s

S,
FKTHE

VETENSKAP
39 OCH KONST %

N

KTH Information and
Communication Technology

Parallel Portfolio Search for Gecode

ANTON FROM

Master's Thesis. Stockholm, July 2, 2015.
School of Information and Communication Technology
KTH Royal Institute of Technology

Supervisor: Roberto Castafieda Lozano
Examiner: Christian Schulte

TRITA-ICT-EX-2015:75

Abstract

Constraint programming is used to solve hard combinatorial prob-
lems in a variety of domains, such as scheduling, networks and bioinfor-
matics. Search for solving these problems in constraint programming is
brittle and even slight variations in the problem data or search heuristic
used can dramatically affect the runtime. But using portfolios of search
engines on several variants of a problem by adding randomness to the
heuristic used has been proved to counter this problem. A portfolio is
defined as a collection of assets that combined gives it a desired return
and risk. Unfortunately not all constraint programming systems have
implementations of portfolio search, such as Gecode. Therefore were
two portfolio search prototypes, sequential and parallel, designed and
implemented for Gecode. The design is not system dependent and could
easily be implemented in other constraint programming systems.

The design and implementation is tested by both validity and per-
formance tests to ensure its soundness. Validity is tested by finding
all possible solutions on a moderately difficult combinatorial problem
known as the N-Queens problem. Performance is tested by finding the
first solution on a very difficult combinatorial problem known as the
Latin Square Completion problem with different numbers of search en-
gines. To compare against the same validity and performance tests were
run with just one search engine.

Results show that the design and implementation of portfolio search
is sound. The parallel variant of portfolio search finds solutions faster
with more search engines and outperforms the sequential variant. The
sequential variant finds solutions about as fast as running with just one
search engine.

Successfully designing and implementing portfolio search in Gecode
will help researchers and companies who use Gecode to save both time
and money as they are now able to find better solutions faster by using
this portfolio search. It may also contribute to the research within this
area and the continued development of Gecode.

Keywords Constraint programming, Gecode, Parallel portfolio search

Referat

Parallel Portfoljsokning for Gecode

Villkorsprogrammering anvénds till att 16sa svira kombinatoriska
problem inom en méngd omraden, sdsom schemaldggning, natverk och
bioinformatik. Men s6kning for att 16sa dessa problem inom villkorspro-
grammering dr skor och dven smé variationer i problemets data eller
anvand sokheuristik kan dramatiskt paverka kortiden. Men att anvinda
portfoljer av sékmotorer pa flera varianter av ett problem genom att in-
fora slumpmaéssighet i sékheuristiken har bevisats kontra detta problem.
En poftfolj ar definierad som en samling tillgdngar som kombinerad
ger den en onskvird avkastning och risk. Olyckligtvis sa har inte al-
la villkorsprogrammeringssystem implementationer av portféljsékning,
sasom Gecode. Darfor designades och implementerades tva portfoljsok-
ningsprototyper, sekventiell och parallell, for Gecode. Designen &r inte
systemberoende och kan enkelt implementeras i andra villkorsprogram-
meringssystem.

Designen och implementationen dr testad av bade validitets och pre-
standatest for att forsikra dess sundhet. Validiteten testas genom att
finna alla mojliga 16sningar for ett lagom svart kombinatoriskt problem
kéant som N-Queens problemet. Prestandan testas genom att finna forsta
l6sningen for ett valdigt svart kombinatoriskt problem kéant som Latin
Square completion problemet med olika manga s6kmotorer. For att jam-
féra mot sa kor en ensam sOkmotor samma validitets och prestandatest.

Resultaten visar att designen och implementationen av portfcljsok-
ning ar sund. Den parallella varianten av portfoljsokning hittar 16sningar
snabbare med fler sékmotorer och 6vertraffar den sekventiella varianten.
Den sekventiella varianten hittar l6sningar ungefér lika snabbt som en
ensam sokmotor.

Att framgangsrikt designa och implementera portfoljsdkning i Geco-
de kommer hjélpa forskare och foretag som anvinder Gecode att spara
bade tid och pengar nér de nu kan hitta battre l6sningar snabbare genom
att anvinda denna portfoljsokning. Det kan ocksa bidra till forskningen
inom det har omradet och den fortsatta utvecklingen av Gecode.

Nyckelord Villkorsprogrammering, Gecode, Parallel portfcljsckning

Contents

List of Figures
List of Tables

1 Introduction

1.1 Motivation
1.2 Problem Statement
1.3 Proposed Solution
1.4 Methodology
1.5 Limitations
1.6 Ethics and Sustainability
1.7 Outline e

2 Background

2.1 Constraint Programming o0
2.2 Search in Constraint Programming
2.3 Portfolio Search
2.4 Gecode s
2.4.1 Searchin Gecode
2.4.2 Stop objectsin Gecode
2.5 Case Studies
2.5.1 Case Study: N-Queens
2.5.2 Case Study: Latin Square
3 Designing Portfolio Search
3.1 Design of Sequential PBS
3.1.1 PBSmext()
3.2 Designofparallel PBS oo
3.2.1 Parallel PBSinext()
3.2.2 Parallel Communication Protocol

4 Implementing Portfolio Search
4.1 Implementation of Sequential PBS
4.1.1 PBS:mext() with 2 Search Engines for One Solution.

U W W NN~ =

©

4.1.2 PBS:ext() with 2 Search Engines for All Solutions 26

4.1.3 PBS:mext() with N Search Engines 28

4.1.4 Global Stop Object for PBS 28

4.1.5 Other Methodsin PBS 30

4.2 Implementation of Parallel PBS 31

42.1 Run Wrapper 32

4.2.2 PBSmext() with 2 Search Engines for One Solution. 33

4.2.3 Control Stop Object for Search Engines 33

4.2.4 Parallel Queue for Solutions 34

4.2.5 PBSmext() with 2 Search Engines for All Solutions 36

4.2.6 PBSmext() with N Search Engines 37

4.2.7 Global Stop Object for PBS 41

4.2.8 Other Methodsin PBS 42

4.2.9 Avoiding Deadlocks 42

5 Experimental Evaluation 45

5.1 Case Study: N-Queens 46

5.2 Case Study: Latin Square 47

5.2.1 Measuring Overhead 48

5.2.2 Measuring Performance 53

6 Conclusions 63

6.1 Future Work 64

A Case Study Extras 65

A.1 Server Specifications 65

A.2 Branching Implementations & Tie-Breaking 66

B Source Code of Portfolio Search 69

B.1 Source Code for Sequential Portfolio Search 69

B.2 Source Code for Parallel Portfolio Search 74

Bibliography 83
List of Figures

2.1 Figures showing queen movement & solution for 8-Queens. 13

2.2 Small Latin Square example. o, 14

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11
4.12
4.13
4.14

5.1
5.2
5.3
5.4
5.5
5.6

Al
A2
A3
A4

Diagram illustrating abstraction layers & flow of sequential PBS.
Diagram illustrating abstraction layers & flow of parallel PBS.
Diagram illustrating the communication protocol of parallel PBS.

Code segment of base case of sequential PBS:next().
Code segment of second iteration of sequential PBS:next().
Code segment of N-search engines in sequential PBS:next().
Code segment of final sequential PBS:next () with global stop object.

Code segment of first version of the run_wrapper class.
Code segment of base case of parallel PBS:next().
Code segment of base case of the modified stop object class.
Code segment of second parallel PBS:next (), with commands.
Code segment of second version of the run_wrapper class with solution

Code segment of parallel PBS:next () for all solutions.
Code segment of second version of the run_wrapper class.
Code segment of N-search engines in parallel PBS:next().
Code segment of the modified stop object class with global stop object.

Code segment of final parallel PBS:next () with global stop object. . . .

Graphs showing execution times of first group measuring overhead . . .
Graphs showing execution times of second group measuring overhead . .
Graphs showing execution times of third group measuring overhead

Graphs showing execution times for N=15 measuring performance . . .
Graphs showing execution times for N=20 measuring performance . . .
Graph showing results after 1000 runs with parallel PBS

Server specifications.
Code segment of the original branching implementation.
Code segment of the modified branching implementation.
Code segment of the tie-breaking limit functions.

List of Tables

2.1 Table showing number of solutions for N-Queens puzzle

5.1 The table shows the test setup for the N-Queens puzzle

27
28
29
31
32
33
35
35

37
38
39
40
41
42

5.2
5.3

5.4

5.5
5.6

5.7
5.8

The table shows the test results for the N-Queens puzzle 47
The table shows the test setup for overhead measurement on the Latin

Square problemo 48
Table showing problem instances for overhead measurement on Latin

Square problemo 49
Table showing problem instances & result for choosing hard problems . 54
Table showing test setup for performance measurement on Latin Square

problem 55
Table showing test setup for the additional experiment 59

Table showing min & max values from results for the additional experiment 60

Chapter 1

Introduction

This chapter gives a first presentation of this thesis and provides important informa-
tion about the thesis itself. Section 1.1 presents a short background and motivation
for the thesis and section 1.2 presents the problem statement. Furthermore, it
presents a proposed solution to the problem statement in section 1.3 followed by
the methodology description in section 1.4. Then it states the limitations in section
1.5. It also presents section 1.6 that covers the ethics and sustainability for this
thesis and finally gives an outline of the thesis in section 1.7.

1.1 Motivation

Constraint programming is a powerful paradigm that is used to solve combinatorial
search problems and is currently used with success in a variety of domains, such as
scheduling and bioinformatics [1]. But search for solving these constraint problems
in constraint programming today is brittle. Even slight variations in either the
problem data or the heuristic used during search can have a huge impact on the time
it takes for search to find a solution [2]. However, there exist known techniques to
exploit this brittleness, such as randomized restart-based search or portfolio search.
This thesis is concerned with portfolio search.

A portfolio is defined as a collection of assets that combined gives it a desired
return and risk [3, 4]. The idea of portfolio search is to run a whole portfolio
of search engines (which are implementations of search) for several variants of a
problem, either in parallel or in a round-robin fashion. The problem variants can
be obtained by adding a slight amount of randomness in the search heuristic or
even using different heuristics. The first solution that is found by a search engine
is reported as the solution of the portfolio. Using a portfolio of search engines
combines their individual strengths while covering for their individual weaknesses
to better tackle constraint problems and find solutions faster than by using any of
the search engines by itself [5].

More and more specialized heuristics are developed in constraint programming
to solve specific types of problems even better than before. But because of the

CHAPTER 1. INTRODUCTION

specializations they also become more brittle. So the optimal solution would be to
be able to run a lot of search engines with different heuristics on a single problem
to counter the brittleness as well as taking advantage of the emerge of multi-core
processors during the last decade. However, not all constraint programming systems
have implementations of portfolio search. This forces the user! to either construct
his or her own crude version of a portfolio search or manually run each search engine
on the same problem which is cumbersome. One such constraint programming
system lacking an implementation of portfolio search is Gecode?. Gecode is an open,
free, efficient constraint solving toolkit built on C++ [6]. For further explanation
on the reason to why Gecode was chosen, see section 1.5, and for a more thorough
explanation on what Gecode is, see section 2.4 in chapter 2.

Addressing these problems would make it easier to run large sets of search en-
gines with different heuristics on a single constraint problem. It would take advan-
tage of the multi-core architecture in today’s processors and also be able to decrease
the runtime. The decreased runtime saves time which in turn saves money. Take a
shipping company as an example which need to fill their shipping containers with as
many packages as possible. With decreased runtime the company can use portfolio
search (instead of only one search engine) to find more solutions before the deadline
and then pick the best of the found solutions. This saves money for the company
as they can now fill their containers better than before.

Therefore, developing portfolio search with which the user can easily perform
these tasks will save both time and money as well as contribute to the research in
this area.

1.2 Problem Statement

As motivated in section 1.1 an exploration of portfolio search and its uses is needed.
This encompasses researching, designing, implementing and testing a prototype
portfolio search engine, both for the comparison and evaluation against other con-
straint solving techniques as well as for the general research in this area and related
fields. More specifically the problem statement for this thesis is to find a satisfactory
answer to the following question:

What is a good design and implementation of portfolio-based search in Gecode?

1.3 Proposed Solution

The object of this master’s thesis is to research, design, implement and test a
prototype portfolio search as a response to the problem defined in section 1.2. The

YA userisa person that uses Gecode, such as researchers, developers, companies and hobbyists.
*Verified by Christian Schulte when discussing the thesis outline in the very beginning. He is
one of the main developers of Gecode

1.4. METHODOLOGY

solution is presented in two variants, one sequential and one parallel:

e The sequential variant is based on a round-robin architecture to give each
search engine in the portfolio the same amount of runtime in each runtime
cycle.

e The parallel variant is based on a master-slave architecture where each search
engine in the portfolio runs in its own slave thread while the controlling part
of the portfolio runs in the master thread and synchronizes them.

1.4 Methodology

First a thorough research of the topic is performed to give a good foundation for
the design of portfolio search. After the design is finished the implementation of
the portfolio is performed. This is all done to explore and evaluate different design
and implementation choices in order to find an answer to the question stated in the
Problem Statement section.

The chosen approach is iterative development that starts with the smallest most
basic problem. For each iteration additional functionality and features are added on
top of the work from the previous iteration. This ensures that the work is stable,
functional and debugged before the next iteration begins. It also helps keeping
the complexity in check by only adding a few new functions and features for each
iteration. The sequential variant is designed and implemented first so that the more
complex parallel variant can reuse and build onto common parts of the design and
implementation. After both prototypes are finished and stable the verifications and
experiments are performed. This is done in the form of two case studies.

The first case study tests the validity by verifying that no solutions are ever lost.
The setup is that the prototypes run with several search engines that are to find all
possible solutions to a chosen problem. Then all found solutions are counted and
compared to the solutions found by running one search engine without portfolio
search to ensure that no solutions were lost or invalid.

The second case study tests the performance of the prototypes by comparing
their execution times to the execution time of running with one search engine with-
out portfolio search. The setup is that the prototypes run with different amounts
of search engines and are to find the first solution. This case study is divided into
several parts which use different settings and problems to focus on different aspects
of the performance. Some of the performance experiments are similar to earlier
experiments performed by other authors such as [7] in order to compare the results.

1.5 Limitations

Because constraint programming is a broad area with many different libraries and
languages implementing it, the scope needs to be decreased down into a realistic
manageable size. Therefore, this thesis only focuses on one constraint programming

CHAPTER 1. INTRODUCTION

system. The design of portfolio search is made on a higher abstraction layer and is
thus not completely system dependent®. But the implementation of this portfolio
search is specific to the chosen system.

The chosen constraint programming system for this thesis is Gecode. Gecode
already has randomized restart-based search implemented but does not have an
implementation of portfolio-based search. This makes Gecode suited for this thesis
as experiments comparing the efficiency of randomized restart-based search and
portfolio-based search could be performed in the future, although this thesis does
not do it due to time constraints.

This thesis does not develop a fully tested and error-free portfolio-based search,
but rather aims to provide two prototypical implementations. It does not do com-
parisons with randomized restart-based search. It also does not do extensive testing
and experiments on the prototypes.

It does perform experiments validating the soundness of the design and imple-
mentation. It also does perform initial experiments for measuring the performance
compared to that of a single search engine.

1.6 Ethics and Sustainability

This thesis strives to adhere to the IEEE Code of Ethics [8]. It gives credit for
contributions of others and does not claim others work as its own. The author rejects
all forms of bribery and is honest about stating claims based on the available data.
The author tries to make decisions consistent with the safety, health and welfare of
the public, even though it is difficult to know how the research in this thesis could
endanger anyone.

Researching, designing and implementing portfolio-based search in Gecode is
important from a sustainability point of view. Researchers and companies that use
Gecode to solve their hard combinatorial problems face the problem with search
being brittle and sometimes does not manage to find a solution within a reasonable
amount of time. This slows down research progress and prevents companies to
improve their business in terms of optimizing shipping space, scheduling and vehicle
routing to name a few, which are all very resource and time consuming. To provide
these Gecode users with a tool to find solutions to their problems in a more efficient
and time-saving manner benefits not just them or the company they work for,
but all of us. Researchers might be able to find solutions to global environment
problems faster, find new cures to diseases or improve the way Internet routing
works. Companies can save both time and money while at the same time decrease
the impact on the global climate by filling out their shipping space more efficiently,
schedule their production better or calculate more efficient routes for their vehicles.

3 Although the system needs to use search engine abstractions in order to port the design
straight off.

1.7. OUTLINE

1.7 Outline

The rest of the thesis is organized as follows:

Chapter 2 gives the reader the theoretical background needed to understand the
contents of this thesis.

Chapter 3 is about the design of portfolio search and which design decisions were
made and why. The design for portfolio search is system independent and should
be possible to implement with constraint programming in open constraint solvers
that uses search engine abstractions.

Chapter 4 is about the implementation of portfolio search and goes deeper into
the actual coding part and problems that occurred. The implementation for port-
folio search is system dependent as it is done in Gecode.

Chapter 5 presents the experimental evaluation and discusses the results and
analysis of each case study as well as other interesting discoveries.

Chapter 6 presents the conclusion of this thesis and also describes the future
work.

Appendix A contains coding specifics for the case studies.

Appendix B contains the complete source code for the implementations of the
sequential and parallel variants of portfolio search.

Chapter 2

Background

This Chapter gives the reader a basic understanding of the area of the thesis. It first
introduces the reader to constraint programming in section 2.1, and then continues
with explaining how search works in constraint programming in section 2.2. After
this the concept of portfolio search is covered in section 2.3 and then Gecode as an
open constraint solver is explained in section 2.4. Lastly the backgrounds for the
different experiments and case studies are covered in section 2.5.

2.1 Constraint Programming

Constraint programming is a powerful paradigm that is used to solve combinatorial
search problems [1]. Constraint programming is currently used with success in a va-
riety of domains. Examples are found in scheduling, vehicle routing, bioinformatics
and networks [1]. Constraint programming in its most basic form is made up of two
parts: a declarative part where the user states the constraints of the problem, and
a solving part where the user gives a general purpose constraint solver the declared
problem and lets it find the solutions. This two-part structure makes constraint
programming different from regular programming where the user cannot declare
constraints and relations between variables and also has to code the solving part
of the program. Because of this constraint programming can be seen as a form of
declarative programming as opposed to the more regular imperative and functional
programming languages.

Variables in constraint programming initially consist of sets of possible values,
so called domains [9]. When constraints are placed upon these variables as relations
between them a constraint satisfaction problem (CSP) is created. As constraints
are just relations that must hold in a solution [1], the solutions to these CSP’s
are those which have assigned a single value to each variable and do not violate
any of the constraints of the problem. Therefore, a CSP is a container for all the
variables and constraints and is used to model the problem. A problem model is
an implementation of the CSP in a constraint programming system. The possible
solutions to a problem model exist inside a solution space (also known as search

7

CHAPTER 2. BACKGROUND

space). A solution space is often illustrated as a tree structure (hereinafter called
search tree) where the top node contains all variables with their initial sets of
possible values along with the implementation of the constraints. Each new node
down the search tree contains a smaller sub-problem where the set of values of one or
more variables have been reduced. Each leaf node in the search tree either contains
a solution or a dead end. When the problem model is given to the constraint solver
it searches after solutions in the search tree and returns what was requested if the
constraint solver finds it. A request could be to return the first found solution, all
found solutions or the best found solution, if any exists.

To find the requested solution(s) the constraint solver uses constraint propaga-
tion and search (more on search in section 2.2). Constraint propagation is when
the constraint solver applies the constraints over the model’s variables and prunes
their sets of values by removing values that violate at least one constraint[9, 10].
It is called constraint propagation because it propagates the constraints over the
variables in the problem model. When a value is removed due to constraint prop-
agation the change can propagate to other variables, triggering additional removal
(even in already pruned variables). Therefore, if any values were removed during
propagation, the constraint solver will perform propagation again over all variables
until no more values can be removed. After constraint propagation the constraint
solver has reached one of four states:

1. At least one value was removed during the constraint propagation, therefore
another constraint propagation is needed.

2. All variables have exactly one valid value left, therefore a solution is found.

At least one of the variables has no values left, therefore no solution exist.

4. No values were removed during the constraint propagation and at least one
variable still has at least two possible values.

w

States 1-3 are illustrated in the two examples below. State 4 needs to use search to
open up for more propagation, which is covered in section 2.2.

Example 1: Find a solution for the equation x < y where 0 < x and y < 3. First
the value sets of x and y are sufficiently large® {-100, ..., 100}. The three constraints
are a) x is greater than 0; b) y is less than 3; and ¢) y is greater than x. Propagating
the first constraint prunes the value set of x to {1, ..., 100}. Propagating constraint
two limits the value set of y to {-100, ..., 2} in the same way. Now propagating
the third constraint on variable x gives x = {1} and then propagating the same
constraint on variable y gives y = {2}. A solution is found!

Example 2: Find a solution for the equation x = y where 0 < x and y < 0. First
the value sets of x and y are sufficiently large {-100, ..., 100}. The three constraints
are a) x is greater than 0; b) y is less than 0; and ¢) y is equal to x. Propagating
the first constraint prunes the value set of x to {1, ..., 100}. Propagating constraint
two limits the value set of y to {-100, ..., -1} in the same way. Now propagating

'The size limit of the domain is usually specified in the problem model.

2.2. SEARCH IN CONSTRAINT PROGRAMMING

the third constraint on variable x gives x = { }. Variable x has no values left and
therefore no solution exists.

2.2 Search in Constraint Programming

When propagation alone is not enough to solve a constraint problem the constraint
solver must use search. Search in constraint programming systems has two impor-
tant dimensions. The first dimension is how the search tree should be described.
This is usually done with branching or labeling [9]. The second dimension is how
the search tree should be explored. This is usually achieved by a search strategy
or exploration strategy [9]. Two often used search strategies are depth-first search
(DFS) and branch-and-bound (BAB).

Branching is done when propagation cannot remove any more values. The con-
straint solver then decides which variable to branch on by applying the chosen search
strategy. When a variable is chosen it is assigned one of its remaining values (ran-
domly or by some selection rule). The removal of values during branching opens
up for more propagation. When the constraint solver branches on a variable it is
important that the state which it branches upon is saved so it can backtrack if no
solution should exist in the chosen branch of the search tree.

The constraint solver runs propagation until no more values can be removed and
then branching to open up for even more propagation. It continues in this pattern
until one of three states is found:

1. All variables have been assigned a value that does not violate any of the posted
constraints. A solution has been found.

2. Ome or more variables have no values left. This implies that a previous branch-
ing was incorrect which calls for a restart or backtracking.

3. The entire search tree is exhausted and no solution has been found. This
proves that no solution exists for the problem.

If the constraint solver reaches a dead end it can either restart from the top of
the search tree or backtrack to the state where the last branching was made. This
thesis will not explain restart and backtracking further but the curious reader is
directed to [11] for an extensive coverage of backtracking as well as restart. Below
is an example illustrating how branching works.

Example 3: Find a solution for the equation 2x = y where 0 < x < 10 and
0 <y < 10. First the value sets of x and y are sufficiently large {-100, ..., 100}.
The five constraints are a) x is greater than 0; b) x is less than 10; ¢) y is greater
than 0; d) y is less than 10; and e) y is twice the size of x. Propagating the first
constraint prunes the value set of x to {1, ..., 100} and the second constraint limits
it even further down to x = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Propagating constraint three
and four limits the value set of y to {1, 2, 3, 4, 5, 6, 7, 8, 9} in the same way.
Propagating the fifth constraint prunes all odd values from y, leaving it with y =
{2, 4, 6, 8}, and prunes all values that doubled are greater than 8 (or 9, depending
on which variable is pruned first) from x, leaving it with x = {1, 2, 3, 4}.

CHAPTER 2. BACKGROUND

Now the constraint solver can no longer remove any more values by propagating
the constraints and therefore needs to branch on a variable. By selecting variable
x and assigning it to the value of {1} the constraint solver is branching on the
assignment of x = {1}. If this later turns out to lead to a dead end and backtracks,
it will then try to assign one of the other values {2, 3, 4} to x. After branching the
constraint solver moves on and once again performs propagation. Now with x =
{1} propagating the fifth constraint leaves y with {2}. As the values of x and y still
adhere to the constraints and also only have one value left in their sets a solution
has been found!

2.3 Portfolio Search

Portfolio search is best understood by first defining and explaining what a portfolio
is through a finance analogy. A portfolio is a collection of assets that each has its
own return and risk and the portfolio aims to maximize the return while minimizing
the risk [3, 4]. The risk is often measured as the standard deviation of the return.
This is the fundamental functionality of a portfolio in any given situation. Using a
portfolio gives the investor the possibility to tailor the return and risk to his or hers
desires instead of putting all resources on one single asset [2]. Each added asset
may influence the return and risk of the portfolio depending on the size of the asset
and its own return and risk. When building a portfolio the investor needs to decide
on three factors a) the risk tolerance; b) the time frame; and ¢) the investment
objectives. Only then can a suitable portfolio be designed.

In the same way in constraint programming portfolio search aims to maximize
the return while minimizing the risk, where return is the inverse of its execution
time (the shorter the better) and its risk is the standard deviation of the return.
Portfolio search is used to run several instances of a constraint solver, each with
different heuristics and/or different random seeds, on the same problem. This way
portfolio search is able to explore the search tree in different ways at the same time
and the probability to find a solution faster is increased. There are two main types
of portfolio search [7], a) running each instance of the constraint solver in parallel
on a multi-core machine; and b) running them interleaved on a single-core machine.
Both types are designed, implemented and evaluated in this thesis.

The most common way to select an algorithm for a constraint solver is to have
several algorithms run over a given distribution of problems and take the algorithm
which had the lowest average runtime [5]. This approach focuses on having just one
instance of a constraint solver and does not take portfolio search into consideration.
It also does not favor the algorithms with poor average performance, even if they
present excellent performance on particular problems. But with portfolio search
it becomes possible to use these poor-on-average algorithms and have them cover
up each other’s weaknesses and even outperform the best-on-average algorithms
[5]. It has also been shown with concrete empirical results in [12] that even running
multiple instances of the same algorithm just given different random seeds on a given

10

2.4. GECODE

hard computational problem could improve performance significantly. It has also
been shown in [7] that portfolio search works especially well for the more risk-taking
algorithms.

2.4 Gecode

Gecode is an open, free, efficient constraint solving toolkit built on C++ [6]. Gecode
implements problem models as spaces which contain the variables, propagators and
branchers of the problem [13]. A propagator is the implementation of a constraint
and a brancher is the implementation of a branching describing the search tree. The
constraint solver takes the implemented problem model and then finds the solutions
(if any exist). But for most problems only propagation is rarely enough which calls
for an implementation of search with different search strategies.

2.4.1 Search in Gecode

Search in Gecode is implemented as and performed by search engines. Gecode has
implementations of both depth-first search (DFS) and branch-and-bound (BAB) as
search engines [14]. Both DFS and BAB in Gecode use backtracking. To use search
in Gecode the user must first create an object of the problem model which is then
given to the chosen search engine during its initialization. After the search engine
has been created the user can start using it to find solutions.

All search engines in Gecode are derived from the same base class EngineBase
which provides them all with the same interface. Therefore search engines in Gecode
have (at least) the following methods [14]:

o next(): A method that finds the next solution and returns it to the user. If
no more solutions exist NULL is returned.

o statistics(): A method that return a statistics object of the search tree. It
contains the number of nodes expanded, number of restarts, number of failed
nodes in the search tree, number of no-goods posted and the maximum depth
of the search stack.

o stopped(): A method that returns true if the search engine has been stopped
by a stop object, or false if it stopped when it found a solution (or exhausted
its search tree).

o nogoods(): A method that returns no-goods constraints. These constraints
are created from failures during search and can be used when restarting search
to avoid going down the same path in the search tree again.

2.4.2 Stop objects in Gecode

In Gecode there exist so called stop objects that can be used to limit the search
engine’s execution [14]. These stop objects are called by the search engines to
perform a validity check if the set limit is reached or not before the search engines

11

CHAPTER 2. BACKGROUND

expand a new node in the search tree. If the limit is reached it will stop the search
engine and a NULL solution is returned to the user.

There exist three predefined stop object types in Gecode [14], a) NodeStop,
which limits the number of nodes that can be expanded; b) FailStop, which limits
the number of failed nodes that can be in the search tree; and ¢) TimeStop, which
limits the execution time the search engine can explore the search tree. These three
stop object types are all derived from the base class Stop which provides them all
with the same interface. Therefore stop objects in Gecode have (at least) the stop()
method which performs the validity check and returns true if the limit is reached,
or false otherwise [14].

2.5 Case Studies

To verify the soundness and performance of the design and implementation of se-
quential and parallel portfolio search two case studies are performed. Each one cover
and test different aspects of the implementations. The first case study for the two
portfolio search variants is testing the soundness of the design and implementation.
The chosen problem for the first case study is the N-Queens puzzle and is described
in more detail in subsection 2.5.1. The second case study of the two portfolio search
variants is testing the performance compared to that of a single search engine. The
chosen problem for the second case study is the Latin Square Completion problem
and is described in more detail in subsection 2.5.2. This section provides the reader
with sufficient theoretical knowledge of the different chosen problems for the case
studies. But how the actual case studies are performed is described under their
respective sections in chapter 5 where the experimental evaluations are presented
and discussed.

2.5.1 Case Study: N-Queens

This case study focuses on the soundness of the design and implementation of the
two portfolio search variants. It tests that all solutions can be found and that
no solutions are ever lost. To be able to efficiently test this, a moderately difficult
combinatorial problem which could easily give a very large number of valid solutions
on fairly small problem instances is needed. One such problem is the combinatorial
problem known as the N-Queens puzzle which is a generalization of the 8-Queens
puzzle.

The 8-Queens puzzle is a problem where one must place 8 chess queens on a 8 x 8
chessboard without any one of them threatening the other [15]. Therefore a solution
cannot have two queens on the same row, column or diagonal. For the original 8-
Queens puzzle there exist 92 distinct solutions [16]. There are 12 fundamental
solutions that commonly represent these 92 solutions. That means that a solution’s
reflections and rotations are all counted as one fundamental solution. However, the
case study focuses on getting a very large number of solutions and therefore only 92

12

2.5. CASE STUDIES

distinct solutions will not suffice. Figure 2.1 show the valid movements of a queen
chesspiece (left) and a valid solution for 8-Queens (right).

[
A ([
[J
[
< > 2
®
o
v [
(a) Queen movement. (b) 8-Queens valid solution.

Figure 2.1: Figures showing the valid movements of a queen chesspiece and a valid
solution for 8 queens on a 8 x 8 chessboard.

The N-Queens puzzle is the same as the 8-Queens puzzle but instead of limiting
it to just 8 queens on a 8 x 8 chessboard it can take any number N of queens and
place them on the corresponding N x N chessboard. There exist solutions for all
natural numbers except for N=2 and N=3, due to the nature of the queens [16].
Table 2.1 show the number of solutions that exist for a given N ranging from 9 to 20.

Table 2.1: Table showing the total number of solutions for a given N for the N-
Queens puzzle. The values are taken from the more extensive study in [16].

N | Nr of solutions | N | Nr of solutions

9 352 | 15 2'279’184
10 724 | 16 14°772°512
11 2’680 | 17 95’815’104
12 14’200 | 18 666°090°624
13 73’712 | 19 4’968°057°848
14 365’596 | 20 | 39°029’188’884

As seen in table 2.1 the number of solutions increases quickly with the increase
of N, therefore making it a suitable test case for validation. Also Gecode already
has a complete problem model of the N-Queens puzzle as an example that is ready
to be used. Thus it guarantees that the implementation of the problem model is
sound?. It is also worth noting that the N-Queens puzzle is one of the benchmarks
used to compare backtracking algorithms [16].

2There is no need to verify that Gecode’s example programs are correct as they have surely
been tested thoroughly before they were released.

13

CHAPTER 2. BACKGROUND

2.5.2 Case Study: Latin Square

This case study focuses on the performance of the design and implementation of
the two portfolio search variants. It tests the performance in terms of execution
time and compares it with the execution time of a single search engine. To be
able to efficiently test this, a combinatorial problem that is fairly difficult even
on small problem instances and gets much harder as the problem size increases is
needed. A combinatorial problem that could adjust the level of difficulty only by
changing the given data set while keeping the same problem size would be ideal.
One combinatorial problem with such qualities is the quasigroup completion problem
for partially filled Latin Squares.

A Latin Square is an N x N array filled with N different symbols. Each symbol
is occurring exactly once in each row and exactly once in each column. An example
of a Latin Square with N=3 is shown in figure 2.2.

A|B|C
C|A|B
B|CJ|A

Figure 2.2: A small Latin Square with N=3 where the symbols are A, B and C.

Quasigroups are strongly related to Latin Squares, but before their relation can
be explained a definition of what a quasigroup actually is is needed. In [7] Gomes
defines a quasigroup as follows:

“A quasigroup is an ordered pair (@, -), where @ is a set and (-) is a
binary operation on @ such that the equations ¢ - x =band y-a = b
are uniquely solvable for every pair of elements a, b in (. The order N
of the quasigroup is the cardinality of the set @.”

By creating the multiplication table of a quasigroup of order N as defined by its
binary operation results in a N x N table. Each element of the quasigroup occurs
exactly once in each row and exactly once in each column in its multiplication
table because of the constraints of the quasigroup. This property ensures that the
multiplication table of a quasigroup is a Latin Square.

If a Latin Square is only partially filled it is called an incomplete or partial Latin
square. Its N x N array is then only partially filled where each symbol occurs
exactly once in each row and exactly once in each column.

The quasigroup completion problem [17] is to determine if a partially filled Latin
Square can be filled in such a way that it becomes a complete Latin Square, which
is also the multiplication table of the quasigroup. In [18] Colbourn proved that the
quasigroup completion problem is actually NP-complete. This matches the desired
qualities of the case study as it is easy to verify solutions (in polynomial time) to
NP-complete problems but very difficult to find them.

In [17] Gomes shows that the difficulty of solving a quasigroup completion prob-
lem of order N is heavily dependent on the number of preassigned values in its

14

2.5. CASE STUDIES

multiplication table. By only changing the fraction of preassigned values in a par-
tially filled Latin Square of order N Gomes found that the difficulty peaks when
the fraction of preassigned values is roughly 42%.

All the characteristics of the quasigroup completion problem make it a suitable
test case for the performance of portfolio search. Also Gecode already has a complete
problem model of the quasigroup completion problem as an example that is ready
to be used. Thus it guarantees that the implementation of the problem model is
sound?. However, the implementation in Gecode provides two different propagator
settings and two different branching settings. It also gives the option to use different
factors of tie-breaking as well as providing random seeds. In order to understand
the experiments with the quasigroup completion problem all these options must be
explained.

The two available propagator settings to the quasigroup completion problem
in Gecode are Binary and Distinct. Binary applies disequality constraints on the
variables which is unfortunately very weak [13]. Distinct applies distinct constraints
(also known as alldifferent) which enforces that each variable takes pairwise distinct
values from the other variables on each row and on each column in the Latin Square
[13]. The Distinct propagator is rather strong compared to the Binary propagator.

The two available branching settings are Size and AFC _Size. Size branches on
the variable which has the fewest values left in its set while the AFC_ Size setting
branches on a variable’s AFC_Size [13]. AFC stands for accumulated failure count
which is the number of times a propagator has failed during search. The AFC of
a variable is the sum of AFCs of all propagators that depend on the variable (it is
commonly known as the weighted degree of a variable). AFC__Size of a variable is
its AFC divided by its domain (the size of its set of values).

Tie-breaking rules are needed when two or more variables are equally good dur-
ing branching [13]. The default behavior for tie-breaking is to pick the first variable
that satisfies the selection criteria. But often this is not good enough. Tie-breaking
can have different selection criteria, such as most constrained variable or small-
est/largest domain. If it is still a tie between two or more variables, tie-breaking
can choose one of them either systematically by taking the first/last variable or do
it randomly. Until now only exact ties have been considered, but with the use of
tie-breaking limit functions the user is able to change that. A tie-breaking limit
function receives the worst merit value w and the best merit value b and returns a
value that determines which variables are considered as ties even if they are not ex-
actly equal. This is useful when the user wants to introduce a bit more randomness
in the branching strategy. The user specifies in the model how the returned value
shall be calculated, for example as %Ob which returns the average merit value.

Ezample: Take the four variables a, b, ¢ & d where a={1,2}, v={1,3,4,5},
c={2,3} and d={1,2,3,4,5,6} and where the tie-breaking is set to smallest domain
with random selection. If no tie-breaking limit function is used the constraint solver

3There is no need to verify that Gecode’s example programs are correct as they have surely
been tested thoroughly before they were released.

15

CHAPTER 2. BACKGROUND

will choose randomly between variable a and ¢, as they both have only 2 values in
their domains (merit value=2). But if it uses a tie-breaking limit function that
returns the average merit value % = 4.0 the constraint solver would now choose
randomly between variable a, b & c as all three of them have better or equal merit
values compared to the calculated limit.

Random seeds can be given to the search engines to have them generate different
random numbers, thus leading to different branching and selection choices between
the search engines [13]. This way variants of a problem can be easily produced for

several search engines when running with portfolio search.

16

Chapter 3

Designing Portfolio Search

This chapter guides the reader through the design process of portfolio-based search
(hereinafter called PBS) in Gecode. It starts with describing what design decisions
were made for the sequential round-robin variant in section 3.1 and then continues
with the parallel multi-threaded variant in section 3.2.

PBS is designed as a meta-engine (an engine of engines) which acts as a portfolio.
Its task is to monitor and control a given set of search engines. These search engines
are assigned a problem model which they are to find solutions for. If one of them
finds a solution, the search engine returns it up to PBS which in turn returns it up
to the user. The search engines run either in a sequential round-robin fashion (on
a single core) where each search engine shares the execution time or in a parallel
multi-threaded fashion (on multiple cores) where each search engine has its own
thread to execute in.

Both the sequential and parallel PBS variants have parts of their designs in
common. The common design is more general and focuses on how the interface
of PBS should work from a user perspective while sections 3.1 and 3.2 go more in
depth on their internal designs. The common specification for the two PBS variants
is as follows:

o PBS should have (at least) the same methods as EngineBase, but modified to
account for the number of search engines. Thus having the same interface as
normal search engines.

o PBS should take a set of search engines as an argument and use them to find
solutions for the given problem.

e Search engines provided to PBS should already be created and provided with
the problem model.

e PBS should provide each search engine with an equal amount of execution
time.

e The user should not be able to modify or control the internal workings of PBS
beyond what the methods of PBS allow and should be considered as a single
search engine.

e The user should be able to provide PBS with a global stop object.

17

CHAPTER 3. DESIGNING PORTFOLIO SEARCH

o The user should not try to access and/or modify search engines provided
to PBS other than allowed by PBSs methods. By doing so it will result in
undefined behavior.

3.1 Design of Sequential PBS

Sequential PBS is to run the provided search engines interleaved on a single core
in a round-robin fashion. Figure 3.1 illustrates the three layers of abstraction. To
the left is the topmost abstraction layer where the user has its program. It is here
that the problem model, search engines and sequential PBS are all created and
initialized. When the user calls the PBS:next() method (covered in subsection
3.1.1) the program enters the middle abstraction layer, which is that of sequential
PBS. Internally sequential PBS handles the round-robin structure and sees to that
its provided search engines run interleaved. When PBS:next () call one of the search
engine’s next () method the program enters the lowest abstraction layer, which is
that of a search engine. Internally the search engine is searching for a solution and
returns the result back up to PBS. The result is either a solution or a NULL value.
When PBS:next () has received a solution it returns it back up to the user.

User Level PBS Level Engine level
Creating instance of Initializing controlling Searching for a
problem model variables for round-robin solution
Initializing search Setting up round-robin l
engines e..eN structure __Returning found

solution
Initializine PBS with Iterating over search
el..eN & engines: or
ei->next()
—Returning NULL

Calling PBS->next()

; Returning found solution
for solutions

" back to user

Figure 3.1: Diagram illustrating the three layers of abstraction of a program using
sequential PBS as well as the program flow.

Only the design of the PBS:next() method is described because it is the only
method that receives significant changes in sequential PBS. The rest of the methods
are very similar to their single search engine counterparts and are therefore not of
interest.

18

3.2. DESIGN OF PARALLEL PBS

3.1.1 PBS:next()

In the sequential round-robin variant, each search engine gets its own equal slice
of every run cycle. A slice is a fixed amount of nodes that each search engine is
allowed to explore before stopping to let the next search engine in line run. When
all search engines have run their slice the cycle starts over with fresh slices and the
first search engine continues to run from where it first stopped. This continues until
either a solution is found or every search engine has exhausted their whole search
tree. A search engine can be stopped by four reasons:

1. It has explored the maximum number of nodes allowed in its slice.

2. It has found a solution and immediately stops and returns the solution to
PBS:next () (even if it has unused nodes left in its slice).

3. It has exhausted its search tree and immediately stops and returns NULL to
PBS:next () (even if it has unused nodes left in its slice).

4. When PBS itself is stopped by its own stop object. Then the currently running
search engine is stopped mid-slice by PBS:next () and the other search engines
are prevented to start running.

When PBS:next () receives a solution from the currently running search engine it
will prevent the other search engines to resume running and immediately return the
solution to the user. When PBS:next () receives NULL from the currently running
search engine it will not return NULL to the user. Instead PBS:next () lets the next
search engine in line resume running. Only when PBS:next () receives NULL from
all search engines (which implies that all search trees are exhausted) will it stop and
return NULL to the user!. This design decision was made in order to be able to check
that all search engines can find all solutions, i.e. that no solutions are lost. The
intention is that the user should be able to enable/disable this feature as it could be
in the user’s interest to run several different problems with portfolio search at the
same time. Due to time constraints it has not been implemented in the prototypes
but it should be implemented in a future version.

The PBS:next () method can be called again after returning a solution or after
the stop object for PBS has been updated. When it is called again the search engine
who last returned a solution or was stopped mid-slice will resume running. Because
of this each search engine will use up its full slice each cycle and make the round-
robin fair. The only exception is when a search engine has exhausted its search
tree and can no longer search, it will then always return NULL when prompted for a
solution simply because there are no more solutions to be found in its search tree.

3.2 Design of parallel PBS

The design of parallel PBS is more complicated. Parallel PBS is to run the provided
search engines in parallel on multiple cores, each one in its own thread. Once the

'This design decision will have a negative impact only when running on a problem instance
that do not have any solutions at all.

19

CHAPTER 3. DESIGNING PORTFOLIO SEARCH

search engines are running in their threads PBS has no direct control over them
contrary to the sequential variant. Because of this many new problems have to be
solved. Some of the more crucial problems are:

e To get every search engine to run in parallel.

e To stop the running search engines from PBS.

e To find a good structure for the communication that ensures that no messages
or solutions are lost.

Figure 3.2 illustrates the four layers of abstraction. To the left is the topmost
abstraction layer where the user has its program. It is here that the problem model,
search engines and parallel PBS are all created and initialized. When the user
calls the PBS:next () method (covered in subsection 3.2.1) the program enters the
upper middle abstraction layer, which is that of parallel PBS. Internally parallel
PBS handles the parallel structure, creates threads and sees to that the provided
search engines run in them. When the threads are started PBS:next() does not
have any direct control over the threads (that is why their arrows are dashed) and
therefore waits for a signal from one of the threads. The threads run in the lower
middle abstraction layer where they call the search engine’s next () method and
communicate with PBS:next(). When a thread calls its search engine’s next ()
method the program branch enters the lowest abstraction layer, which is that of a
search engine. Internally the search engine is searching for a solution and returns
the result back up to the thread. The result is either a solution or a NULL value
and the thread signals PBS:next () accordingly. When PBS:next () has received a
solution from the shared queue (covered in 3.2.1) it signals all other threads to stop
and then returns the found solution back up to the user.

User Level

PBS Level

Thread Level

Engine level

Creating instance of
problem model

Initializing search
engines el...eN

Initializing controlling
variables for parallel

Setting up signal system

v

Start search engines

1
i
I
1
1

1

Setting up signal
system

Call search
eni,ine's next()
store solution inﬁ

-shared queue and

v

Searching for a
solution

Returning found
solution

or

el..eN in separate threads,”|

Initializing PBS with signal
el..eN S
Wait for signal <. | or Returning NULL
Calling "
PBS->next(| _Returning found solution "] _signal that next()
for solutions back to user returned NULL

Figure 3.2: Diagram illustrating the four layers of abstraction of a program using
parallel PBS as well as the program flow and communication.

Only the design of the PBS:next() method is described because it is the only
method that receives significant changes in parallel PBS. The rest of the methods

20

3.2. DESIGN OF PARALLEL PBS

are very similar to their single search engine counterparts and are therefore not of
interest. The signal protocol is also described briefly in 3.2.2.

3.2.1 Parallel PBS:next()

PBS has a next () function which when called returns the next found solution (or
NULL if no more solutions exist). In the parallel multi-threaded variant, each search
engine get its own thread to run in. All search engines also share access to a shared
protected queue where they put found solutions where PBS:next() can retrieve
them later. All search engines run like this in parallel until one of them finds a
solution or every search engine has exhausted their search tree. A search engine can
be stopped by four reasons:

1. It has found a solution and immediately puts the solution in the shared
protected queue where PBS:next() can retrieve it later. It then signals
PBS:next () and terminates its thread.

2. It has exhausted its search tree and immediately signals PBS:next () without
putting anything in the shared protected queue. It then terminates its thread.

3. It receives a stop signal from PBS:next() which means that another engine
has already found a solution. It then signals back to verify and terminates its
thread.

4. When PBS itself is stopped by its own stop object. Then naturally all running
search engines are stopped mid-search by PBS:next() and they all signal
PBS:next () and then terminate their threads.

When a search engine finds a solution it is stored in the shared protected queue
where PBS:next () can retrieve it later. It then signals PBS:next () to alert it to
the newly found solution and terminates its thread. PBS:next() then sends out
stop signals to every search engine and then retrieves the solution from the shared
protected queue and returns it to the user.

The PBS:next () method can be called again after returning a solution or after
the stop object has been updated. When this happens PBS:next () first checks in
the shared protected queue if there are any solutions there®. If there is, it simply
returns the first solution in the queue. This continues for each successive call to
PBS:next () until there are no more solutions in the queue, it then restarts all search
engines in threads and waits for them to find a new solution and signal PBS:next ().

The exception is when a search engine has exhausted its search tree. It then
signals PBS:next () without putting anything in the shared protected queue and
then terminates its thread. PBS:next() then checks the queue and sees that it
is empty and instead of returning NULL to the user it remembers that one search
engine is finished and continues to wait for a solution. It is first when all search
engines have exhausted their search trees, signaled PBS:next () and terminated their

2 As all search engines run in parallel in separate threads it can happen that two or more threads
receive found solutions from their search engines at the same time and put the solutions in the
shared protected queue before receiving a stop signal from PBS:next ().

21

CHAPTER 3. DESIGNING PORTFOLIO SEARCH

threads that PBS:next () knows that all search engines are finished. As the shared
protected queue is still empty PBS:next () knows that there are no more solutions
to be found and only then returns NULL to the user. This design decision was made
in order to be able to check that all search engines can find all solutions, i.e. that
no solutions are lost. The intention is that the user should be able to enable/disable
this feature as it could be in the user’s interest to run several different problems
with portfolio search at the same time. Due to time constraints it has not been
implemented in the prototypes but it should be implemented in a future version.

3.2.2 Parallel Communication Protocol

Because the PBS:next() method and the search engines execute in separate threads
a communication protocol is designed. A master-slave structure is used. This
means that each slave thread with a search engine communicates only with the
master thread, which is PBS:next (), while the master thread communicates to all
slave threads with search engines. A master-slave structure is easy to design and
implement but could potentially become a bottleneck. But as it is highly unlikely
that the normal user will have enough cores to run with so many search engines in
separate threads that it actually becomes a problem it is completely outweighed by
the simplicity of the structure.

Figure 3.3 illustrates the communication protocol with two search engines. It
starts with the initialization of PBS and continues until PBS:next () returns the
solution one of the search engines found. It then continues illustrating what happens
when a second call to PBS:next () is made. As is shown in the figure PBS:next ()
creates the threads and then waits for a signal from one of them. When a signal
is received PBS:next () signals the other thread to stop and wait for a verification
signal. When PBS:next () gets the verification it can safely return the found solution
to the user as all other threads have terminated, thus not leaving residue threads
behind. When PBS:next () is called a second time it creates new threads again and
the search engines pick up where they left (as it was just the threads that were
terminated while the search engines kept their states in their own objects).

Actually Gecode keeps a pool of threads ready so the threads are not created
and destroyed all the time but instead fetched from and released back to Gecode’s
own thread pool [19]. This speeds up the thread handling process significantly.
Gecode provides abstractions for parallel programs to make it easier for the user.
Gecode already has implemented classes for mutexes, locks, signaling events, thread
handling and runnable interfaces (to name those that concern this thesis).

Mutexes are used for protecting critical areas in the code, for example access to
shared data structures. Only one thread can have access to the mutex at any time,
if other threads try to take it they are blocked until the thread holding the mutex
releases it. Locks are a sort of add-on to mutexes which only makes sure that a
mutex is released after the end of the current scope in the code

Signaling events are objects that threads can wait and signal. When the event
receives a signal it increments a counter inside it by one. When a thread waits on

22

3.2. DESIGN OF PARALLEL PBS

the event the same counter is decreased by one, but the counter can never go below
zero. So if the counter is at zero and a thread waits on the event it is blocked until
another thread signals the event.

For an object to be able to run in its own thread it must extend the Runnable
class and have a run() method. When an object is given to a thread its run method
is executed by the thread. When the run method is finished the thread destroys
the object and is then released back into the thread pool.

User creates

parallel PBS
LTl
sercal 7 niaizeand | Evem |
PBS:next() 1 create Event

== >IThread with first
search engine

Create thread with
search engine

Thread with second

Call search search engine
! | engine's next() g

Create thread with
search engine

»

Wait for signal (blocking)'

E Call search
'_¢—| engine's next()

Found solution.

E Received signal Sianal - Store it in queue.
' ignal i :
! (unblocked) g Signal PBS:next()
"""""""""" g ; Terminate
Fetch solution ' self
Stop other thread ! : Received stop
Stop signal . » command.
R X —r . . Signal back
Return solution Wait for signal (blocking) | | . Signal
to user B A S 7 ; i
q—l;r: Received signal ! Tel;mlnate
' (unblocked) ! T se
User call TTTTTTTTTeTTmmmmTes 1:"'>Thrc-3adwithﬁrst
PBS:next() a Create thread with search engine
second time search engine ! .

Figure 3.3: Diagram illustrating the communication protocol in action using parallel
PBS with two search engines. It starts with the initialization of parallel PBS and
continues until a solution is returned to the user. Then it continues illustrating
what happens when a second call to PBS:next() is made.

23

Chapter 4

Implementing Portfolio Search

This chapter explains how the implementation of PBS was done in Gecode. First
section 4.1 explains how the sequential variant of PBS was implemented and how it
started with the most basic case. It then shows step by step in each subsection how
the implementation evolved to its final state. Section 4.2 continues with explain-
ing the implementation of the parallel variant of PBS in the same manner as the
sequential one. All code segments illustrated in this chapter have been reduced to
C++-like pseudo code in order to highlight the structure instead of the exact C++
syntax. As the chapter describes the implementation incrementally, code that has
not changed between iterations are omitted with “..” to highlight only the changes
which were made. The complete source code for both PBS variants can be found
in appendix B.

4.1 Implementation of Sequential PBS

As the sequential PBS was designed first it was also implemented first. The subsec-
tions that follow explain in more detail the different steps and key-structures of the
implementation. The first step was to implement the most basic case with only two
search engines that worked in a round-robin fashion and could return the first found
solution. In order to succeed with it a stop object of type NodeStop was created to
control the round-robin structure. The second implementation step was to get the
two search engines to find all solutions in their respective search trees. This was
done to be able to verify that no solutions are ever lost. The third implementation
step was to generalize it so that PBS can take any number of search engines as input
and run round-robin with all of them. The fourth implementation step was to give
PBS the option to have a global stop object. For this a stop object wrapper was
created that encapsulates both the round-robin controlling NodeStop object as well
as the optionally provided global stop object. The fifth and last implementation
step was to look over the other methods that a search engine should have such as
statistics(), nogoods() and stopped() and see that they worked properly with
all earlier implementation steps.

25

CHAPTER 4. IMPLEMENTING PORTFOLIO SEARCH

4.1.1 PBS:next() with 2 Search Engines for One Solution

The round-robin functionality is implemented using a stop object of type NodeStop.
Using a NodeStop object instead of FailStop or TimeStop is motivated in the two
following sentences. NodeStop would be fairer than FailStop because FailStop is
unpredictable and could lead to some search engines choosing the “right” branch
and then get long runs while another search engine choosing a “bad” branch would
hit failed nodes almost instantly and then have to stop. NodeStop would give finer
resolution than TimeStop because with TimeStop the search engines would depend
on how long they execute and on small problems they find solutions so quickly that
it would be difficult to set so short execution times due to the imprecision of the
timer while NodeStop would be able to control them down to one node each for
every cycle.

The controlling NodeStop object is given to both search engines and is therefore
able to control them. More specifically NodeStop objects check how many nodes
have already been expanded in a search tree and compares it with the given limit
before the search engine can expand the next node. If that number exceeds the
limit NodeStop stops the search engine from expanding further nodes and makes
the search engine return NULL.

Note: Any other stop object given to the search engines by the user prior to
creating a PBS object are overwritten with the controlling NodeStop object. If the
user were to change the stop object of one of the search engines from the outside
later on the behavior would be undefined.

As each search engine is initialized with its own variant of the problem they
all get their own individual search trees and can therefore not interfere with each
other. If they were to share the same copy of a search tree the behavior would be
undefined. Figure 4.1 shows the first implementation of the PBS:next () method
where it returns the first found solution (not taking into account the scenario that
no solutions exist). First search engine 1 (el) runs by calling its next () method
(where it searches for a solution in its search tree) and return the result. If a
solution is found el immediately returns it to PBS:next () which in turn returns it
up to the user and stops. If el is stopped by the NodeStop stop object (so) the
returned value is NULL. In that case the second search engine (e2) runs. If it also
is stopped before it finds a solution the execution cycle is finished. The NodeStop
object then increases its limit by 10 nodes and the next execution cycle begins where
el continues to run. The NodeStop limit was chosen to be 10 nodes to get a fine
granularity on the slices in each execution cycle.

4.1.2 PBS:next() with 2 Search Engines for All Solutions

In order to find all existing solutions for a given problem the user needs to repeatedly
call PBS:next () and receive one solution at a time until he/she receives NULL. But
for PBS:next () to be able to return NULL it is crucial for it to recognize when a
search engine has exhausted its search tree. Otherwise it would just continue on

26

4.1. IMPLEMENTATION OF SEQUENTIAL PBS

next () {

returned = NULL;

while (true){
// Engine 1
returned = el—>next ()
if (returned != NULL){

return returned;

}

// Engine 2

returned = e2—>next ()

if (returned != NULL){
return returned;

}

// Increasing NodeStop object limit by 10
so—>limit (10);

}

return returned;

)

)

}

Figure 4.1: Code segment illustrating the first implementation of the round-robin
structure in sequential PBS:next () where the first found solution is returned (ig-
noring the scenario where no solutions exist). The NodeStop stop object (so) is
created in PBSs constructor and given to the search engines.

forever asking el and e2 for solutions where no more solutions exist (as a search
engine returns NULL if the search tree is exhausted).

Figure 4.2 shows the second implementation of the PBS:next () method where
it can find all solutions (also taking into account the scenario that no solutions ex-
ist). Building onto the first implementation of PBS:next () by adding an additional
clause right after el and e2 have run their execution slices solves this problem. The
clause checks if both el and e2 have not been stopped by any stop object. If el
or e2 had found a solution this clause would not have been reached as PBS:next ()
would have returned the solution and stopped. If neither el nor e2 found a solution
(thus returning NULL) and did not get stopped by a stop object there are no more
solutions to be found. Thus PBS:next () can be guaranteed that no more solutions
exists and return NULL back to the user!.

Note: When a second call is made to PBS:next () the search engine who found
the previous returned solution continues to run. This is automatically taken care
of due to the structure of the code. If el found the previous solution it still has
some of its execution slice left (unless it found the solution in its last node). So
when PBS:next () is called again el continues to run. But if it was e2 who found
the solution el tries to run but is immediately blocked by the NodeStop object and

'"Reminder: This design decision was made to later be able to verify that all search engines can
find all solutions and that no solutions are ever lost in the communication.

27

CHAPTER 4. IMPLEMENTING PORTFOLIO SEARCH

next () {
returned = NULL;
while (true){

// Are both finished?

if (el—>stopped () = false and
e2—>stopped () == false){
break;

}
-

return returned;

}

Figure 4.2: Code segment illustrating the second implementation of the round-robin
structure in sequential PBS:next () where all solutions can be found (also solving
the scenario where no solutions exist).

then e2 continues executing in its remaining execution slice.

4.1.3 PBS:next() with N Search Engines

For PBS to be able to run with any number of search engines the structure needs
to be changed in several places. First the constructor that previously took two
pointers to search engines now needs to take a vector of pointers to search engines.
Second the PBS:next () method needs to be generalized for taking into account the
unpredictable amount of search engines.

Figure 4.3 shows the third implementation of the PBS:next () method where it
can find all solutions and also run any number of search engines in a round-robin
fashion. A for-loop iterating over all search engines (engines[i]) lets each of them
run its execution slice in turn. If a search engine finds a solution it immediately
returns it to PBS:next () which in turn returns it to the user and stops as in the
previous implementations. Furthermore if PBS:next () is called a second time the
last active search engine continues to run. To check if all search engines have
exhausted their search trees an additional for-loop is required to count how many
of them have done so. If the number of exhausted search trees are equal to the
number of search engines (NR_ENGINES) PBS:next () returns NULL back to the user.

4.1.4 Global Stop Object for PBS

Apart from the NodeStop stop object, the user should also be able to provide
PBS with its own global stop object. This complicates matters as there are now
two different stop objects that must be obeyed but a search engine can only have
one. Furthermore the global stop object must have precedence over the round-

28

4.1. IMPLEMENTATION OF SEQUENTIAL PBS

next () {
returned = NULL;
while (true){
// Run each search engine in turn
for(i = 0; i < NR_ENGINES; i++){
returned = engines|[i]—>next ();
if (returned != NULL){
return returned;

}

// Check if all search engines have exhausted their
// search trees
for(i = 0, count = 0; i < NR_ENGINES; i++){
if (engines[i]—>stopped () = false){
count+4-+;
}
if (count = NR_ENGINES){
return returned;

}

}

return returned;

}

Figure 4.3: Code segment illustrating the third implementation of the round-robin
structure in sequential PBS:next () where any number of search engines can be run
with PBS.

robin controlling NodeStop object as it controls the entirety of PBS. Therefore the
creation of a stop object wrapper class is needed (hereinafter called Stop Wrapper).
The StopWrapper class inherits from the base class Stop and is therefore treated
as a regular stop object. It takes two stop objects as input parameters and then
when it is called it first checks the global PBS stop object if it should stop (if PBS
was provided with one). If not, it then checks the round-robin NodeStop object if
it should stop. If not, it returns false. If any of them returns true it also returns
true. This way PBS can use several stop objects on its search engines by putting
them in the wrapper stop object, one for controlling round-robin and one optional
for the entire PBS engine.

The StopWrapper class is a private internal class inside PBS and is therefore
hidden from the user and protected from outside use. As the global stop object
needs to make decisions on the statistics of the entire PBS the statistics of all
search engines need to be summed up together and updated for each new node
expanded. This requires some special methods that a normal stop object does not
have in order to handle the complexity of two stop objects. A short explanation of

29

CHAPTER 4. IMPLEMENTING PORTFOLIO SEARCH

the methods is given in the following list.

o setOldStats(): Takes the current statistics from the active search engine and
copies them. This is to have a reference point in order to take the difference
in statistics after each new expanded node.

o update(): Takes the current statistics from the active search engine and adds
the difference of the new and old statistics to the total statistics of PBS. It
then calls the set01dStats () method to set the current statistics as reference
point for the next expanded node.

o resetstatus(): It resets the boolean status to false for both the NodeStop
object and the global stop object. This is to ensure it starts with the right
configuration when PBS:next () is called.

o stop(): This is the only method a stop object must have. It is the method
that is called right before a search engine expands a node to check if the search
engine should be stopped or not. This method has been modified to account
for the use of two stop objects, their precedence as well as updating the total
statistics of PBS.

o enginestop(): This method returns a pointer to the NodeStop object so
PBS:next () can update the limit for the round-robin structure.

o enginestopped(): Checks whether the NodeStop object stopped a search
engine.

o pbsstopped(): Checks whether the global stop object stopped a search en-
gine. If so the entire PBS:next () method should stop and return NULL to the
user.

Figure 4.4 shows the changes in PBS:next () to account for the StopWrapper ob-
ject in the fourth implementation. In the beginning of PBS:next () the StopWrapper
(so in the code) resets the status of the two stop objects inside it. Inside the for-loop
right before the active search engine calls its next () method the StopWrapper must
call its oldstats() method on it. Then directly after the StopWrapper must also
update the statistics by calling the update () method. An additional clause is also
present after these three lines of code. That clause checks if the global stop object
stopped the search engine. If that is the case PBS:next () returns NULL back to the
user. The last change is the line where the NodeStop object limit is updated. The
result is the same as before even though the call is a bit longer.

4.1.5 Other Methods in PBS

The other methods that PBS has are statistics(), nogoods() and stopped().
The statistics() method just adds each of the search engines own statistics into
one collected statistics object and then returns it up to the user. The nogoods()
method was deemed unnecessary for this prototype. Therefore it has not been
implemented so it just returns NULL whenever the user calls it. The stopped()
method checks whether PBS has been stopped by its global stop object and returns
the answer. If no global stop object has been given to PBS false is returned.

30

4.2. IMPLEMENTATION OF PARALLEL PBS

next () {
so—>resetstatus ();
returned = NULL;
while (true){
for(i = 0; i < NR_ENGINES; i++){
so—>setOldStats (engines [i]—>statistics ());

returned = engines|[i]—>next ();
so—>update (engines [i]->statistics ());
if (so—>pbsstopped () = true){

return returned;
}

}

// Increasing NodeStop object limit by 10
so—>enginestop()—>1imit (10);

}

return returned;

}

Figure 4.4: Code segment illustrating the added changes in the fourth implementa-
tion of PBS:next () for using a stop object wrapper class to be able to use multiple
stop objects in the search engines.

4.2 Implementation of Parallel PBS

As the parallel PBS was designed last it was also implemented last to take advantage
of and build upon the common parts from the sequential variant. The subsections
that follow explain in more detail the different steps and key-structures of the im-
plementation. The first step was to make search engines able to run in their own
thread. Therefore a run_wrapper class was created to encapsulate a search engine
to give it a run() method so that it could run in its own thread. The second
implementation step was to implement the most basic case with only two search
engines that worked in parallel and could return the first found solution. The third
implementation step was to make PBS able to stop the second search engine after
the first one had found and returned a solution. In order for it to work a modified
stop object class was created that contains a pointer to a control variable which the
search engines check before exploring a new node. The fourth implementation step
was to address the possibility of a race-condition when two search engines find a
solution at the same time and both of them try to return it to PBS. In order to
solve this, a shared solution-queue was created that is accessed through a mutex,
therefore guaranteeing safety. The fifth implementation step was to get the two
search engines to find all solutions in their respective search trees. This was done
to be able to verify that no solutions are ever lost. The sixth implementation step
was to generalize it so that PBS can take any number of search engines as input
and run them all in parallel. The seventh implementation step was to give PBS the

31

CHAPTER 4. IMPLEMENTING PORTFOLIO SEARCH

option to have a global stop object. For this to work the modified stop object class
had to be changed to account for the second optional stop object. The eighth and
last implementation step was to look over the other methods that a search engine
should have such as statistics(), nogoods() and stopped() and see that they
worked properly with all earlier implementation steps. The last subsection explains
briefly how this implementation avoids getting stuck in deadlocks.

4.2.1 Run Wrapper

Gecode provides a pool of available threads and takes care of all the management
around it so the user does not have to bother with creating and destroying threads
[19]. The only thing needed for an object to run in its own thread is that the object
must have a run() method that the thread can execute. But since search engines
normally do not have a run() method a run_wrapper class was created to solve
that.

Figure 4.5 shows the first implementation of the run_wrapper class in its most
basic form. The run_wrapper class is a private internal class inside PBS and is
therefore hidden from the user and protected from outside use. The constructor
takes a pointer to a search engine, a pointer to an event and a pointer to a shared
solution variable and stores them in its own local variables. When a run_wrapper
object is created and given to a thread the thread executes the run () method. In the
run () method the search engine’s next () method is called, which starts the search.
When next () returns a solution (or NULL) the run_wrapper then puts the result
in the shared_solution variable, signals the main thread through the event that a
solution (or NULL) has been found and then terminates. This first implementation
ignores the possible race-condition created by having an unprotected shared variable
to keep it as simple as possible in the beginning.

class run_wrapper : public Support:: Runnable {
public:
e;
event ;
shared__solution;

run__wrapper (e, event, shared_solution) {}

run () {
result = e—>next ();
shared__solution = result;

event—>signal (); // Signal main thread

}

}s

Figure 4.5: Code segment illustrating the first version of the run_wrapper class.

32

4.2. IMPLEMENTATION OF PARALLEL PBS

4.2.2 PBS:next() with 2 Search Engines for One Solution

The implementation started out similar to the sequential variant. Two search en-
gines were considered for the first prototype to keep the problem size small and
manageable, which was even more important considering the devious nature of
multi-threading. As each search engine is initialized with its own variant of the
problem they all get their own individual search trees and can therefore not inter-
fere with each other. If they were to share the same search tree the behavior would
be undefined. Figure 4.6 shows the first implementation of the PBS:next () method
where it returns the first found solution. Because of the parallel structure of the
program, each search engine had to run in its own thread. With the help of the
run_wrapper class each search engine got its own run () method and could therefore
run in separate threads. When the threads have been started PBS:next () waits for
one of the threads to signal the event which indicates that a solution has been found.
When it is signaled the found solution is retrieved from the shared_solution vari-
able and then returned to the user.

Note: As the solutions are complex objects it is actually the pointer to the
solution that is stored in the shared_solution variable and not the solution object
itself.

next () {
returned = NULL;
// Create run_wrappers for the engines and start
// them in separate threads.
Gecode :: Support :: Thread :: run(
new run_wrapper(el, event, shared_solution));
Gecode :: Support :: Thread : : run (
new run_ wrapper(e2, event, shared_ solution));

// Wait for search engines to find a solution
event—>wait ();

returned = shared_solution;

return returned;

Figure 4.6: Code segment illustrating the first implementation of the parallel struc-
ture in parallel PBS:next () where the first found solution is returned (ignoring the
possible race-condition created by the unprotected shared_solution variable).

4.2.3 Control Stop Object for Search Engines

That PBS:next () could return the first found solution (or NULL if no solutions exist)
was a good start. But it was really important that PBS:next () could stop the execu-
tion of the search engines. Because when one search engine has found a solution and
notified PBS:next () about it through signaling the event, PBS:next () should stop

33

CHAPTER 4. IMPLEMENTING PORTFOLIO SEARCH

all other search engines before returning the solution back to the user. The combina-
tion of a modified stop object class (hereinafter called moddedStopObject), a global
shared command variable (hereinafter called PBS Command) as well as a global
shared command mutex (hereinafter called command__mutez) turned out to be the
best solution for this problem. The moddedStopObject class inherits from the base
class Stop and is therefore treated as a regular stop object. The command_mutex is
needed to protect PBS_Command during read/write operations in order to avoid race-
conditions. The structure of this communication is that PBS:next () only writes
commands to the PBS_Command and the search engines only read from it. Aside
from the creation of the moddedStopObject class some minor changes were also
needed in the PBS:next () method.

Figure 4.7 shows the first implementation of the moddedStopObject class where
PBS_Command and command_mutex give the search engines the ability to read the
commands. The moddedStopObject class is a private internal class inside PBS and
is therefore hidden from the user and protected from outside use. Every time the
moddedStopObject’s stop() method is called by the search engine it first acquires
the command_mutex, checks the current command, releases the command_mutex and
then return true (if it should stop) or false (if it should continue) back to the search
engine.

As the stop mechanism was implemented as a stop object every search engine
checks if it should stop or continue before exploring each new node. This results
in the PBS_Command being seen almost immediately when a new command is given.
This structure also leaves the door open for future designs and implementations
with additional commands.

In figure 4.8 only the changes done in PBS:next() are shown. By acquiring
the command_mutex, changing the command in PBS_Command and then releasing
the command_mutex, PBS:next () gets the ability to stop the search engines. After
changing the command to 1, PBS:next () must wait for the second search engine
to stop before it can return the solution to the user. This is because if it does not
wait for the other search engine to finish and signal the event, that signal will be
left on the event. The next time PBS:next () is called it will then get the residue
signal from the last call which will result in undefined behavior.

4.2.4 Parallel Queue for Solutions

When PBS:next () could return the first found solution (or NULL if no solutions
exist) and also could stop the other search engine the next step was to find all
existing solutions. But in order to do that the existing implementation with an
unprotected shared_solution variable is not enough as solutions could poten-
tially be partly overwritten (resulting in garbage and undefined behavior) or com-
pletely overwritten (resulting in lost solutions)?. Adding a mutex for protecting

the shared_solution variable only prevents the solutions to be partly overwritten.

2Actually the pointers to the solutions. Not the solution objects themselves.

34

4.2. IMPLEMENTATION OF PARALLEL PBS

class ModdedStopObject : public Search::Stop {
protected:
command_ mutex ;
PBS_Command ;

public:

bool stop (...) {

command_ mutex—>acquire ();

/* 1 == stop | 0 == go on */

if (+PBS_Command = 1) {
command_mutex—>release ();
return true;

¥

command_ mutex—>release ();

return false;

}

~ModdedStopObject (void) {}

}s

ModdedStopObject (command_mutex, PBS_Command) {}

Figure 4.7: Code segment illustrating the first implementation of the modified stop
object class for giving PBS:next () the ability to stop the search engines through a
shared PBS_Command variable protected by a shared command_mutex.

next () {

// Change PBS command to stop
command_mutex—>acquire ();

/* 1 == stop | 0 == go on */

PBS_ Command = 1;

command_ mutex—>release ();

// Wait for other search engine to stop
event—>wait ();

return returned;

Figure 4.8: Code segment illustrating the second implementation of the parallel
structure in parallel PBS:next () where the first found solution is returned and the
other search engine is stopped (still ignoring the possible race-condition created by

the unprotected shared variable).

35

CHAPTER 4. IMPLEMENTING PORTFOLIO SEARCH

But a solution could still be completely overwritten if two search engines write their
solutions to shared_solution before the main thread get hold of the mutex and
retrieves the solution. Therefore to counter the possibility of lost solutions a queue
class was created. The queue class is called PBS_queue and it replaces the global
shared_solution variable. But it still needs to be protected by a mutex in order
to guard against race-conditions.

PBS_queue is a simple FIFO queue implementation with only two methods,
push () and pop(), and is tailored for handling solutions. The queue has two node
pointers to keep track of the first and last nodes in the queue. Each node in the
queue contains a pointer to a found solution and a pointer to the next node. Should
the queue be empty and a call to pop() is made the returned value is NULL. The
PBS_queue class is a private internal class inside PBS and is therefore hidden from
the user and protected from outside use. The complete source code for PBS_queue
can be found in appendix B along with the rest of parallel PBS.

4.2.5 PBS:next() with 2 Search Engines for All Solutions

In order to find all existing solutions for a given problem the user needs to repeatedly
call PBS:next () and receive one solution at a time until he/she receives NULL. For
parallel PBS:next () to be able to provide this functionality there are several aspects
that must be taken into account. First it needs to be able to store found solutions
that have not yet been retrieved. This is accomplished by using the PBS_queue
implemented in the previous subsection instead of the shared_solution variable.
The calls to PBS_queue must also be protected with a mutex (hereinafter called
solution_mutex) to ensure safety. PBS:next() also needs to keep track on how
many of the search engines have exhausted their search trees. Lastly PBS:next ()
must be able to handle the scenario that a search engine returns NULL (indicating
that its search tree is exhausted) and then keep waiting for the other search engine
to return either a solution or NULL before returning it to the user. This is because
according to the design decisions it should not return NULL back to the user before
every search engine has exhausted its search tree®. To account for all these new
requirements, changes were made in the run_wrapper class, in the PBS:next()
method as well as in the global scope.

The run_wrapper class only got a minor change as illustrated by figure 4.9.
The only change is the addition of a clause checking if the found solution is NULL
or not. If it is not, then the solution is stored in the queue safely by acquiring the
solution_mutex right before and releasing it just after.

There were some larger changes in the PBS:next () method this time. Figure
4.10 shows the third implementation of the PBS:next () method where it can find
all solutions with two search engines. The first addition is in the beginning where
it acquires the solution_mutex, pops a solution from the queue and then releases
the mutex. If there is an already found solution in the queue, it returns it back

3Reminder: This design decision was made to later be able to verify that all search engines can
find all solutions and that no solutions are ever lost in the communication.

36

4.2. IMPLEMENTATION OF PARALLEL PBS

class run_wrapper : public Support:: Runnable {
public:
run () {
result = e.next ();

if (result != NULL) {
solution__mutex—>acquire ();
queue—>push (result);
solution__mutex—>release ();

}

event—>signal (); // Signal main thread

}

}s

Figure 4.9: Code segment illustrating the second version of the run_wrapper class
with mutex-protected access to a solution queue. The shared_solution variable
was replaced with a pointer to the PBS_queue and a solution_mutex was added to
protect the access.

to the user and stops. If the queue was empty, NULL is returned and PBS:next ()
continues with creating run wrappers for the search engines and starting them in
their threads. After that the second addition takes place. First PBS:next () waits
for a signal on the event. When a signal is received it checks if a solution is in the
queue. If yes, it retrieves it, tells the other search engine to stop and then waits
for it to signal. Then it returns the solution to the user. If not, it now knows
that one of the search engines has exhausted its search tree and PBS:next () must
therefore wait for a signal from the other search engine. When the other search
engine signals the event PBS:next () once again tries to receive a solution from the
queue and then return it to the user. This time it does not matter if it is a solution
or NULL. This way PBS:next() is guaranteed to only return NULL if both search
engines have exhausted their respective search trees.

Note: When a second call is made to PBS:next () all search engines continue
where they were when they were stopped by PBS:next () (or last found a solution).

4.2.6 PBS:next() with N Search Engines

For PBS to be able to run with any number of search engines the structure had to
be changed in several places. First the constructor for PBS that previously took
two pointers that point to search engines now had to take a vector of pointers
that point to search engines. Second two global counters, finished_threads and
stopped_threads, are necessary for PBS:next () to be able to keep track on how
many search engines have finished and how many have been stopped. This calls
for some minor changes in the run_wrapper class. Finally the PBS:next () method
had to be generalized for taking into account the unpredictable amount of search

37

CHAPTER 4. IMPLEMENTING PORTFOLIO SEARCH

next () {

// Check if there exzist already found solutions
// in queue. If yes, return said solution.
solution__mutex—>acquire ();

returned = queue—>pop ();
solution__mutex—>release ();

if (returned != NULL) {

return returned;

}

event—>wait ();
solution_mutex—>acquire ();
returned = queue—>pop ();
solution__mutex—>release ();
// If solution found, just stop other search engine
if (returned != NULL) {
// Change PBS command to stop
command__mutex—>acquire ();
/* 1 == stop | 0 == go on */
PBS_Command = 1;
command__mutex—>release ();
// Wait for other search engine to stop
event—>wait ();
}
// If not, wait for other search engine to return
else
event—>wait ();
solution__mutex—>acquire ();
returned = queue—>pop ();
solution__mutex—>release ();

}

return returned;

Figure 4.10: Code segment illustrating the third implementation of the parallel
structure in parallel PBS:next () where all solutions can be found (also solving all
race conditions).

engines.

The changes in the run_wrapper class are illustrated by figure 4.11. Other
than the constructor for the run_wrapper class expanding to take pointers to the
two global counters, a new if-else clause has been added after the existing one.
The new clause checks whether the search engine was stopped or not and incre-
ments the corresponding global counting variable. Apart from that the calls to the
solution_mutex have been moved out from the first clause to instead envelop all

38

4.2. IMPLEMENTATION OF PARALLEL PBS

of the clauses to ensure safety when accessing these shared variables.

class run_wrapper : public Support:: Runnable {
public:
run () {
result = e.next ();

solution_mutex—>acquire (),

if (result != NULL) {
queue—>push (result);

}

if (e.stopped () = false) {
finished threads++;

else {
stopped_threads++;
}
solution _mutex—>release ();
event—>signal (); // Signal main thread

}s

Figure 4.11: Code segment illustrating the third version of the run_wrapper class
with mutex-protected access to a solution queue. Adding to that are two global
counters, finished_threads and stopped_threads, that helps PBS:next () to keep
track of how many threads have stopped for what reason.

Figure 4.12 shows the fourth implementation of the PBS:next () method where
it can find all solutions and also run with any number of search engines in a parallel
fashion. The first change is the creation of run_wrapper objects for each search
engine and starting them in their threads that now happen inside a for-loop that
iterates over the vector of search engines. When all search engines have been started
in their own threads the main while-loop is entered. Inside it the PBS:next()
method first wait for the event. When it receives a signal it checks the queue for
a solution. Then it checks if all threads have either finished or been stopped. If
that is the case PBS:next () resets the counting variables and returns the solution
(or NULL if no solution exist, which indicates that all search engines have exhausted
their search trees). But if not all threads have finished or been stopped PBS:next ()
goes to the next clause and checks if the found solution is in fact a solution or NULL.
If it is a solution PBS:next () sets the PBS_Command variable to 1 indicating that all
other search engines should stop. It then enters an inner while-loop where it waits
for all search engines to stop before it returns the found solution to the user. This
structure will leave residue signals on the event but the outer while-loop will just
consume them during the next call to PBS:next () thanks to the else-clause inside it
at the end, thus eliminating any potential harm they could otherwise have caused.

39

CHAPTER 4. IMPLEMENTING PORTFOLIO SEARCH

}
}

next () {

// Create run_wrappers for every engine
// and start them in separate threads.
for(i = 0; i < NR_THREADS; i++) { ... }
while (true) {

return returned;

event—>wait ();
solution__mutex—>acquire ();
returned = queue—>pop ();
if((finished threads + stopped_ threads)
=— NR_THREADS) {
// Reset values and exit
finished__threads = 0; stopped_threads = 0;
solution mutex—>release ();
break;
}
else if(returned != NULL)
command_mutex—>acquire ();
PBS_Command = 1;
command_mutex—>release ();
solution mutex—>release ();
while (true) {
solution__mutex—>acquire ();
if ((finished threads + stopped_threads)
= NR_THREADS) {
// Reset values and exit
stopped__threads = 0; finished_ threads = 0;
command mutex—>acquire ();
PBS_Command = 0;
command_mutex—>release ();

Y
solution _mutex—>release ();
break;

}

solution__mutex—>release ();
Gecode :: Support :: Thread :: sleep (10);

}
break;

else { solution_mutex—>release (); }

Figure 4.12: Code segment illustrating the fourth implementation of the parallel
structure in parallel PBS:next () where any number of search engines can be run

with PBS.

40

4.2. IMPLEMENTATION OF PARALLEL PBS

4.2.7 Global Stop Object for PBS

Parallel PBS also needs to be able to have a global stop object. And since it already
has a modified stop object class of its own it makes sense to just build onto that
instead of creating a new stop object wrapper class as in the sequential variant
of PBS. In addition to changes in the ModdedStopObject class and some minor
changes in the PBS:next () method a global shared variable called PBS_stopped is
also created. This global variable is needed in order to communicate from inside
the ModdedStopObject out to PBS that the global stop object has returned true
and is stopping PBS.

Figure 4.13 highlights the added parts of the ModdedStopObject class. The new
part consists of two nested clauses where the outermost one first performs a validity
check that a global stop object actually exists. If so the global stop object’s stop()
method is called and if it returns true PBS should stop. If so it then sets the global
shared variable PBS_stopped to true and then returns true to the search engine. If
not, the ModdedStopObject return false to the search engine.

class ModdedStopObject : public Search::Stop {

bool stop(const Search:: Statistics& s,
const Search:: Options& o) {
command_mutex—>acquire ();

if (stop_object != NULL) {
stopped = stop__object—>stop (s,0);
if (stopped = true) {
PBS_ stopped = true;
command _mutex—>release ();
return true;
}
}
command_mutex—>release ();
return false;

}
.

Figure 4.13: Code segment illustrating the second implementation of the modified
stop object class which gives PBS the ability to have an optional global stop object.

In figure 4.14 the changes to the PBS:next () method are highlighted. This part
is added right after the PBS:next () method checks if there are any found solutions
stored in the queue, and right before it creates all run_wrapper objects with search
engines inside them and starting them in their threads. The added code resets
the value of PBS_stopped to false so it always has the same starting conditions.
Should PBS have been stopped by its global stop object and the user decides to call

41

CHAPTER 4. IMPLEMENTING PORTFOLIO SEARCH

on PBS:next() again without updating the global stop object it will return NULL
because the global stop object will return true again when called before the search
engines start to explore new nodes.

next () {

// Set PBS stopped status to false.
command__mutex—>acquire ();
PBS_stopped = false;
command__mutex—>release ();

Figure 4.14: Code segment illustrating the fifth implementation of the parallel struc-
ture in parallel PBS:next () where any number of search engines can be run with
PBS with the addition of an optional global stop object.

4.2.8 Other Methods in PBS

The other methods that PBS has are statistics(), nogoods() and stopped().
The statistics() method just adds each of the search engines own statistics into
one collected statistics object and then returns it up to the user. The nogoods ()
method was deemed unnecessary for this prototype. Therefore it has not been
implemented so it just returns NULL whenever the user calls it. Thanks to the global
shared variable PBS_stopped the PBS:stopped () method just returns the value of
that variable. If no global stop object has been given to PBS false is returned.

4.2.9 Avoiding Deadlocks

The implementation is (hopefully) completely deadlock free as long as nothing from
the outside interferes with the structure, such as the operating system suddenly
terminating a slave thread which is currently holding a mutex or likewise. There
is one signaling event and two mutexes, command_mutex & solution_mutex, in the
code that could possibly cause deadlocks if not used correctly. Remember that if
one thread holds a mutex and another thread tries to acquire it, the other thread
will be blocked until the mutex is released. Following is a description focusing on
how the event and mutexes are used to avoid deadlocks.

First the PBS:next () method acquires the solution_mutex to safely check the
solution queue and then releases it again. If no leftover solutions were in the queue
PBS:next () continues with acquiring the command_mutex to reset some global vari-
ables and then releases the mutex again. All this is done before any threads are
started and should be completely safe (using the mutexes just in case some residue
thread against all odds is still there). Then the threads are started and PBS:next ()

42

4.2. IMPLEMENTATION OF PARALLEL PBS

quickly consumes all residue signals on the event, thanks to the code structure,
before it waits for the threads to signal the event.

Each thread will only acquire and release the command_mutex during search
(inside the controlling stop object). It is guaranteed by the code structure that the
stop object releases the mutex before returning its result. When search stops and a
solution (or NULL) is returned it will not try to acquire the command_mutex again.
Instead the thread now acquires the solution_mutex once for storing the found
solution in the solution queue, update one of the two global counting variables and
finally release the solution_mutex again. After that the thread signals the event
and terminates.

When PBS:next() is released from the event (by a signal from one of the
threads), it acquires the solution_mutex and checks the solution queue. If no
solution is present and not all threads are terminated it just releases the mutex
and waits on the event again. If all threads have terminated it releases the mutex
and returns the result back to the user. But if it received a solution and not all
threads have terminated, PBS:next () will try to acquire the command_mutex and
change the PBS_Command to 1 to stop all other threads. It then first releases the
command_mutex and then releases the solution_mutex. After that it tries to ac-
quire the solution_mutex, check if all threads have terminated, releases the mutex
again and sleeps for 10 milliseconds. This is repeated until all threads have ter-
minated. When that happens, PBS:next () can easily acquire both mutexes, reset
some of the global variables, release both mutexes and finally return the result to
the user.

This implementation prevents PBS from getting into a deadlock as all mutexes
are guaranteed to always be released again eventually. Also all threads will eventu-
ally terminate as their search engines return a result, which leads to less competition
on the mutexes for the rest of the threads.

43

Chapter 5

Experimental Evaluation

This chapter explains how the case studies described in subsection 2.5.1 and sub-
section 2.5.2 were conducted. It also presents the results and discusses them. The
N-Queens case study is covered in section 5.1 where it presents the test setup, how
the tests were performed and end with a discussion of the results. All to verify the
soundness of the design and implementation of sequential PBS and parallel PBS.
The Latin Square case study is then covered in section 5.2 where it presents the
different test setups, how the tests were performed and end with a discussion of
the results. All to find out the performance of sequential PBS and parallel PBS
and compares their results with that of a single search engine variant that Gecode
already has implemented.

Note: The test setup used in [7] influenced the design of the tests in this thesis.
That is why the seemingly odd numbers of 2, 5, 10 & 20 search engines are used,
instead of the more logical 2, 4, 8 & 16 that matches the number of cores in a CPU.
This was done to be able to compare this thesis’s results with the results presented
in the paper.

Note: All search engines used in the case studies use the depth-first search
strategy (DFS).

Machine information

KTH (Royal Institute of Technology) provides all students with access to three
servers called Atlantis, Colombiana and Subway. It were these three servers that all
experiments were run on. Due to all students having access to these servers it was
hard to guarantee that the experiments had full access to the required number of
CPUs necessary without outside influence. But a best effort was made to try running
the experiments when the servers were unoccupied. The servers are provided with
GCC compilers of version 4.4.2. The servers operation system is Red Hat Enterprise
Linux Client release 5.11 (Tikanga). Their brand & model are HP Proliant DL385
G7 with 64GB of RAM and each server has 2x AMD Opteron 6172, 2.1GHz CPUs
(12 cores each). The full specifications of the cores are found in appendix A figure
Al

45

CHAPTER 5. EXPERIMENTAL EVALUATION

5.1 Case Study: N-Queens

As told in subsection 2.5.1 the purpose of the N-Queens case study was to verify
the soundness of the design and implementation of the two PBS variants. That is,
to verify that no solutions are ever lost even when producing very large amounts
of solutions fast. The case study used Gecode’s own implemented model of the
N-Queens problem to ensure that it was sound.

Test Setup

The setup was that both sequential PBS and parallel PBS were to run on a large-
enough problem to generate a very large amount of solutions. The problem size
was decided to be N=14 which would give 365’596 solutions to find for each search
engine.

Table 5.1 summarizes the setup of the conducted tests. First the N-Queens
problem was run with N=14 with a single search engine (without portfolio search)
using the already implemented variant in Gecode. As the program is sound only
one single run was needed to get all possible solutions. Then each of the sequential
and parallel variants of PBS were run ten times each with two, five and ten search
engines respectively. Fach test run had its own log file to which every found solution
was printed in order to be able to count them later. As each search engine given
to PBS is sound in itself it was only the structure of the PBS variants that could
potentially drop solutions. All found solutions were later verified by comparing
them to the found solutions of the single search engine run without portfolio search
as well as counted to ensure that all solutions were found.

Table 5.1: The table shows the test setup for sequential PBS and parallel PBS
together with the single search engine (run without portfolio search) for the N-
Queens problem.

Number of Search Engines | Number of Runs | N-value
Normal 1 1 14
Sequential PBS 2,5 & 10 10 14
Parallel PBS 2,5 & 10 10 14
Results

Table 5.2 shows the test results of the N-Queens problem. In the case of the
sequential PBS and parallel PBS, the total number of solutions found during the
ten runs for each number of search engines (two, five and ten) have been summed up.
Dividing the sum total with the number of runs (to get the average) and dividing the
result with the number of solutions found by the single search engine (run without
portfolio search), which should end up as the number of search engines used, if all
solutions were found.

46

5.2. CASE STUDY: LATIN SQUARE

Table 5.2: The table shows the results of the N-Queens problem for sequential PBS
and parallel PBS. One run with Gecode’s single search engine variant was also done
to compare against.

Number of . Solutions Found
Search Engines Runs | Solutions Found Tuns % 365506
Normal 1 1 365’596 1
2 10 7’311°920 2
Sequential PBS) 10 18’279’800)
10 10 36°559’600 10
2 10 7’311°920 2
Parallel PBS 5 10 18’279°800 5
10 10 36°559’600 10

Discussion

As you can see in table 5.2 the values in the second leftmost column are identical
with the values in the rightmost column. This proves that no solutions were ever
dropped during these tests. Thus the design and implementation of sequential PBS
and parallel PBS is proved to be sound in the aspect of never losing solutions.

5.2 Case Study: Latin Square

As told in subsection 2.5.2 the purpose of the Latin Square case study was to test
the performance of the sequential PBS and parallel PBS against an already imple-
mented Latin Square example in Gecode (which was run without portfolio search).
This case study is divided into two parts. The first part which is covered in sub-
section 5.2.1 examines the overhead of the two PBS variants by running them on
a number of different tests of different sizes. The second part which is covered in
subsection 5.2.2 examines the performance of the PBS variants by running them
on problem instances that Gecode’s single search engine Latin Square example has
problems with. The case study used Gecode’s own implemented model of the Latin
Square problem to ensure that it was sound. Gecode’s single search engine variant
is hereinafter shortened down to the normal variant (which is run without port-
folio search). All Latin Square tests use Gecode’s implemented Timer class which
represents a best-effort at measuring wall-clock time in milliseconds to measure the
execution times.

Note: The actual problem’s correct name is quasigroup completion problem
(QCP) but the problem data is encoded as partially filled Latin Squares and the
produced solutions are Latin Squares (as explained in subsection 2.5.2). Therefore
all graphs are labeled with QCP because it is shorter and also the correct term
for the actual problem while the case study itself is named after the use of Latin
Squares.

47

CHAPTER 5. EXPERIMENTAL EVALUATION

5.2.1 Measuring Overhead

To give a good approximation of the overhead of the sequential PBS and parallel
PBS they needed to run on many different problem instances with a varying number
of search engines and then be compared to the normal variant.

Test Setup

In order to nullify the advantage of running multiple search engines the search
engines used by sequential PBS and parallel PBS had to have the exact same search
strategies and random seeds as the normal variant. Otherwise one of the search
engines might be faster than the others due to a better random seed or branching
strategy and that would give a false measurement of the overhead.

Table 5.3 illustrates the settings for the normal variant, the sequential PBS and
the parallel PBS for each problem instance. The settings where chosen such that
they would be as powerful as possible with no randomization at all. As explained
in subsection 2.5.2 the Distinct propagator is stronger than the Binary one and
the AFC_ Size brancher is stronger than the one using Size. Therefore Distinct
and AFC__Size were chosen. No tie-breaking or random seeds were used to remove
randomness completely. The original branching implementations were used and can
be found in Appendix A figure A.2.

Table 5.3: The table shows the test setup for sequential PBS and parallel PBS
together with the normal variant for the Latin Square problem.

Search | Propagation | Branching | Tie-breaking | Random
engines strategy strategy factor seeds
Normal 1 Distinct AFC Size None None
Sequential 2,5 & 10 Distinct AFC_ Size None None
PBS
P;rglslel 2,5& 10 | Distinct | AFC_Size None None

The tests were selected and divided into three groups of three, where each group
had a different problem size. In each of the groups three problem instances with
different difficulty (relative to the problem size) were chosen, one easy, one medium
and one hard to get a good coverage. Also the hard problem in each group had no
solutions to further test the PBS variants and measure their overhead when they
had to explore the entire search tree. Table 5.4 shows which problem instances
were used for the overhead measurement tests. It also shows their problem size, the
number of preassigned values and percentage thereof, if it has any solutions and
also the difficulty (in terms of execution time). All of the problem instances were
taken from the Fourth International CSP Solver Competition’s problem instance

48

5.2. CASE STUDY: LATIN SQUARE

archive!.

Table 5.4: Table showing the problem instances for sequential PBS, parallel PBS
and the normal variant as well as the characteristics of each problem.

Problem Size of N preZ;)siOfne d Solution Relative
instance & exist? Difficulty
values
10-67-0 10 32% Yes Easy
10-67-5 10 30% Yes Medium
10-67-10 10 31% No Hard
15-120-0 15 44.9% Yes Easy
15-120-5 15 44% Yes Medium
15-120-10 15 42,7% No hard
20-187-0 20 46,75% Yes Easy
20-187-4 20 48,75% Yes Medium
20-187-10 20 47% No hard

The expected results of the sequential variant of PBS are that the overhead is so
small that it is barely detectable compared to the normal program. The expected
results of the parallel variant of PBS are that the overhead for each search engine is
small but increasing depending on the number of search engines used, as congestion
is increased with more search engines.

Results

The results from the first group where N=10 are shown in figure 5.1. Figure 5.1a
shows the mean execution times of the normal variant’s ten runs on each problem
instance. Figure 5.1b and 5.1c shows the mean execution times of the sequential
PBS and parallel PBS variants ten runs on each problem instance with 2, 5 &
10 search engines. Figure 5.1d shows the comparison in execution times between
the normal and the combined mean execution times of the sequential PBS and the
parallel PBS variants on the three problem instances. The combined mean was
calculated from the mean execution times of running with 2, 5 & 10 search engines.
Note that the execution times of the sequential variant have been divided by the
number of search engines used before the combined mean was calculated in order
to give a correct comparison. The same was not needed for the parallel variant
because each of its search engines ran in parallel and did not affect the execution
time from the others except for the overhead. It is worth noting that graphs 5.1a to
5.1c have their y-axes shown in Log scale while the y-axis in graph 5.1d is normal.

The results from the second group where N=15 are shown in figure 5.2. The
four graphs are set up the same way as the ones for the first group with 5.2a showing

'Their website: http://www.cril.univ-artois.fr/CSC09/ where the problem instances can
be accessed.

49

CHAPTER 5. EXPERIMENTAL EVALUATION

Normal QCP Sequential QCP
01 - 01
]
ﬂa =1 DFS 8 =42 DF5
2 H
En §° =f=5 DFS
E 3 10 DFS /
§ oot g o001
2 2
£ E
o o
£ £
= =
2 0,001 T T Y £ 0,001 T T Y
g 10-67-0 10-67-5 10-67-10 g 10-67-0 10-67-5 10-67-10
o o
& Problem instance & Problem instance

(a) Normal QCP with one search engine (b) Sequential QCP with 2, 5 & 10 search engines

Parallel QCP Execution Comparison
01 0,012
I —4—2 DF5 "
E! -
et —8—5 DFS g 0.01
3 & 0,008
= 10 DFS .
z B - -5 i W ormal
g oo “""“'--...__. £ 0% T a=scquential
g ‘\‘—\’ : Fauenta
s 2 0004 Paralle] /
@ 3
£ ¢ 0,002
F . e
=
2 o001 T T .] T T 1
g 10-67-0 10-67-5 10-67-10 10-67-0 10-67-5 10-67-10
& Problem instance Problem instance
(c) Parallel QCP with 2, 5 & 10 search engines (d) Comparison of mean execution times

Figure 5.1: Graphs showing the execution times for the first group with N=10.
They are accompanied by a graph that compares their mean execution times where
the sequential variant has been scaled accordingly to give a correct comparison.

the results for the normal variant while 5.2b and 5.2c are showing the results for
the sequential and parallel PBS variants. Graph 5.2d shows the comparison of their
combined mean execution times (calculated the same way as for the first group).
The results from the third group where N=20 are shown in figure 5.3. The four
graphs are set up the same way as the ones for the first and second groups with
5.3a showing the results for the normal variant while 5.3c is showing the results
for the parallel PBS variant. Graph 5.3d shows the comparison of their combined
mean execution times (calculated the same way as for the first and second groups).
Graph 5.3b only has parts of the results because some of the experiments had to
run so long that the server terminated the experiments before they had finished
every time. The data points in the graph that are created from actual data are all
three points for the run with 2 search engines and all points for problem instance
20-187-0. The rest are synthesized from the other data points to give an estimate on

50

5.2. CASE STUDY: LATIN SQUARE

Normal QCP Sequential QCP

100 100
1 OFS =4=2 DFS
0 /’——-' 10 T—@~s5prs
1 / 1 i DFS//
01 / 01 /
0,01 7 0,01 ¥

0,001 : : :
15-120-0 15-120-5 15-120-10

0,001 : : :
15-120-0 15-120-5 15-120-10

Execution time in seconds (Logscale)
Execution time in seconds (Logscale)

Problem instance Problem instance

(a) Normal QCP with one search engine (b) Sequential QCP with 2, 5 & 10 search engines

Parallel QCP Execution Comparison
100 12

10 DFS 1
0 W/‘/"’é’i
1 [—+=20Df B Parallel 7
01 // /
4 ‘
0,01

2 /
0,001 T T 1 o 4 T

T
15-120-0 15-120-5 15-120-10 15-120-0 15-120-5 15-120-10

== Normal

== Sequential

Execution time in seconds
o

Execution time in seconds {Log scale)

Problem instance Problem instance
(c) Parallel QCP with 2, 5 & 10 search engines (d) Comparison of mean execution times

Figure 5.2: Graphs showing the execution times for the second group with N=15.
They are accompanied by a graph that compares their combined mean execution
times where the sequential variant has been scaled accordingly to give a correct
comparison.

how sequential PBS was expected to behave. Therefore the combined mean values
for the sequential variant in graph 5.3d are also based on the synthesized values
from graph 5.3b.

Discussion

The results of the first group were surprisingly odd, especially the results for the
parallel variant. The most likely reason for this is that the problem instances were
all too easy and had such short solution times (in milliseconds) that the actual time
it took to solve the problem instance was overshadowed by the overhead, especially
for the parallel variant. Also the execution time for the sequential variant was
actually lower than the normal program, which should not have been possible in
this setup with identical search engines, which suggests that only the first search

o1

CHAPTER 5. EXPERIMENTAL EVALUATION

Normal QCP Sequential QCP
. 10000 . 100000
% =1 DF5S % =72 DFS
Eh Eh —8—5 DFs
= = 10000
- m 10 DFS,
2 1000 E
8 8
8 2
E £ 1000
. : '
£ E
- -
= =
2 100 T T 2 100 T T
E 20-187-0 20-187-4 20-187-10 E 20-187-0 20-187-4 20-187-10
g Problem instance & Problem instance

(a) Normal QCP with one search engine (b) Sequential QCP with 2, 5 & 10 search engines

Parallel QCP Execution Comparison

_ 10000 3500
=
8 e % 3000 =4=Normal /
En ~—5 DFS p g ss0n | B Sequential
% £ Parallel ,I/
3 10DFs £ 2000 ara
g 1000 E /
H / < 1500
g : 7
=
= £ 1000
£ N g /
= g =00 w
2 100 T T 0 T T
g 20-187-0 20-187-4 20-187-10 20-187-0 20-187-4 20-187-10
o Problem instance Problem instance
(c) Parallel QCP with 2, 5 & 10 search engines (d) Comparison of mean execution times

Figure 5.3: Graphs showing the execution times for the third group with N=20.
They are accompanied by a graph that compares their mean execution times where
the sequential variant has been scaled accordingly to give a correct comparison.

engine got to run and found a solution during its first time slice. Adding to that
was the precision of the timer used that measures wall-clock time in milliseconds,
which could also be a source of small measurement errors. Thus no real conclusions
can be drawn from the results from the first group.

The results from the second group were more promising as they were closer to
the expected results. Even though the execution time is still very short it aligns
with the expected results. Graph 5.2b shows that for the sequential variant of PBS
when the number of search engines increase so does the execution time and the
relation between them is approximately linear. Graph 5.2c shows that the parallel
variant of PBS has more overhead than the sequential variant of PBS but seems
to also be approximately linear. Looking at graph 5.2d strengthens the expected
results for the sequential variant of PBS by showing that the overhead is so small
that it actually starts to overlap the upper part of the normal variant’s line, partly

52

5.2. CASE STUDY: LATIN SQUARE

covering it in the graph. As for the parallel variant of PBS it seems that it has
a percentage of overhead related to the number of search engines and that that
percentage increases as the number of search engines increases. This suggests a
non-linear overhead depending on the number of search engines, which is to be
expected due to the bottleneck in the master-slave structure.

The results from the third group continue to strengthen the expected results
in the same way as the second group did. As expected for the sequential variant
of PBS the execution time is linear to the number of search engines used for each
problem instance, which is shown in graph 5.3b. Graph 5.3c shows the same trend
as shown in the corresponding graph in the second group, that the overhead seems
to be approximately linear for the parallel variant of PBS. Looking at grapg 5.3d
continues to strengthen the expected results for the sequential variant of PBS by
showing the same trend as in graph 5.2d. But looking at the parallel variant of PBS
the same worrying trend can be seen with the overhead increasing with the number
of search engines in a seemingly non-linear fashion.

Using the data from the three groups an initial attempt to calculate the overhead
for the sequential variant and parallel variant was done. But due to the limited
data points only estimated values were calculated. The overhead of the sequential
variant was estimated to be around 0.5% independent of how many search engines
were used. The overhead of the parallel variant was estimated to be around 1-3%
per search engine, depending on how many search engines were used. This would
(in theory) quickly add up to a significant amount of overhead and might have a
negative impact on the performance. Further experiments are needed to accurately
determine the relation between the overhead and the number of search engines for
the parallel variant of PBS.

The high percentage of overhead in the parallel variant of PBS could be caused
by the command_mutex used in the controlling stop object. As of now in the (proto-
type) parallel variant of PBS the command_mutex is acquired and released for every
node explored in the search tree. To counter this an easy fix could be to modify it
so that the controlling stop object only acquires and releases the command_mutex
for every 100, 1’000 or even 10’000 nodes explored, thus reducing the congestion
by the same factor (in theory). This would of course affect the time it takes for a
search engine to see a new command sent from the master thread. Unfortunately
due to time constraints there was no time left to test this in practice.

5.2.2 Measuring Performance

To measure the performance of the sequential PBS and parallel PBS variants they
needed to run on problem instances that the normal variant found really hard.
As problem instances with N=10 were way too easy only problem instances with
N=15 and N=20 were considered. But to really see what the sequential variant
and parallel variant of PBS is capable of the branching strategies had to be changed
to introduce more randomness. Also the use of a tie-breaking factor would further
randomize the branching strategies as well as using random seeds. The modified

53

CHAPTER 5. EXPERIMENTAL EVALUATION

branching implementations that were used can be found in Appendix A figure A.3.

Preparation Tests

To find out which problem instances are hard for the normal variant it was run 5
times each over 10 different problem instances, both with N=15 and N=20. The
results are summarized in table 5.5. These problem instances were also taken from
the Fourth International CSP Solver Competition’s problem instance archive.

Table 5.5: Table showing 10 different problem instances for N=15 & N=20 with
their mean execution times for the normal variant. So the most difficult problems
(that finish within one hour) can be selected.

15-120
Number 0 1 2 3 4 5 6 7 8 9
Mean(s) | 0,005 | 0,03 | 3,1 | 0,005 | 2,1 39 123|01 | 02 | 223
20-187
Number 0 1 2 3 4 5 6 7 8 9
Mean(s) 1,6 | 88,1 | 3600 | 97,2 | 2135 | 18,6 | 3,0 | 655 | 18,7 | 207

Table 5.5 shows that the hardest problem instance with N=15 is number 9 with
a mean execution time of 22,3 seconds. Therefore the chosen problem instance to
use for N=15 was 15-120-9. As for the problem instance with N=20 there are two
candidates, number 2 and number 4. Number 2 timed out after one hour and still
had not found a solution. Number 4 was the hardest problem of which a solution
could still be found within one hour of execution time. But to be able to correctly
compare the results of the sequential and parallel runs the normal variant needed
to be able to find a solution on the given problem instance within the given time
limit. Therefore number 4 was chosen so the problem instance to use for N=20
was 20-187-4. Only one problem instance for each size were chosen due to time
constraints, although more extensive tests would have been preferred.

Test Setup

Table 5.6 shows the chosen settings for the search engines during the performance
tests. Both the sequential PBS and parallel PBS variants ran with 5 respectively 10
search engines while the normal variant only ran with one search engine (without
portfolio search). To optimize the effectiveness they all use Distinct for propagation
strategy as well as both AFC_ Size and Size with modified branchers for branch-
ing strategies. The modified branchers can be found in Appendix A figure A.3.
Eleven different tie-breaking factor values were used ranging from 0.1 to 1.0 and
also 0.0 (None) to give a good coverage of how much randomization was optimal for
the two chosen problem instances. The implementations of the tie-breaking limit
functions can be found in Appendix A figure A.4. A set of ten different random

54

5.2. CASE STUDY: LATIN SQUARE

seeds were generated? and used throughout all runs in the performance tests so
that the only change was different tie-breaking factor values (for both AFC_ Size
and Size branching). This was done in order to measure how they performed with
different tie-breaking factor values and to see if there was a “sweet spot”. For each
tie-breaking factor value the programs were run 5 times to give some measure of
statistical support.

Note: Due to time constraints the three KTH servers’ cores were 90-95% oc-
cupied with running all of the different performance tests at the same time and it
was first after all tests were finished that the data was analyzed. That is why the
obviously inferior Size branching strategy is present in all of the result graphs.

Note: The preferred way would have been to generate new random seeds for
every search engine in each run on each of the configurations. But due to time
constraints this was not feasible as it would require the tests to be run between
100-1°000 times for each setting in order to get statistical soundness.

Table 5.6: Table showing the test setup for sequential PBS, parallel PBS and nor-
mal single search engine program for the Latin Square problem for performance
measurement on problem instances with N=15 & N=20.

Search | Propagation | Branching | Tie-breaking Random

engines strategy strategy factor values seeds
Normal 1)
Sequential Yes, using
qPB S 5& 10 Distinct AFC_ Size None, pre-
Stme & Size 0.1-1.0 defined
Parallel 5 & 10 soeds
PBS
Results

The results from the tests running on problem instance 15-120-9 with N=15 are
shown in figure 5.4. Figure 5.4a shows the mean execution times of five runs for the
normal variant for each of the eleven tie-breaking factor values, both with AFC_ Size
and Size branching strategies. Figure 5.4b and 5.4c show the same for the sequential
PBS and parallel PBS variants where they were run with 5 and 10 search engines
on all different tie-breaking factor values, both with AFC_ Size and Size branching
strategies. A time-out of one hour execution time was used.

The results from the tests running on problem instance 20-187-4 with N=20 are
shown in figure 5.5. The results are presented in the same manner as the previous
results. Figure 5.5a show the execution results for the normal variant, using both

>The random seeds used were [1, 23, 102, 61, 77, 89, 59, 44, 143, 98] and were produced by the
author randomly typing ten numbers on the keyboard. The normal variant used the first value,
running with 5 search engines used the 5 first values and running with 10 search engines used all
ten values.

55

CHAPTER 5. EXPERIMENTAL EVALUATION

Normal QCP on 15-120-9 Sequential on 15-120-9

—4—AFC_Size —=Size —4—AFC_Size, 10 ==Size, 10 AFC_Size, 5 === Size, 5

ﬁ-—-—-—-—-—’—r

N/ /
R /
N ad

1 T T T T T T 1 T T T T T T T T T T
N/A 01 02 03 04 05 06 07 08 09 10 N/A O1 02 03 04 05 06 07 08 09 10

:
:

:

?

8

10

Execution in seconds (Logscale)
=
8

Execution time in seconds (Log scale)

Tie-breaking factor value Tie-breaking factor value
(a) Normal QCP with one search engine (b) Sequential QCP with 5 & 10 search engines
with AFC__Size & Size with AFC__Size & Size
Parallel QCP on 15-120-9 Performance Comparison (AFC)
—4—AFC_Size, 10 —B—Size, 10 AFC_Size, 5 —=—Size, 5 ~#=Normal, 1 —#—Parallel 10 Sequential, 5
10000 . 10000
3 - % i
a 1000 / w 1000 [
3 / / 2 / /
3 100 + g 100
E 10 \ / g 10 / f
P ey 7 =]
= E v‘-.'...—
2 1 : 1
= "‘“-«—n—-ﬁ-—-a.._,.._,\“j - '\l—l—'-l—.—.\.,J
§ 01 T T T T T T T T T T s 01 T T T T T T T T T T
N/A 01 02 03 04 05 06 07 0.8 09 10 N/A 01 02 03 04 05 06 07 08 09 10
Tie-breaking factor value Tie-breaking factor value
(c) Parallel QCP with 5 & 10 search engines (d) Comparison of mean execution times
with AFC_ Size & Size for the best configurations with AFC__Size

Figure 5.4: Graphs showing the execution times for N=15. They are accompa-
nied by a graph that compares the mean execution times of the PBS variants that
performed the best. The black lines shows where the time limit is (3600s).

AFC_ Size and Size for branching strategies. Figure 5.5b and 5.5¢ show the same
for the sequential PBS and parallel PBS variants as they were run with 5 and
10 search engines using both AFC_ Size and Size branching strategies on all tie-
breaking factor values. A time-out of one hour execution time was used again, even
though this problem was harder, in order to give a fair comparison to the results
on the previous problem.

56

5.2. CASE STUDY: LATIN SQUARE

Normal QCP on 20-187-4 Sequential QCP on 20-187-4
—+—AFC_Size ——Size —4—AFC_Size, 10 == Size, 10 —&—AFC_Size, 5 ——Sie, 5
—- 10000 - 10000
o g
g ‘ 7 = 7 = E
§ oo v 3 1000 /
% f w0
100 o,
3 v g
s 1w £ 1w
£]
g E
3 1 T T T T T T T T T T E 1 T T T T T T T T T T
N/A 01 02 03 04 05 06 07 08 09 10 N/A 0.1 02 03 04 05 06 07 08 09 10
Tie-breaking factor value Tie-breaking factor value
(a) Normal QCP with one search engine (b) Sequential QCP with 5 & 10 search engines
with AFC _Size & Size with AFC_Size & Size
Parallel QCP on 20-187-4 Performance Comparison (AFC)
—4—AFC_Size, 10 —lSize, 10 AFC_Size, 5 = Size, 5 —#—=Normal, 1 —M=Parallel, 5 Sequential, 10
10000 . 10000
I 2
g i ’ f,ﬂb! —= g
§ 1000 - ,\\/ § 1w
-E 100 — : E 100 -
g 8 \
T 1 A\ / T
£ \/ 2 v
é 1 T T - T T T T T T T T g 1 T T T T T T T T T T
N/A 01 02 03 04 05 0.6 07 08 03 10 N/A 01 02 03 04 05 06 07 08 03 10
Tie-breaking factor value Tie-breaking factor value
(c) Parallel QCP with 5 & 10 search engines (d) Comparison of mean execution times
with AFC_ Size & Size for the best configurations with AFC__Size

Figure 5.5: Graphs showing the execution times for N=20. They are accompa-
nied by a graph that compares the mean execution times of the PBS variants that
performed the best. The black lines shows where the time limit is (3600s).

Discussion

First of all, as the two chosen problem instances have solutions these tests are not
affected by the design decision that all search engines must exhaust their search
trees before PBS can return NULL. Simply because it will not happen.

As can be seen in graphs 5.4a to 5.4c running with AFC__Size as branching strat-
egy completely outclasses running with Size as branching strategy. It is interesting
that the sequential variant of PBS running with 5 search engines and AFC_ Size
performs slightly better than with 10 search engines and that is why it is in the
comparison graph. Graph 5.4d compares the best execution setup from graphs 5.4a

o7

CHAPTER 5. EXPERIMENTAL EVALUATION

to 5.4c by plotting them together. It clearly shows that the parallel variant of PBS
with 10 search engines is better than the normal variant or the sequential variant
of PBS. Another observation is that the sequential variant of PBS with 5 search
engines has approximately the same performance as the normal variant. However,
this problem instance is still solved fairly quickly so the test runs does not show the
true strength of the PBS variants.

Graphs 5.4a to 5.4c also show that the Size branching strategy timed-out when
the tie-breaking factor value got larger than 0.3, indicating that there was too
much randomness. The graphs also show that with tie-breaking factor value 1.0 all
variants had huge problems with finding a solution inside the given time limit. The
normal variants and the parallel variants with 5 search engines barely managed to
find a solution with only minutes away from the time limit. This indicates that
it was the search engine with random seed set to 1 that found the solution and
that due to the overhead in the parallel variants only the ones running with 5
search engines managed to find it before the time limit, only because they had less
overhead due to using fewer search engines. This also suggests that given more
time the parallel variants running with 10 search engines would also soon find the
solution as it was only the overhead that slowed them down. But it also indicates
that they had almost reached total randomness and that even larger tie-breaking
factor values would yield similar results.

As can be seen in graphs 5.5a to 5.5c¢ running with AFC_ Size as branching
strategy still outclasses running with Size as branching strategy, even though the
complete picture could not be given due to the time limit cutting off the graphs at
the top. Looking closer on graph 5.5c you can see the interesting phenomenon that
the parallel variants with 5 and 10 search engines using AFC__Size branching have
almost exactly the same execution times. By looking at the raw data it is found out
that the parallel variant running with 5 search engines perform around 5-10% better
relative the parallel variant running with 10 search engines. This suggests that it
is only the overhead of the additional 5 search engines that makes the difference
and that it is one of the first five random seeds that lead to the solution. Graph
5.5d compares the best execution setup from graphs 5.5a to 5.5¢ by plotting them
together. It clearly shows that both parallel variants of PBS with 5 & 10 search
engines are better than the normal variant or the sequential variant of PBS. Another
observation is that the parallel variant now outperforms the normal single search
engine program on almost all tie-breaking factor values. Also the sequential variant
of PBS with 5 & 10 search engines now have worse performance than the normal
program.

Graphs 5.5a to 5.5¢ also show that the Size branching strategy timed-out when
the tie-breaking factor value got larger than 0.1, clearly showing that the AFC_ Size
branching strategy is always stronger. The graphs also show the same trend as
on the previous problem instance that, now with an even more difficult problem,
regardless of branching strategy or number of search engines, none of the programs
managed to find a solution in the given time limit when the tie-breaking factor
value reached 1.0, indicating that they had almost reached total randomness and

58

5.2. CASE STUDY: LATIN SQUARE

that even larger tie-breaking factor values would yield the same results.

Due to the unexpected behavior of the parallel variant of PBS when measuring
the overhead and the uncertainty of how much it affects the performance measure-
ments, it was decided to perform one additional experiment focusing solely on the
performance of the parallel variant of PBS with different numbers of search engines.

Additional Test Setup

To be able to compare against the previous results in figure 5.5 as well as due
to time constraints, it was decided to run the parallel variant of PBS on problem
instance 20-187-4 again instead of a new problem instance. The configuration that
was chosen was the most promising one from the previous tests and is summarized
in table 5.7. The tie-breaking factor value was chosen based on how the normal
variant had performed on the same problem to give an approximate comparison.

Table 5.7: Table showing the test setup for the additional experiment for the parallel
variant of PBS.

Search Propagation | Branching | Tie-breaking Random
engines strategy strategy factor seeds
Parallel | 5 10 ¢ 90 | Distinet | AFC_Size 0.1 Total
PBS randomness

Total randomness means that for each run new random seeds between 0-100
were generated for each search engine®. Each setting was run a 1000 times on the
problem instance to give a good statistical foundation that would not be affected
too much by “unlucky” random seeds.

Additional Results

Figure 5.6 shows the results of running parallel PBS with the settings shown in table
5.7 a 1000 times. The primary axes (left & bottom) are for the mean and median
curves for the execution time with its standard deviation while the secondary axes
(right & top) are for the mean and median curves for the number of failures with its
corresponding standard deviation. The curves of the execution time and the curves
of the number of failures are overlayed to better show how they follow each other
with different numbers of search engines.

Table 5.8 complements the results in figure 5.6 by showing the min and max
values of the 1000 runs for each number of search engines, both for execution time
and number of failures. This is to illustrate how much it can vary if one is extremely
lucky (or unlucky) with the random seeds.

3The ten random seeds previously used were used as seeds for the random number generators
used here. At the time the author was not aware of hardware generated “true” random seeds.

59

CHAPTER 5. EXPERIMENTAL EVALUATION

Parallel PBS on 20-187-4 1000 Runs

Number of failures

0 500000 1000000 1500000
200 ! ! !
180 Y5 DFS
160
140
120
100

2000000
3500000

3000000
2500000
2000000

\
\

Standard deviation{exec. time)
Standard deviation(failures)

20 // /;/ - 1500000
ECL; 0 DFS - 1000000
- 500000
20 -
20D 0 DFS
O T T T T 0
0 20 40 60 80 100

Execution time in seconds

==Mean Execution ==Median Execution -Mean Failures=%=Median Failures

Figure 5.6: Graph showing the results of running parallel PBS a 1000 times with
5, 10 & 20 search engines on problem instance 20-187-4. The main x-axis (bottom)
shows the execution time and the main y-axis (left) shows the corresponding stan-
dard deviation. The secondary x-axis (top) shows the number of failures and the
secondary y-axis (right) shows the corresponding standard deviation. Completely
random values were freshly generated for each run.

Table 5.8: Table showing the min and max values from the results for the additional
experiment for the parallel variant of PBS.

Execution Time in seconds Number of Failures

5DFS | 10 DFS | 20 DFS | 5 DFS 10 DFS | 20 DFS
Min | 1,73693 | 1,88137 | 1,96804 33386 33386 33386
Max | 1619,34 | 399,327 | 173,479 | 29216707 | 5904173 | 2160718

Additional Discussion

Figure 5.6 clearly shows that when using completely random seeds the performance
improves when the number of search engines increases. Both the mean and median
curves were plotted to show what can normally be expected but that there are
still situations where the user is unlucky with the random seeds and get worse
performance than that of the normal variant. When the results are compared to

60

5.2. CASE STUDY: LATIN SQUARE

the results of the normal variant (run only with random seed=1) which had an
average execution time of around 46 seconds it shows that running with less than
10 search engines in parallel will most likely not improve the execution time (if not
having one of the search engines run with random seed=1, thus guarding against
bad random seeds). But the comparison is not quite fair as the normal variant did
not run with different random seeds and is thus just approximative.

But as table 5.8 shows even running with only 5 search engines in parallel could
improve the execution time but is more likely to worsen it. Looking at 20 search
engines the expected improvement is about 3 times as fast in terms of execution
time (read from the graph) while the worst and best case scenarios are about 4
times as slow and about 23 times as fast, in terms of execution time (read from the
table). This makes it an attractive choice as the benefits are great and the worst
possible backlash is “only” about 4 times worse (and highly unlikely).

But remember that this prototype of the parallel variant of PBS has some prob-
lems with the overhead (as mentioned earlier at the end of the overhead mea-
surement discussion). By addressing the overhead problem by implementing the
suggested solution the performance is expected to increase even further, possibly
making it worth the time to run even with only 5 search engines.

It is worth mentioning that this is just run with a single problem with the same
tie-breaking factor value to be able to approximately compare against the results of
the normal variant (found in graph 5.5a). A more extensive study is necessary to
generalize these findings and also to run the normal variant with random seeds in
the same fashion as this additional experiment to get a more accurate comparison.

61

Chapter 6

Conclusions

This thesis aimed to answer the question “ What is a good design and implementation
of portfolio-based search in Gecode?”. By researching and testing different designs
an implementation was settled upon. The goal of the implementation was only to
produce a prototype which then was tested in several aspects in chapter 5. The tests
were designed to see if the design and implementation of portfolio-based search in
Gecode was sound.

There are five major conclusions that can be drawn from the results presented
in chapter 5 which are shown in the following list:

1. Design and implementation of portfolio-based search in Gecode is sound for
both the sequential and parallel variants.

2. No solutions are ever lost during execution of sequential or parallel portfolio-
based search.

3. Overhead in the sequential variant and the parallel variant of portfolio-based
search is small enough to not affect the execution time in any significant
manner.

4. The parallel variant of portfolio-based search is capable of finding solutions
faster than a normal single search engine approach.

5. The sequential variant of portfolio-based search is not as effective as its parallel
counterpart. It is recommended to consider using restart based search instead,
or a combination thereof.

The first conclusion is by far the most important as it is the main topic of this
thesis. The other four conclusions are different parts of the first, illustrating impor-
tant features and discoveries. The second conclusion is a fundamental requirement
for the design and implementation to be considered sound. If the implementation
would occasionally drop solutions found by their search engines the design would
have serious flaws. The third conclusion also strengthens that the design and im-
plementation of portfolio-based search is sound. If the overhead would be too great
it would diminish the benefits of using multiple search engines. While the fourth
conclusion verify the assumption that running several search engines in parallel is

63

CHAPTER 6. CONCLUSIONS

better than any single search engine the same cannot be said for the sequential
variant of portfolio-based search.

6.1 Future Work

Future studies specifically following this thesis’s steps would be to continue working
on and improving the design and implementation of portfolio-based search in Gecode
as it is still only a prototype. To fully integrate it with Gecode in the long run
would need a lot of extra documentation and testing, which was a far-fetched last
optional goal in this thesis. Considering to implement a branch-and-bound variant
where solutions could be injected into a search engine from the outside so that
search engines could share progress between each other is also an interesting area to
research. Also looking at different ways to implement the use of sharing no-goods
between search engines when running branch-and-bound or restart-based search
could be interesting.

As the hardware industry continues to produce processors with more and more
cores the future for portfolio-based search is bright and promising. Therefore it
would be interesting to look at how the implementation of portfolio-based search in
Gecode scales when run on a computer cluster with several hundreds of available
cores and perhaps adapt the communication protocol to handle such vast numbers
of threads.

64

Appendix A

Case Study Extras

A.1 Server Specifications

processor 0 vendor__id : AuthenticAMD
cpu family : 16 model 9

model name : AMD Opteron(tm) Processor 6172

stepping 1 cpu MHz : 2100.053
cache size : 512 KB physical id 22

siblings : 12 core id : 5

cpu cores : 12 apicid : 43

fpu : yes fpu__exception : yes

cpuid level : b5 wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep

mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht
syscall nx mmxext fxsr_opt pdpelgb rdtscp lm 3dnowext
3dnow rep_good constant_tsc nonstop_tsc amd _dem pni cx16
popcnt lahf Im cmp_legacy svmm extapic cr8_legacy abm sseda
misalignsse 3dnowprefetch osvw ibs skinit wdt nodeid_msr

bogomips 4200.48 TLB size : 1024 4K
pages

clflush size : 64 cache_alignment : 64

address sizes : 48 bits physical, 48 bits wvirtual

power management: ts ttp tm stc 100mhzsteps hwpstate [8]

Figure A.1: Specifications for the three servers that all experiments were run on.
The servers each have 2x AMD Opteron 6172, 2.1GHz CPUs (12 cores each). Each
core has the specifications shown in this figure.

65

APPENDIX A. CASE STUDY EXTRAS

A.2 Branching Implementations & Tie-Breaking

if (thf > 0.0) {
Rnd r(opt.seed ());
switch (opt.branching()) {
case BRANCH SIZE:

branch (xthis, e, tiebreak (INT_VAR,_SIZE MIN(&tbl_min),

INT_VAR _RND(r)),
INT VAL MIN());

break;

case BRANCH AFC SIZE:

IntAFC afc(xthis, e, opt.decay());
branch (xthis, e, tiebreak(
INT_VAR_AFC_SIZE MAX(afc, &tbl_max),
INT_VAR_RND(r)),
INT_VAL MIN());
break;
}

} else {
switch (opt.branching()) {
case BRANCH SIZE:
branch (xthis, e, INT_VAR SIZE MIN(), INT VAL MIN());
break;
case BRANCH AFC SIZE:
branch (xthis, e, INT_VAR AFC_SIZE MAX(opt.decay()),
INT VAL MIN());
break;
¥
}

Figure A.2: Code segment illustrating the original branching implementation used
during the first part of the Latin Square case study when measuring the overhead
of the two PBS variants.

66

A.2. BRANCHING IMPLEMENTATIONS & TIE-BREAKING

if (tbf > 0.0) {
Rnd r(opt.seed ());
switch (opt.branching()) {
case BRANCH SIZE:
branch (xthis, e, tiebreak (INT_VAR_SIZE MIN(&tbl_min),
INT VAR RND(r)),
INT VAL RND(r));
break;
case BRANCH_AFC_SIZE:
{
IntAFC afc (xthis, e, opt.decay());
branch (xthis, e, tiebreak(
INT VAR AFC SIZE MAX(afc, &tbl _max),
INT VAR RND(r)),
INT VAL RND(r));
break;
}

}
} else {

Rnd r(opt.seed ());

switch (opt.branching ()) {

case BRANCH SIZE:
branch (xthis, e, INT_VAR_SIZE MIN(), INT_ VAL RND(r));
break;

case BRANCH AFC SIZE:
branch (xthis, e, INT_VAR AFC_SIZE MAX(opt.decay ()),

INT_VAL _RND(r));

break;

¥

¥

Figure A.3: Code segment illustrating the modified branching implementation used
during the second part of the Latin Square case study when measuring the perfor-
mance of the two PBS variants.

67

APPENDIX A. CASE STUDY EXTRAS

/// Tie—breaking minimum limit function

double _tbl min(double w, double b) const {
assert (w >= b);
return b + (w — b) x tbf;

}

/// Tie—breaking minimum limit function

static double tbl_ min(const Space& home, double w, double b) {
return static__cast<const QCP&>(home). tbl min(w,b);

}

/// Tie—breaking maximum limit function
double _tbl_max(double w, double b) const {
assert (b >= w);
return b — (b — w) * tbf;
}
/// Tie—breaking mazimum limit function
static double tbl_max(const Space& home, double w, double b) {
return static_ cast<const QCP&>(home). tbl max(w,b);

}

Figure A.4: Code segment illustrating the tie-breaking limit functions used during
the second part of the Latin Square case study when measuring the performance of
the two PBS variants.

68

Appendix B

Source Code of Portfolio Search

B.1 Source Code for Sequential Portfolio Search

H O © 0 O Ot ixWwih

—_ =

13
14
15
16
17
18

19

20
21
22
23

24
25
26
27
28

#include <gecode/search .hh>
namespace Gecode {

template<class T>
class PBS {

class StopWrapper : public Search::Stop {

protected:

// Might change e_nodestop to generic stop object

later
Search :: NodeStop* e_nodestop;
Search :: Stop* pbs_stop;
bool e_stopped;
bool pbs_stopped;

// pbs_stats is the total statistics of PBS

Search:: Statistics pbs_stats;
// old__stats is the previous statistics
current running engine.

of the

// Needed to take out the difference between the

previous and current statistics.
Search:: Statistics old_stats;

public:
StopWrapper (Search :: NodeStop* _ nodestop,
Search :: Stop* _ pbs_stop)

e_nodestop (_nodestop), pbs_stop(_pbs_stop),

e_stopped(false), pbs_stopped(false) {
//nothing more to do

}

69

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
93
54
95
56
o7
98
99
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
(0]
76

APPENDIX B. SOURCE CODE OF PORTFOLIO SEARCH

/// Copy over walues from s to old__stats
void setOldStats(const Search:: Statistics& s) {
old_stats.fail = s. fail;

old_stats.node = s.node;
old_stats.depth = s.depth;
old_stats.restart = s.restart;
old__stats.nogood = s.nogood;

}

/// Update the total statistics for the meta engine.
void update(const Search:: Statistics& s) {
// Update pbs__stats with difference of
// previous and current statistics
pbs_stats. fail += s.fail — old_stats. fail;
pbs_stats.node += s.node — old_stats.node;
pbs_stats.depth += s.depth — old_stats.depth;
pbs_stats.restart += s.restart — old_stats.restart;
pbs_stats.nogood += s.nogood — old_stats.nogood;

// Update old__stats to current s
setOldStats (s);

}

/// Reset status for engine and PBS when PBS:next()
/// is called again
void resetstatus(void) {

e_stopped = false;

pbs_stopped = false;

// Functions must be called in the following order:
// setOldStats (engine. statistics ())
// engine.next()
// update(engine. statistics())
/// Check if engine or PBS should be stopped.
bool stop(const Search:: Statistics& s, const
Search :: Options& o) {
// PBS is checked first because of higher precedence
if ((pbs_stop != NULL)) {
// Update pbs__stats
update(s);

// This will always see so that pbs_stopped
// has the right wvalue
pbs_stopped = pbs_stop—>stop (pbs_stats ,0);

// Stop if the stop object for the PBS says so
if (pbs_stopped) {
return true;

70

B.1. SOURCE CODE FOR SEQUENTIAL PORTFOLIO SEARCH

7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

}
}

// This will always see so that e_stopped
// has the right wvalue
e_stopped = e_nodestop—>stop(s,o0);

// Stop if the stop object for the engine says so
if (e_stopped) {

return true;
}

return false;

}

/// Return engine stop object pointer to be able to
update/manipulate it

Search :: NodeStop* enginestop (void) {
return e_nodestop;

}

/// Check if engine stop object is stopped
bool enginestopped (void) {
return e_stopped;

}

/// Check if PBS stop object is stopped
bool pbsstopped(void) {
return pbs_ stopped;

}

~StopWrapper (void) {
delete e_nodestop;
delete pbs_stop;

b

protected:

// Engines
std :: vector<EngineBase<I>x>& engines;

// Stop object
StopWrapper* so;

// Constants

int BLOCK;

int NR_ENGINES;

// int BLOCK = so—>enginestop ()—>limit();
// int NR_ENGINES = engines. size ();

71

APPENDIX B. SOURCE CODE OF PORTFOLIO SEARCH

125 public:

126 // Create portfolio of engines el and e2

127 PBS(std :: vector<EngineBase<T>#>& _ engines, Search:: Stopx

stop ,

128 const Search:: Options&

129 o=Search :: Options:: def)

130 : engines(__engines),

131 so (new StopWrapper (new Search ::NodeStop(10), stop)) {

132

133 BLOCK = so—>enginestop ()—>limit () ;

134 NR_ENGINES = engines. size () ;

135 // Provide all engines with modded stop object that

wraps the provided stop object.

136 for (int i = 0; i < NR_ENGINES; i++){

137 engines [i]—>stop (so);

138 }

139 }

140

141 /// Return next solution (NULL, if none exists or search

has been stopped)

142 virtual T next(void) {

143 T+ returned = NULL;

144 so—>resetstatus () ;

145 bool all_finished = false;

146 // bool run = true;

147

148 while (true) {

149

150 for (int i = 0; i < NR_ENGINES; i++){

151 so—>setOldStats (engines [i]->statistics ());

152 returned = dynamic_ cast<Ix>(engines [i]—>next());

153 so—>update (engines [i]—->statistics ());

154

155 // std::cout << "\nengine:" << (so—>enginestopped ()
¢ "true" : "false'");

156 // std::cout << " | PBS:" << (so—>pbsstopped () ?
"true" : "false");

157 // std::cout << "\ne' << i << " stopped:" <<
(engines [i]—>stopped () ? "true' : "false');

158

159 if (so—>pbsstopped()){

160 // std::cout << "\nPBS stop object stopped!";

161 return returned;

162 // run = false;

163 // break;

164 }

165

166 if (returned != NULL){

167 // std::cout << " o '

72

B.1. SOURCE CODE FOR SEQUENTIAL PORTFOLIO SEARCH

168 // returned—>print (std::cout);
169 return returned;
170 // run = false;
171 // break;
172 }
173
174 }
175
176 J/ if (Irun){
177 // break;
178 /) }
179
180 for(int i = 0, count = 0; i < NR_ENGINES; i++){
181 if (! engines[i]—>stopped()){
182 count++;
183 // std::cout << "\ne' << i << " is Done!’;
184 }
185 if (count =— NR_ENGINES) {
186 all finished = true;
187 }
188 }
189
190 if (all_finished){
191 // run = false;
192 break;
193 }
194
195 // std::cout << "\nLimit: " <<
so—>enginestop ()—>limit () << " increased to: "
196 // << so—>enginestop ()—>limit ()+BLOCK <<
Il\nﬂ;
197 so—>enginestop ()—>limit (so—>enginestop ()
198 —>limit ()+BLOCK) ;
199 }
200
201 return returned;
202 }
203
204 /// Return statistics
205 virtual Search:: Statistics statistics(void) const {
206 Search:: Statistics stats;
207 for (int i = 0; i < NR_ENGINES; i++){
208 stats += engines[i]—>statistics ();
209 }
210 return stats;
211 }
212
213 /// Check whether engine has been stopped
214 virtual bool stopped(void) const {

73

215
216
217
218

219
220
221
222
223
224
225
226
227
228
229

00 O U= Wi~

21

22
23

APPENDIX B. SOURCE CODE OF PORTFOLIO SEARCH

return so—>pbsstopped () ;

}

/// Reset engine to restart at space \a s (do nothing for
now)
virtual void reset (Spacex s) {}

/// Return no—goods (for the time being nothing)
virtual NoGoods& nogoods(void) { return NoGoods::eng; }

/// Destructor
virtual ~PBS(void) {
}

}s

B.2 Source Code for Parallel Portfolio Search

#include <gecode/search .hh>
#include <gecode/search/support.hh>

namespace Gecode {

template<class T>
class PBS {
protected:

class ModdedStopObject : public Search::Stop {

protected:
Search :: Stopx stop_object;
Support :: Mutex* command_mutex;
intx PBS_ Command;
bool stopped;
boolx PBS_ stopped;

public:
ModdedStopObject (Search :: Stopx __stop__object ,

Support :: Mutex* _ command mutex, intx _PBS Command,
boolx _PBS_stopped)

stop_object (__stop_object),
command_ mutex (__command_ mutex) ,
PBS_ Command (_PBS_ Command) ,
PBS_stopped (_PBS_stopped) , stopped(false) {

// nmothing more to do

}

74

B.2. SOURCE CODE FOR PARALLEL PORTFOLIO SEARCH

24

25 bool stop(const Search:: Statistics& s, const
Search :: Options& o) {

26

27 command_ mutex—>acquire () ;

28 /x 1 == stop

29 == go on */

30 if (+PBS_Command = 1) {

31 // std::cout << "PBS_Command: " << *PBS_Command

<< "\n';

32 command_mutex—>release () ;

33 return true;

34 }

35

36 if (stop_object != NULL) {

37 stopped = stop_object—>stop(s,0);

38 if (stopped) {

39 // std::cout << "PBS stop object stopped!\n';

40 (*xPBS_stopped) = true;

41 command_mutex—>release () ;

42 return true;

43 }

44 }

45 command_mutex—>release () ;

46 return false;

47 }

48

49 ~ModdedStopObject (void) {

50 // delete e_nodestop;

51 delete stop_object;

52 }

53 }s

54

55 // FIFO queue for PBS solutions

56 template<class U>

57 class PBS_queue {

58

59 struct Node {

60 Ux solution;

61 Node* next ;

62 =

63

64 public:

65 Nodex first ;

66 Nodex last ;

67

68 // constructor

69 PBS_queue() {

70 first = NULL;

(0]

71
72
73
74
(0]

76

7
78
79

80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

APPENDIX B. SOURCE CODE OF PORTFOLIO SEARCH

last = NULL;
}

void push(Ux result) {
// Copy/clone solution into new object to store in to

move
// the entire object from thread stack onto master
stack
if(first = NULL) {
first = new Node;

first —>solution =
dynamic__cast<Ux>(result —>clone(false)); //
Does it mneed to be cloned?
first —>next = NULL;
last = first;
}
else {
last —>next = new Node;
last = last —>next;
last —>solution =
dynamic__cast<Ux>(result —clone (false)); // Does
it meed to be cloned?
last —>next = NULL;
}
}

Ux pop () {

// return first solution

Ux returned;

if(first != NULL) {
Nodex temp = first;
first = first —>next;
returned = temp—>solution ;
delete temp;

else {
returned = NULL;
}
return returned;
¥
=

template<class V>
class run_wrapper : public Support:: Runnable {

public:

EngineBase<V>& e

Support :: Mutex* solution_mutex;
Support :: Eventx event;

76

114
115
116
117
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

B.2. SOURCE CODE FOR PARALLEL PORTFOLIO SEARCH

PBS__queue<V>x* queue;
intx finished_ threads;
intx stopped_threads;

run_wrapper (EngineBase<V>& _e, Support :: Mutexx
_solution__mutex,
Support :: Eventx _ event,
PBS__queue<V>% __queue,
intx _ finished threads,
intx _stopped_threads)
e(_e),
solution_mutex (_solution_mutex) ,
event (__event) ,
queue (__queue) ,
finished threads(_finished threads),
stopped__threads (_stopped_threads) {}

virtual void run(void) {
Vx result = e.next();

solution__mutex—>acquire () ;
if (result != NULL) {
queue—>push (result);
}
// std::cout << "Stopped: " << e.stopped() <<
if (le.stopped()) {
(xfinished _threads)++;

else {
(xstopped__threads)++;

solution__mutex—>release () ;
event—>signal () ;
}
};

// Mutezes and event to protect critical areas.
Support :: Eventx event ;

Support :: Mutex* command_mutex ;

Support :: Mutex* solution_mutex;

// Shared wvariables for communication.
int NR_THREADS;

int finished_ threads;

int stopped_threads;

int PBS_Command;

bool PBS_ stopped;

// Queue

7

n

"

\n";

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176

177
178
179
180
181
182
183
184
185
186
187

188
189

190
191
192
193

194
195
196
197

198
199
200
201
202
203
204

APPENDIX B. SOURCE CODE OF PORTFOLIO SEARCH

PBS__queue<T>* queue;

// Engine and run_wrapper vectors and stop object
std :: vector<EngineBase<I>x>& engines;

std :: vector<run_ wrapper<I>x> runners;

Search :: Stopx stop;

public:
// Create portfolio of engines el and e2
PBS(std :: vector<EngineBase<T>#x>& _ engines, Search:: Stopx
_stop,
const Search :: Options&
o=Search :: Options:: def)
engines (__engines), stop(_stop) {

// Create mutexes, event, queue and set shared
variables.

command__mutex = new Support :: Mutex () ;

solution mutex = new Support :: Mutex() ;

event = new Support :: Event () ;

queue = new PBS_ queue<T>();

NR_THREADS = engines. size () ;

finished threads = 0;

PBS_Command = 0;

stopped__threads = 0;

PBS_stopped = false;

// Provide all engines with modded stop object that
wraps the provided stop object.
for (int i = 0; i < NR_THREADS; i++){
engines [i]—>stop (new ModdedStopObject (stop ,
command_ mutex, &PBS_Command, &PBS_stopped));
}

}

/// Return next solution (NULL, if none exists or search
has been stopped)
virtual T+ next(void) {
T+ returned = NULL;

// Check if there exist already found solutions in
queue.

// If yes, return said solution.

solution__mutex—>acquire () ;

returned = queue—>pop () ;

solution_mutex—>release () ;

if (returned != NULL) {
// std::cout << "Master: Popped ezxisting solution!\n';
// returned—>print (std::cout);

78

205
206
207
208
209
210
211
212
213

214
215

216
217
218

219
220
221
222
223

224
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239

240

241
242
243
244

B.2. SOURCE CODE FOR PARALLEL PORTFOLIO SEARCH

return returned;

}

// Set PBS stopped status to false.
command__mutex—>acquire () ;
PBS_stopped = false;
command_mutex—>release () ;

// Create run_wrappers for every engine and start them
in separate threads.
for(int i = 0; i < NR THREADS; i++){
Gecode :: Support :: Thread :: run (new
run_ wrapper<I>(xengines [i], solution_ mutex, event,
queue, &finished threads, &stopped_threads));

}

// Master thread will "eat up' possible residue signals
on the event by just going some extra laps in the
do—while

while (true) {

event—>wait () ;

solution__mutex—>acquire () ;

returned = queue—>pop () ;

// std::cout << "Master: finished_threads: " <<
finished__threads << "\n';

if ((finished_threads + stopped_threads) —
NR,_THREADS) {
// Reset values and exit
finished__threads = 0;
stopped__threads = 0;
solution__mutex—>release () ;
break;
}
else if(returned != NULL) {
command_mutex—>acquire () ;
PBS_ Command = 1;
command_mutex—>release () ;
solution__mutex—>release () ;
while (true) {
solution mutex—>acquire () ;
// std::cout << "stopped_threads: " <<
stopped__threads << "\n';
if ((finished threads + stopped threads) =
NR_THREADS) {
// Reset values and exit
stopped__threads = 0;
command__mutex—>acquire () ;
PBS_ Command = 0;

79

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290
291
292

APPENDIX B. SOURCE CODE OF PORTFOLIO SEARCH

command_ mutex—>release () ;
finished_threads = 0;
solution_mutex—>release () ;
break;

}

solution__mutex—>release () ;

Gecode :: Support :: Thread : : sleep (10) ;

}
break;

else {
solution__mutex—>release () ;

}
}

if (returned != NULL) {
// returned—>print (std::cout);
}
else {
if (PBS_stopped) {
// std::cout << "PBS stopped\n';
}
else {
// std::cout << "Master: Solution is NULL...\n';

}
}

return returned;

}

/// Return statistics
virtual Search:: Statistics statistics(void) const {
Search:: Statistics stats;
for (int i = 0; i < NR_THREADS; i++){
stats += engines[i]->statistics ();
}

return stats;

}

/// Check whether engine has been stopped
virtual bool stopped(void) const {
return PBS_ stopped;

}

/// Reset engine to restart at space \a s (do nothing for
now)
virtual void reset (Spacex s) {}

/// Return no—goods (for the time being nothing)

80

B.2. SOURCE CODE FOR PARALLEL PORTFOLIO SEARCH

293 virtual NoGoods& nogoods(void) { return NoGoods::eng; }
294

295 /// Destructor

296 virtual ~PBS(void) {

297 }

298 };

299

300 |}

81

Bibliography

Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint
programming. Elsevier, 2006. Referenced on chapter 1.

Bernardo A Huberman, Rajan M Lukose, and Tad Hogg. An economics ap-
proach to hard computational problems. Science, 275(5296):51-54, 1997.

Investopedia. Portfolio. Retrieved on April 17th 2015. URL: http://www.
investopedia.com/terms/p/portfolio.asp.

Financial-Dictionary. Definition of portfolio. http://financial-dictionary.
thefreedictionary.com/portfolio. Retrieved on April 17th 2015.

Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim McFadden, and
Yoav Shoham. A portfolio approach to algorithm selection. In IJCAI volume
1543, page 2003, 2003.

Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Chapter 1: Intro-
duction. In Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist, editors,
Modeling and Programming with Gecode. 2010. Referenced on page 1. Corre-
sponds to Gecode 4.3.3.

Carla P Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence,
126(1):43-62, 2001.

IEEE. Code of ethics. Retrieved on April 8th 2015. URL: http://www.ieee.
org/about/corporate/governance/p7-8.html.

Christian Schulte and Mats Carlsson. Finite domain constraint program-
ming systems. In Francesca Rossi, Peter van Beek, and Toby Walsh, edi-
tors, Handbook of Constraint Programming, Foundations of Artificial Intelli-
gence, chapter 14, pages 495-526. Elsevier Science Publishers, Amsterdam, The
Netherlands, 2006. URL: http://www.gecode.org/~schulte/paper.html?
id=SchulteCarlsson:CPH:2006.

Christian Schulte and Guido Tack. Programming propagators. In Christian
Schulte, Guido Tack, and Mikael Z. Lagerkvist, editors, Modeling and Pro-
gramming with Gecode. 2015. Corresponds to Gecode 4.3.3.

83

[11]

BIBLIOGRAPHY

Peter Van Beek. Backtracking search algorithms. In Francesca Rossi, Peter
van Beek, and Toby Walsh, editors, Handbook of Constraint Programming,
chapter 4, pages 85-134. Elsevier BV, Amsterdam, 2006.

Carla P Gomes and Bart Selman. Algorithm portfolio design: Theory vs.
practice. In Proceedings of the Thirteenth conference on Uncertainty in artificial
intelligence, pages 190-197. Morgan Kaufmann Publishers Inc., 1997.

Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling. In Chris-
tian Schulte, Guido Tack, and Mikael Z. Lagerkvist, editors, Modeling and
Programming with Gecode. 2015. Corresponds to Gecode 4.3.3.

Christian Schulte. Programming search engines. In Christian Schulte, Guido
Tack, and Mikael Z. Lagerkvist, editors, Modeling and Programming with
Gecode. 2015. Corresponds to Gecode 4.3.3.

EJ Hoffman, JC Loessi, and RC Moore. Constructions for the solution of the
m queens problem. Mathematics Magazine, pages 6672, 1969.

Igor Rivin, Ilan Vardi, and Paul Zimmerman. The n-queens problem. American
Mathematical Monthly, pages 629-639, 1994.

Carla P Gomes, Bart Selman, et al. Problem structure in the presence of
perturbations. AAAI/TAAI 97:221-226, 1997.

Charles J Colbourn. Embedding partial steiner triple systems is np-complete.
Journal of Combinatorial Theory, Series A, 35(1):100-105, 1983.

Gecode Documentation. Gecode::support::thread class reference. Retrieved
on April 15th 2015. URL: http://www.gecode.org/doc-latest/reference/
classGecode_1_1Support_1_1Thread.html.

84

