Confidence-based Work Stealing in Parallel Constraint Programming
Geoffrey Chu, Christian Schulte, Peter J. Stuckey.
The most popular architecture for parallel search is work stealing: threads that have run out of work (nodes to be searched) steal from threads that still have work. Work stealing not only allows for dynamic load balancing, but also determines which parts of the search tree are searched next. Thus the place from where work is stolen has a dramatic effect on the efficiency of a parallel search algorithm.
This paper examines quantitatively how optimal work stealing can be performed given an estimate of the relative solution densities of the subtrees at each search tree node and relates it to the branching heuristic strength. An adaptive work stealing algorithm is presented that automatically performs different work stealing strategies based on the confidence of the branching heuristic at each node. Many parallel depth-first search patterns arise naturally from this algorithm. The algorithm produces near perfect or super linear algorithmic efficiencies on all problems tested. Real speedups using 8 threads range from 7 times to super linear.
In: Ian Gent, editor, Fifteenth International Conference on Principles and Practice of Constraint Programming, Lisbon, Portugal, volume 5732 of Lecture Notes in Computer Science, pages 226-241. Springer-Verlag, September, 2009. DOI 10.1007/978-3-642-04244-7_20.
Copyright Springer-Verlag, the original publication is available at www.springerlink.com