM) over the score for each of the 53 functions. It is clear from this picture
that there are four groups of techniques, where each group produces similar results:
across and across-set, precedences and precedences2, nogoods and
nogoods2, before and before2. This is expected (as mentioned in Section 6.1.3)
since each of the groups internally builds on similar ideas.

0%

2%

4%

6%

8%

10%

12%

14%

across

set-
across

precedences

precedences2

nogoods

nogoods2

before

before2

S
co
re

im
p
ro
v
m
en
t

Figure 6.1: GM score improvement for the individually evaluated techniques.

Notably, precedences, precedences2, before and before2 all yield an
improvement of about 12% that is almost the double of what the other four tech-
niques produce. In order to get some deeper insight into when the different tech-
niques are best, Figure 6.2 shows the GM score improvement for the techniques
clustered by size of the compiled functions. The size of a compiled function is esti-
mated by the number of machine instructions in the input to Unison. The ranges of
the clusters are selected so that each cluster contains similar number of functions,
ranging between 8 and 17 functions.

Figure 6.2 indicates that the evaluated techniques in most cases yield higher
score improvement for larger functions. However, for functions in the range from 81
to 160 instructions all techniques yield a negative mean score improvement, meaning
the techniques actually complicate the work of the main solver for these functions.
The reason for this behavior is not clear, but it is possible that this negative mean

52

6.2. RESULTS

−10%

−5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

across

set-
across

precedences

precedences2

nogoods

nogoods2

before

before2

S
co
re

im
p
ro
v
m
en
t

-80 81-160 161-400 401-

Figure 6.2: GM score improvement for the individually evaluated techniques,
clustered according to function size.

is due to a bug in how the main solver works when only some presolving techniques
are activated. Unfortunately, this bug was discovered in a late state of the thesis
where there was no possibility to fix it and rerun the evaluation. This is a reasonable
assumption since this bug adds a lot of additional nodes for all evaluated techniques
for the function predictor_zero in the g721 application. In fact, the bug yields
about 2.5 times as many nodes for all techniques compared with using none of them,
which can be seen in many of the coming figures. This large increase of the number
of nodes may very well be the reason that all techniques look bad for instructions
of size between 81 and 160 instructions. However, the good thing is that it seems
like the potential bug affects each of the techniques equally, so the ratio between
the score of the techniques should not be affected.

Figure 6.3 aims to show exactly how the presolving techniques affect the main
solver; that is, whether better solutions are found (higher quality due to cycle
decrease) or whether the effort for founding the solution is reduced (lower number
of nodes in search tree). From this figure, it is clear that most of the techniques are
very effective in reducing the number of nodes in the search three, while none of
them is particularly good at improving the solution quality (that is, decreasing the
number of estimated cycles). Even though this was expected, it is interesting to see
how little effect the techniques have in increasing the solution quality (reducing the
cycles).

Like in the previous figures, the most outstanding techniques are precedences,

53

CHAPTER 6. EVALUATION OF IMPLIED PRESOLVING TECHNIQUES

0

10

20

30

40

50

60

across

set-
across

precedences

precedences2

nogoods

nogoods2

before

before2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o
d
e
d
ec
re
a
se

(%
)

C
y
cl
e
d
ec
re
as
e
(%

)

Nodes Cycles

Figure 6.3: GM node and cycle decrease for each of the individually evaluated
techniques compared with using no technique. The node decrease is represented by
the lighter colored bars and the cycle decrease by the darker colored bars. Note
that different scales are used for the node and cycle reductions.

precedences2, before and before2 which all perform equally with respect to
reduction of both nodes and cycles. These techniques yield a GM decrease of about
45 % for nodes and about 0.7 % decrease in cycle count. The remaining four
techniques perform almost equally, and yield a GM decrease of about 20 % while
having little of no effect on the cycle count.

Technique Additional optimal solutions
(compared to the base model)

Total number of
optimal solutions

across 0 14
set-across 0 14
before 1 15
before2 1 15
nogoods 2 16
nogoods2 0 14
precedneces 2 16
precedences2 1 15

Table 6.3: Number of solution proved to be optimal for each technique.

54

6.2. RESULTS

Table 6.3 shows another dimension of the techniques’ efficiency. For each of
the techniques, the total number of solutions proven to be optimal is shown along
with the increase over the base model. In large, these numbers conform to previous
results in that the before-based and precedences-base both performs better than the
other techniques, except for nogoods that is one of the best ones. nogoods proves
two additional optimal solutions over the base model, which is the highest number
along with the one of precedences. This is interesting since nogoods produced
a relatively low score. However, since there is so small difference in the number
of additional found optimal solutions, it might just be that nogoods removes the
“right” nodes for the two functions were optimality is proven.

Across

The across technique improves the score for 32 functions, lowers the score for 13
and yields the same score for the remaining 8 of the 53 functions. The GM of the
score improvement of this technique for these functions is 6.26 %. In addition to
this, the use of this technique results in better solutions (that is, of higher quality)
being found for 7 functions, worse solutions for 6 functions, and the same quality
for 40 functions.

−200%

−150%

−100%

−50%

0%

50%

100%

adpcm_decoder

rawcaudio.main

rawdaudio.main

timing.main
edge_function

nocompute
predict
ReadMatrixFromP.

build_huffman_t.

free_tree_nodes

quantize_pyr
linear2alaw

ulaw2alaw
g721_decoder

g723_24_decoder

g723_40_encoder

g72x_init_state

predictor_zero

quantize
step_size
update

gsm_L_sub
gsm_div
gsm_mult_r
gsm_debug_words

Gsm_Long_Term_S.

Gsm_Preprocess

Coefficients_13.

Decoding_of_the.

jpeg_start_comp.

encode_mcu_huff

prepare_for_pas.

start_pass_huff.

pass2_fs_dither

range_checks

Decode_MPEG2_In.

Initialize_Fast.

calc_DMV
form_prediction

writeframe

N
o
d
e
d
ec
re
as
e

mpeg2jpeggsmg721epicadpcm

Figure 6.4: Node decrease for all functions where the across technique and the
base model produced the same solution (with respect to quality).

Figure 6.4 shows all 40 functions for which across and the base model both find
the same solution (that is, of same quality). The figure depicts the node decrease

55

CHAPTER 6. EVALUATION OF IMPLIED PRESOLVING TECHNIQUES

for each of these functions. Note for the function predictor_zero, the number
of nodes has increased with 150 % due to the previously discussed bug. For these
functions, across produces fewer nodes for 25 more nodes for 7 and same number
of nodes for 8 of the functions. The GM of the node decrease for all of these functions
is 30.16 %. All these results confirm previous observations that this technique does
not contribute that much.

Set across

The set across technique yields results much like across does. 33 of the func-
tions have improved score, 12 have lowered score, 8 have the same score as in the
basic model. The GM of the score improvement for the technique is 5.68 % when
considering all 53 functions. The solution quality is improved for 7, worse for 6 and
unchanged for 40 functions, exactly as in the case of across. It is clear that there
is a strong correlation between across and set across. In fact, they are so
similar that either of them probably could be replaced with the other one without
any significant difference.

−200%

−150%

−100%

−50%

0%

50%

100%

adpcm_decoder

rawcaudio.main

rawdaudio.main

timing.main
edge_function

nocompute
predict
ReadMatrixFromP.

build_huffman_t.

free_tree_nodes

quantize_pyr
linear2alaw

ulaw2alaw
g721_decoder

g723_24_decoder

g723_40_encoder

g72x_init_state

predictor_zero

quantize
step_size
update

gsm_L_sub
gsm_div
gsm_mult_r
gsm_debug_words

Gsm_Long_Term_S.

Gsm_Preprocess

Coefficients_13.

Decoding_of_the.

jpeg_start_comp.

encode_mcu_huff

prepare_for_pas.

start_pass_huff.

pass2_fs_dither

range_checks

Decode_MPEG2_In.

Initialize_Fast.

calc_DMV
form_prediction

writeframe

N
o
d
e
d
ec
re
as
e

mpeg2jpeggsmg721epicadpcm

Figure 6.5: Node decrease for all functions where the set across technique and
the base model produced the same solution (with respect to quality).

Figure 6.5 shows the node decrease for each of the 40 functions for which the
base model and the one using set across produce the same solution quality. The
model using set across yields the same number of nodes for 8 of these functions,
26 functions where solved with fewer nodes and 6 functions where solved with more

56

6.2. RESULTS

nodes (that is, with more effort). The GM of the node decrease for these functions
was 28.61 %, about the same as for the across technique.

Before

As shown previously, before is superior to both across and set across when
it comes to the GM of the score improvement for all 53 functions. before improves
the score for 35 of the functions, lowers the score for 10 functions, and produces the
same score for the remaining 8 functions. The GM score improvement for before
is 11.78 %. These numbers are similar to those for across and set across,
except for the GM, which is almost doubled for before.

Using the before techniques results in higher solution quality for 10 functions,
lower quality for 6 functions and the same quality as the base model for the 37
remaining functions.

−200%

−150%

−100%

−50%

0%

50%

100%

adpcm_decoder

rawdaudio.main

timing.main
edge_function

nocompute
predict
build_huffman_t.

free_tree_nodes

quantize_pyr
linear2alaw

ulaw2alaw
g721_decoder

g723_24_decoder

g723_40_encoder

g72x_init_state

predictor_zero

quantize
step_size
update

gsm_L_sub
gsm_div
gsm_mult_r
gsm_debug_words

Gsm_Long_Term_S.

Gsm_Preprocess

Coefficients_13.

Decoding_of_the.

jpeg_start_comp.

encode_mcu_huff

prepare_for_pas.

start_pass_huff.

pass2_fs_dither
range_checks

Decode_MPEG2_In.

Initialize_Fast.

calc_DMV
form_prediction

N
o
d
e
d
ec
re
as
e

mpeg2jpeggsmg721epicadpcm

Figure 6.6: Node decrease for all functions where the before technique and the
base model produced the same solution (with respect to quality).

Out of these 37 functions for which both before and the base model produce
the same solution quality, 24 functions were solved with fewer nodes compared to
the base model. For 5 of these functions before increase the number of nodes
while the 8 remaining ones were solved with the same amount of nodes as the base
model, as depicted in Figure 6.6. The GM of the node decrease for before was
found to be 38.91 %. This GM is significantly higher than the corresponding one

57

CHAPTER 6. EVALUATION OF IMPLIED PRESOLVING TECHNIQUES

for across and set across, which is the main reason why before yields higher
GM score improvement for all 53 functions.

Before2

The before2 technique has previously been shown to yield score improvements
similar to before. This section makes this even clearer as more results for before2
are introduced. For 35 of the functions, before2 yields higher score than the base
model, 10 functions are solved with lower score and for the rest of the 53 functions
the score is unchanged. The GM of the score improvement for this technique is
12.78 %, slightly better than for before.

Before2 improves the solution quality for 10 of the functions, lowers the quality
of 6 functions and gives the same quality for the remaining 37 functions.

−200%

−150%

−100%

−50%

0%

50%

100%

adpcm_decoder

rawdaudio.main

timing.main
edge_function

nocompute
predict
build_huffman_t.

free_tree_nodes

quantize_pyr
linear2alaw

ulaw2alaw
g721_decoder

g723_24_decoder

g723_40_encoder

g72x_init_state

predictor_zero

quantize
step_size
update

gsm_L_sub
gsm_div
gsm_mult_r
gsm_debug_words

Gsm_Long_Term_S.

Gsm_Preprocess

Coefficients_13.

Decoding_of_the.

jpeg_start_comp.

encode_mcu_huff

prepare_for_pas.

start_pass_huff.

pass2_fs_dither
range_checks

Decode_MPEG2_In.

Initialize_Fast.

calc_DMV
form_prediction

N
o
d
e
d
ec
re
as
e

mpeg2jpeggsmg721epicadpcm

Figure 6.7: Node decrease for all functions where the before2 technique and the
base model produced the same solution (with respect to quality).

Figure 6.7 shows each of the 37 functions for which the base model and before2
produce a solution of the same quality. Out of these 23 are found with lower effort
(number of nodes), 8 are found with the same effort and the remaining 6 func-
tions required greater effort to be solved. The GM of the node reduction for these
functions is 40.04 %. These numbers are almost identical to those of the before
technique, explaining why both yield almost the same score. From this it seems like
before2 almost subsumes before and the presolver design could probably be
simplified by using only one of them without any significant performance decrease.

58

6.2. RESULTS

Nogoods

The nogoods technique is one of the four low achievers with respect to the GM
score improvement over all 54 functions (see Figure 6.1). This technique improves
the score for 30 functions, has no effect for 8 functions while having a negative effect
for the remaining 15 functions. Despite the relatively large amount of functions for
which the score is improved, the GM of the score improvement is only 4.32 %, about
one third of what precedences and before2 delivers.

For 7 functions, nogoods improved the solution quality and for 40 functions,
the same solution quality is achieved, while 6 functions are solved with decreased
quality.

Figure 6.8 shows the node decrease for the 40 functions for which the base model
and the model including nogoods produced the same solution quality. The effort
(number of nodes in the search three) for finding these solutions was reduced for 24,
unchanged for 8, and increased for 8 functions in the model using nogoods. The
GM of the node decrease for these functions is 32.55 %.

−500%

−400%

−300%

−200%

−100%

0%

100%

adpcm_decoder

rawcaudio.main

rawdaudio.main

timing.main
edge_function

nocompute
predict
ReadMatrixFromP.

build_huffman_t.

free_tree_nodes

quantize_pyr
linear2alaw

ulaw2alaw
g721_decoder

g723_24_decoder

g723_40_encoder

g72x_init_state

predictor_zero

quantize
step_size
update

gsm_L_sub
gsm_div
gsm_mult_r
gsm_debug_words

Gsm_Long_Term_S.

Gsm_Preprocess

Coefficients_13.

Decoding_of_the.

jpeg_start_comp.

encode_mcu_huff

prepare_for_pas.

start_pass_huff.

pass2_fs_dither

range_checks

Decode_MPEG2_In.

Initialize_Fast.

calc_DMV
form_prediction

writeframe

N
o
d
e
d
ec
re
as
e

mpeg2jpeggsmg721epicadpcm

Figure 6.8: Node decrease for all functions where the nogoods technique and the
base model produced the same solution (with respect to quality).

It is remarkable that the technique produces a node increase of almost 400%
for the function gsm_debug_words. This is by far the worst node decrease for
all functions and all techniques in the evaluation. The only other node decrease
that is remotely close to this is the one associated with the suspected bug described
in the beginning of Section 6.2.1. From additional experiments, it has been shown

59

CHAPTER 6. EVALUATION OF IMPLIED PRESOLVING TECHNIQUES

that the massive node increase when solving the gsm_debug_words function is
not related to this bug. The actual cause of this node decrease has not yet been
determined. However, it might just be due to bad interaction between the presolver
and the main solver.

Nogoods2

The second nogood generating technique, nogoods2 produced the lowest GM score
improvement of all evaluated techniques (see Figure 6.1). The technique only pro-
duces a GM of the score improvement of 3.61 % compared with the base model, and
is much lower than the best techniques produce. Despite a low GM, the nogood2
technique does actually improve the score for 31 functions, decreases the score for
14 functions, and produces the same score as the base model for the remaining 8
functions.

nogoods2 improves the quality of the solutions for 7 functions, 40 functions
are solved with unchanged quality and 6 functions were solved with lower quality
compared to the base model. Figure 6.9 shows the node decrease for the functions
solved with equal quality.

−200%

−150%

−100%

−50%

0%

50%

100%

adpcm_decoder

rawcaudio.main

rawdaudio.main

timing.main
edge_function

nocompute
predict
ReadMatrixFromP.

build_huffman_t.

free_tree_nodes

quantize_pyr
linear2alaw

ulaw2alaw
g721_decoder

g723_24_decoder

g723_40_encoder

g72x_init_state

predictor_zero

quantize
step_size
update

gsm_L_sub
gsm_div
gsm_mult_r
gsm_debug_words

Gsm_Long_Term_S.

Gsm_Preprocess

Coefficients_13.

Decoding_of_the.

jpeg_start_comp.

encode_mcu_huff

prepare_for_pas.

start_pass_huff.

pass2_fs_dither

range_checks

Decode_MPEG2_In.

Initialize_Fast.

calc_DMV
form_prediction

writeframe

N
o
d
e
d
ec
re
as
e

mpeg2jpeggsmg721epicadpcm

Figure 6.9: Node decrease for all functions where the nogoods2 technique and
the base model produced the same solution (with respect to quality).

25 of these functions required fewer nodes to be solved, while 7 functions required
more nodes to find the same solution. The GM of the node decrease of these
functions is 25.20 %. As for all other techniques, the predictor_zero function

60

6.2. RESULTS

experiences a massive node increase when only the nogoods2 technique is active,
which is tracked to the earlier discussed bug in the main solver.

Since the results of this technique are only slightly worse than those of nogoods
it is safe to say, that these results support the previously stated assumption that
nogoods almost entirely subsumes nogoods2.

Precedences

The precedences was previously shown to be one of the most effective tech-
niques with respect to score increase, with a GM of the score improvement of
12.95 % it is far better than both the before-based and across-based techniques.
The precedences technique produces higher score for 34 functions, unchanged
score for 11 functions, and lower score for the last 8 functions when comparing with
the base model. For 10 of the functions the quality was improved compared to the
base model. This technique lowered the solution quality for 6 functions, leaving
the remaining 37 functions unchanged. Of these 37 functions, 24 are solved with

−200%

−150%

−100%

−50%

0%

50%

100%

adpcm_decoder

rawdaudio.main

timing.main
edge_function

nocompute
predict
build_huffman_t.

free_tree_nodes

quantize_pyr
linear2alaw

ulaw2alaw
g721_decoder

g723_24_decoder

g723_40_encoder

g72x_init_state

predictor_zero

quantize
step_size
update

gsm_L_sub
gsm_div
gsm_mult_r
gsm_debug_words

Gsm_Long_Term_S.

Gsm_Preprocess

Coefficients_13.

Decoding_of_the.

jpeg_start_comp.

encode_mcu_huff

prepare_for_pas.

start_pass_huff.

pass2_fs_dither
range_checks

Decode_MPEG2_In.

Initialize_Fast.

calc_DMV
form_prediction

N
o
d
e
d
ec
re
as
e

mpeg2jpeggsmg721epicadpcm

Figure 6.10: Node decrease for all functions where the precedences technique
and the base model produced the same solution (with respect to quality).

lower effort (number of nodes), 5 are solved with greater effort, and the remaining
8 functions are solved with the same effort as the base model, as shown in Fig-
ure 6.10. The GM of the node decrease for these functions is 55.88 % when using
the precedences technique.

61

CHAPTER 6. EVALUATION OF IMPLIED PRESOLVING TECHNIQUES

Precedences2

The second precedences-based technique, precedences2 also performs well with
respect to the GM of the score improvement shown earlier. For 35 of 54 functions
the score is increased using this technique. 10 functions have lowered score while
8 functions have unchanged score. The GM score improvement for all functions is
11.03 %.

−200%

−150%

−100%

−50%

0%

50%

100%

adpcm_decoder

rawdaudio.main

timing.main
edge_function

nocompute
predict
build_huffman_t.

free_tree_nodes

quantize_pyr
linear2alaw

ulaw2alaw
g721_decoder

g723_24_decoder

g723_40_encoder

g72x_init_state

predictor_zero

quantize
step_size
update

gsm_L_sub
gsm_div
gsm_mult_r
gsm_debug_words

Gsm_Long_Term_S.

Gsm_Preprocess

Coefficients_13.

Decoding_of_the.

jpeg_start_comp.

encode_mcu_huff

prepare_for_pas.

start_pass_huff.

pass2_fs_dither
range_checks

Decode_MPEG2_In.

Initialize_Fast.

calc_DMV
form_prediction

N
o
d
e
d
ec
re
as
e

mpeg2jpeggsmg721epicadpcm

Figure 6.11: Node decrease for all functions where the precedences2 technique
and the base model produced the same solution (with respect to quality).

Out of the 53 functions in the evaluation the quality is increased for 6, decreased
for 10 and unchanged for the remaining 37 functions. Figure 6.11 shows the node
decrease for these 37 functions when using this technique. The figure looks much
like the one for precedences, however there some bars are slightly lower, which
explains why precedences yields somewhat higher scores than this technique.

For 23 of the 37 functions the solution quality is increased, it is decreased for 6
and equal for 8 functions. The GM of the node decrease of this technique is 39.21 %.
All these results confirm the previously stated assumption that the precedence
technique almost subsumes precedence2.

62

6.2. RESULTS

6.2.2 Grouped Techniques

This section aims to illustrate the results of the evaluation of the grouped techniques
in Table 6.2.

Figure 6.12 shows the GM of the score improvement over all functions, for each
of the ten evaluated groups. It is worth noting in this figure that every group in-
cluding precedences and precedences2 yields higher score improvement than
any of the individual techniques. The highest scored group contains precedences,
precedences2, nogoods and nogoods2, and has a GM of score improvement
of about 18%.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

across_set-
across

across_precedences1+2

across_nogoods1+2
across_before1+2
set-

across_precedences1+2

set-
across_nogoods1+2

set-
across_before1+2

precedences1+2_nogoods1+2

precedences1+2_before1+2

nogoods1+2_before1+2

S
co
re

im
p
ro
v
m
en
t

Figure 6.12: GM score improvement for the group evaluated techniques.

Since precedences seems to subsume precedences2 and nogoods seems
to subsume nogoods2 this finding is quite remarkable because the score improve-
ment for this group is in principle equal to the sum of the score for precedences
and nogoods. That would imply that the precedences and the nogoods tech-
niques are orthogonal to each other, even though there is a dependency between
them (see 5.1). For all the other groups, there seems to be some overlapping in
the techniques, which yields score improvements lower than the sum of the non-
subsumed techniques. In fact, the results indicate that the effect of combining
across and set-across yields no improvement of the score, which further sug-
gests that across subsumes set-across. Combining across, nogoods and
nogoods2 seems to have negative effect on the score improvement, this combina-
tion is slightly worse than when only across was used. The same thing seems to

63

CHAPTER 6. EVALUATION OF IMPLIED PRESOLVING TECHNIQUES

hold for the combination of set across, nogoods and nogoods2, indicating
that the across-based and nogoods-based techniques are anything but orthogonal
to each other. Figure 6.13 shows the GM of score improvement for each group of

−5%
0%
5%

10%
15%
20%
25%
30%
35%
40%

across_set-
across

across_precedences1+2

across_nogoods1+2
across_before1+2
set-

across_precedences1+2

set-
across_nogoods1+2

set-
across_before1+2

precedences1+2_nogoods1+2

precedences1+2_before1+2

nogoods1+2_before1+2

S
co
re

im
p
ro
v
m
en
t

-80 81-160 161-400 401-

Figure 6.13: GM score improvement for the group evaluated techniques, clustered
according to function size.

techniques, clustered by the size of the compiled function. This figure shows that
the techniques are most effective for larger functions, probably since those generally
result in larger search trees and thus have higher amount of optimization possibili-
ties. As in the result of individual techniques, the score improvement is at its lowest
for functions of size from 81 to 160 instructions. The reason for this is probably due
to the same bug that was discussed in the evaluation of the individual techniques.

Table 6.4 shows how combining techniques improves the number of proven op-
timal solutions. These numbers follow the structure of the results for the score
improvement in Figure 6.12, except that any combination including nogoods is bet-
ter. This is expected since nogoods performed will with respect to optimality proof
in the individual evaluation (Table 6.3). The highest number of additionally proven
optimal solutions is generated by the combination of the precedences- and nogoods-
based techniques, which proves optimality for five solutions more than the base
model. This corresponds to an improvement of about 36 % over the base model.
The combination of across and set-across do not improve the number of optimal
solutions at all.

64

6.2. RESULTS

Group of techniques Additional optimal solutions
(compared to the base model)

Total number of
optimal solutions

across, set-across 0 14
across, precedneces1+2 3 17
across, nogoods1+2 2 16
across, before1+2 1 15
set-across, precedneces1+2 3 17
set-across, nogoods1+2 2 16
set-across, before1+2 1 15
precedneces1+2, nogoods1+2 5 19
precedneces1+2, before1+2 3 17
nogoods1+2, before1+2 3 17

Table 6.4: Number of solution proved to be optimal for each group of techniques.

6.2.3 Conclusions

This evaluation has shown that across almost subsumes set-across, before2
almost subsumes before, nogoods almost subsumes nogoods2 and
precedences almost subsumes precedences2. Therefore, there would be no
point to re-implement any of these pairs for which one subsumes the other one,
since that would only increase the effort without yielding any effective outcome.

Only looking into the results, especially those of Figure 6.12, it would be of
the greatest benefit to reimplement precedences or precedences2 together
with either nogoods or nogoods2, but taking into account the dependencies in
Figure 5.1 it would make more sense to reimplement before and some other tech-
nique. This is motivated by the fact that any of the high-scored techniques directly
or indirectly depends on before. Thus, it is necessary to reimplement before if
any other of the effective techniques are to be implemented, but before is also one
of the better scored techniques. before performs particularly well in combination
with across, nogoods and nogoods2 or precedences and precedences2.
Out of these five, nogoods would be the most beneficial to reimplement, since it is
the one that most of the other techniques is dependent upon (as seen in Figure 5.1).

In fact, any of the other four techniques are dependent on nogood and could
not be implemented without either being dependent on the current Prolog-implem-
entation or also reimplementing nogoods. For these reasons, before and nogoods
were decided to be reimplemented. The key motivations for this decision were:

• before and nogoods score highly when combined, that is, they seem to
complement each other well.

• before and nogoods improves the number of proven optimal solutions when
combined, in fact this is one of the better combinations with respect to the
number of additional optimal solutions.

65

CHAPTER 6. EVALUATION OF IMPLIED PRESOLVING TECHNIQUES

• most of the other techniques are directly or indirectly dependent on before
and nogoods. To implement these two would thus ease further continuation
of the reimplementation process.

On the downside there is the fact that nogoods is dependent upon the results
from precedences, but since the reverse also holds (through infeasible in Fig-
ure 5.1) it is unavoidable if any of these two are to be reimplemented. In fact, since
there are so many other techniques that also depend upon nogoods but not on
precedences, it would be less beneficial for further development to reimplement
precedences instead of nogoods.

66

Chapter 7

Reimplementation

This chapter summarizes the reimplementation of the before and nogoods pre-
solving techniques. The chapter is divided into two sections; Section 7.1 shortly
describes how the reimplementation was carried out, the work effort and main ob-
stacles under the process. Section 7.2 presents how the reimplementation techniques
were evaluated compared to the old one and the results of these evaluations.

7.1 Reimplementation Process
The reimplementation of the two techniques was done using C++ and its standard
library, which are also used in the implementation of Unison’s main solver. Using
the same programming language reduces the complexity and makes it possible to, in
the future, easily invoke the presolving techniques during the main solving process,
see the proposal in Chapter 8.

1 2 3 4 5

Im
ple
me
nta

tio
n

Ve
rifi
cat
ion

&
Fix

es

Op
tim

iza
tio
n

Ev
alu
ati
on

Figure 7.1: Rough time line over reimplementation, time is in weeks relative to
the start of the reimplementation.

As shown in Figure 7.1, the reimplementation was carried out in four stages: im-
plementation (the main coding), verification and fixes (verifying the output against
the original implementation, and fixing any errors or bugs), optimization (perform-
ing simple optimizations while maintaining correctness) and lastly evaluation (eval-
uate the performance of the reimplementation). During these stages, the results of

67

CHAPTER 7. REIMPLEMENTATION

the two techniques have been verified to be 100 % correct (for all 54 functions used
for the evaluations), that is, the exact same output is given by the reimplementation
and the old implementation when given the same input.

Implementation consisted of writing a naïve reimplementation of the old pre-
solver, based on pseudocode for the algorithms of the techniques available in [12].
Both the reimplementation and the original Prolog code were also augmented with
additional outputs of intermediate values. These outputs simplified the process of
verifying the reimplementation since it is simpler to track output deviations with
more checkpoints. It also make it possible to verify the correctness of single parts
of the code.

Some verification for smaller functions (from the set of functions previously used
for evaluation the techniques) was done as a natural part of the development of this
stage. These aimed to ensure that the reimplementation at least was not incorrect
for these simple functions. The reason for only verifying smaller functions during
the development was the fact that a bunch of them could be presolved in the same
time as presolving one of the larger functions, thus increasing the diversity while
not spending too much time on verifying the techniques during the development
phase.

The entire work effort for this stage was about 2.5 - 3.5 weeks of work, which
corresponds to just over half the time of the reimplementation process.

Verification and Fixes followed the implementation, and consisted of more thor-
ough verification alternated with tracking and fixing bugs. These verifications in-
cluded all 53 functions that were previously used in the evaluation of the techniques.
Each of these functions was presolved using both the reimplemented presolver and
the old one, each producing one result file. These result files were then compared
using an automatically invoked diff-tool, which checks line by line that the files
were equal. If the two results files had any difference, somewhere there must be a
bug that needs to be fixed before the verification process could be resumed. This
process was repeated until no new bugs were discovered.

In principle, there were three different categories of bugs found during this stage,
bugs in the C++ implementation, bugs in pseudocode describing algorithms and
lastly bugs in the Prolog-based presolver implementation. Table 7.1 shows for each

Category Number of bugs Effort for identifying
and fixing the bugs

Bugs in C++code > 20 Low
Bugs in pseudo code ~10 Medium
Bugs in Prolog code 1 High

Table 7.1: Categories of found bugs and effort for fixing them.

of the categories roughly the number of bugs found and the estimated effort for

68

7.1. REIMPLEMENTATION PROCESS

identifying and fixing the bugs. The effort estimate is based on how much time
the identification and fixing required. Bugs in the C++ code were by far the most
abundant, but also the easiest ones to correct. Most of these were typographical or
logical errors that could easily be corrected by comparing the pseudocode with the
C++ code and thereby finding the bugs in form of deviations.

Bugs in the pseudocode where somewhat harder to identify and fix, since C++

code first must be checked against the pseudocode, then the pseudocode had to
be compared with relevant parts of the Prolog code to find a deviation. This was
somewhat of a non-trivial task since there naturally can be quite a big difference in
how something is implemented in Prolog and how the corresponding algorithm is
described in the pseudocode, although the same thing was computed.

Bugs in the Prolog code were the rarest of them all, only one (minor) was found
during the entire reimplementation process. Unfortunately, this was also the most
time-consuming bug to identify since it required checking the two other categories
before even being able to assume that the bug was in the Prolog code. The bug
was an unfulfilled precondition during a call to a built-in function, yielding an
error in the intermediate data, which later was filtered away by descendant code.
Therefore, it actually never made it to the actual output file for any of the 53 tested
functions, but that does not justify the existence of the bug. It could very well
produce incorrect output for some other function. After finding this bug, it was
easily corrected by a small modification in the Prolog code.

The total work effort for the verification and fixes stage was of about 1 - 1.5
week.

Optimization consisted of measuring the execution time of different parts of the
reimplementation to find any bottlenecks. To minimize these, some caching of
commonly used computed values was introduced together with trying to remove
unnecessary looping in the code. This was typically done by reordering nested
loops or hoisting conditions through nested loops as far as possible, to minimize
the amount of loop iterations that could never fulfill the condition anyway. Due to
time limitations, only a small amount of optimization was done, but the outcome
was good at least for the before technique, see Section 7.2.1. To ensure the cor-
rectness of the optimized code, the verification process was repeated after applying
the optimizations.

The total work effort for this stage was slightly less than half a week.

Evaluation aimed to measure the performance of the reimplementation with re-
spect to execution speed. This was done by measuring the execution time of different
parts of the code, both in the reimplemented code and the original implementation,
while compiling each of the functions. This was repeated 10 times to ensure sta-
tistical significance of the results, which are presented in the next section. As in
the previously stage, the work effort of this stage was about half a week. To be
comparable, all data points correspond to cases when the exact same results are
produced for the original implementation and the reimplementation. To ensure

69

CHAPTER 7. REIMPLEMENTATION

identical output, some time limitations of the original implementation had to be
disabled, otherwise that implementation would deliver partial results that did not
conform to those of the reimplementation. These uncompleted results were by no
means incorrect but they were the outcome of only partly solving some of the prob-
lems. Unfortunately, when disabling the time limitations there was one function,
jpeg.jcmaster.prepare_for_pass, which required more than three hours of runtime
just to be presolved by the nogood technique. Due to the fact that, this evaluation
was done late in the thesis, it was not feasible to include this function in the eval-
uation since that alone would drastically increase the evaluation execution time.
This function was thus disregarded in the experiments, but this did not favor the
reimplementation in any way, quite the opposite. While the original implementa-
tion required a run time of over three hours to solve the problem completely, the
reimplementation solved it entirely in just less than one and a half minute. This
would have increased the speedup for the reimplementation.

7.2 Evaluation Results
The results from the evaluation of the reimplementation are presented in this section
in form of the speedup compared to the original code. The speedup is defined as
the ratio of the execution time of the original implementation to the one of the
reimplementation, as shown in equation 7.1.

Su = To

Tr
(7.1)

Here Su denotes the speedup, Tr is the execution time of reimplemented code and
To is the execution time of the corresponding original code. The time measurements
concern only the actual presolving of these two techniques, that is, only the time
taken to generate the output. This means that the time measurements are as fair as
possible, discarding any time associated with reading input files and writing output
files. The results of these measurements for these two techniques are presented both
individually and combined in the coming sections.

70

7.2. EVALUATION RESULTS

7.2.1 Before

The evaluation of the Before technique has shown that the reimplementation is
not only correct but also considerably faster than the original implementation when
compiling the 52 functions. For these functions and this technique, the shortest
presolving time is 0.07 ms, the longest is 99.58 ms, the average is 7.65 ms and the
median is 1.49 ms. Figure 7.2 shows the GM speedup for 10 compilations of each of

10

20

30

40

50

60

70

80

90

100

110
120
130
140

adpcm_coder

adpcm_decoder

rawcaudio.main

rawdaudio.main

timing.main
edge_function

ereflect
nocompute
predict
reflect2
ReadMatrixFromP.

build_huffman_t.

free_tree_nodes

parse_epic_args

quantize_pyr
linear2alaw

ulaw2alaw
g721_decoder

g723_24_decoder

g723_40_encoder

g72x_init_state

predictor_zero

quantize
step_size
update
gsm_L_sub
gsm_div
gsm_mult_r

Gsm_Coder
gsm_debug_words

Gsm_Long_Term_S.

Gsm_Preprocess

Coefficients_13.

Decoding_of_the.

Gsm_Short_Term_.

jpeg_start_comp.

encode_mcu_huff

jpeg_simple_pro.

start_pass_huff.

h2v1_merged_ups.

jpeg_idct_2x2

quantize_fs_dit.

pass2_fs_dither

range_checks

Decode_MPEG2_In.

Get_Hdr
Initialize_Fast.

calc_DMV
form_prediction

conv422to444

itransform

writeframe
M
ea
n
S
p
ee
d
u
p

mpeg2jpeggsmg721epicadpcm

Figure 7.2: Execution time speedup of reimplemented before for all functions
used in the evaluation. The value 1 corresponds to the execution time of the original
implementation (Prolog).

these function, note that the y-axis is scaled logarithmically to increase readability.
For all functions, the reimplemented code is faster (a speedup greater than 10)
and the maximum mean speedup is about 120 times. The GM of the speedup
for all compilations of all functions is 45.22. This huge speedup is largely due to
optimizations made by hosting conditions of nested loops and thereby avoiding loops
that could never fulfill the conditions. In particular, one section of multiply nested
loops in the code could by simple optimization be completely avoided at runtime.
While this had a big effect for the tested functions and the Hexagon V4 target
architecture, it might not be as effective for other architectures that might exercise
this section more frequently. The simple optimization are still expected to have a
positive affect on the speedup for other targets, but maybe not as large as those
given for Hexagon V4.

71

CHAPTER 7. REIMPLEMENTATION

7.2.2 Nogoods

The evaluation of the Nogoods technique shows the reimplementation to be suc-
cessful with respect to correctness and speedup, but not nearly as successful as for
before with respect to speedup. For this technique and the benchmark functions,
the shortest presolving time is 5.46 ms, the longest is 48 945.80 ms, the average is
2 488.10 ms and the median is 234.17 ms.

0.4

0.5

0.6
0.7
0.8
0.9

1

2

3

4

5

6
7
8
9

10

20

30

40

50

adpcm_coder

adpcm_decoder

rawcaudio.main

rawdaudio.main

timing.main
edge_function

ereflect
nocompute
predict
reflect2
ReadMatrixFromP.

build_huffman_t.

free_tree_nodes

parse_epic_args

quantize_pyr
linear2alaw

ulaw2alaw
g721_decoder

g723_24_decoder

g723_40_encoder

g72x_init_state

predictor_zero

quantize
step_size
update
gsm_L_sub
gsm_div
gsm_mult_r

Gsm_Coder
gsm_debug_words

Gsm_Long_Term_S.

Gsm_Preprocess

Coefficients_13.

Decoding_of_the.

Gsm_Short_Term_.

jpeg_start_comp.

encode_mcu_huff

jpeg_simple_pro.

start_pass_huff.

h2v1_merged_ups.

jpeg_idct_2x2

quantize_fs_dit.

pass2_fs_dither

range_checks

Decode_MPEG2_In.

Get_Hdr
Initialize_Fast.

calc_DMV
form_prediction

conv422to444

itransform

writeframe
M
ea
n
S
p
ee
d
u
p

mpeg2jpeggsmg721epicadpcm

Figure 7.3: Execution time speedup of reimplemented before for all functions
used in the evaluation. The value 1 corresponds to the execution time of the original
implementation (Prolog) and is represented by a solid line in the figure.

Figure 7.3 shows the GM of the 10 compilations of each of the 52 functions; note
that the y-axis is scaled logarithmically to increase readability. For 44 functions, the
reimplementation was faster and for 8 functions the reimplementation was slower
than the original code while yielding the same output. The GM of the speedup
for all functions was calculated to 1.71. While the GM of the speedup is not as
impressive as of before, there is still a speedup of 1.71 while there are still a lot
of sections of the code that could probably be optimized to gain some additional
speedup.

Some part of the presolver has been shown to require quite long run time, while
only being executed for some of the functions. This is the case for the functions
where the speedup is very high (> 5). These functions all contain long cyclic
precedence dependencies that the presolver tries to break. This particular part of
the reimplementation is significantly faster than the original implementation when

72

7.2. EVALUATION RESULTS

the function has long cyclic dependencies.

7.2.3 Combined Results

Figure 7.3 shows the combined results of speedup for the two techniques, note that
the y-axis is scaled logarithmically to increase readability. This figure looks much

0.4

0.5

0.6
0.7
0.8
0.9

1

2

3

4

5

6
7
8
9

10

20

30

40

50

adpcm_coder

adpcm_decoder

rawcaudio.main

rawdaudio.main

timing.main
edge_function

ereflect
nocompute
predict
reflect2
ReadMatrixFromP.

build_huffman_t.

free_tree_nodes

parse_epic_args

quantize_pyr
linear2alaw

ulaw2alaw
g721_decoder

g723_24_decoder

g723_40_encoder

g72x_init_state

predictor_zero

quantize
step_size
update
gsm_L_sub
gsm_div
gsm_mult_r

Gsm_Coder
gsm_debug_words

Gsm_Long_Term_S.

Gsm_Preprocess

Coefficients_13.

Decoding_of_the.

Gsm_Short_Term_.

jpeg_start_comp.

encode_mcu_huff

jpeg_simple_pro.

start_pass_huff.

h2v1_merged_ups.

jpeg_idct_2x2

quantize_fs_dit.

pass2_fs_dither

range_checks

Decode_MPEG2_In.

Get_Hdr
Initialize_Fast.

calc_DMV
form_prediction

conv422to444

itransform

writeframe
M
ea
n
S
p
ee
d
u
p

mpeg2jpeggsmg721epicadpcm

Figure 7.4: Execution time speed up of reimplemented before for all functions
used in the evaluation. The value 1 corresponds to the execution time of the original
implementation (Prolog) and is represented by a solid line in the figure.

like the one for nogoods even if the speedup generally is somewhat higher. The
results are similar to nogoods and not to before, which is due to the fact that the
required execution time of nogoods generally is much higher than that of before,
which is expected since nogoods is far more complex. The combined results show
that 51 functions were solved in shorter time, while 1 function required somewhat
more time in the reimplementation compared with the original implementation.
The GM of the speedup was calculated to 2.25.

For the combination of before and nogoods, and all benchmark functions, the
shortest presolving time is 5.54 ms, the longest is 48 983.90 ms, the average is
2 495.75 ms, and the median is 236.69 ms.

Even though there are a lot of optimization possibilities left in the reimplemen-
tation, the results are promising. As in the case of nogoods, the functions where
the speedup is really high contain precedence cycles, which the nogood technique
tries to detect and break. In fact, cycle detection and breaking was what took so

73

CHAPTER 7. REIMPLEMENTATION

long time for one function in the original implementation that it had to be removed
from this evaluation (more than three hours in the original implementation vs. 80
seconds in the reimplementation). From the results of this chapter it is clear that
the reimplementation not only is correct but also efficient with respect to runtime.
This is a additional outcome, which really adds an extra motivation to the reimple-
mentation.

74

Chapter 8

Conclusions and Further Work

This chapter summarizes the thesis and its main results and proposes further work.

8.1 Conclusions

While applying Constraint Programming to the problems of compiling programs,
it has previously been shown beneficial to presolve the model of the problem to
strengthen it. A stronger model reduces the effort of the main problem solving and
thus makes it possible to produce higher quality code. One type of constraints added
to the model during presolving are implied constraints. This kind of constraints are
logical consequences of already existing constraints in the model, and must therefore
always hold in any valid solution. Adding implied constraints to a model does not
remove solutions but reduces the effort of finding the solutions.

This thesis evaluated the techniques used for finding implied constraints within
Unison’s presolver both individually and in groups. Two of the most beneficial tech-
niques were also reimplemented using only non-proprietary tools and systems.The
ranking of a given technique was based on the results of the evaluation, the estimated
effort needed for reimplementing the technique and how many other techniques de-
pend on it.

The reimplementation has also been evaluated to ensure correctness and per-
formance similar to the original presolver implementation. These evaluations have
shown that the reimplementation was successful in that the correct results are pro-
duced for all tested functions, and the performance is not only similar but also
significantly higher, meaning that the same problem can be solved in shorter time
compared to the original implementation.

In addition to the above contributions, the thesis has also resulted in the iden-
tification and correction of a number of bugs in the presolver’s documentation and
original implementation; a bug in the main solver has been discovered and reported
to the Unison team.

75

CHAPTER 8. CONCLUSIONS AND FURTHER WORK

8.2 Further Work
This section proposes possibly interesting continuations of the research of this thesis.

Extending the reimplementation. The most natural continuation of this thesis
would be to continue the reimplementation of presolving techniques, in order to
achieve as large an effect as possible of the presolving. Based on the results of
the evaluation in Chapter 6 it would be good to continue the reimplementation
starting with the precedences technique. Since this technique is a dependency of
the reimplemented technique nogoods, reimplementing precedences would result in
an almost presolver entirely independent on the old one. Also, the precedences

technique was shown during the evaluation to be one of the best performing ones
both individually and in groups with other techniques.

Additional presolving techniques. An interesting research would be to try to
find new techniques for presolving in the area of compilation, and implement and
evaluate them in the same way as those of this thesis. The new techniques could
either be found by revisiting he literature or by using a bottom-up approach and
studying cases where the main solver produces a lot of failures and try to find
techniques that could efficiently eliminate these failures.

Refinement of reimplementation. Even though the reimplementation has been
shown to execute faster than the old one, there are still many possibilities for opti-
mizing the implementation and possibly improve the algorithms to be more effective.
In some places of the implementation, there are values that are possibly calculated
multiple times during the presolving process, some of these calculations are expected
to be time-consuming. Using techniques such as memoization in these cases has the
potential of increasing the performance of the presolver while producing the same
results.

Continuous model strengthening. An interesting research topic would be to
investigate the effect of invoking the reimplemented presolver not only before the
main solving, but also during main solving. At this point more information may be
available, which the presolver techniques could use to further strengthen the model
and thereby help the main solver produce code of higher quality or to improve its
execution time.

76

Bibliography

[1] GCC, the GNU Compiler Collection - GNU Project - Free Software Foundation
(FSF). URL: https://gcc.gnu.org/. Accessed: 2015-06-01.

[2] IEEE Code of Ethics on professional activities. URL: http://www.ieee.
org/about/corporate/governance/p7-8.html. Accessed: 2015-06-16.

[3] The LLVM Compiler Infrastructure Project. URL: http://llvm.org/. Ac-
cessed: 2015-06-01.

[4] Unison - robust, scalable, and open code generation by combinatorial prob-
lem solving. URL: https://www.sics.se/projects/unison, 2012. Ac-
cessed: 2015-06-12.

[5] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Pearson Education, 2006.
ISBN 0321486811.

[6] Mikael Almgren. Evaluation and Implementation of Dominance Breaking Pre-
solving Techniques in the Unison Compiler Back-End. Master’s thesis, KTH,
Software and Computer systems, SCS, 2015.

[7] Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in
Java. Cambridge University Press, 2002. ISBN 9780521820608.

[8] Krzysztof Apt. Principles of Constraint Programming. Cambridge University
Press, 2003. ISBN 9780521825832.

[9] Nicolas Beldiceanu and Mats Carlsson. Sweep as a generic pruning technique
applied to the non-overlapping rectangles constraint. In Principles and Practice
of Constraint Programming - CP 2001, 7th International Conference, CP 2001,
Paphos, Cyprus, November 26 - December 1, 2001, Proceedings, volume 2239
of Lecture Notes in Computer Science, pages 377–391. Springer, 2001.

[10] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit.
Global Constraint Catalogue. URL: http://sofdem.github.io/gccat/.
Accessed: 2015-03-01.

77

https://gcc.gnu.org/
http://www.ieee.org/about/corporate/governance/p7-8.html
http://www.ieee.org/about/corporate/governance/p7-8.html
http://llvm.org/
https://www.sics.se/projects/unison
http://sofdem.github.io/gccat/

BIBLIOGRAPHY

[11] Florent Bouchez, Alain Darte, Christophe Guillon, and Fabrice Rastello. Regis-
ter Allocation: What Does the NP-Completeness Proof of Chaitin et al. Really
Prove? Or Revisiting Register Allocation: Why and How. In George Almási,
Călin Caşcaval, and Peng Wu, editors, Languages and Compilers for Parallel
Computing, volume 4382 of Lecture Notes in Computer Science, pages 283–298.
Springer Berlin Heidelberg, 2007. ISBN 978-3-540-72520-6.

[12] Mats Carlsson. The Unison Presolver – Algorithms, 2015. Internal Document.
Accessed: 2015-04-07.

[13] Roberto Castañeda Lozano. Integrated Register Allocation and Instruction
Scheduling with Constraint Programming. Licentiate thesis, KTH, Software
and Computer systems, SCS, 2014.

[14] Roberto Castañeda Lozano and Mats Carlsson. Unison: Design and imple-
mentation notes. This document complements the LCTES2014 paper [16] with
design notes and implementation details., 2015. Internal Document. Accessed:
2015-03-05.

[15] Roberto Castañeda Lozano, Mats Carlsson, Frej Drejhammar, and Christian
Schulte. Constraint-based register allocation and instruction scheduling. In
Principles and Practice of Constraint Programming - 18th International Con-
ference, CP 2012, Québec City, Canada, October 8-12, 2012. Proceedings,
pages 750–766, 2012.

[16] Roberto Castañeda Lozano, Mats Carlsson, Gabriel Hjort Blindell, and Chris-
tian Schulte. Combinatorial spill code optimization and ultimate coalescing. In
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Em-
bedded Systems 2014, LCTES ’14, Edinburgh, United Kingdom - June 12 - 13,
2014, pages 23–32, 2014.

[17] Geoffrey Chu and Peter J Stuckey. Dominance breaking constraints. Con-
straints, 20(2):155–182, 2015.

[18] Keith Cooper and Linda Torczon. Engineering a Compiler. Elsevier Science,
2011. ISBN 9780080916613.

[19] Thom Frühwirth and Slim Abdennadher. Essentials of Constraint Program-
ming. Cognitive Technologies. Springer, 2003. ISBN 9783540676232.

[20] Dick Grune, Kees Van Reeuwijk, Henri E Bal, Ceriel JH Jacobs, and Koen
Langendoen. Modern Compiler Design. Springer, 2012. ISBN 9781461446989.

[21] John L. Hennessy and Thomas Gross. Postpass code optimization of pipeline
constraints. ACM Trans. Program. Lang. Syst., 5(3):422–448, July 1983.

[22] Gabriel Hjort Blindell. Survey on instruction selection : An extensive and mod-
ern literature review. Technical Report 13:17, KTH, Software and Computer
systems, SCS, 2013.

78

[23] Richard E. Korf. Optimal rectangle packing: Initial results. In Proceedings of
the Thirteenth International Conference on Automated Planning and Schedul-
ing (ICAPS 2003), June 9-13, 2003, Trento, Italy, pages 287–295, 2003.

[24] Monica S. Lam and Robert P. Wilson. Limits of control flow on parallelism.
SIGARCH Comput. Archit. News, 20(2):46–57, April 1992.

[25] Chunho Lee, Miodrag Potkonjak, and William H Mangione-Smith. Media-
bench: a tool for evaluating and synthesizing multimedia and communicatons
systems. In Proceedings of the 30th annual ACM/IEEE international sympo-
sium on Microarchitecture, pages 330–335. IEEE Computer Society, 1997.

[26] Qualcomm. Hexagon DSP Processor.
URL: https://developer.qualcomm.com/mobile-development/
maximize-hardware/multimedia-optimization-hexagon-sdk/
hexagon-dsp-processor, 2013. Accessed: 2015-02-04.

[27] Giovanni Righini. Preprocessing complements of operations re-
search. URL: http://homes.di.unimi.it/righini/Didattica/
ComplementiRicercaOperativa/MaterialeCRO/Preprocessing.
pdf. Accessed: 2015-04-20.

[28] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint
programming. Elsevier, 2006. ISBN 9780080463803.

[29] Christian Schulte, Guido Tack, and Mikael Z Lagerkvist. Modeling and pro-
gramming with Gecode. URL: http://www.gecode.org/doc/4.4.0/
MPG.pdf, 2015. Accessed: 2015-06-15.

[30] Helmut Simonis and Barry O’Sullivan. Using global constraints for rectangle
packing. In Proceedings of the first Workshop on Bin Packing and Placement
Constraints BPPC, volume 8, 2008.

[31] Mike Swain. World’s hardest Sudoku puzzle: It’s the most baffling brain-
teaser ever devised... can you solve it? URL: www.mirror.co.uk/news/
weird-news/worlds-hardest-sudoku-puzzle-ever-942299, 2012.
Accessed: 2015-02-02.

[32] Bernd Teufel, Stephanie Schmidt, and Thomas Teufel. C2 Compiler Concepts.
Springer, 1993. ISBN 9783211824313.

[33] Kim-Anh Tran. Necessary conditions for constraint-based register allocation
and instruction scheduling. Master’s thesis, Uppsala University, Department
of Information Technology, 2013.

79

https://developer.qualcomm.com/mobile-development/maximize-hardware/multimedia-optimization-hexagon-sdk/hexagon-dsp-processor
https://developer.qualcomm.com/mobile-development/maximize-hardware/multimedia-optimization-hexagon-sdk/hexagon-dsp-processor
https://developer.qualcomm.com/mobile-development/maximize-hardware/multimedia-optimization-hexagon-sdk/hexagon-dsp-processor
http://homes.di.unimi.it/righini/Didattica/ComplementiRicercaOperativa/MaterialeCRO/Preprocessing.pdf
http://homes.di.unimi.it/righini/Didattica/ComplementiRicercaOperativa/MaterialeCRO/Preprocessing.pdf
http://homes.di.unimi.it/righini/Didattica/ComplementiRicercaOperativa/MaterialeCRO/Preprocessing.pdf
http://www.gecode.org/doc/4.4.0/MPG.pdf
http://www.gecode.org/doc/4.4.0/MPG.pdf
www.mirror.co.uk/news/weird-news/worlds-hardest-sudoku-puzzle-ever-942299
www.mirror.co.uk/news/weird-news/worlds-hardest-sudoku-puzzle-ever-942299

	List of Figures
	List of Tables
	Glossary
	Introduction
	Problem
	Goals
	Ethics and Sustainability
	Research Methodology
	Scope
	Individual Contributions
	Outline

	Background
	Traditional Compilers
	Compiler Structure
	Compiler Back-end
	Instruction Selection
	Instruction Scheduling
	Register Allocation

	Constraint Programming
	Overview
	Modeling
	Optimization

	Solving
	Propagation
	Search

	Improving Models
	Global Constraints
	Dominance Breaking Constraints
	Implied Constraints
	Presolving

	Unison - A Constraint-Based Compiler Back-End
	Architecture
	Intermediate Representation
	Extended Intermediate Representation

	Constraint Model
	Program and Processor Parameters
	Model Variables
	Instruction scheduling
	Register Allocation

	Unison Presolver
	Implied-Based Presolving Techniques
	Across
	Set across
	Before and Before2
	Nogoods and Nogoods2
	Precedences and Precedences2

	 Evaluation and Reimplementation
	Evaluation of Implied Presolving Techniques
	Evaluation Setup
	Data Collection
	Data Analysis
	Group Evaluations

	Results
	Individual Techniques
	Grouped Techniques
	Conclusions

	Reimplementation
	Reimplementation Process
	Evaluation Results
	Before
	Nogoods
	Combined Results

	Conclusions and Further Work
	Conclusions
	Further Work

	Bibliography

