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Abstract

The speed and precision of linear algebra algorithms
are determining factors for the performance of wireless net-
works. How these algorithms are implemented is therefore
critical. Even though they can be implemented with spe-
cialised hardware components, a software implementation
of these functions can be preferable for its flexibility. This
solution has been chosen at Ericsson to replace a hardware
accelerator that currently implements a set of useful ma-
trix functions. The aim of this project was therefore to
design, implement, and optimise a software program which
supports the same functions as the accelerator, and which
runs on Ericsson’s proprietary DSP core.

Different algorithms, data formats, and data structures
have been analysed and compared based on a literature
study and an analysis of the DSP’s characteristics. The fi-
nal program has been implemented in C for the main struc-
ture, and the actual linear algebra functions have been opti-
mised in assembly. Several test cases have also been written
and executed on a cycle-accurate simulator in order to eval-
uate the performance of the program in terms of speed and
precision.

Even though the matrix functions are in general slower
when executed on the DSP than on the hardware accelera-
tor, the schedule of the instructions has been optimised to
make the best use of the DSP’s capabilities. In most cases,
several versions have been written in order to adapt the
data formats and the algorithms to the properties of the
matrices and to the needs of the user, which was not possi-
ble on the previous hardware implementation. Bottlenecks
have been identified to suggest potential future evolution
in the hardware architecture and in the software interface
that could further improve the performance of the program.



Referat

Hastigheten och noggrannheten i beräkningar av linjär al-
gebra är avgörande för prestanda i trådlösa nätverk. Det
är därför mycket viktigt hur man väljer att implemente-
ra dessa funktioner. Trots att de kan implementeras med
dedicerad hårdvara, så kan en mjuk lösning ändå vara att
föredra på grund av dess flexibilitet. Detta steg har tagits
hos Ericsson för att ersätta en accelerator som utför ett an-
tal i sammanhanget användbara matrisberäkningar. Målet
med projektet har därför varit att utforma, implementera
och optimera en mjukvarulösning som stöder samma funk-
tioner som acceleratorn, och för att exekveras på Ericssons
mångkärniga DSP-plattform.

Olika algoritmer, dataformat och datastrukturer har
undersökts och jämförts, utifrån litteraturstudier och egen-
skaperna hos DSP:n. Den slutliga lösningen har implemen-
terats i C för huvudapplikationen, och i optimerad assemb-
ler för signalbehandlingsfunktionerna. Ett antal testfall har
också utformats och körts på en cykelexakt simulator, för
att utvärdera exekveringstid och beräkningsnoggrannhet.

Matrisoperationerna tar generellt sett längre tid att kö-
ra på en DSP jämfört med acceleratorn, men instruktioner-
na har schemalagts för att på bästa sätt utnyttja DSP:ns
resurser. För många funktioner har flera varianter tagits
fram, för bättre anpassning till olika dataformat, matrisers
egenskaper och yttre krav, vilket inte var möjligt med den
existerande acceleratorn. Flaskhalsar har identifierats, och
förslag till förändringar i arkitekturen och mjukvarugräns-
snittet har tagits fram. Införs dessa förändringar så kan
prestanda ytterligare förbättras.
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1 Introduction

The performance of linear algebra functions is a key factor in most signal processing
applications for mobile networks. Implementing these functions optimally is there-
fore critical. What is addressed more precisely in this project is the design and
implementation of a set of functions on complex matrices in software. The target
hardware is in this case Ericsson’s proprietary DSP core, the latest version of which
is currently under development.

1.1 Problem statement

The software program is meant to be deployed in a multi-core architecture, in which
one or several Digital Signal Processors (DSPs) behave as servers. Other entities
in the architecture build matrix algorithms as a sequence of matrix functions. The
server is then responsible for managing the whole execution of the algorithm. These
services were until now provided by a hardware accelerator that is being removed
from the upcoming version of the architecture. The aim is therefore to implement
the same services in software.

A simple comparison between the existing hardware accelerator and the DSP
on which the software program will run reveals that the software implementation is
expected to have lower performance in terms of speed if it provides the same level
of precision than the accelerator. The hardware implementation has indeed been
designed for that specific matrix application and contains more computational units
than the DSP.

The aim of the project is therefore not to obtain the same performance as with
the hardware implementation, but rather to utilise the properties of the DSP to
reach the best possible performance on this new architecture. The algorithms, data
structures, and data formats will be analysed and selected in this purpose.

The question that is being solved in the rest of this study is the following: How
to optimise performance for linear algebra in terms of speed and precision when
implemented in software on Ericsson’s proprietary DSP core?
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CHAPTER 1. INTRODUCTION

1.2 Purpose

The advantages of a software solution compared to a hardware implementation are
numerous: in addition to its flexibility which can enhance the performance of the
program in some specific cases, it can be easily adapted to future changes in the
specifications. It can also improve the global use of resources in the multi-core
architecture, since the accelerators have a very specific purpose, while the DSPs
can execute a various range of applications. The number of cores dedicated to this
linear algebra program can therefore vary depending on the needs of the application,
and the DSPs which do not run the matrix program can be freed to execute other
functions.

Furthermore, a general software program with matrix functions implemented as
services can be used in many different applications, including but not restricted to
Ericsson’s network-related algorithms.

Throughout the optimisation of each linear algebra function and the design of
the execution process (including management of data storage and control of data
range), this study is also an opportunity to explore the DSP’s capabilities while its
latest features are being developed. The co-development of software and hardware
can contribute to better performance for the former and to a design closer to the
programmers’ need for the latter.

1.3 Methodology

In order to make accurate design decisions, the problem has first been studied
theoretically. Existing analysis in the literature have been taken into account to
select the algorithms and data formats in the software. The main focus has been on
algorithms’ stability and speed, and the comparison of fixed- and floating-point data
representation. Then the DSP architecture and characteristics have been analysed
to choose accurately the data structures and to evaluate the theoretical speed of
each function.

This has been followed by the actual implementation of the program. Tests
have been realised with a cycle accurate simulator that emulates the upcoming
version of the DSP, and the accuracy of the obtained results has been checked with
Matlab software. Other simulation tools have also been used to measure factors
that influence the power dissipation in different components of the architecture.
The outcome includes a benchmarking of the software solution, and a comparison
with the existing hardware accelerator based on quantitative results.

Finally, the limitations of the solution have been identified and some potential
evolutions both in the hardware and in the software have been considered.

The different steps of the project are described in Figure 1.1.
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1.4. MAIN RESULTS

Figure 1.1. Step-by-step methodology

1.4 Main results

This study has shown that a software implementation is a viable solution for this
problem. Even though it is as expected in general slower than the hardware, a
schedule that makes the most of the DSP’s capabilities in assembly language and
a flexible choice of algorithm based on the inputs’ properties can lead to better
performance compared to what could be expected by a simple comparison of the
hardware capabilities. The software implementation provides several versions for
most functions, depending on if speed or precision is a priority for the user. Its flex-
ibility also makes it more adaptable than the hardware to future potential changes
in the specifications.

1.5 Sustainability and ethics

Sustainability aspects have also been considered, and the energy consumption of
the DSP for this software program has been taken into account. This study is also
part of a much wider project for the development and operation of mobile networks.
Because the carbon footprint of mobile communications has kept increasing in the
last decade and is expected to continue its rise [1], it is essential to take these aspects
into account when considering manufacturing of devices and network operation.

While for the same functionality the energy consumption is expected to be higher
for the DSP than for the hardware accelerator, the development of a flexible soft-
ware solution on a general-purpose hardware has other advantages that can lead to
more efficient networks. Even though they participate in the release of CO2 in the
atmosphere, high-quality networks can also be the source of new solutions in energy
management with the multiplication of sensors and data that require fast and dense
mobile communications.

Another application to this project could be for a client DSP to directly use some
of the functions of the software implementation without sending matrix jobs to a
server. In this case, significant energy could be saved by not using the communica-
tion mechanism to send and receive job requests and by avoiding matrix transfers
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CHAPTER 1. INTRODUCTION

through the shared memory. This alternative use with lower power consumption
would not be possible with the hardware accelerator.

Concerning ethics, the quality and integrity of this project are guaranteed by the
respect of the IEEE codes of ethics [2] by all participants. Special care has been
taken to present the outcomes with objectivity, by being “honest and realistic in
stating claims or estimates based on available data”.

1.6 Structure
The first chapter of this report is the present introduction. Chapter 2 describes the
background of the thesis, concerning both the choice of a software implementation
for this problem and numerical analysis of possible design choices. The third chapter
is the continuation of the theoretical study with a deeper analysis of the problem
and a description of the key aspects of the design. Then chapter 4 provides details
about the actual implementation, and is followed by the evaluation in chapter 5. The
last chapter aims at analysing the limitations of the design and suggesting possible
evolutions both in the hardware and in the software to improve the performance of
the system.

6
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Part I

Theoretical analysis

7





Marion Bellefin Ericsson AB KTH ICT

2 Background

Before designing the software implementation for linear algebra functions, it is worth
studying the current state of the art in related areas.

First, the choice of hardware or software implementations will be discussed,
first in general and then for Ericsson’s architecture. The aim is to understand what
performance can be expected from the DSP implementation. This will be followed
by a literature review concerning matrix algorithms and the choice of data format.

2.1 Choice of hardware or software implementations

2.1.1 Comparisons in the literature

Selecting the right resources for implementing signal processing algorithms is a crit-
ical choice that has been studied extensively in the literature. In order to achieve
high speed requirements, fixed hardware implementation with Application-Specific
Integrated Circuits (ASIC) and software implementation on Digital Signal Proces-
sors (DSP) are both popular solutions. Even though the performance is highly
dependent on the DSP features (set of instructions, instruction parallelism, fre-
quency), ASIC implementations often give better results due to the fact that they
can be highly optimised for a specific purpose.

An example of comparison between ASIC and DSP implementation of a pulse-
shaping FIR-filter shows that ASIC should be preferred for its speed (5 times faster
at maximum clock frequencies), power consumption (more than 30 times lower),
and core area [3].

Another comparison, this time for a Fast Fourier Transform (FFT) also high-
lights the advantages of the hardware implementation, with a comparison factor
between 2 and 2.5 regarding latency and more than 10 for power efficiency [4].
However, it also highlights the lack of flexibility in ASIC, which is also mentioned
by the DSP manufacturer Texas Instrument [5].

2.1.2 Why a software implementation?

In Ericsson’s networks, linear algebra functions applied on matrices are currently
executed on a hardware accelerator, which has been designed and optimised for a
specific set of instructions. This accelerator is, however, being removed in the next
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generation of the hardware platform, and an alternative software solution is now
being examined. Despite their high performance, the accelerators occupy space in
the multi-core chip and infer other costs even when they are not used. Replacing
them by general-purpose cores could improve the global utilisation of the space and
infrastructure. The design effort could therefore be more focused on Ericsson DSP
which can be used for various kinds of applications. Another advantage of a software
implementation is the possibility to easily update its features over time.

The targeted solution would use some DSP cores as Matrix servers. With a
similar process as with the current hardware implementation, Matrix clients DSPs
would send a list of matrix functions to the servers. This structure is shown in
Figure 2.1. The requests are sent by the clients to a component responsible for the
scheduling of the tasks. In the current configuration, the requests are forwarded to
the hardware accelerators, but with the new implementation the requests will be
received by other DSPs.

The number of server cores can be adjusted depending on the application, which
makes this new solution much more flexible, yet completely compatible with the
current solution for the client. The number of clients may vary over time as well,
and those DSPs can execute different software code while waiting for the completion
of their requests.

Figure 2.1. Distribution of requests

The main objective of this study is to minimise the latency in the software
implementation, in order to make it a reasonable alternative to the accelerator or
even a faster solution in some cases.

Another possible application of this project would be to use the code differently
so that a DSP can be at the same time client and server. The scheduler would
no longer be used in this case, which would lead to time and energy savings. This

10
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application will not be examined further in this report.

2.1.3 Existing hardware accelerator

The current hardware implementation is considered as a reference in this project, in
the sense that the software solution must be able to support the same specifications.

The Matrix accelerator is part of a global architecture organised around a shared
memory. Communication processes enable efficient message passing between the
components and transfers between the shared and the local memories.

Matrix instruction and job structures

The matrix instructions that are sent to the hardware accelerators are grouped into
what is called a matrix job. A client which sends a job to the accelerator writes in
the shared memory a job header, containing the number of instructions in the job,
followed by the list of instructions. An instruction is 64-bit data structure which
contains the operation code (opcode) of the instruction, the size of the matrices, the
operands of the input and/or output matrices, and specific information regarding
the instruction. The hardware accelerator is able to read, decode, and execute these
instructions one after another.

A job typically begins with LOAD instructions, to load data from the shared
memory to the accelerator’s internal memory. Then some operations are executed
internally, and finally data is written back in the shared memory with STORE in-
structions (see Figure 2.2). For the LOAD/STORE instructions, the input/output
matrices are identified by their address in the shared memory. In all operations, each
matrix is identified by an operand parameter and a size, which together refer to a
unique location in the internal memory. All the internally manipulated matrices are
square complex matrices whose size is a multiple of 4. LOAD and STORE instruc-
tions can operate on various matrix shapes and sizes. The accelerator also supports
instructions to load and store vectors instead of matrices (VLOAD/VSTORE in-
structions).

Figure 2.2. Exemple of matrix job

11
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Set of instructions

The following set of instructions is supported. X0, X1, andX2 are complex matrices,
and λ is a complex constant that can be specified in some instructions. For every
complex matrix X, XT is the transpose of X, X is the conjugate of X, and X∗ is
the transpose conjugate (or Hermitian transpose) of X.

• LOAD - STORE: Load/store matrix from/to the shared memory to/from the
local memory

• VLOAD - VSTORE: Load/store vector from/to the shared memory to/from
the local memory

• CONST: Fill a matrix with a constant λ

• SCALE: Scale a matrix by a constant (X0 = λX1)

• ADD: Add a scaled matrix to another one (X0 = X0 + λX1)

• MUL: Multiply two matrices (X0 = X1X2)

• TMUL: Multiply a matrix with its Hermitian transpose (X0 = X1X
∗
1 )

• DOT: Compute scalar product of columns of X∗1 and X2 and write the result
in the first row of X0

• DIV: Solve linear equation (X0 = X−1
1 X0)

• CHOL - LDL: Compute Cholesky decomposition or LDL decomposition

• VMUL: Compute elementwise multiplication

• ABS2 - VINV - VSQRI: Other elementwise operations (write square absolute
values, inverse of the real part, or inverse of square root of the real part of X1
coefficients in X0)

• DMAX: Regularise a matrix X0 = mId where m is the maximum absolute
value on X1 diagonal

For most instructions, the output of the operation can be directly transposed
and/or conjugated. The full set of instructions contain for instance MUL (X0 =
X1X2), MUL_C (X0 = X1X2), MUL_T (X0 = (X1X2)T ), and MUL_TC (X0 =
(X1X2)∗). The full set of instructions can be found in Appendix A.

12
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Implementation in the Matrix Hardware Accelerator

A scratch-pad memory is included in the hardware accelerator. It can be interpreted
as a N × N table containing complex coefficients written in IEEE single-precision
floating-point format [6]. Depending on the size n of the matrix manipulated in the
current instruction, this table is divided into up to bN/nc2 blocks of size n×n, and
each operand in the instruction uniquely identifies one of these blocks.

All the internal computations are done with the single precision floating-point
format, but the data loaded or stored from/to the shared memory can be in many
different fixed-point and floating-point formats. With its floating-point units, it is
able to compute up to 4 complex multiply-accumulate (mac) operations per cycle
(a := a+ bc) which are not always fully used. For instance, the instruction latency
approaches 1

4 ×n
3 cycles for MUL instruction, but is closer to 1

2 ×n
2 for ADD. The

accelerator is also able to read data easily both row-wise and column-wise in the
scratch-pad memory.

2.1.4 Comparison with Ericsson’s proprietary DSP core

First, the DSP and the accelerator have the same frequency, so they can be compared
in terms of clock-cycle latency. Regarding computational capabilities, the DSP
contains fewer floating-point units than the hardware accelerator. In the coming
version of the DSP, 4 real multiply-accumulate operations can be computed per
cycle when it is used optimally, which is equivalent to only 1 complex mac per
cycle.

This next version of the DSP will also incorporate a Local Data Memory (LDM)
in which the scratch-pad memory of the accelerator can be emulated. However, the
access to the LDM at each cycle is limited, and no simple data structure can enable
the programmer to read easily data both row-wise and column-wise (in other words
to read several consecutive coefficients on the same row or on the same column in
one cycle).

If the algorithms and data formats used in the software implementation are
exactly the same as in the hardware implementation, the instructions’ latency is
expected to be higher with the software. The throughput of the most common
operations is up to 4 times higher with the floating-point units of the accelerator
than in the DSP. Because the computation units are not used all the time at their
maximum capacity in the former, the software implementation may only be about 2
to 4 times slower only. This concerns only the execution of the instruction, opcode
and operands decoding excluded. The performance of the software implementation
may also be constrained by other factors such as the read/write limitations and the
latency of the branching operations in the code.

Yet the main advantage of the DSP is its flexibility. While the accelerator always
uses the same algorithms and data formats, the software implementation can adapt

13
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to the different situations, for instance for the division function. Fixed-point format
can also be used in some cases, which may lead to smaller latencies.

The aim of this project is now to find the best suitable algorithms, data formats
and data structures, in order to obtain the best possible performance. The next
sections will now review and compare different possibilities found in the literature.

2.2 Study of main algorithms
In this section and in the rest of the report, all the matrices written in capital letter
are square matrices in Cn×n, unless otherwise specified. The element of A on row i
and column j is written aij for i, j ∈ {0, . . . , n−1}. For any complex number a and
complex matrix A, a is the conjugate of a, and A∗ is the conjugate transpose of A.

Most of the matrix functions described above are straightforward because they
operate on one element at a time (ADD, SCALE, VMUL, etc.). The order with
which the operations are executed will be selected depending the way the matrix
is stored in the memory and how easy it is to read and write data in the possi-
ble configurations. The rest of this section focuses on some of the more complex
instructions.

2.2.1 Multiplication

Matrix multiplication is a typical example for which the operations can be ordered
in many different ways. When C = AB is computed, the possible ways to organise
the loops on i, j, and k to compute cij =

n∑
i=0

aikbkj are summarised in [7]. If for
instance the inner loop is the loop on j, the data will be mostly accessed row-wise
which may be helpful to achieve a better throughput.

Some algorithms to compute matrix multiplication are described in [7] and [8].
The Strassen’s method which uses computation per block can for instance reduce
the number of operations by a factor of approximately 7/8, but this is only true for
big matrices, and using this method would probably increase the code size and/or
latency due to branching operations.

2.2.2 Division

What is meant by division here is the solving of the linear equation AX = B. If A
is invertible, then the solution X is equal to A−1B. [7] and [8] describe methods to
solve this system in the case where B and X contain only one column and where
all the matrices are real, but the methods can easily be extended.

Triangular systems

If A is either an upper triangular matrix or a lower triangular matrix, then the
solution can easily be computed by the following methods. It is assumed here that
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A is non-singular, which implies that all the diagonal coefficients are different from
zero.

• if A is lower triangular, then the forward substitution algorithm gives:

xij =
(
bij −

i−1∑
k=0

aikxkj

)
/aii

• if A is upper triangular, then the back substitution algorithm gives:

xij =

bij − n−1∑
k=i+1

aikxkj

 /aii
The operations can be organised per row or per column, and it is possible to

compute the result in-place by overwriting on B [7].

General systems

For general systems, a first solution would be to use LU factorisation, which
consists in finding an unit lower triangular matrix L (with 1 on the diagonal) and
an upper triangular matrix U such that A = LU . Such a factorisation always exists
and is unique if A is invertible, and can also be found sometimes when A is singular.
With this decomposition, it is easily possible to compute Y such that LY = B, and
then X in the equation UX = Y .

Another popular method to solve linear systems is the Gaussian elimination.
By using elementary row operations, the system AX = B can be modified to obtain
an equivalent system A′X = B′ in which A′ is upper triangular. Then the system
can easily be solved with back substitution. This method is similar to LU factori-
sation, but it is slightly faster when it is not needed to know the full decomposition
of A (typically when only one system with A has to be solved).

A simple way to understand the algorithm is to first concatenate A and B into
[A|B] ∈ Cn×2n. The algorithm contains n steps, one for each row. At each step
k, the current diagonal coefficient akk is used to eliminate all the coefficients below
akk in this column. More precisely, for every i > k, the ith row rowi in [A|B] is
replaced by rowi− aik/akk× rowk. At the end, the matrix [A′|B′] is obtained, with
A′ upper triangular (see Appendix B).

This algorithm may fail if at some point a null diagonal coefficient akk = 0 is
encountered at step k, which may happen even when A is non-singular. Due to
finite precision of data, which will be studied more explicitly in the next section,
errors may also occur when akk is very closed to zero (see [8]). A solution called
partial pivoting is to find at each step k a row rowr with r ≥ k such that |ark| =
max({|aik| : k ≤ i ≤ n− 1}), and then switch rowk and rowr (only if r > k) before
continuing step k. Other strategies like complete pivoting also use column swaps for
a better stability, but increase the complexity of the search for the biggest pivot.
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A last method for solving the equation is Gauss-Jordan elimination. It is
very similar to Gaussian elimination, except that instead of obtaining A′ upper
diagonal, the elimination technique is applied until obtaining a diagonal matrix A′′
and a matrix B′′ such that A′′X = B′′ is equivalent to AX = B. In order to obtain
such a system, the step k in Gaussian elimination is modified and the operation
rowi − aik/akk × rowj is applied for every i 6= k (the coefficients both below and
above akk are eliminated). From the last system A′′X = B′′ it is very easy to
find the solution X. While Gauss-Jordan algorithm may be easier to implement,
Gaussian elimination can be slightly faster and has a better stability in some cases
[9].

2.2.3 Cholesky - LDL decomposition

When A is a definite positive Hermitian matrix, it is possible to find a lower trian-
gular matrix L such that A = LL∗. This form is called Cholesky decomposition
and can be used to solve linear systems. The values of the coefficients of L are given
by the following explicit formulas:

∀i, j ∈ {0, . . . , n− 1} with i > j,

ljj =

√√√√ajj − j−1∑
k=0

ljkljk and lij =

aij − j−1∑
k=0

likljk

 /ljj
Similarly, LDL decomposition is the method to find a diagonal matrix D and

a unit lower diagonal matrix L (with only 1 on the diagonal) such that A = LDL∗.
The coefficients can be computed as following:

∀i, j ∈ {0, . . . , n− 1} with i > j,

djj = ajj −
j−1∑
k=0

ljkdkkljk and lij =

aij − j−1∑
k=0

likdkkljk

 /djj
These decompositions can both be done in place (L overwriting A), require fewer

operations than other general methods to solve linear systems, and are also more
stable [8]. There are more operations in LDL decomposition than with Cholesky,
but on the other hand the latter contains square root operations which can be
time-consuming.

2.3 Floating-point versus Fixed-point data representation

2.3.1 Format definitions

When it comes to the digital manipulation and storage of non-integer numbers, two
main approaches can be considered: fixed-point and floating-point representations.
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They differ in many aspects including the supported data range, and they affect the
precision and speed of the algorithm execution [10].

With the floating-point representation, specified in IEEE standard 754-2008 [6],
a value is characterised by its sign, significand and exponent. While the parameters
range can vary, this study will focus on the widely used 32-bit single precision format
in which a value is expressed as −1s × 2exp−127 × 1.mantissa. The most significant
bit of the 32-bit data representation is the signed bit s, then comes 8 bits for the
exponent exp interpreted as an unsigned integer, and the last 23 bits correspond
to the mantissa (see Figure 2.3). This format is supported both by the Matrix
hardware accelerator and by the DSP. With this data type, a very large range of
data is covered (from 10−38 to 1038) and the exponent is directly managed by the
hardware during arithmetic operations.

Figure 2.3. Single-precision floating-point data representation

With fixed-point representation on the contrary, the decimal point between the
integer and the fractional part of a number has a fixed location, which leaves to
the programmer the responsibility of dealing with all the issues related to data
magnitude [10]. The data size and location of radix point are described with
the Qm.n notation: the m first bits represent the integer part and the n last
bits the fractional part of a number. The global (m + n)-bit data can be inter-
preted as a two-complement integer that needs to be scaled by a factor 2−n (see
details in [11]). Figure 2.4 shows the representation of the number −2m−1bn+m−1 +
bn+m−2 . . . bn.bn−1 . . . b0. The DSP provides instructions for 8-bit, 16-bit, 32-bit,
and some for 40-bit data. A popular format is the Q1.15 (also simply called Q15)
format for 16-bit real data between -1 and 1.

Figure 2.4. Qm.n fixed-point data representation

From a hardware point of view, fixed-point arithmetic is easier to implement and
often leads to a better throughput, smaller chip size and lower power consumption
[12]. For a same data width, they also provide more significant bits than with
the floating-point formats in which some bits are occupied by the exponent, but
the latter formats deal much better with wide ranges of data [13]. The choice of
formats is therefore application-dependant, and a deeper analysis is required to
compare what level of precision and speed they can achieve for this specific project.

The next sections of this chapter will focus on a precision analysis, first for simple
operations. It is mainly based on Wilkinson’s book Rounding Errors in Algebraic
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Processes [14] and the work of Highman in Accuracy and Stability of Numerical
Algorithms [8].

2.3.2 Analysis of basic arithmetic operations

Notations

For any variable x, the notation x̂ will refer to finite representation of the variable,
while x will refer to its exact value. Two quantities will be useful to describe how
accurately x̂ describes x:

• the error εx = x− x̂

• the relative error ρx (defined for x̂ 6= 0 only): x = x̂(1 + ρx)

The sign of both these quantities will usually be ignored.

When computing c = op(a, b), where op is an arithmetic operation, three phe-
nomena can occur.

First, the result of op(â, b̂) may be out of the range of data that can be written
in the final format. Overflow happens when the absolute value of the result is too
high, and underflow when it is too low (the latter is only a risk for floating-point
format).

Another issue is that when op(â, b̂) is computed, some significant bits in the final
result may have to be eliminated to fit in the final format This operation-related
error has been studied extensively for instance in [8] and [14]. In this report, it will
be described by the quantities εop and ρop, defined respectively by op(â, b̂) = ĉ+ εop
and op(â, b̂) = ĉ(1+ρop). These quantities represent the loss of precision implied by
an operation if the input data are known exactly, in other words if for every input,
the finite representation in the given format is equal to the exact value of the data.

However, it is also worth studying the effects of error propagation, caused by
the fact that a 6= â and b 6= b̂. This error can be introduced as soon as the
data is created or imported, or it can be caused by rounding done on previous
operations in which a and b were the outputs. The consequence is that for instance
|εc| = |εop + op(â+ εa, b̂+ εb)− op(â, b̂)| can be higher than |εop| [15].

For complex numbers, we assume that both the real and the imaginary parts are
written in the given format. The usual norm of a complex number x = x.re+i·x.im
with x.re and x.im real is |x| =

√
x.re2 + x.im2, but the infinite norm ‖x‖∞ =

max(|x.re|, |x.im|) will also be useful to evaluate overflow.

Fixed-point error analysis

In this paragraph, all input and output data is represented in the Q1.n format
(partial results may be written in a more general Qm.n format with m ≥ 1). The
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range of values can vary from −1 (included) to 1 (excluded), and the smallest non-
zero absolute value is 2−n. Some basic arithmetic operations can be considered, and
the effects of rounding and error propagation quantified. For all the sub-mentioned
arithmetic operations, we assume that for every input data, there exists an integer
p such that 1 ≤ p ≤ n and for all input value x, the initial error can be bounded by
|εx| ≤ 2−p.

• Addition - Subtraction: these operations themselves do not involve any
round-off error, ε+ = ε− = 0. When computing c = a+ b, the value â+ b̂ can
be computed exactly and the result will be written in ĉ. However, an overflow
may occur if the result is out of range. Furthermore, the error on the input
value may propagate:

c = a± b = (â+ εa)± (b̂+ εb) = ĉ+ εc

We have therefore |εc| ≤ |εa ± εb| ≤ |εa|+ |εb| ≤ 2 · 2−p ≤ 2−(p−1)

• Multiplication: When multiplying two Q1.n numbers c = ab, we can easily
obtain the exact result of âb̂ in the Q2.2n format. If the result has to be
written in Q1.n format again, overflow may occur, but only if â = b̂ = −1,
and in this case the result can be written as 1 − 2−n without affecting too
much the accuracy of the result. When correct rounding is applied (2−1−n is
added to the Q2.2n result before truncating it to Q1.n), ε∗ can be bounded
by |ε∗| ≤ 2−n−1. If error propagation is also considered, then we have:

c = (â+ εa)(b̂+ εb) = âb̂+ âεb + b̂εa + εaεb with ĉ = âb̂+ ε∗

We can deduce
|εc| ≤ |ε∗|+ |â||εb|+ |b̂||εa|+ |εa||εb|

|εc| ≤ 2−n−1 + 2 · 2−p + 2−2p ≤ 22−p

• Division: The risk of overflow is very high with fixed-point division. The
result of c = a/b can only be written in Q1.n format if |â| ≤ |b̂|, which
is assumed for the error computation. It is also assumed that b 6= 0 and
b̂ 6= 0. The division-related error has the same bound as the multiplication:
|ε/| ≤ 2−n−1. The error on c however depends the value of b:

c− â

b̂
= â+ εa

b̂+ εb
− â

b̂
=
εa − â

b̂
εb

b̂+ εb

|εc| ≤ |ε/|+
|εa|+

∣∣∣ â
b̂

∣∣∣ |εb|
|b̂+ εb|

≤ 2−n−1 + 21−p

|b̂+ εb|
(with hypothesis

∣∣∣∣ â
b̂

∣∣∣∣ ≤ 1)

|b| should be as closed to 1 as possible in order to ensure a satisfying error
bound.
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Fixed-point real Fixed-point complex

c = a± b ε± = 0 ε± = 0
|εc| ≤ 21−p |εc| ≤ 21−p

|c| ≤ 2 ‖c‖∞ ≤ 2
c = ab |ε∗| ≤ 2−1−n |ε∗| ≤ 2−1−n

|εc| ≤ 22−p |εc| ≤ 22−p

|c| ≤ 1 ‖c‖∞ ≤ 2

c =
2k∑
i=1

aibi |εacc| ≤ 2−1−n |εacc| ≤ 2−1−n

|εc| ≤ 2k+2−p |εc| ≤ 2k+2−p

|c| ≤ 2k ‖c‖∞ ≤ 2k+1

Table 2.1. Effects of fixed-point computations on precision and bounds

• Product accumulation: A common operation in linear algebra is the sum

c =
N∑
i=1

aibi. In order to increase the precision, it is possible to store all the
partial results in an accumulator that can contain Q2.2n data, and convert
the result back to Q1.n format only at the end of the computation [14]. In
this case, the error caused by the final rounding is only |εacc| ≤ 2−1−n. If error
propagation is taken into account, then we have:

|εc| ≤ 2−1−n +
N∑
i=1

(21−p + 2−2p) ≤ 2dlog2(N)e+2−p

Overflow is likely to occur, especially if N is big, but it can be avoided by
first scaling all the input values with an accurate factor. Another solution
is to store the partial results in a larger accumulator (in Qm.n format with
m ≥ dlog2 (N)e), and to scale the final result so that it can be written in Q1.n
format. In each case, the scaling may affect the precision.

All these results can easily be extended for complex arithmetic, with some adap-
tation when evaluation the risks of errors and overflow. The results are summarised
in Table 2.1. The inputs and outputs are written in Q1.n format but partial results
are stored as 2 + 2n-bit data, including partial products in the complex multiplica-
tion. For all complex input x, ‖x‖∞ ≤ 1, which implies |x| ≤

√
2.

Floating-point error analysis

In this paragraph, only IEEE single-precision format is considered, in which the
number of significant digits is t = 23 + 1 = 24. The range of values in this format is
assumed to be large enough to avoid both overflows, and underflows will be ignored
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as well. For this analysis, the relative error is more relevant to consider so now we
assume that there exists p ≥ 1 such that for every input x = x̂(1 + ρx), we have
|ρx| ≤ 2−p.

An important result proven in [8] is that for every simple arithmetic operation
(+,−,×, /) applied on real number, |ρop| ≤ 2−t. The effect of error propagation
will now be studied in more details:

• Addition - Subtraction: When computing c = a±b (assume result non-zero
in finite representation, and |a| ≥ |b|), we have:

c = â(1 + ρa)± b̂(1 + ρb) = (â± b̂)
(

1 + âρb + b̂ρa

â± b̂

)

From which we can deduce:

1 + ρc = (1 + ρ±)

1 +
ρb + b̂

âρa

1± b̂
â



|ρc| ≤ ρ± +

∣∣∣∣∣∣ 1
1± b̂

â

∣∣∣∣∣∣ (ρb + ρa)(1 + ρ±) ≤ 2−t +

∣∣∣∣∣∣ 1
1± b̂

â

∣∣∣∣∣∣ (21−p + 21−p−t)

If 1 ± b̂
â ≥ 1 an upper bound can be |ρc| ≤ 22−p. However, the closer to

zero the result of the operation gets, the bigger the relative error becomes.
This is called a cancellation effect, and is due to the fact that when two close
quantities are subtracted, almost all the significant digits are eliminated, and
the result cannot be written with sufficient precision any more.

• Multiplication: The operation c = ab gives the following:

c = âb̂(1 + ρa)(1 + ρb) = ĉ(1 + ρ∗)(1 + ρa)(1 + ρb)

|ρc| = |ρ∗+(ρa+ρb+ρaρb)(1+ρ∗)| ≤ 2−t+21−p+21−p−t+2−2p+2−2p−t ≤ 22−p

• Division: When computing c = a/b, we have:

c = â(1 + ρa)
b̂(1 + ρb)

= ĉ(1 + ρ/)
(1 + ρa)
(1 + ρb)

|ρc| =
(1 + ρ/)(1 + ρa)− (1 + ρb)

1 + ρb
≤ 2 · (2−t + 21−p + 2−p−t) ≤ 23−p

If p ≥ 3, the bound can be slightly better: |ρc| ≤ 22−p.
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Floating-point real Floating-point complex

c = a± b |ρ±| ≤ 2−t |ρ±| ≤ 2−t

c = ab |ρ∗| ≤ 2−t |ρ∗| ≤ 22−t

|ρc| ≤ 22−p |ρc| ≤ max(23−t, 22−p)
c = a/b |ρacc| ≤ 2−t |ρacc| ≤ 23−t

|ρc| ≤ 23−p |ρc| ≤ max(25−t, 23−p)

Table 2.2. Effects of floating-point computations on precision

• Product accumulation: When c =
N∑
i=1

aibi is computed, a result from [8]
gives:

∣∣∣∣∣ĉ−
N∑
i=1

âib̂i

∣∣∣∣∣ ≤ N2−t

1−N2−t
N∑
i=1
|âi||b̂i| so |ρacc| ≤

N2−t

1−N2−t

N∑
i=1
|âib̂i|∣∣∣∣∣ N∑i=1
âib̂i

∣∣∣∣∣
If for every i ∈ {1 . . . N}, âib̂i > 0, and if dlog2 (N)e < t − 1 (last hypothesis
very likely to be true), we can deduce |ρacc| ≤ 21+dlog2(N)e−t. Otherwise, the
effects of cancellation cannot guarantee an easy bound, both on ρacc and ρc

In the case of complex arithmetic, [8] gives some bounds on the operation error:

|ρ±| ≤ 2−t, |ρ∗| ≤
√

2 21−t

1− 21−t ≤ 22−t, |ρ/| ≤
√

2 22−t

1− 22−t ≤ 23−t

The error on the result depend on the value of p and t. The results are summarised
in Table 2.2.

Summary

In order to compare the results for fixed- and floating-point computations, the re-
lation between the absolute and relative error |ρx| |x̂| = |εx| can be used. If |x̂|
remains close to 1 (that will be true if data is correctly scaled in Q1.n format),
both metrics are comparable. For the same number of significant bits (n = t),
then the two data formats provide similar precision. In the worst case, the number
of correct significant bits (in an intuitive sense, see [8] for proposals of definition)
decreases approximately by 1 for every addition, 2 for a real multiplication, and
decreases logarithmically with N when N products are accumulated. However, with
its automatic scaling, floating-point computations should be preferred when pos-
sible, especially when the range of variables varies a lot. The only advantage of
fixed-point concerning precision is that partial results can easily be stored in for-
mats which provide more significant bits before rounding the final results (see for
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instance product accumulation). However, this will not increase the accuracy of the
result in the worst case if there were already errors on the input data.

With fixed-point computations, the scaling of data needs to be constantly man-
aged by the programmer. The aim is first to avoid overflows (which implies right-
shifts of data) and secondly to maximise the number of significant bits and therefore
the precision by keeping the values close to 1 (which implies left-shifts of data). Fur-
thermore, dividing in fixed-point may not be possible with reasonable effort for some
algorithms, so data would need to be converted in floating-point before executing
these functions. These extra operations can be time-consuming, and question the
use of fixed-point for faster computations.

2.3.3 Matrix computations
If the data is stored using Q1.n format, a common exponent for a whole matrix
will typically be used to scale the data. If all coefficients are approximately in the
same range (in other words if (max({|aij | : i, j ∈ {1 . . . n}})/min({|aij | : i, j ∈
{1 . . . n}})) ≤ 2k where k is no greater than a few units), then it is possible to
find an appropriate common exponent which maintain all coefficients close to 1 in
norm. It is only if this condition is verified that the errors caused by fixed-point
computations will remain reasonable compared to errors created by floating-point
computations.

Concerning the algorithms which involve divisions, a prior analysis must be done
before using fixed-point. In some cases such as the Gauss-Jordan elimination, it will
be necessary to do the computations in floating-point, because no hypothesis can be
made on the inputs of the divisions. The possibility to implement this algorithm in
fixed-point has for instance been studied in [12], but it relies on a complex dynamic
analysis of the data range, which is not applicable here.

The questions that need to be solved in this study are the following: is it possi-
ble to find a scaling scheme in fixed-point which guarantees the absence of overflow
without losing too much precision? Is the gain in time provided by fixed-point com-
putation greater that the latency added by the scaling and conversion operations?
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3 Problem Description

In order to obtain an optimal software implementation of the matrix functions, the
characteristics of the DSP on which the program will run need to be taken into
account. The design choices also rely on a performance analysis.

3.1 Characteristics of the DSP

3.1.1 Set of instructions

The instruction set of the DSP contains arithmetic operations for fixed-point and
floating-point formats, read/write instructions to move data from/to the Local Data
Memory to/from registers, among other operations. The DSP also implements a
load/store architecture between the LDM and the shared memory. Up to 4 arith-
metic operations can be executed each clock cycle. The combination of instructions
executed every cycle is also constrained by the maximum number of moves and the
size of the instructions in memory.

The following operations are supported for IEEE single-precision floating-point
real format: addition, subtraction, multiplication, multiply-accumulate operation
(c = c+ ab), multiply-subtract operation (c = c− ab), division, square root, inverse
of square root. These instructions have a latency of a few cycles, but all of them
except the last three can be pipelined to reach the maximum of 4 instructions per
cycle.

Concerning fixed-point computation, it is possible to add, subtract, multiply,
multiply-accumulate, or multiply-subtract real but also complex data in Q1.15 for-
mat. For operations which involve multiplications, the result can also be stored
in 32 or 40 bits, using Q2.30, Q1.31, Q10.30, or Q9.31 formats. Even though it
has been proven that this will not increase precision in the worst case when the in-
put data contain errors, this may increase the accuracy of the result in the general
case when these larger accumulators are used to store the partial result of a sum of
products. The result of these operations can also easily be right-shifted by a defined
number of bits in order to avoid overflows. Division and square-root operations are
also supported.

Real data can be converted from one format to another with scaling by an
exponent given by the programmer. Before converting data to fixed-point, the
maximum exponent of the floating-point data must be computed to avoid overflows.
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Floating-point Fixed-point

Addition - Subtraction 2 4
Multiplication 1 4
Multiplication-accumulate/subtract 1 4

Table 3.1. Maximum number of operations per cycle for complex data

3.1.2 Throughput

The throughputs of the most used instructions are summarised in Table 3.1. They
concern arithmetic operations on complex data. When complex operations are not
directly available, they can be computed by combining real operations, for instance
2 real multiplications, 1 multiply-accumulate, and 1 multiply-subtract for a complex
multiplication.

3.2 Design

3.2.1 Global program structure

The DSPs which receive matrix jobs must be able to fetch, decode, and execute each
matrix instruction. The first steps of this process will be written in C language, but
the actual matrix computations must be written in assembly language to achieve
better performance. The global structure of the program is described in Figure 3.1.

Automatically compiled code does not completely make use of the DSP instruc-
tion parallelism, which considerably reduces the speed of execution. A first evalua-
tion of program execution of simple matrix functions has shown that C code can be
up to 10 times slower than optimised assembly code. However, all the transitional
steps between the actual matrix computations will be written in C, because it is
essential that these parts are easily readable and that they can easily be modified
if the specifications change in the future. The possibility in C to name variables
and data types, as well as the possibility to write concise and easily maintainable
code are the key reasons to choose this language over assembly for these steps of
the matrix program.

Several versions of every matrix function will be written, in order to adapt to the
situation or to the client’s requirements.

First, all functions will have a floating-point version, in case the client gives
priority to precision over speed in the computations. When overflow can be avoided,
a fixed-point implementation of the function will also be written, which will be faster
but potentially less accurate than the floating-point versions in some cases.

The shape of a matrix can also influence the selection of the best algorithm.
A useful example concerns matrix division: when computing A−1B, the algorithm
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Figure 3.1. Structure of the code for a Matrix server DSP

may be adapted if A is a triangular matrix obtained for instance with a Cholesky
decomposition. This way, the software implementation may not be faster than the
existing hardware implementation in general but it can surpass it for some special
cases.

The flexibility of the software implementation also relies on the fact that it can
easily evolve. If some new use cases are identified by the programmers, a specific
version of the functions can be written to obtain the best possible performance in
those cases. One example could be the use of matrices in Rn×n instead of Cn×n,
which can lead to higher speed.

Having many different versions of each matrix function can increase the perfor-
mance, but also the size of the code. In addition to be an issue due memory size
constraint, this can also make the code less maintainable over time. It is therefore
important to carefully identify the cases for which a specific implementation will
actually be used and increase the speed significantly.

3.2.2 Matrix storage
The local data memory of the DSP will contain a global data structure to store the
matrices, that will be called smx_mem, for “Soft matrix memory”. It is assumed
that the DSP must be able to store as many matrix coefficients as the hardware
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accelerator, that is to say N2 coefficients. Three possible way to organise smx_mem
are described in Figure 3.2.

Figure 3.2. Three possible structures for smx_mem

• First solution (on the left): the structure is the same as in the hardware
accelerator. The main data structure is a table with a N rows and N columns.
The rows are stored consecutively in memory. When matrices of size n are
considered, the table is divided into blocks of size n × n, as shown in the
Figure.

• Second solution (in the middle): each matrix is stored so that its rows are
stored consecutively in memory. The matrices are stored one after another in
the structure.

• Third solution (on the right): when matrices of size n are considered, smx_mem
is a table with n rows stored consecutively, and with bN×Nn c columns. The
division in blocks of size n× n is shown in the Figure.

A first way to compare the structures is to consider the implementation of the
LOAD, STORE, VLOAD, and VSTORE functions. In the first two instructions, a
full matrix of nrows rows and ncols columns is transferred to/from a block Mk in
smx_mem. With VLOAD or VSTORE, the data is loaded or stored into a row that
crosses successively M0,M1,M2,M3, etc. (see Appendix A). Here only the simple
case is considered, where there is no need to transpose, conjugate or convert data
between the shared memory and the DSP memory.

Because there is a constant cost to initiate a data transfer between the DSP and
the shared memory, the DSP should avoid sending multiple load/store requests for
small sets of data. Typically for the LOAD instruction, it should be avoided to send
one load request per matrix row. If the whole matrix cannot be transferred with
one request, like in configurations 1 and 3 of smx_mem (because the rows of the
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destination matrix are not stored consecutively), the data should be for instance
loaded in an intermediate buffer at first, and then copied into smx_mem row by
row.

As a result, the only configuration in which the LOAD and STORE instructions
can be implemented easily with only one transfer request is the second configuration,
and only when ncols = n (otherwise if ncols < n, the destination rows are not
consecutive in memory). However, VLOAD and VSTORE cannot be implemented
easily with this configuration, as they could be with the third configuration. With
configuration 1, it is also possible to load/store vectors directly in smx_mem with
a limited number of request (for instance with the block division of Figure 3.2, one
request to fill the row in M0,M1, and M2, one request for M3,M4, and M5, etc.)

Apart from the previous considerations, the main advantage of the first solution
is that it can easily support different sizes of matrices in the same job, as it is
done in the hardware accelerator. This could be done but would be much more
complex with the two other solutions. Even though the size n of the matrices is a
constant in the most common use cases, different sizes are supposed to be supported
in the specifications, this is why the first configuration is finally chosen to store the
matrices. If the possibility to handle different sizes in the same job is removed from
the specifications in the future, solutions 2 and 3 can be considered.

There is another issue with this first structure which concerns read conflicts. The
DSP cannot read in the same cycle data which have the same alignment in memory.
It cannot for instance read simultaneously data from the addresses addra and addrb
if there exists an integer k such that addrb − addra = kN . This implies that two
consecutive coefficients in a column cannot be read in the same cycle.

In order to solve this issue, it is possible to insert a fixed offset of a few bytes
between each row of the N ×N table. In this way, column-consecutive coefficients
will not have the same alignment in the Local Data Memory.

This characteristic is illustrated in Figure 3.3, where smx_mem is displayed
with and without an offset between the rows. Two different coloured coefficients
cannot be read in the same cycle. With the offset, smx_mem occupies more space
in memory but enables new interesting combinations of read instructions in one
cycle.

3.2.3 Choice of data format and algorithms
In addition to a floating-point version, all the algorithms that do not involve any
division operation will also be written in fixed-point format. Every time addition,
subtraction, and complex multiplication are involved, the data will be right shifted
in order to avoid overflows: only one right shift when a simple multiplication is done
for each coefficient (ex: VMUL), and 1+dlog2 (n)e shifts when up to n products are
accumulated (ex: MUL). A special care has to be taken for the ADD instructions, for
which we must ensure that the matrices which are added have the same exponent.
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Figure 3.3. smx_mem configurations and consequences: only one coloured
coefficient can be read each cycle by the DSP

Even though it contains divisions, the algorithm for the Cholesky decomposition
can be written in fixed-point Q1.15 format without risking overflow if the input
matrix A is Hermitian definite positive.

Proof: let A be a positive Hermitian definite matrix in Cn×n written in Q1.15
format. There exists a lower triangular matrix L such that A = LL∗, and we have
for every i, j ∈ {0, . . . , n− 1}, i > j,

ljj =

√√√√ajj − j−1∑
k=0

ljkljk and lij =

aij − j−1∑
k=0

likljk

 /ljj

This implies that for every j ∈ {0, . . . , n− 1}, ‖ajj‖∞ = |ajj .re| =
j∑

k=0
|ljk|2 ≤ 1 (A

is Hermitian so ajj is real).
When the coefficients lij are computed (i ≥ j), the products likljk are subtracted

one by one, and after step p we have (0 ≤ p ≤ j − 1):

l
(p)
ij = aij −

p∑
k=0

likljk = ljjlij +
j−1∑

k=p+1
likljk =

j∑
k=p+1

likljk (because ljj is real)
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Cauchy-Schwarz inequality gives:

∣∣∣l(p)
ij

∣∣∣2 =

∣∣∣∣∣∣
j∑

k=p+1
likljk

∣∣∣∣∣∣
2

≤
j∑

k=p+1
|lik|2

j∑
k=p+1

|ljk|2 ≤ 1 · 1

And
∥∥∥l(p)
ij

∥∥∥
∞
≤
∣∣∣l(p)
ij

∣∣∣ ≤ 1. The last square-root or division operation will result in
the final result of lij which also have an infinite norm lower or equal to 1 thanks to
the first inequality. �

Because numbers have a finite representation, the computations may in practice
generate small overflows, but the results can be rounded to representable numbers
with low impact on the precision.

With Gaussian elimination, the partial pivoting ensures that the division opera-
tions aik/akk with i > k always produces a result bounded by 1 because akk is chosen
as the highest possible pivot in the column k. However, when the coefficients are
eliminated by the operations aij ← aij − aik/akk× akj , nothing guarantees that the
successive accumulations will not generate overflows in fixed-point. As a result, all
the coefficients will need to be right-shifted before the beginning of the algorithm.

During back-substitution or Gauss-Jordan elimination algorithm, the divisions
are likely to generate overflow, that is why these algorithms will only be written in
floating-point.

Three different versions of the division algorithm can therefore be written in
the general case: Gaussian elimination in fixed-point followed by data conversion
and back-substitution in floating-point, Gaussian elimination and back-substitution
both in floating-point, and Gauss-Jordan elimination in floating-point. When the in-
put A in the computation of A−1B is a triangular matrix, only forward- or backward-
substitution needs to be executed. Another special case is when B is only a column
(all other coefficients equal to 0), which will considerably reduce the number of
operations.

3.3 Analysis
Given the available set of instructions in fixed-point and floating-point in the DSP,
we can deduce the total number of required DSP instructions to compute the result
of matrix functions. The results for the main functions are shown in Table 3.2.
Matrices in Cn×n are considered. All the arithmetic operations involved in the
computations have a low latency and can easily run in parallel (several operations
per cycle).

This shows that computations in fixed-point are expected to be 2 to 4 times faster
than floating-point computations. It must however be noted that some operations
will need to be added in fixed-point computations in order to manage the data
range. These additional operations will hopefully not affect the complexity of the
matrix functions in a significant way.
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Fixed-point Floating-point

MUL n3 4n3

TMUL 1
2n

2(n+ 1) 2n2(n+ 1)
DOT n2 4n2

ADD 2n2 4n2

SCALE n2 4n2

VMUL n2 4n2

ABS2 n2 2n2

Table 3.2. Number of required DSP arithmetic instructions for matrix func-
tions in Cn×n

The complexity of the CHOL and DIV instructions are also analysed. DSP in-
structions are categorised according to their type, depending on if they concern
real or complex multiplication (mpy), multiply-accumulate (mac), multiply-subtract
(mas), division (div), square-root (sqr), or inverse square-root (isqr). While the first
instructions have a high throughput, the operations involving divisions and square-
roots are likely to increase the latency of the functions.

When floating-point format is used, the algorithms can be slightly modified to
limit the number of division operations which are time-consuming. For Cholesky
decomposition in fixed-point, the real value ljj is computed at first with the sqr
operation, and then it is used to divide all the other coefficients in the same column.

In floating-point, both the square-root and the inverse square-root of ajj−
j−1∑
k=0

ljkljk

can be computed. The former is stored as the value of ljj and the latter is multiplied
to all the lij for i > j. Therefore no div instruction is needed in this implementation
(see all results in Table 3.3).

Similarly, the Gaussian elimination and Gauss-Jordan algorithm can be modified
in floating-point. Before eliminating the coefficients in the column of the pivot akk,
the row k can be normalised by dividing it by akk. Instead of computing a division
for all coefficients in the row, 1/akk is first computed and then multiplied to other
data. This will avoid the computation of aik/akk for every i because akk has been
normalised to 1. This algorithm is described in more details in Appendix B. The
normalisation will also make the back-substitution faster (if Gaussian elimination
is used), because all the diagonal coefficients will be equal to 1.

The theoretical results for DIV are given in Table 3.4. Some additional oper-
ations which are not taken into account here are required for the partial pivoting
(compare the pivot and switch row). In the first version with mixed-use of fixed-
point and floating-point computations, the data must also be converted before doing
the back-substitution.

For the special case where B ∈ Cn×1 (column vector) in the computation of
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Fixed-point Floating-point

mas 1
6(n3 − n) 1

6(4n3 − 6n2 + 2n)
sqr n n

isqr 0 n

div n2 − n 0
mpy 0 n2 − n

Table 3.3. Number of required DSP instructions for CHOL function on matrix
in Cn×n

Gaussian
elimination in
fixed-point and
back substitution
in floating-point

Gaussian
elimination and
back substitution
in floating-point

Gauss-Jordan
elimination in
floating-point

mpy (search
pivot)

1
2(n2 + n) n2 + n n2 + n

div (by pivot) 2n2 − 2n 2n 2n
mpy (compute aik

akk

or normalise row) n2 − n 6n2 − 2n 6n2 − 2n

mas (eliminate
coefficients)

1
6(5n3 − 6n2 + n) 1

3(10n3−12n2+2n) 6n3 − 8n2 + 2n

mas (back
substitution) 2n3 − 2n2 2n3 − 2n2 0

div (back
substitution) 2n 0 0

mpy (back
substitution) 4n2 0 0

Asymptotic
complexity

Θ
(17

6 n
3
)

Θ
(32

6 n
3
)

Θ
(36

6 n
3
)

Table 3.4. Number of required DSP instructions for DIV function on matrix
in Cn×n
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A−1B, the respective asymptotic complexities are Θ
(

1
3n

3
)
for mixed fixed-point

/ floating-point algorithm, Θ
(

4
3n

3
)

for floating-point Gaussian elimination, and

Θ
(

6
3n

3
)
for floating-point Gauss-Jordan elimination.

It can be deduced from these results that the first version will probably be faster,
especially when n is large, but it will be limited by all the div instructions. In pure
floating-point implementation, both mentioned versions are worth considering in
the general case, because the performance may be similar depending on how the
instructions can be run in parallel each cycle in an optimised schedule. It can also
be noted that if the input A is triangular and only the substitution step has to be
computed, the execution will be much faster than in the general case (complexity
in Θ(2n3)), and even more if B is a column vector (complexity in Θ(2n2)).

All the results in this section are theoretical results which aim at giving a rough
idea of the latency of the matrix functions. Several factors such as instruction
latency, limitations in the read/write operations, restricted number of registers,
and branching may affect the speed of each function.
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Part II

Implementation and Performance

35





Marion Bellefin Ericsson AB KTH ICT

4 Implementation

The actual implementation of the matrix algorithms will take into account all the
principles described previously. The aim is to control the data format, data range,
and matrices properties, in order to achieve the best possible performance. Trade-
off must be made to find the right level of control: more control can lead to higher
performance in terms of speed and accuracy, but the control operations themselves
may generate latency (data conversion, evaluation of data range, etc.).

During implementation, the scheduling of the elementary instruction in the DSP
programs will also be critical to achieve the best possible speed of execution.

In all this part, the finite representation of a number a will be written â =
ã × 2expa . ã is the number stored in the Qm.n fixed-point representation, with
‖ã‖∞ ≤ 2m−1. expa is an integer used to scale the number, and it will typically be
common for all the coefficient of a matrix.

4.1 Information on stored matrices
In order to apply the right version of the matrix functions in each cases, it is neces-

sary to store information about the matrices that are currently stored in smx_mem.
This information includes:

• The format: Q1.15 fixed-point or single-precision floating-point

• The shape: upper triangular, lower triangular, diagonal, ordinary

• Exponent (only valid in fixed-point)

The exponent expA of a matrix A can be interpreted as the following: for every i, j
in {0, . . . , n− 1}, âij = ãij2expA .

All this information about the matrices is stored in a data structure called
smx_mem_manager. It is read before executing a matrix function and updated
after the execution if information has changed. It is meant to be flexible, and to
help to obtain the best possible performance for the matrix jobs required for the
client. The updated global structure of the code is shown in Figure 4.1

A client which sends a job to a matrix server can require that all computations
are done in floating-point. In this case, all matrices will be converted in the single-
precision floating-point format as soon as they are loaded in smx_mem, and will
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Figure 4.1. Updated structure of the code for a Matrix server DSP

remain in this format during the execution of the whole job. Otherwise the format
may change between matrix instructions.

4.2 Control of data range in fixed-point

4.2.1 Bit shifts in multiplication

When two real numbers in Q1.15 format are multiplied (c = ab), the result of the
product ã× b̃ is first obtained in Q2.30 format. Then two methods can be used to
compute the final result ĉ = c̃× 2expc :

• First method: The result is left-shifted by one bit, and in this case the result
c̃ = ãb̃ is written in Q1.31 format, and expc = expa + expb. The 16 least
significant bits can be dropped after rounding, if c̃ has to be written in Q1.15
format.
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• Second method: The Q2.30 result is not modified, but is interpreted as a
Q1.31 number. In this case c̃ = ãb̃/2, and expc = expa + expb + 1. Again
only the 16 most significant bits will be kept if c̃ must be obtained in Q1.15
format.

Even though the first method would be more intuitive when real numbers are
considered, the second one can be very useful for complex data. When computing
the real and imaginary parts of c = ab = (arebre−aimbim)+ i(arebim+aimbre), only
the first method may generate overflow.

When n products are accumulated, it has already been proven that the final
Q1.15 result will need to be right-shifted by 1 + dlog2 (n)e bits to avoid overflow. In
practice, the partial accumulated results can be stored in 40-bit registers in Q10.30
format. At the end of the computation, the result will be right-shifted by only
dlog2 (n)e bits.

4.2.2 Exponent for the ADD instruction

The main difficulty of the addition in fixed-point is that the inputs must have the
same exponent. For the ADD instruction, the matrix A = A + λB is computed.
Algorithm 1 describes both how to align the exponents of A and λB and how to
avoid overflows in the result. All inputs are assumed to be stored in Q1.15 format.

Note: in the algorithm, “x̃ >> k” means that x̃ is right-shifted by k bits. This
is done for both the real and imaginary parts if x is complex.

Algorithm 1 ADD A = A+ λB with λ ∈ C
if expλ + expB + 1 ≤ expA then

λ̃← λ̃� expA − expλ − expB − 1
expλ ← expλ + (expA − expλ − expB − 1) = expA − expB − 1
for i, j = 0 . . . n− 1 do . T = λB

t̃ij ← λ̃b̃ij/2 . expT = expλ + expB + 1 = expA,
∥∥∥t̃ij∥∥∥∞ ≤ 1

ãij ← (ãij + t̃ij)/2 . ‖ãij‖∞ ≤ 1
expA ← expA + 1

else . expλ + expB + 1 > expA
if
∥∥∥λ̃∥∥∥

∞
> 0.5 then

λ̃← λ̃� 1
expλ ← expλ + 1

for i, j = 0 . . . n− 1 do
ãij ← ãij � expλ + expB + 1− expA . ‖ãij‖∞ ≤ 0.5
ãij ← ãij + λ̃b̃ij/2 .

∥∥∥λ̃b̃ij/2∥∥∥∞ ≤ 0.5, ‖ãij‖∞ ≤ 1

expA ← expλ + expB + 1
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If λ is not well-conditioned at the beginning, in other words if
∥∥∥λ̃∥∥∥

∞
is very

small compared to 1, then too many significant bits may be lost in the second case
of the algorithm (expλ + expB + 1 > expA). A solution is to left-shift λ̃ as much as
it is possible without generating overflow, or at least until

∥∥∥λ̃∥∥∥
∞
≥ 0.25.

This algorithm can be slightly modified when λ is a real number, or in the special
cases where λ = 1 or λ = −1, and expA = expB.

4.2.3 Control of data range

If it has not been required by the client that all computations must be done in
floating-point, fixed-point will be used in some functions. It is necessary to control
the data range of the stored matrices both to avoid overflow and maintain a sufficient
number of significant bits. The following rules can be used:

• When fixed-point data is loaded in smx_mem, it is directly converted in Q1.15
format. When floating-point data is loaded, it is first stored in single-precision
floating-point format.

• Before the execution of all instructions except VINV and VSQRI, input matri-
ces which were stored in floating-point are converted in fixed-point. For every
matrix A in floating-point, an exponent expA is found such that 2expA−1 ≤
max({‖âij‖∞ : i, j ∈ {0, . . . , n−1}}) < 2expA , and then 2−expA×A is converted
in Q1.15 format.

• For all the instructions which involve at the most one complex multiplication
per coefficient (SCALE, VMUL, ABS2, and DMAX), the numbers are mul-
tiplied without any shifts in the result. This gives for instance the following
output C for the elementwise multiplication of A and B: ∀i, j ∈ {0, . . . , n−1},
c̃ij = ãij b̃ij/2, and expC = expA + expB + 1.

• For the instructions with product accumulation (MUL, TMUL, and DOT),
the results are right-shifted as described previously. The matrix multiplication
C = AB gives for instance:

∀i, j ∈ {0, . . . , n− 1}, c̃ij =
n−1∑
k=0

ãik b̃kj × 2−1−dlog2(n)e

and expC = expA + expB + 1 + dlog2 (n)e

• The ADD instruction is executed following Algorithm 1.

• Before executing Gaussian elimination algorithm in fixed-point, both input
matrices are scaled by 2−1−dlog2(n)e in order to avoid overflow during the com-
putations.
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With this method, there is a risk that all significant bits are lost after several
consecutive matrix instructions. Always considering the worst case for the risk of
overflow may generate too many right shifts than actually necessary in the result.
One solution would be to keep track of the maximum norm of matrix coefficients.

The number lmax defined as followed for every matrix, can be used to evaluate
data range of Q1.15 matrix coefficients:

lmaxA = −max({dlog2
(
‖ãij‖∞

)
e : i, j ∈ {0, . . . , n− 1}})

In other words, lmax is the greatest integer such that ∀i, j ∈ {0, . . . , n−1}, ‖ãij‖∞ ≤
2−lmax (undefined when A = 0, this case is ignored here).

If this number is computed for input A and B when computing C = AB, the
final right shift of the result will be of dlog2 (n)e − lmaxA − lmaxB bits instead of
dlog2 (n)e. It is assumed that a right shift of a negative k number of bits is the same
a left shift of −k bits.

This evaluation will be done at the beginning of MUL, TMUL, and DOT in-
struction, because they are the ones that may generate the most important loss of
significant bits. Algorithm 2 describes the whole execution of the MUL instruction.

The number lmax is also computed for both inputs A and B before the fixed-
point Gaussian elimination step in the DIV instruction (C = A−1B). In order to
limit the loss of significant bits, they are respectively scaled by 2−1−dlog2(n)e+lmaxA

and 2−1−dlog2(n)e+lmaxB before any other operation.

Algorithm 2 MUL C = AB

function mul_prepare_input(A)
lmaxA ← −max({dlog2

(
‖ãij‖∞

)
e : i, j ∈ {0, . . . , n− 1}})

if A is stored in floating-point then
Convert 2lmaxA ×A in Q1.15 format
expA ← −lmaxA
lmaxA ← 0 . Data converted with exponent such that final lmaxA = 0

end function

function MUL(A, B)
mul_prepare_input(A)
mul_prepare_input(B)
rs = 1 + dlog2(n)e − lmaxA − lmaxB
for i, j = 0 . . . n− 1 do

c̃ij ← 0
for k = 0 . . . n− 1 do

c̃ij ← c̃ij + ãik b̃kj . ‖c̃ij‖∞ ≤ 2rs

c̃ij ← c̃ij >> rs

expC = expA + expB + rs
end function
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4.3 Load and store instructions
As explained in the previous chapter, the LOAD instruction cannot be implemented
simply by sending a few requests to the shared memory to load data directly into
smx_mem. Sending typically one request per row would be too costly, and would
not be relevant for instance if the destination matrix must be transposed. Instead
an intermediate buffer must be used to load/store larger sets of data.

The DSP load instructions are non-blocking, and data received at the beginning
of a read request can be used in computations before the last data has been received.
A possible way to use this feature is to use two buffers, which can each contain
around a few hundreds of matrix coefficients. The data will be loaded alternatively
in the two buffers, and then copied, converted, transposed, and/or conjugated into
smx_mem.

Each buffer can contain a group of a given number of rows, whose size depends
on the buffer size and the matrix dimensions. Algorithm 3 describes how to make
use of the non-blocking load requests.

Algorithm 3 LOAD / LOAD_T / LOAD_C / LOAD_TC
Load first group of rows in buffer 0
k ← 1
while Number of remaining rows to load > 0 do

Load (k + 1)th group of rows in buffer ((k + 1) mod 2)
Copy kth group of rows from buffer (k mod 2) to smx_mem, convert / conju-

gate / transpose in place in necessary
k ← k + 1

end while
Copy kth group of rows (last group) from buffer ((k − 1) mod 2) to smx_mem,
convert / conjugate / transpose in place in necessary

Figure 4.2 shows the schedule for the LOAD of a 10 × 10 matrix. Each buffer
can contain up to 3 rows. The latency due to the non-blocking part of the load
operation is partly hidden thanks to the use of 2 different buffers. In this case the
copy rate is supposed to be higher than the rate at which data is loaded. Coefficients
are therefore copied little by little as soon as they have been received in the buffer
(step “Load wait + Copy”).

A same similar algorithm can be used for the STORE instruction, the data is in
this case first copied from smx_mem to the buffer, and then stored in the shared
memory. VLOAD and VSTORE instructions can also be implemented in a similar
way in the general case.

When data is not transposed or conjugated, and when both external and in-
ternal format is complex single-precision floating-point, there is a much simpler
implementation for VLOAD and VSTORE: data is directly loaded/stored to/from
smx_mem, there is no need to use an intermediate buffer. Because the load/store
requests sent by the DSP are non-blocking, the DSP can simply send a succession
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Figure 4.2. Load schedule for 10× 10 matrix

of requests, and then begin the execution of the next matrix instruction while data
is still transferred.

4.4 Schedule and loop unrolling
In order to obtain an optimal schedule for each function, up to 4 DSP instructions
must be executed in parallel at each cycle. These instructions must have different
outputs, which implies that several coefficients of the resulting matrix must be
computed at the same time.

An important assumption in all functions except for the load and store is that
all the inputs and outputs are square matrices of the same size, and this size is a
multiple of 4. This is true thanks to the specification of the LOAD instruction:
during the load, rectangular matrices of any size can be considered in the shared
memory, but in the local memory they will be placed in a square block of size
4k × 4k, and the rest of the block that does not contain data is filled with 0s. It is
this full block that will be considered as a matrix in the rest of the matrix job.

A possible way to unroll the loops in the matrix functions is to compute 4
consecutive coefficients in the same row of the output matrix. Other loops can also
be unrolled to limit the latency overhead due to set up of the loops (update address
pointers, set number of iterations, read first data, write last data, etc.) A possible
schedule for MUL is described in Algorithm 4. When the index (4j . . . 4j + 3) is
used in one instruction, it means that four instructions are executed in parallel for
the indexes 4j, 4j + 1, 4j + 2, and 4j + 3.

Another way to unroll the loops can be to consider 2 × 2 blocks, instead of
4 consecutive coefficients. This can be useful especially when the diagonal is im-
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Algorithm 4 Simplified schedule of MUL: C = AB in fixed-point
for i = 0 . . . n− 1 do

for j = 0 . . . n4 − 1 do
c(i)(4j...4j+3) ← 0
for k = 0 . . . n4 − 1 do

c(i)(4j...4j+3) ← c(i)(4j...4j+3) + a(i)(4k)b(4k)(4j...4j+3)
c(i)(4j...4j+3) ← c(i)(4j...4j+3) + a(i)(4k+1)b(4k+1)(4j...4j+3)
c(i)(4j...4j+3) ← c(i)(4j...4j+3) + a(i)(4k+2)b(4k+2)(4j...4j+3)
c(i)(4j...4j+3) ← c(i)(4j...4j+3) + a(i)(4k+3)b(4k+3)(4j...4j+3)

portant in the computation. For instance in the TMUL instructions, C = AA∗ is
computed. The result is a Hermitian matrix, which means that only the coefficients
on and above the main diagonal need to be computed, and then the coefficients are
conjugated and written in the other half of the matrix (see a simplified schedule in
Algorithm 5 and Figure 4.3).

Algorithm 5 Simplified schedule of TMUL: C = AA∗

for i = 0 . . .
(
n
2 − 1

)
do . Diagonal block first

Compute c(2i...2i+1)(2i...2i+1) =
n−1∑
k=0

a(2i...2i+1)(k) × conj(a(2i...2i+1)(k))

for j = (i+ 1) . . .
(
n
2 − 1

)
do . Other blocks

Compute c(2i...2i+1)(2j...2j+1) =
n−1∑
k=0

a(2i...2i+1)(k) × conj(a(2j...2j+1)(k))

Compute c(2j...2j+1)(2i...2i+1) = conj(c(2i...2i+1)(2j...2j+1))

Figure 4.3. Output matrix of TMUL - Decomposition in blocks

44



Marion Bellefin Ericsson AB KTH ICT

5 Evaluation

For the precision and speed analysis, the algorithms are executed on a cycle-accurate
simulator, which emulates the behaviour of the hardware platform while some fea-
tures are still under development. The cycle-accurate simulator enables a precise
evaluation of the speed of each function. Only a simplified version of the platform
containing one server DSP and the shared memory is emulated. For the hardware
accelerator, the latency values were already available at Ericsson based on previous
simulations.

The output of the matrix program can also be obtained with the simulator,
by displaying the content of the shared memory at the end of the simulation. In
order to evaluate the accuracy of the results, these values will be compared with
the results obtained with the Matlab software. The latter uses double-precision
floating-point format for the computations, so these results may also contain errors
but they are hopefully closer to the exact results.

For the power analysis, the simulations have been run on Register Transfer Level
(RTL) and gate level simulators, which record the activity in the architecture during
the whole execution. The results of these simulations have then been analysed with
an Ericsson internal tool. This tool measures the switching activity, that is to say
the rate at which the values change in the circuits (from 0 to 1 or from 1 to 0).
This activity is measured over time for each sub-components of the architecture.
It is for instance possible to visualise the activity of different units inside the DSP,
from the instruction fetch unit to the floating-point computational units, during the
execution of each function.

5.1 Evaluation of instructions

First, the accuracy and speed of the computations have been tested for matrix jobs
which contain only one operation. The matrix jobs that are built contain one or
several LOAD instructions for the inputs, then one actual operation, and then one
STORE instruction to write the result in the shared memory.
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5.1.1 Accuracy

Generation of input matrices

In order to evaluate the accuracy of the computations, random matrices have been
generated with Matlab, in single precision floating-point format, and in Q1.15 fixed-
point format. All the matrices contain complex data, and the real parts and imag-
inary parts of each coefficient have a uniform distribution inside the range [-1,1].

It can be noted that with this distribution, data range might be wide, but re-
mains homogeneous: approximately 50% of real an imaginary parts absolute values
are in the range [0.5, 1], 75% in the range [0.25, 1], etc. This ensures that a number
of significant bits are provided for most coefficients.

For the CHOL instruction, the input matrices need to be Hermitian definite
positive. First, a lower triangular matrix L is generated. The diagonal coefficients
are real values in the range [0.5, 1], and the complex coefficients below the diagonal
have their real and imaginary parts in the interval [−0.5, 0.5]. All the distributions
are uniform in their respective range. Then the matrix A = LL∗ is computed, scaled
so that all its coefficients fit in the interval [−1, 1], and converted after rounding in
one of the input formats. The intervals in L have been chosen so that the diagonal
coefficients are much larger than the others regarding infinite norm. Otherwise the
matrix A is not always considered as positive definite once it is converted in Q1.15
format, and the Cholesky decomposition fails.

The finite representation of the data in the given input formats are assumed to be
perfect, i.e. there is no error on the input matrix loaded from the shared memory
(this may not be true in practice if these data are obtained after measurements
rounding or are the results of previous computations in finite formats).

In these tests, all the inputs and outputs are in the same format, called external
format. Internal computations are either done in fixed-point or in floating-point
after a potential conversion, and then data are converted again in the external
format before or during the execution of the STORE function.

Scaling of output fixed-point matrices

When the output format is Q1.15 fixed-point, the final result of the n × n matrix
is scaled to avoid overflow, for instance by a factor 2−(1+dlog2(n)e) for MUL and by
a factor 2−1 for ADD.

For the division, it is not possible to guarantee the absence of overflow in fixed-
point with a given scaling factor, because there is no bound on the coefficients of
the matrix C = A−1B when random matrices A and B are considered (and this
was the initial reason why the last steps of the DIV operation is always internally
executed in floating-point).

However, when the real and imaginary parts of the inputs’ coefficients have a
uniform distribution inside the range [−1, 1], it is possible to find a reasonable bound
which is valid not for all but for most output coefficients. Two sets (Ai) and (Bi)
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of 10,000 such random matrices have been generated in Matlab, and the range of
the matrices Ci = A−1

i Bi have been evaluated.
It has been obtained experimentally that for more than 99.5% of the coefficients

of the output matrices, both the real and imaginary parts are in the range [−24, 24],
and this is true for all the considered matrix sizes. The scaling factor 2−4 has
therefore been used before writing the result of the DIV operations in the Q1.15
fixed-point output format. The potential out-of-bounds coefficients will saturate
and may generate an important error.

Evaluation of output

The outputs of the matrix software are compared to the output obtained with
Matlab for the same operation. The relative error between the reference Matlab
matrix M and the tested matrix T is defined by the average of the relative error
for every coefficient:

ρ = 1
n2

n−1∑
i=0

n−1∑
j=0

|tij −mij |
|tij |

When some of the coefficients of the output matrix are forced to 0 by the defi-
nition of the function, these values will not be taken into account in the error. For
instance, the output of CHOL is a lower triangular matrix, and only the coefficients
on and below the diagonal are considered in the average value:

ρCHOL = 2
n(n+ 1)

n−1∑
i=0

i∑
j=0

|tij −mij |
|tij |

For the DIV function with Q1.15 fixed-point output format, only the coefficients
that have not generated overflows are taken into account in the average error value.
If such output coefficients outside of the range [−1, 1] after scaling were included
in the average computation, large error may be obtained for the matrices which
contain such coefficients. The results that are presented below aim at presenting
the general performance of the software program, in a more realistic use it would
be the responsibility of user to use the DIV function with fixed-point output format
only for well-conditioned matrices if these overflows are not tolerated.

For each configuration given by the function type, matrix size, internal and ex-
ternal format, 10 tests have been run with different inputs. The results that are
given below are computed as the average value of the errors obtained with the 10
output matrices.

Results

The results that are obtained for the MUL instruction are shown in Figure 5.1.
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hhhhhhhhhhhhhhhhhhInternal format
External format Floating-

point Fixed-point

Floating-point 2−25.5 2−14.7

Fixed-point 2−13.2 2−13.3

Table 5.1. Error on output for ADD instruction

It can be noticed that there is a significant gain in precision when floating-point
is both the external and the internal format. When the external format is Q1.15
fixed-point, then the accuracy is only slightly better when the computations are
done in floating-point, the precision is similar: in floating-point, a few significant
bits are lost during the multiply-accumulate operations, and the error is dominated
by the rounding due to the final scaling and conversion into Q1.15 format. In fixed-
point, no significant bit is lost during the multiply-accumulate operations in 40-bit
registers, but error is also introduced with the final scaling and the final write in
16+16-bit format.

Figure 5.1. Error on output of MUL instruction

For the ADD instructions, the matrix C = A + λB has been computed with
λ = 1. The average error does not depend on the size of the matrix and is shown in
Table 5.1. Again, the precision is much higher if both external and internal formats
are floating-point. If external format is fixed-point, the accuracy of the result is
only slightly increased when using internal floating-point computations.
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For the DIV instruction, the algorithm that is used here is the Gaussian elimi-
nation followed by a back-substitution. The internal format that is mentioned is
the format for the Gaussian elimination, since the second step is always executed
in floating-point.

It can be noticed with the results shown in Figure 5.2 that the best precision
is obtained again when both external and internal data are always represented in
floating-point. It can be noticed however that even with these formats the error
grows more with the size of the matrix than for MUL.

When the external format is Q1.15 and the internal format is floating-point the
error does not vary significantly with the size of the matrix. This suggests that the
error is mostly due to the final scaling of the result by the constant factor 2−4. The
effects of the internal computations seem to be negligible in this case.

Using fixed-point for the Gaussian elimination generates important error, espe-
cially for the largest matrices. The initial scaling of the inputs that is done to avoid
overflow during the elimination seems to be one of the main causes.

Figure 5.2. Error on output of DIV instruction

Similar remarks can be made about the results for the Cholesky decomposition
(see Figure 5.3). The accuracy is satisfying for smaller matrices but grows quickly
with the matrix size. When the external Q1.15 format is used, the gain when using
the internal floating-point implementation is small for matrices containing up to
8× 8 coefficients but is more important beyond that limit.

Conclusion about precision

To conclude, the precision depends greatly on the choice of internal and external
formats. For DIV and CHOL, the internal fixed-point implementations can be used
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Figure 5.3. Error on output of CHOL instruction

when either the precision is not the priority of the user, or for small matrices when
the external data is also stored in fixed-point.

Given the low precision obtained with the largest values of n in fixed-point for
some functions, maybe three different internal modes should be implemented in the
program:

• First mode: force all the internal computations in floating-point

• Second mode: force all the internal computations in fixed-point except when
it is not possible (exception for VINV, VSQRI, end of DIV)

• Third mode: force internal computations in fixed-point for the most stable
functions only (not for DIV and CHOL)

For the moment only the two first modes have been implemented. The choice
of the mode is the responsibility of the user. The results in this report can be given
as indications, and further tests for the specific problem can help the user to take
the best decisions.

Now the latencies of the different implementations need to be compared to eval-
uate what can be the advantages of selecting the least accurate versions of the
functions.

5.1.2 Instruction latency

The latency of execution has been measured for every instruction. The execution
of an instruction can be divided into several steps:
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1. Instruction decoding and parameters check (all implementations)

2. Preparation of inputs (only software implementations)

3. Actual computations (all implementations)

4. Matrix information update (only software implementations)

All these steps are taken into account in the latency measurements.
In the hardware accelerator, the preliminary first step can in most cases operate

partly in parallel with the execution of the previous instruction, so it does not gen-
erate an important additional delay. The total instruction latency for the hardware
therefore corresponds mostly to the actual matrix computations.

In the software however, the first step increases the total duration of the in-
struction. The operations of step 1 as well as operations of step 4 are written in
C language, and are therefore not fully optimised when executed by the DSP. This
overhead does not depend on the matrix size.

For the software implementation, the second step includes reading information
about the inputs and choosing the right version of the functions according to the
formats and shapes of the matrices. For some functions like MUL and DIV, this step
in the fixed-point version also includes the evaluation of data range in the inputs to
scale the values accurately in the computations (see description of the function in
the previous chapter). This last function is written in assembly.

The experimental results obtained with the software are also compared with the
ideal values, defined as the minimum latency required to execute only the computa-
tion step in a fully optimised way (four operations per cycle in the DSP instruction
set). The read, write, and branching instructions are ignored in the ideal latency.

When comparing the results between the software and the hardware implemen-
tations, it must be kept in mind that the computational units are not the same in
the DSP and in the accelerator. For floating-point computations, the throughput
of the most common mathematical operations is about four times higher in the
accelerator. When fixed-point is used in the software solution however, the main
operations are only one to two times slower than in the accelerator, which always
uses floating-point.

MUL

The results obtained for the MUL instruction are shown in Table 5.2 and Figure 5.4.
Even though the hardware accelerator is faster for all matrix sizes, the fixed-

point version in software has similar performance for the biggest matrices. For
smaller matrices, the cost of instruction fetching and input preparation adds a
significant overhead, which makes this version the slowest. The floating-point im-
plementation is approximately 4 times slower than the hardware, which confirms
what has been obtained in the theoretical analysis.
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Matrix
size

Hardware
accelerator

Software fixed-point:
Experimental latency

(Ideal latency)

Software
floating-point:

Experimental latency
(Ideal latency)

4 56 342 (16) 238 (64)
8 168 560 (128) 734 (512)
12 700 1030 (432) 2022 (1728)
16 1190 1848 (1024) 4486 (4096)
20 2709 3110 (2000) 8510 (8000)
24 3822 4912 (3456) 14478 (13824)
28 6839 7350 (5488) 22774 (21952)
32 8855 10520 (8192) 33782 (32768)

Table 5.2. Latency of MUL instruction in cycles, experimental and ideal values

Figure 5.4. Comparison of experimental latency for MUL instruction

ADD

If only the computation step is considered, the fixed-point implementation has simi-
lar performance with the hardware accelerator for the ADD instruction. Because of
the overhead due to other steps, this software version is from 1.5 to 6 times slower
then the hardware. The floating-point version is only about 2.5 times slower for
most sizes (see Table 5.3 and Figure 5.5).
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Matrix
size

Hardware
accelerator

Software fixed-point:
Experimental latency

(Ideal latency)

Software
floating-point:

Experimental latency
(Ideal latency)

4 28 175 (8) 149 (16)
8 77 203 (32) 201 (64)
12 112 247 (72) 285 (144)
16 168 307 (128) 383 (200)
20 231 383 (200) 549 (400)
24 315 475 (288) 729 (576)
28 399 583 (392) 941 (784)
32 504 707 (512) 1185 (1024)

Table 5.3. Latency of ADD instruction in cycles, experimental and ideal values

Figure 5.5. Comparison of experimental latency for ADD instruction

DIV

The latency of the DIV instructions has been evaluated for the three software im-
plementations:

• Gaussian elimination (GE) in fixed-point + Conversion + Back substitution
(BS) in floating-point

• Gaussian elimination (GE) + Back substitution (BS) both in floating-point

• Gauss-Jordan (GJ) algorithm in floating-point
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Matrix
size

Hardware
accelerator

Software GE
fixed-point + BS
floating-point :
Experimental
latency (Ideal

latency)

Software GE + BS
floating-point:
Experimental
latency (Ideal

latency)

Software GJ
floating-point:
Experimental
latency (Ideal

latency)

4 308 749 (83) 533 (97) 605 (101)
8 791 1833 (514) 1797 (714) 2247 (770)
12 1967 3915 (1565) 4486 (2363) 5730 (2583)
16 3276 7469 (3508) 9198 (5556) 11778 (6116)
20 6251 12859 (6615) 16576 (10805) 21162 (11945)
24 8953 20438 (11158) 27193 (18622) 34583 (20646)
28 14511 30638 (17409) 41576 (29519) 52696 (32795)
32 19187 43797 (25640) 60404 (44008) 76308 (48968)

Table 5.4. Latency of DIV instruction in cycles, experimental and ideal values

All these implementations have a variable latency due to the partial pivoting
technique and the row swap which is executed only at some iterations of the main
loop, depending on where the greatest pivot is found. The values presented in
Table 5.4 and Figure 5.6 are the average latencies obtained with the 10 tests.

Figure 5.6. Comparison of experimental latency for DIV instruction

First, all the software implementations are at least 2 times slower than the
hardware accelerator. The experimental values are also much higher than the ideal
values even for big matrices, due to the fact that the algorithms cannot easily be
optimised for the DSP (not always possible to unroll the loops and execute 4 useful
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operations per cycle in practice).
If internal floating-point format is used, Gaussian elimination should be pre-

ferred to Gauss-Jordan algorithm, since the speed difference is even higher for the
actual implementation than for the ideal one. Using fixed-point for the first step of
the division increases the speed of the function, but the important loss of precision
must be kept in mind when choosing this implementation.

The results that are given here are only for the general case, when the matrix
for which the inverse is to be computed can have any shape. When this matrix is
for instance an upper- or a lower-triangular matrix (result of a Cholesky decompo-
sition for instance), the algorithms that are selected in software are respectively the
backward-substitution and forward-substitution algorithms. These are much faster
than the algorithms used for the general case, and they can only be executed in
floating-point. In these specific cases, the software is up to 30% faster than the
hardware.

CHOL

For the Cholesky decomposition, the software implementations are up to 50% slower
than the hardware (see Table 5.5 and Figure 5.7). The two software versions have
similar latencies, the floating-point being slightly faster for matrix sizes lower or
equal to 20, and a bit slower for larger sizes. The large difference between the
ideal and the experimental latency in fixed-point can partly be explained by the
numerous division operations in this version: the long latency of these operations
can in theory be hidden by doing other computations while waiting for the results,
but in practice it cannot be done completely in a realistic schedule.

Together with the precisions results, these values suggest that the floating-point
version should be preferred in general for the CHOL instruction.

Figure 5.7. Comparison of experimental latency for CHOL instruction
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Matrix
size

Hardware
accelerator

Software fixed-point:
Experimental latency

(Ideal latency)

Software
floating-point:

Experimental latency
(Ideal latency)

4 182 257 (15) 227 (14)
8 385 525 (77) 402 (92)
12 784 948 (204) 747 (298)
16 1162 1524 (410) 1299 (696)
20 1946 2292 (713) 2129 (1350)
24 2562 3266 (1127) 3316 (2324)
28 3899 4454 (1670) 4915 (3682)
32 4823 5876 (2356) 6990 (5488)

Table 5.5. Latency of CHOL instruction in cycles, experimental and ideal
values

5.2 Evaluation of a matrix algorithm
Several algorithms that involve matrix computations are used at Ericsson to improve
the quality of the network signals, by limiting errors due to signal interference. The
algorithm that is studied in more details below is a general pattern that appears
with small modifications in several existing algorithms.

5.2.1 Jobs Description
The inputs of the algorithm are grouped in n vectors containing each k samples.
The n vectors are stored consecutively in the shared memory. The whole set of data
can be interpreted as a n× k rectangular matrix A.

The algorithm can be divided into two jobs. The aim of the first job is to build
a covariance matrix R based on the input A, with the following steps.

1. VLOAD the n vectors of k data, filling p = dk/ne matrices of size n × n in
the internal memory.

2. TMUL for each of the p matrices

3. ADD all the p matrices together, to obtain the final n× n covariance matrix
R = AA∗

4. SCALE R by 1/k

5. STORE R in the shared memory

In the second job, the covariance matrix is used to update the initial data in A:
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1. LOAD R from the shared memory

2. CHOL Compute the lower triangular matrix L such that R = LL∗

3. VLOAD the n vectors of k data (fill p matrices of size n× n)

4. DIV Compute L−1A with DIV instructions for each of the p internal square
matrices

5. VSTORE the modified n vectors of k data in the shared memory

Due to the limitations of size in the internal memory, all the input data cannot
be loaded at the same time. The jobs are in this case composed of several iterations,
and only part of the data is processed in each iteration.

When executed by the hardware accelerator, the second job can be optimised
when p > 1, by using only one DIV instruction to compute L−1, and then p MUL
instructions to compute L−1A.

In the software implementation however, the DIV instruction is faster than
MUL: the fact that the output L of the CHOL instruction is a lower triangular
matrix is saved in smx_mem_manager, and the algorithm that is chosen for all the
following DIV instructions is therefore the forward-substitution algorithm, which is
faster than the Gaussian elimination.

5.2.2 Tests
Floating-point input data have been generated for n = 4, 8, 16, and 32, with 256
samples per vector. Each coefficient arj = arjnorm expiarjexp is randomly generated.
The norms arjnorm are the absolute values of random numbers generated with a
normal distribution bounded in the interval [−1, 1]. The complex exponents arjexp

are uniformly distributed in [0, 2π].
For each size n, a test has been run for every k ≥ n in the set {4, 8, 16, 32,

64, 128, 256}. Both internal formats have been tested, but the DIV instructions
are always executed in floating-point (the forward-substitution algorithm contains
division operations with no assumption on data range). All the output data is in
floating-point format.

The accuracy of the output data has been evaluated with Matlab, and the
latencies of the software implementations are compared with the latencies that
would be obtained with the hardware accelerator.

5.2.3 Precision results
The average relative error on the n×k output of the algorithm is shown in Figure 5.8.
The precision is again better with internal floating-point computations.

The error grows with n, but in general decreases with k, at least when k is close
to n. This can be explained by the fact that when k is closed to n, the covariance
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Figure 5.8. Error on output of matrix job

matrix is statistically ill-conditioned. The covariance matrix R = AA∗ is always
Hermitian positive definite when A is invertible, but some of its eigenvalues are
more likely to be close to zero when k = n or k = 2n.

In fixed-point however, the error stops decreasing and sometimes slightly in-
creases with larger k. This is due to the error on the covariance matrix, which
grows with k in fixed-point. During the execution of the first job, several matrices
are added together to build the covariance matrix. The heuristics that is used in
fixed-point to avoid overflow during additions is in general pessimistic, and after a
few ADD instructions with the same destination matrix, the number of significant
bits is drastically reduced.

What happens more precisely is that for the destination matrix R with the
coefficients r̂ij = r̃ij × 2expR , the finite representation of the coefficients r̃ij gets
very small, while the exponent expR gets very large. A solution could be to modify
the implementation to evaluate the norm of the matrix coefficients r̃ij every few
instructions. If the maximum infinite norm is too small, the data could be left-
shifted, and the exponent decreased accordingly. Even though this would globally
increase the precision of the software, this solution would also increase the latency
of the instructions.

5.2.4 Latency results

The cumulated latency of the two matrix jobs has been evaluated, and compared
with the latency obtained with the hardware accelerator. The following value is
computed for every combination of n and k:

Latency of job 1 in software + Latency of job 2 in software
Latency of job 1 in hardware + Latency of job 2 in hardware
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H
HHH

HHn
k

4 8 16 32 64 128 256

4 5.1 4.4 4.2 4.0 3.8 3.7 3.7
8 3.7 3.1 2.9 2.7 2.6 2.5
16 2.4 2.0 2.0 2.0 2.2
32 1.8 1.6 2.0 2.2

Table 5.6. Ratio: Latency software in floating-point / Latency hardware

HHH
HHHn
k

4 8 16 32 64 128 256

4 5.6 4.9 4.8 4.6 4.5 4.4 4.2
8 3.9 3.2 3.0 2.7 2.6 2.5
16 2.3 1.8 1.7 1.6 1.7
32 1.5 1.2 1.5 1.6

Table 5.7. Ratio: Latency software in fixed-point / Latency hardware

The results are given in Tables 5.6 and 5.7.
The latency is overall larger with the software. For n = 4 and n = 8, the floating-

point implementation should be preferred over the fixed-point implementation since
it is both faster and more precise. For larger n it is the fixed-point implementation
that is faster, the user can therefore choose either implementation depending on the
specifications of the application and especially on how important the precision is
compared to the speed.

With small n, the software is about 3 to 5 times slower than the hardware. For
a same number k of samples per vector, a smaller number of vectors n means a
higher number of instructions on small matrices, when the whole set of data is split
up into p = dk/ne square matrices of size n × n. The instructions TMUL, ADD,
and DIV are executed many times, which implies a lot of operations to decode the
instructions, check the parameters, and initiate the computations. The overhead due
to these additional operations is almost non-existent in the hardware accelerator,
which explains the larger ratio of latency for smaller n.

For some combinations of n and k, the software is only 1 to 2 times slower than
the hardware. This proves that the software implementation that will replace the
hardware accelerator is a viable solution for some use cases regarding the perfor-
mance, even though several DSPs will be needed to replace one accelerator while
keeping the same throughput.
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5.3 Power analysis

5.3.1 Toggle activity

The power dissipation in the DSP highly depends on the toggle activity. A toggle
is a value change from 0 to 1 or from 1 to 0, and the corresponding activity is
the number of toggle per clock cycle. This value is given as a percentage, and an
activity of 100% means that the value changes at every cycle. The dynamic power
dissipation in a component increases with this activity. The average toggle activity
can be given for the whole DSP or for each of its sub-components.

It has been for instance measured for the first of the two matrix jobs described in
the previous section, in which vectors are loaded and the corresponding covariance
matrix is build. The simulations have been done with n = 32 , k = 256, and internal
floating-point format. The time window corresponding to the job execution has been
divided into 600 slices, and the average toggle activity has been measured for each
slice and for each sub-component of the DSP. The results are shown in Figure 5.9,
for the whole DSP (first graph), for a sub-unit responsible for the register access
and the arithmetic computations (second graph), and for a sub-unit responsible for
fetching and decoding the instructions in the code (third graph).

5.3.2 Analysis

More than the values themselves, what can be examined in the results is the varia-
tions inside the time window. It can be noticed that the switching activity highly
depends on the type of function that is executed. In the whole DSP, the same pat-
tern is repeated four times: the activity is stable around 1.5%, then a plateau with
roughly 5% of activity can be observed twice, followed by one or two peaks where
the total average activity reaches almost 5.5%.

The low values at the beginning of the pattern correspond to the execution
of 32 successive VLOAD matrix instructions. The assembly functions themselves
are very short, most of the time is spent in the transitions between the functions.
This code is therefore automatically compiled code, in which the number of DSP
instructions per cycle is much lower than the theoretical maximum, which leads to a
lower toggle activity. Then the TMUL instruction is executed twice. The total DSP
activity reaches 5% for the assembly function, in which four arithmetic instructions
are executed at most clock cycles. Then the outputs of the TMUL instructions are
all added together with ADD instructions (only one call for the first iteration, two
for the others to first add the two latest outputs of TMUL, and then add the result
to the previous total). The duration of the ADD instruction is much smaller than
for TMUL for n = 32. The ADD function is even more computationally intensive
and uses more various registers, which explains that the activity is even higher
during the ADD than during the TMUL assembly function.

These variations are not equally strong in all the sub-units inside the DSP.
During the execution of the TMUL assembly functions, the average activity reaches
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Figure 5.9. Average toggle activity during the execution of a matrix job, for
the whole DSP (on the top), for a sub-unit responsible for the register access
and the arithmetic computations (in the middle), and for a sub-unit responsible
for fetching and decoding the instructions in the code (on the bottom). The
time window is divided into 600 slices (horizontal axis).

6.5% in the block that contains all the computation units and the registers access,
while it is under 1% during the transitional sections written in C. The difference is
smaller for the instruction fetch unit which decodes the DSP instructions. This unit
keeps a high activity during the whole execution, with an average of 9.5% during
the VLOAD phases, and 11% for the arithmetic assembly functions. Indeed, this
unit is always active whenever some code is executed.

5.3.3 Future work

Other tools can be used to measure the total power dissipation in the DSP. Infor-
mation about the switching activity must be combined with data concerning the
physical properties of the hardware in order to measure the dynamic power dissi-
pation. The static power dissipation which is not affected by the toggle can also
be measured. The same tests could be done for the hardware accelerator while it
executes the same matrix job, to compare the cost of the software and hardware
solutions.
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It was not possible for practical reasons to make such a comparison during this
project, mainly due to the tools accessibility and the long latency of the tests.
Similar examples in the literature have proven that a software implementation of
a program for a DSP architecture consumes 10 to 30 times more power than an
equivalent hardware implementation (see the Background chapter). The programs
which were implemented, and the properties of the hardware in the examples were
however not the same as in this project. The clock frequency was for instance
different in the software and in the hardware implementation in the examples from
the literature.

With the architecture considered in this project, the DSP may have a higher
activity especially because of the instruction fetch unit which is not needed in the
accelerator, but for instance the activity linked to memory access is likely to be
similar in both platforms. It can also be noticed that the average activity is probably
higher in the computational units of the accelerator, since the transitions between
the functions which use these units intensively are proportionally less important
than in the software implementation.

It would be interesting to make some tests in the future to confirm or infirm these
hypotheses. Even though the average power dissipation is expected to be higher for
the software solution, and the energy consumption as well since this solution has a
higher latency, some more precise comparison values would be useful for instance
to make design decisions in the future. More precisely, they could be taken into
account to decide if some other programs at Ericsson should be implemented in
software or with a hardware accelerator.
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6 Performance analysis

In this chapter, the speed of the software program is evaluated in more details for
some instructions. The aim is first to identify and quantify the effects of the different
bottlenecks which make the program slower. From this analysis, some evolutions
that can lead to further optimisations in the system are suggested. These evolutions
concern both the hardware (DSP instructions) and the software (client interface).

6.1 Identification of bottlenecks
It has been observed from the results of the previous chapter that for each matrix
instruction, the experimental latency is significantly higher than the ideal latency,
which is the time needed to perform only the useful arithmetic operations at the
highest possible throughput. The aim now is to identify which are the steps in the
code which are responsible for this additional latency.

6.1.1 Execution steps

When the program runs on the DSP, one or several operations are executed in
each cycle. These operations can be classified in different execution steps that are
described below.

For every matrix instruction, the first and the final steps are written in C lan-
guage, while the main function is written in assembly. The main time-consuming
steps in C that can be identified during the execution are the following:

• Opcode decoding: the opcode of the matrix instruction is compared with
all the possible opcodes, and the right function is selected (“switch . . . case”
statement)

• Parameters check: the parameters of the instruction are checked and the
execution is terminated if the combination of parameters is not valid

• Initialisation of assembly function: the accurate assembly function is selected
given the information obtained from input matrices, and the matrix addresses
are computed.
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• Transition to next instruction: the information about the output matrix is
updated, and the function returns

For the assembly functions, the following classification can be used to describe
each cycle during the execution:

• Get function parameters: read each parameter of the function

• Push/pop context: push the current values of the registers in the stack before
any other operation in order to save the context, and pop the values from the
stack at the end of the function to restore the context

• Branching: jump in the code, conditionally or not, for instance to select the
right implementation depending on whether the output must be transposed /
conjugated

• Operation execution: call arithmetic operations or other type of operations

• Operation latency: wait for the result of the operations when the latency is
greater than one cycle and no other operation can be executed (either because
the result is needed immediately or because the register where the result is
stored need to be reused for something else, typically in the next iteration of
a loop)

• Other move instructions: read inputs, write outputs, update addresses, set
number of iterations in a loop, etc.

An assembly function usually follows the structure described in Algorithm 6,
with different levels of nested loops.

Algorithm 6 Example of structure for an assembly function
Get function parameters
Push context in the stack
Branch to another part of the code if transpose / conjugate output
Initialise values and addresses (move instructions)
loop

Read inputs (move instructions)
loop

Execute arithmetic operations
end loop
Wait for end of arithmetic operations
Write outputs and update addresses (move instructions)

end loop
Pop context from the stack

The latency of each step in C and in assembly is evaluated with the cycle accurate
simulator. The proportion of each step in the total latency is then computed.
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Note: Most move operations are run in parallel with other operations, and the
cycles classified in the last assembly category “other move instructions” are the
cycles in which only move instructions are called, and there is no need to wait for
the result of some arithmetic operations (these cycles cannot be classified into any
other category). Some of these cycles cannot be deleted even by optimising the
schedule, especially when the algorithm contains nested loops. Indeed, those can be
efficiently implemented with hardware loops in the DSP, in which all the branching
operations are handled automatically without overhead, but in this case the schedule
is constrained by the fact that two nested loops cannot begin or end at the same
cycle. This introduces necessary transitional cycles, and the total experimental
latency is therefore automatically increased compared to the ideal one.

Small errors of a few cycles can occur between the measured values and the exact
values, especially for the steps written in C. The delimitation between each step is
not as explicit in the compiled code as in the original C code, and the results are
therefore obtained with small approximations.

Other variations can occur when conditional branching instructions are involved
(instructions to jump to another part of the code only if a condition is verified).
The branch prediction process in the DSP tends to minimise the latency of these
instructions based on the previous evaluations of the conditions, so the latency
depends on the succession of instructions that are executed.

Overall these errors and variations may only increase or decrease the total la-
tency by a few cycles in the results below.

6.1.2 MUL in floating-point

The results obtained for MUL in floating-point are given in Table 6.1. The ideal
latency for a matrix of size n × n is n3, which corresponds to the execution of the
multiply-accumulate operations (4 per cycle).

It can be noticed that this arithmetic step is fully optimised in the implementa-
tion, since its latency is exactly equal to the ideal latency (in bold in the table). For
the larger values of n, this step is by far the longest step in the execution, with up to
97% of the total latency for n = 32. With n = 4 however, this step only lasts a quar-
ter of the total execution time. In order to decrease the total latency significantly,
it would be necessary to optimise the steps in the C code or the preliminary steps
in assembly. This cannot be done easily since the latency of the C steps depend
on the compilation process, and the first steps in the assembly function cannot be
avoided.

6.1.3 MUL in fixed-point

In fixed-point, the value lmax must be computed for both inputs before actually
calling the MUL assembly function. This value is computed with a function written
in assembly that uses specific arithmetic operations. This additional function is
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Steps Latency (in
cycles)

Proportion latency
n = 4 n = 8 n = 16 n = 32

Steps in C:
- Decode opcode 37 15.5% 5.0% 0.8% 0.1%
- Check parameters 41 17.2% 5.6% 0.9% 0.1%
- Initialise assembly MUL
function 23 9.7% 3.1% 0.5% 0.1%

- Transition to next
instruction 17 7.1% 2.3% 0.4% 0.1%

Steps in the MUL assembly
function:
- Get function parameters 6 2.5% 0.8% 0.1% 0.0%
- Push / pop context 19 8.0% 2.6% 0.4% 0.1%
- Branching 6 2.5% 0.8% 0.1% 0.0%
- Arithmetic operation
execution (mac) n3 26.9% 69.8% 91.3% 97.0%

- Arithmetic operation
latency (mac)

1
2n

2 3.4% 4.4% 2.9% 1.5%

- Other move instructions 1 + 3n+ 1
4n

2 7.1% 5.6% 2.5% 1.0%

Table 6.1. Detailed latency of the MUL instruction in floating-point for n× n
matrices, and proportion of each step in the total latency for some values of n

called twice in the general case, only once if both inputs are equal (only the general
case is considered here).

The ideal latency for a matrix of size n×n is in this case 1
4n

3, which corresponds
to the execution of 4 complex multiply-accumulate operations per cycle. With the
results given in Table 6.2, it can be noticed that this step is again fully optimised,
four complex multiply-accumulate operations are executed each cycle.

However, the proportion of this arithmetic step in the total latency is rather
small, especially for the smallest values of n. The fixed-point implementation con-
tains much more operations than the floating-point version: steps to compute the
value lmax on both inputs, corresponding function call initialisations in the C code,
and shift operations in the MUL assembly function (right shifts of output to avoid
overflow). For n = 4 for instance, the optimised arithmetic step of the multiply-
accumulate operations only take 1

4n
3 = 16 cycles, which is very small especially

compared to the constant cost of all the initialisation steps.
For larger values of n, the steps that are the most time-consuming with the main

arithmetic step (mac operations) are the computation of lmax values, the time to
wait for the result of the mac instructions, the shift operations, and, to a smaller
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Steps Latency (in
cycles)

Proportion latency
n = 4 n = 8 n = 16 n = 32

Steps in C:
- Decode opcode 37 10.8% 6.6% 2.0% 0.4%
- Check parameters 41 12.0% 7.3% 2.2% 0.4%
- Initialise assembly lmax
function for input 1 35 10.2% 6.3% 1.9% 0.3%

- Initialise assembly lmax
function for input 2 32 9.4% 5.7% 1.7% 0.3%

- Initialise assembly MUL
function 24 7.0% 4.3% 1.3% 0.2%

- Transition to next
instruction 23 6.7% 4.1% 1.2% 0.2%

Steps in lmax assembly
function:
- Get function parameters 2× 4 2.3% 1.4% 0.4% 0.1%
- Push / pop context 2× 17 9.9% 6.1% 1.8% 0.3%
- Arithmetic operation
execution (compute lmax) 2×( 1

4n+ 5
16n

2) 3.5% 7.9% 9.1% 6.2%

- Other move instructions 2× (4 + 1
4n) 2.9% 2.1% 0.9% 0.2%

Steps in the MUL assembly
function:
- Get function parameters 7 2.0% 1.3% 0.4% 0.1%
- Push / pop context 23 6.7% 4.1% 1.2% 0.2%
- Branching 7 2.0% 1.3% 0.4% 0.1%
- Arithmetic operation
execution (mac)

1
4 n3 4.7% 22.9% 55.4% 77.9%

- Arithmetic operation
latency (mac)

1
2n

2 2.3% 5.7% 6.9% 4.9%

- Arithmetic operation
execution (shift on result)

1
2n

2 2.3% 5.7% 6.9% 4.9%

- Other move instructions 1 + 3n+ 1
4n

2 5.0% 7.3% 6.1% 3.4%

Table 6.2. Detailed latency of the MUL instruction in fixed-point for n × n
matrices, and proportion of each step in the total latency for some values of n
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extent, the move instructions.

6.1.4 Other instructions with arithmetic computations

In the other instructions that contain arithmetic operations, the bottlenecks are
often the same as for MUL.

For small values of n, an important part of the execution time is spent in the C
code, and for the initialisation steps in assembly. All these parts cannot be easily
optimised.

For larger n, the throughput of the arithmetic operations become the main
bottleneck. For the instructions that involve divisions and/or square-roots like
CHOL and DIV, the latency of the arithmetic instructions also increases the total
duration of the function. These operations have indeed a long latency, and it is
not always possible to compute the divisions and square-roots in advance in the
schedule.

6.1.5 VLOAD

The VLOAD instructions has also been analysed in more details. In this instruc-
tion, a vector is loaded in a row that can cover several matrices in smx_mem (see
Appendix A).

When data is loaded directly from the floating-point single-precision complex
format to the same format, the assembly function contains only initialisation steps
and a few load requests sent to the shared memory. In the C code, the most time-
consuming step is the “Transition to next instruction” part, in which information
about the output matrices is updated in smx_mem_manager (erase all the previous
information and write internal format). If the length is large, especially when it
is large compared to the final matrix size n, a lot of changes must be made in
smx_mem_manager. For n = 4 and a vector length equal to 256 for instance, the
vector covers 256/4 = 64 different matrices. In this case, this last C steps takes
almost 80% of the total execution time of the VLOAD function, so this is by far
the main bottleneck of the function.

The VLOAD instruction can support various external formats. When a conver-
sion is needed during the VLOAD instruction, data is first loaded in an intermediate
buffer, and then converted and copied into smx_mem. This conversion step can also
be a bottleneck of the function. An external format that is often used for matrix
algorithm at Ericsson is the complex Q5.3 fixed-point format. When a vector of 256
coefficients is loaded into a succession of 4 × 4 matrices and converted in floating-
point format, the conversion step takes approximately 20% of the total latency of
VLOAD. The C step to update output information takes in this case roughly 60% of
the total time. When the external format is the complex fixed-point Q1.15 format,
the conversion takes about 15% of the total time.
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6.2 Hardware enhancements
Suggested evolutions in the DSP instruction set could increase the speed of some
assembly functions.

6.2.1 Possible optimisations in the shift instruction
For the functions that mostly contain arithmetic operations like MUL, the main
bottleneck is the throughput and latency of the multiply-accumulate instruction,
which cannot be changed easily. Other optimisations can be possible however for
other operations, like the shift instructions in the fixed-point implementation of
MUL.

In the current implementation of MUL to compute C = AB, four consecutive
coefficients c(i)(4j...4j+3) are computed simultaneously. After a loop in k, the values

of the real parts and imaginary parts of c(i)(4j...4j+3) =
n−1∑
k=0

a(i)(k)b(k)(4j...4j+3) are

each stored in 40-bit registers. The results then need to be right-shifted by a given
number of bits, in order to avoid overflow. The data from bit 16 to bit 31 in all the
destination registers is finally written in memory.

Current shift instruction

The current shift instruction that is used here to perform the arithmetic shifts has
the following parameters:

• 40-bit source register that contains the input data to shift

• 16-bit source register that contains the number of bit shifts

• 40-bit destination register that will contain the output

Four instructions of this type can run in parallel at every cycle and the latency
is equal to one cycle (result available immediately next cycle after the instruction is
called). Because it operates on a 40-bit input, the shift instruction must be called
for each of the real and imaginary parts of the coefficients, as shown in Figure 6.1.

Even though steps (1) and (2) in Figure 6.1 can be executed in parallel in the
same cycle, the shift instruction must be called twice for each coefficient. In the
MUL function, where four coefficients must be shifted at the same time and then
written in smx_mem, the instructions are currently scheduled in the following way:

Cycle 1 Shift c(i)(4j).re Shift c(i)(4j).im

Shift c(i)(4j+1).re Shift c(i)(4j+1).im

Cycle 2 Shift c(i)(4j+2).re Shift c(i)(4j+2).im

Shift c(i)(4j+3).re Shift c(i)(4j+3).im

Write c(i)(4j...4j+1)

Cycle 3 Write c(i)(4j+2...4j+3)
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Figure 6.1. Current shift instruction

New suggested instruction

In order to increase the speed of this step, it would be necessary to increase the
throughput of the shift instruction, so that it can operate on 40-bit register pairs,
instead of simple registers.

In Figure 6.1 this would mean that steps (1) and (2) are merged into a single
instruction, “Shift reg1 + reg2”, that would result in the output register pair, reg3
+ reg4. If the maximum number of instructions per cycle and the latency of the
instruction are not changed, the schedule for MUL could become the following:

Cycle 1 Shift c(i)(4j) Shift c(i)(4j+1) Shift c(i)(4j+2) Shift c(i)(4j+3).im

Cycle 2 Write c(i)(4j...4j+3)

However, this schedule cannot be implemented in practice because of the Write
step in cycle 2. If the structure of the shift instruction is not modified further, both
the input and output data will be stored in 40-bit register pairs. This would mean
that during cycle 2, the data for the four coefficients must be read from 8 different
registers.

In the current schedule of the MUL instruction, other move instructions must
also be executed at the same time, typically to read inputs for the next iteration
of the loop in which c(i)(4j+4...4j+7) will be computed. Because of the limitations in
the number and combination of move operations in the same cycle, the last Write
step would actually take two cycles instead of one. As a result, there would be no
gain in speed with the new shift instruction.

A solution could be to modify again the specification of the shift instruction.
Instead of returning the output in a pair of 40-bit registers, the useful data (data
from bit 16 to 31) from both these registers would be packed into one final register.
If r1 and r2 are the input registers, r3 is the output register, ls is the number of
left shifts to be performed (can be negative and in this case represents the number
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of right shifts), and temp1 and temp2 are two temporary variables, the following
operations are executed (rk[bj . . . bi] refers to the data contained in rk between bit
i and bit j both included):

temp1 = r1 << ls

temp2 = r2 << ls

r3 = 0
r3[b31 . . . b16] = temp1[b31 . . . b16]
r3[b15 . . . b0] = temp2[b31 . . . b16]

This shift instruction could be instead renamed extpack for “extract-and-pack”.
The parameters are the following:

• pair of 40-bit source registers that contains the input data to shift (r1 and r2)

• 16-bit source register that contains the number of bit shifts (ls, same for both
input registers)

• 40-bit destination register that will contain the output (r3)

The operations that are performed can be written in the following simpler way
(see Figure 6.2):

r3 = 0
r3[b31 . . . b16] = r1[b31−ls . . . b16−ls]
r3[b15 . . . b0] = r2[b31−ls . . . b16−ls]

Figure 6.2. Extract and pack (extpack) suggested new instruction

This new instruction can only lead to a gain of time if its latency is equal to one
cycle, and if four instructions of this type can run in parallel.
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Concerning the MUL instruction, the new latency that would be obtained after
these changes has been evaluated. The corresponding gain in time has also been
computed with the formula (old_latency - new_latency) / old_latency. The gain
would be of 1.2% for n = 4, 2.9% for n = 8, 3.5% with n = 16, and 2.4% for n = 32.

The gain in time for the whole function is limited because the time spent to
execute the shift instructions represented a small proportion of the whole latency
from the beginning. However, none of the other steps in the assembly function can
easily be optimised with small changes in the hardware. Furthermore, this new
instruction could be used for other software programs. Every time a programmer
wants to accumulate product of complex Q1.15 fixed-point inputs in pairs of 40-bit
registers (Q8.30 format for real and imaginary parts), the instruction can be used
to convert the output back in the complex Q1.15 format, after shifting the results.

Additional options

The performance could be improved further if a few additional options are added
to the new extract-and-pack instruction. These options can be implemented ei-
ther as different instructions, or by adding a configuration parameter in the initial
instruction, that would enable the programmer to set or unset each option.

First, an option could be added to conjugate the output of the operation. Even
though it may not always be the case, the instruction is mostly meant to be used
for complex numbers. Sometimes it may be needed to conjugate the data before
writing it in smx_mem, as for instance in the MUL_C function. The schedule to
finalise the result in this function was initially the one below:

Cycle 1 Negate c(i)(4j).im Negate c(i)(4j+1).im

Negate c(i)(4j+2).im Negate c(i)(4j+3).im

Cycle 2 Shift c(i)(4j).re Shift c(i)(4j).im

Shift c(i)(4j+1).re Shift c(i)(4j+1).im

Cycle 3 Shift c(i)(4j+2).re Shift c(i)(4j+2).im

Shift c(i)(4j+3).re Shift c(i)(4j+3).im

Write c(i)(4j...4j+1)

Cycle 4 Write c(i)(4j+2...4j+3)

The 4 cycles could already be reduced to 3 cycles with the standard extpack
instruction (cycles 2 and 3 can be merged), but an additional cycle could be gained
with an “extract-and-pack-and-conjugate” instruction. It would replace all the op-
erations in the first three cycles of the schedule.

This option would also be beneficial for the TMUL function. Because the out-
put matrix is Hermitian, every time a coefficient cij with j > i is computed, the
coefficient cji = cij can directly be deduced. The simple extpack instruction would
not result in a gain of time in TMUL, but the latency would slightly decrease if

72



6.2. HARDWARE ENHANCEMENTS

an additional conjugate option is available in the instruction. The gain for TMUL
would be approximately between 1.3% and 3.5%. It is a necessary condition that
the latency and throughput of the instruction remain the same with the option.

This possibility in an instruction to obtain a conjugate result more quickly does
not have an equivalent in floating-point: because only real numbers are manipulated
in this format, the sequence of real operations in a complex multiplication can simply
be modified to obtain the conjugate result with no overhead. When both a complex
number and its conjugate are needed like in TMUL, the operation to negate the
imaginary part cannot be avoided, and cannot be done at the same time as another
other useful operation like it could be done with a shift in fixed-point.

Another possible option would be to enable a correct rounding in the result. When
the output coefficients are accumulated in 40-bit registers, a lot of significant bits are
used to maintain the precision. But then only the 16 useful bits are extracted, which
is equivalent to a truncation in the result. In order to have a correct rounding, the
number (1 << 15−ls) can be added to the inputs in r1 and r2 before extracting the
result (in other words 2−16 is added to a number which is then truncated to Q1.15
format with 15 significant bits). Of course this option would only have influence on
the precision of the result, not on the speed.

With this option, the error on the output of the MUL function for the inputs
generated in the previous chapter would decrease by approximately 23%. This
option could be implemented for the extpack instruction, or for the initial shift
instruction, if the extract-and-pack instruction is finally not implemented.

6.2.2 Load/store instructions with on-the-fly conversion

Another way to improve the performance of the system would be to optimise the
load/store transfers. A common use case is when a vector is loaded from an external
format to the complex floating-point format. It has been shown that the conversion
step, if it is needed, can be time-consuming.

For a transfer of 256 coefficients in 4 × 4 matrices, the conversion step takes
20% of the total time for Q5.3 external format, and 15% of the total time for Q1.15
external format. If only the assembly VLOAD function is considered without the
C code, this proportion gets much more important, since most of the time in this
function is spent for the conversion. The same can be observed for the equivalent
VSTORE function.

A suggestion of new DSP instruction would be a set of “load+convert” and
“convert+store” instructions, in which data is loaded or stored, and converted before
being written at the destination address. With these instructions, the VLOAD and
VSTORE instruction could be implemented simply by sending a few load/store
request even when a conversion must be done. There would be no need to use an
intermediate buffer and to do a manual conversion.

This is only possible when the internal format is floating-point. When inter-
nal fixed-point format is used, the data size is smaller, and the matrix blocks are
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therefore not stored consecutively in memory. The use of an intermediate buffer is
therefore necessary in this case.

The following set of instructions could be implemented:

• Load from shared memory + convert from complex Q1.15 fixed-point format
to complex floating-point format

• Load from shared memory + convert from complex Q1.7 fixed-point format
to complex floating-point format

• Convert from complex floating-point format to complex Q1.15 fixed-point for-
mat + store in shared memory

• Convert from complex floating-point format to complex Q1.7 fixed-point for-
mat + store in shared memory

All these instructions would take as parameters a source address, a destination
address and a size. A scaling factor could also be specified, that would enable for
instance to use easily the Q5.3 format or any other fixed point 8-bit and 16-bit
formats.

If only the VLOAD assembly function is considered, the gain in time would be
very high. For smaller lengths, the gain is around 20%. For a length equal to 256,
the gain reaches 65% with a conversion from Q1.15 format, and 75% from Q1.7 (or
Q5.3) format.

These values have been computed theoretically in the ideal case when there is no
additional delay to access data in the shared memory. In the worst case when too
many load/store requests are in progress and no new request can be sent before the
first ones have been completed, the gain in time generated by the new instruction
still remain over 15% for Q1.15 external format, and above 30% for Q1.7 format.

Similar values have been obtained for the assembly VSTORE function. Con-
cerning the whole function including the C code, the gain in time depends on the
matrix size n, but it is in general much lower in the current implementation.

More generally, these new instructions could be useful for all the LOAD, STORE,
VLOAD, VSTORE functions even when an intermediate buffer is used and data
must be manually copied from/to the buffer to/from smx_mem. The main ad-
vantage is a significant simplification of the code. If all the external and internal
formats are considered, in addition all to the possible transformations (transpose
and/or conjugate), the code would be very complex with a different implementation
for each case. If at least the conversion is done inside the load/store instructions,
the number of different copy functions between the buffer and smx_mem is much
reduced. This makes the code simpler and more easily maintainable.

Two additional instructions could be added to further simplify the code when
the internal format is Q1.15 fixed-point format:
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• Load from shared memory + convert from complex Q1.7 fixed-point format
to complex Q1.15 fixed-point format

• Convert from complex Q1.15 fixed-point format to complex Q1.7 fixed-point
format + store in shared memory

These last conversions are easy to implement since they only increase or de-
crease the number of significant bits. A scaling factor can also be used during the
conversion.

In some cases, the on-the-fly conversion also leads to an increased speed, espe-
cially for the conversion between Q1.7 format and the floating-point format, which is
time-consuming if done manually (need to convert between Q1.7 and Q1.15 format,
and between Q1.15 and floating-point format).

If other common use cases which involve other type of conversions are identified
in the future, the corresponding instructions can be added in the instruction set.
A conjugate option could for instance be added in the load/store instruction, to
negate one coefficient out of two in a given format. Conversion between external
real formats and internal complex formats can also be made easier, by simply filling
one coefficient out of two with 0s in the case of a load, or by deleting one coefficient
out of two for the equivalent store instruction.

The speed of the VLOAD and VSTORE functions could be increased with these
instructions, and this would also lead to further simplifications in the code.

6.3 Suggested changes in the client interface

The specifications for the client interface, and especially the set of matrix func-
tions, have been chosen for the hardware accelerator when it was designed. The
choices have been made based on the programmers’ need, but also based on the
characteristics of the hardware accelerator.

When the same program is implemented in software for Ericsson’s DSP core,
a different interface with the client could lead to better performance, since the
characteristics of the hardware differs from the accelerator.

6.3.1 Revised instruction set

The first main difference between the DSP and the accelerator is that the accelerator
has a better ability to, first, read and write coefficients row-wise and column-wise
with the same complexity, and secondly, to conjugate output coefficients without
adding any latency.

As a result, most matrix functions can be implemented easily with a transpose
and/or conjugate version, that have the same latency as the standard function.
With the DSP however, this is not always possible.
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The ADD instruction for instance computes the output X0 with the formula
X0 = X0 + λX1. This can easily be computed with two nested loops for the rows
and columns.

In order to execute the ADD_T function to compute X0 = (X0 + λX1)T while
doing all the computations in place, it would be necessary for each output coefficient
(x0)ij with j > i to compute at the same time the coefficient (x0)ji. Compared to
the simple ADD instruction, this would involve more pointers, and a more complex
schedule.

For the ADD_C instruction in which X0 = X0 + λX1 is computed, more op-
erations would be needed to conjugate every coefficient. As a consequence, the
latency of this function would be much higher than the latency for the simple ADD
function. The same can be said about ADD_TC instruction.

In order to simplify the code, all these instructions that cannot be implemented
efficiently could be removed from the instruction set. This concerns all the _T, _C,
and _TC versions of the instructions SCALE, ADD, VMUL, ABS2, VINV, and
VSQRI. The CONST_C instructions could also be deleted, since it is equivalent to
CONST with a conjugated λ parameter.

The transpose and conjugate options could therefore only be kept for MUL,
TMUL, and DOT, since they do not affect the latency or only in a not significant
way. Because the output of the TMUL function is Hermitian, the instructions
TMUL_T (equivalent to TMUL_C) and TMUL_TC (equivalent to TMUL) could
be deleted.

New instructions could be added to simply transpose, conjugate, or do both
operations on a matrix, in place or with a copy.

The aim of these changes is to provide the programmer with a set of instructions
that can be implemented efficiently, and it is then the role of the programmer to
identify the best succession of instructions for a given matrix algorithm. The set
of available instructions can change over time, if new use cases are identified. It
could be for instance possible in the future to introduce instructions that would take
transposed inputs as parameters, if these functions could be implemented efficiently.

For example, if a user wants to compute the matrix C = (C + D)∗ , and then
A = BC, it may be more efficient to compute instead C = C + D , and then
A = BC∗. If this kind of features could be useful, a new modified MUL instruction
with parameters X0, X1, and X2 could be introduced to compute X0 = X1X

∗
2 .

Another new feature that could be useful concerns the DIV instruction, in which
X0 = X−1

1 X0 is computed. Sometimes it can be useful to compute simply the
inverse X−1

1 of a matrix. For the moment the only way to do this is to load first
an identity matrix into X0, and then to call DIV instruction. The LOAD increases
the latency of the operation, especially if the matrix size is high, and it also implies
that an identity matrix must be stored in the shared memory.

A possible solution would be to add an option in the DIV instruction to compute
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H
HHH

HHn
k

4 8 16 32 64 128 256

4 2.6 2.3 2.2 2.2 2.1 2.2 2.2
8 2.0 1.8 1.8 1.8 1.9 2.0
16 1.6 1.5 1.6 1.7 1.9
32 1.6 1.5 1.8 2.0

Table 6.3. Ratio: Latency software in floating-point / Latency hardware

a simple inverse, in which an identity matrix would be first written in X0 before
beginning the division.

6.3.2 Matrix job templates

Another bottleneck that has been identified in most instruction is the step to
decode the opcode and to check the parameters. Other steps written in C can
also be time-consuming, like the steps in VLOAD to update the information in
smx_mem_manager about all the matrices covered by the loaded vector. If a
matrix job is repetitively sent to a Matrix server, with the same succession of in-
structions and parameters, and only different input and output addresses in the
shared memory, all these time-consuming steps in C could be avoided.

A desirable feature in the matrix program would therefore be to provide a set
of job templates for the most common use cases. Instead of building a matrix job
as a list of matrix instructions, the client would simply send a request to execute a
job template. Only the input and output addresses would be specified, and maybe
also some other parameters like the matrices’ size.

These jobs would be implemented simply in the Matrix server DSP with a
succession of function calls to the optimised assembly functions, and almost no in-
termediate steps in C (only need to compute the internal addresses of the matrices).

This has been tested with the two matrix jobs studied in the previous chapter.
Both external and internal formats are complex floating-point format. The ratio
of the total latency obtained with the new software version over the total latency
obtained with the hardware accelerator has been evaluated. The results are given
in Table 6.3.

Compared to what had been obtained with a matrix job built with matrix
instructions, the speed of the software has been globally increased, especially for
n = 4 and n = 8. The software is now only up to 2.6 times slower than the hardware,
for a similar precision in the results. For k = 256, the software is not much more
than 2 times slower than the hardware. As a comparison, the ratio obtained for
n = 4 and k = 256 with a standard matrix job was 3.7.
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The performance could be improved further by slightly modifying the implemen-
tation of the matrix functions and the data structures. Some functions like TMUL
and the forward- or backward-substitution in DIV could be implemented for rectan-
gular matrices instead of square matrices with only little modifications in the code.
The data structure for matrix storage could also be modified for this use case, in
order to be able to store full vectors with consecutive coefficients in memory. In
the first of the two matrix jobs considered here for instance, the covariance matrix
could be built with only one call to TMUL on a large rectangular matrix instead of
multiple calls to TMUL and ADD functions on square matrices.

Another advantage of the job templates is that the client would not need to build
the matrix instructions one by one and to store them in the shared memory before
sending a request to the server, only a few parameters would now need to be set.
Since the job templates are written in software, they can also easily be updated if
the needs of the programmers change over time.

Furthermore, the job templates could even be implemented as a function that
could be executed directly by the client. Now that the building blocks of matrix
algorithms have been implemented and optimised in software, the code can also be
directly used by the client for some algorithms.
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7 Conclusion

The aim of this project was to design and to optimise a linear algebra software
program for Ericsson’s DSP core. This program can execute matrix jobs, composed
of a succession of functions applied on matrices. This software is intended to replace
an existing hardware accelerator, that currently implements the same functionality.
A software solution is indeed more flexible and can be easily adapted to meet the
changing requirements of the users. It can also lead to a more optimised use of
resources on the chip, since a DSP can execute various kind of applications when
it does not run the matrix program, while this was not possible with a specific-
purpose accelerator. This can compensate for the expected lower performance of
the software implementation regarding speed and power dissipation.

In a preliminary theoretical analysis, the possible algorithms, data formats and
data structures have been identified and compared in terms of speed and precision,
given the hardware characteristics of the DSP. From the results of this analysis, sev-
eral versions of each matrix function have been implemented. During the execution
of the program, the best version is chosen depending on the current state of the
matrices for the algorithms, and the preferences of the user for the data formats.

The program has been implemented for the upcoming version of the DSP. The
main structure has been written in the C language, and the matrix functions them-
selves have been written directly in assembly. It has been proven in this project
that the software implementation is a viable solution with reasonable performance
when compared with the hardware accelerator.

The choice on internal data format can be made between a floating-point and a
fixed-point format.

The first one offers the same precision as in the hardware accelerator, but a
lower speed, since the maximum throughput of the computational units in the DSP
is four times slower than in the accelerator for most arithmetic operations. The tests
have proven that the software is in practice slower than the hardware, but in many
cases less than four times slower. This has been achieved by choosing accurately
the algorithms and by optimising the schedule of the instructions in the assembly
code to make the most of the DSP’s capabilities.

Another possibility that exists only in the software is to use fixed-point internal
computations. That leads to less precise results, but better speed performance.
The software can be in some cases almost as fast as the hardware, but the speed is
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usually limited by all the necessary operations to manage data range and to avoid
overflows in this format. It can be yet an interesting alternative option for some
users, when it is not necessary to obtain results with a high precision.

The performance of the functions could be increased further by adding some
new instructions in the DSP that would make some of the execution steps a bit
faster. However, the main limitations of the functions concerning speed are the
throughput of the main arithmetic instructions in the DSP, and the code that is
executed between every assembly function and which cannot be fully optimised in
C.

While the first bottleneck cannot change easily without making important mod-
ifications in the hardware, the second one could be reduced by making some changes
in the program’s specifications and the client interface. The creation of job tem-
plates could for instance make the program faster since the succession of matrix
functions and parameters is known in advance. A test has proven that the software
could be only 1.5 to 2.5 slower in this configuration to execute a matrix algorithm
used at Ericsson.

The flexibility of the software is probably the main potential source for further
improvements in the program. Depending on the needs of the programmers that
can change over time, the matrix instruction set and the actual implementation can
be modified as often as needed to obtain the best possible performance.

A current limitation of the performance for complex matrix algorithm is that it
is not always optimal to divide them into a succession of functions applied on square
matrices stored in the currently used data structure. What could be done is to add
small modifications in the assembly functions in order to make them more modular,
and especially to support more matrix shapes and storage structures. The assembly
functions could then also be used directly by the client like library functions to build
optimised algorithm, in addition to being used in the current matrix program.

Another possible continuation of this project concerns the power dissipation.
Measuring precisely the dissipation in the DSP with the matrix program and com-
paring the results with the power dissipation of the existing hardware accelerator
would complete the comparison analysis between the two solutions. This could be
taken into account together with the rest of the performance analysis to decide if
future programs should be implemented in software or with a specialised acceler-
ator. The dynamic power dissipation in the DSP could also be analysed further,
in order to understand if some simple changes in the code can lead to a less power
consuming program.
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Appendix A

Set of matrix instructions

A defined set of matrix instructions is supported by the existing hardware accel-
erator. Every instruction contains parameters, among which an operation code
(opcode), the size of the matrices, and operands for the input/output matrices. The
size of the matrices is always a multiple of 4.

The instruction set can be divided into two groups:

• Instructions to load/store data from/to the shared memory to/from the in-
ternal memory of the accelerator;

• Instructions to execute operations on matrices which are stored internally;

For most instructions, it is also possible to directly transpose and/or conjugate
the output of the function. If INSTR is the name of a simple instruction, INSTR_T
is the name of the instruction that does the same operation and return a transposed
output. Similarly, INSTR_C defines the same instructions with a conjugated out-
put, and with INSTR_TC the output is both transposed and conjugated Example:

MUL ↔ X0 = X1X2

MUL_T ↔ X0 = (X1X2)T

MUL_C ↔ X0 = X1X2

MUL_TC ↔ X0 = (X1X2)∗

Every matrix that is stored in the internal memory is uniquely identified by its
size n and its operand. The internal memory is a N ×N table that is divided into
blocks of size n× n, as shown in Figure A.1, and each operand for this size n refers
to one of the blocks.
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Figure A.1. Location of the matrices of size n × n in the internal memory
table of size N ×N

A.1 Load - Store instructions

The set of instructions for data transfer is described in Table A.1 and examples are
displayed in Figure A.2.

In the shared memory, the transferred data is always stored consecutively from
a specified address. For each instruction, many different external formats are sup-
ported.

Figure A.2. Example of LOAD (on the left) and VLOAD (on the right)
instructions
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Instructions Description

LOAD
LOAD_T
LOAD_C
LOAD_TC

Load nrows consecutive rows of ncols columns from the shared memory
to the internal memory. The destination address is given by the
operand X0. If nrows < n and/or ncols < n, the remaining coefficients
are filled with zeros (see Figure A.2). Matrices are if requested
transposed/conjugated before being written in the internal memory.

STORE
STORE_T
STORE_C
STORE_TC

Store nrows rows of ncols columns from matrix X0 in the internal
memory to the shared memory. With transpose/conjugate options,
only the output is modified, the internal matrix remains the same.

VLOAD
VLOAD_T
VLOAD_C
VLOAD_TC

Load a vector with a defined length from the shared memory to the
internal memory. Only the row number can be specified in the
destination address, the data is then written in this row in the first
block (M0 in Figure A.2). If length > n, the data is then written
successively in M1, M2, M3, etc. If length is not a multiple of n, the
last coefficients of the last block are filled with zeros. In case of
transposition, the data is written in a column instead of a row.

VSTORE
VSTORE_T
VSTORE_C
VSTORE_TC

Store a vector with a defined length from the internal memory to the
shared memory. The source data is read from a specified row in the
successive blocks M0, M1, M2, M3, etc. For VSTORE_T and
VSTORE_TC, data is read from a column instead of a row.

Table A.1. Instruction to load/store data

A.2 Other instructions
For every other instruction, the definition is given for the simple instructions INSTR,
the output for the instructions INSTR_T, INSTR_C, INSTR_TC can easily be
deduced by transposing and conjugating the output X0 of the operation. The
description of these operations can be found in Table A.2.
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Instruc-
tions Description

CONST
CONST_C X0 is filled with a constant λ

SCALE
SCALE_T
SCALE_C
SCALE_TC

X0 = λX1

ADD
ADD_T
ADD_C
ADD_TC

X0 = X0 + λX1

MUL
MUL_T
MUL_C
MUL_TC

X0 = X1X2

TMUL
TMUL_T
TMUL_C
TMUL_TC

X0 = X1X
∗
1

DOT
DOT_T
DOT_C
DOT_TC

First row of X0 = Diagonal of X∗
1X2. Other rows in X0 are filled with

zeros.

DIV X0 = X−1
1 X0

CHOL In-place Cholesky decomposition. Output X0 is equal to the
lower-triangular matrix L where input X0 satisfies X0 = LL∗

LDL

In-place LDL decomposition. Output X0 is equal to the
lower-triangular matrix L with ones on the diagonal, and output X1 is
equal to the diagonal matrix D where the input X0 satisfies
X0 = LDL∗

VMUL
VMUL_T
VMUL_C
VMUL_TC

∀i, j ∈ {0 . . . n− 1}, (x0)ij = (x1)ij(x2)ij (Elementwise multiplication)

ABS2
ABS2_T

∀i, j ∈ {0 . . . n− 1}, (x0)ij = |(x1)ij |2 (Elementwise square absolute
value)

VINV
VINV_T ∀i, j ∈ {0 . . . n− 1}, (x0)ij = 1/(x1)ij .re (Elementwise inversion)

VSQRI
VSQRI_T

∀i, j ∈ {0 . . . n− 1}, (x0)ij = 1/
√

(x1)ij .re (Elementwise square root
inversion)

DMAX X0 = mId where m = max({|(x1)ii| : 0 ≤ i ≤ n− 1}) and Id is the
identity matrix

Table A.2. Other instructions
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Appendix B

Division algorithm

Compute A−1B, with A,B ∈ Cn×n Sources: [7] [8]

Algorithm 7 Gaussian elimination with partial pivoting
for k = 0 . . . n− 1 do

. STEP 1: search pivot
max_pivot← |akk|2
max_pivot_row ← k
for i = k + 1 . . . n− 1 do

Compute |aik|2
if |aik|2 > |akk|2 then

max_pivot← |aik|2
max_pivot_row ← i

. STEP 2: switch rows
if max_pivot_row > k then

for j = k . . . n− 1 do
akj ↔ aij

for j = 0 . . . n− 1 do
bkj ↔ bij

. STEP 3: eliminate coefficients under pivot: rowi ← rowi − aik
akk

rowk
for i = k + 1 . . . n− 1 do

Compute mik = aik
akk

aik = 0
for j = k + 1 . . . n− 1 do

aij ← aij −mikakj

for j = 0 . . . n− 1 do
bij ← bij −mikbkj

This can be followed by back-substitution.
Possible variation to limit the number of divisions:
Thanks to the row normalisation, the Algorithm 8 transforms A into an upper di-
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Algorithm 8 Variation of Gaussian elimination with partial pivoting
for k = 0 . . . n− 1 do

Do STEP 1 and STEP 2 of Algorithm 7
. STEP 3: normalise row k: rowk ← 1

akk
rowk

Compute mk = 1
akk

akk = 1
for j = k + 1 . . . n− 1 do

akj ← mkakj

for j = 0 . . . n− 1 do
bkj ← mkbkj

. STEP 4: eliminate coefficients under pivot rowi ← rowi − aikrowk
for i = k + 1 . . . n− 1 do

for j = k + 1 . . . n− 1 do
aij ← aij − aikakj

for j = 0 . . . n− 1 do
bij ← bij − aikbkj

aik = 0

agonal matrix with the value 1 for every diagonal coefficient. The back-substitution
that will follow will not include any divisions.

Gauss-Jordan algorithm with partial pivoting is very similar. The elimination is
done not only on the coefficients under the pivot but also for the coefficients above
the pivot. In STEP 3 of Algorithm 7 and in STEP 4 of Algorithm 8, the statement
"for i = k+1 . . . n−1 do" is simply replaced by "for i = 0 . . . n−1 with i 6= k do".
At the end of Gauss-Jordan elimination, A is changed into a diagonal matrix.
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